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Abstract

Language models often struggle with idiomatic,
figurative, or context-sensitive inputs, not be-
cause they produce flawed outputs, but because
they misinterpret the input from the outset.
We propose an input-only method for antic-
ipating such failures using token-level likeli-
hood features inspired by surprisal and the Uni-
form Information Density hypothesis. These
features capture localized uncertainty in in-
put comprehension and outperform standard
baselines across five linguistically challeng-
ing datasets. We show that span-localized fea-
tures improve error detection for larger models,
while smaller models benefit from global pat-
terns. Our method requires no access to outputs
or hidden activations, offering a lightweight
and generalizable approach to pre-generation
error prediction.

https://github.com/mi-m1/input_
perception

1 Introduction

Model failures in language understanding do not
always stem from incoherent outputs. Instead, they
may originate earlier in the processing pipeline,
from how the model internally interprets the in-
put. When meaning depends on context-sensitive
constructions, such as idiomatic or metaphorical
expressions, the model may produce a plausible
response that is nevertheless grounded in a mis-
reading of the input. These cases reveal a blind
spot in the model’s comprehension, where high-
confidence generation masks a fundamental inter-
pretive error. This raises a critical question: Can we
anticipate such errors before the model generates
a response, purely by examining how it internally
processes the input? Prior work has shown that
models tend to perform better on inputs they assign
higher overall likelihoods (Ohi et al., 2024; McCoy
et al., 2024), suggesting that token-level probabil-
ities may encode latent signals of confidence or

uncertainty. However, most existing approaches re-
duce this likelihood information to a global scalar,
such as perplexity, and do not examine how fine-
grained variations across the input might reflect
deeper patterns of misalignment. Moreover, nearly
all existing techniques for error or uncertainty es-
timation rely on decoding-time cues, such as log-
its (Belrose et al., 2023), entropy (Pereyra et al.,
2017), or sampling variance. Our method, however,
is complementary: it anticipates failure at the input
stage without consulting the output.

We propose an input-driven framework for antic-
ipating language model (LM) errors by analyzing
the structure of the likelihood surface over input
sequences. Our approach is motivated by the Uni-
form Information Density (UID) hypothesis (Jaeger
and Levy, 2006; Jaeger, 2010), which views lan-
guage as a signal optimized to distribute informa-
tion evenly across an utterance.

In practice, information density fluctuates due
to grammatical, discourse, and pragmatic factors
(Levy, 2013; Genzel and Charniak, 2002; Xu and
Reitter, 2016), and forms information contours that
reflects meaningful variations of contextual infor-
mation (Tsipidi et al., 2024). Similarly, non-literal
language, e.g., idioms, metaphors, metonymy, vio-
lates compositional expectations and disrupts local
information uniformity. For LMs, such irregulari-
ties appear as perturbations in the likelihood land-
scape. We hypothesize that these points of insta-
bility, where predictive expectations diverge from
natural variability, offer useful signals for anticipat-
ing model errors.

Although our framework applies to many kinds
of context-sensitive meaning, we target idioms,
metaphors, and metonymy because they stress con-
textual interpretation and have been repeatedly
shown be be challenging for LLMs: misunder-
standings of context can flip the label from literal
to figurative (or vice versa) and yield large errors.
Recent studies show that even strong models of-
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Prompt: How is the expression “caught between a rock and a hard place”
used in the following sentence? Literally or figuratively?
Sentence: Suddenly she was caught between a rock and a hard place.

E

LLM “Literal”
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rock and a hard place” used in the following
sentence? Literally or figuratively? IJ-
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and a hard place. S;
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Figure 1: An illustration of an LLLM failure on a non-compositional semantics task (top panel). Standard error
detection methods typically work by checking the generated output afterward, often requiring extra resources such
as a Judge LLM (middle panel). In contrast, our method applies information-theoretic measures directly to the
input sentence (bottom panel). In this case, our model estimated an 81% likelihood that the LLM would fail on this

example, and indeed, it did.

ten fail to leverage context for these distinctions
(Mi et al., 2025; Phelps et al., 2024), making these
tasks an incisive testbed for input-side error predic-
tion. A further advantage is observability: these
datasets come with explicit span annotations for
the potentially problematic phrases (e.g., the idiom
or the metaphoric span). This lets us localize input-
likelihood features to known points of interpretive
risk and investigate whether the model’s own input-
side signals anticipate mistakes more accurately
than coarse global heuristics.

Our results show that token-level likelihood fea-
tures, without access to output logits or hidden
states, significantly improve error detection, partic-
ularly for smaller models, and outperform estab-
lished baselines such as log probability, max token
confidence, or Oddballness.

While our span-localized features leverage task-
informed linguistic structure, our sentence-level
features generalize across settings and suggest a
broader insight: that the internal likelihood surface
over the input encodes rich, interpretable signals
of model comprehension. This opens the door to
future work on black-box risk estimation that oper-

ates before generation, using only how the model
“reads” the input as a basis for identifying when it
is likely to fail.

Contributions (1) We propose an input-driven
framework for anticipating language model errors
using token-level likelihood features, without re-
lying on outputs or internal activations. (2) We
develop both global and span-localized uncertainty
features; while the latter are guided by task-specific
linguistic structure, the global features are broadly
applicable and offer a path toward dynamic local-
isation. (3) We demonstrate the effectiveness of
this approach across five linguistically grounded
datasets, showing substantial gains over standard
input-likelihood heuristics, particularly for smaller
models (1B-3B parameters).

2 Related Work

Literal vs. Figurative Understanding The task
of detecting metaphors, idioms, and metonymy in-
volves determining whether a linguistic expression
is used figuratively or literally. Despite substan-
tial progress, this remains a challenging problem
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for language models (Phelps et al., 2024; He et al.,
2024; Yang et al., 2024; Tian et al., 2024; Steen
etal., 2010). A key difficulty lies in models’ inabil-
ity to effectively leverage context for disambigua-
tion. For example, Mi et al. (2025) show that even
under controlled, contrastive evaluation settings,
large language models struggle to use contextual
cues to distinguish figurative from literal interpre-
tations.

Kabbara and Cheung (2022) demonstrate that
Transformer-based models often rely on superfi-
cial lexical or structural cues, rather than engag-
ing in deeper pragmatic reasoning. This finding
aligns with our hypothesis that many model errors
arise not from output generation, but from internal
misinterpretation of the input. If models rely on
superficial cues rather than deeper semantic rea-
soning, then fine-grained input likelihood patterns,
such as local surprisal spikes, may offer a more
faithful signal of confusion or misalignment. By
analyzing these token-level signals, our approach
seeks to uncover where and how models exhibit
shallow comprehension, especially in linguistically
complex regions.

Surprisal and Psycholinguistics Signals Sur-
prisal, rooted in Shannon’s information theory
(Shannon, 1948), measures the unexpectedness of a
word in context, with less predictable words impos-
ing greater processing difficulty on humans (Hale,
2001; Levy, 2008). A large of body of literature has
shown that surprisal values estimated from neural
LMs (e.g., LSTMs and Transformers) predict hu-
man reading times (Oh and Schuler, 2023; Wilcox
et al., 2023; Pimentel et al., 2023; Rambelli et al.,
2023; Goodkind and Bicknell, 2018).

Other contextual predictors have also been ex-
plored. Entropy captures uncertainty about up-
coming words, reflecting the number of plausi-
ble continuations in context (Futrell et al., 2020).
Pointwise Mutual Information (PMI) (Fano, 1961;
Church and Hanks, 1990) quantifies word associa-
tions, and has long been used in modeling lexical
co-occurrence and semantic similarity. Together,
these measures capture token-level dimensions of
processing difficulty: unexpectedness (surprisal),
contextual uncertainty (entropy), and pairwise as-
sociation strength (PMI). While primarily applied
to model human comprehension, recent work re-
frames these signals as useful diagnostics for LMs
themselves (Opedal et al., 2024).

Error detection A broad body of work has
explored error detection and uncertainty in lan-
guage models, often focusing on output-driven sig-
nals. Selective prediction (Gu and Hopkins, 2023),
entropy-based methods (Shorinwa et al., 2024; Wu
et al., 2025), and token-level uncertainty estimation
(Ma et al., 2025) estimate uncertainty during or af-
ter generation, by relying on output probabilities
or decoding dynamics (Wu et al., 2025). Other ap-
proaches probe model internals, e.g., hidden states
(Burns et al., 2024; Azaria and Mitchell, 2023; Li
et al., 2023; Zou et al., 2025), attention patterns
(Chuang et al., 2024), or gradients, to diagnose
understanding (Ashok and May, 2025; Vig and Be-
linkov, 2019; Chefer et al., 2021). While effective,
these methods require access to internal representa-
tions or model outputs, limiting their applicability
to open-source or non-black-box settings.

In contrast, our approach estimates error risk
before any generation occurs, using only token-
level input likelihoods. This purely input-driven
method allows us to infer model comprehension
externally, making it compatible with black-box
or API-only models. Our work is also motivated
by studies showing that models perform better on
inputs with higher overall likelihoods (Ohi et al.,
2024; McCoy et al., 2024), and by techniques like
Oddballness (Gralinski et al., 2025), which flag
anomalous inputs via likelihood deviations. These
findings suggest that the input likelihood surface
carries important signals of conceptual instability,
particularly in linguistically complex regions and
thus, offers a lightweight and generalizable path
for proactive error detection.

3 Method

3.1 Modeling Comprehension through Input
Likelihood Structure

Our approach is based on the hypothesis that the
likelihoods a language model assigns to tokens
within an input sequence encode latent signals of
its internal comprehension. Specifically, we posit
that surprisal and related features derived from in-
put token probabilities can reveal regions of uncer-
tainty or misalignment that precede downstream
errors. This view aligns with psycholinguistic find-
ings showing that humans experience increased pro-
cessing difficulty at points of high surprisal (Hale,
2001; Smith and Levy, 2013), and recent evidence
suggesting similar interpretive dynamics in LLMs
(Ohi et al., 2024).

34319



Rather than analyzing outputs or decoder acti-
vations, we focus exclusively on the model’s per-
ception of the input. Given a dataset D comprising
instances d; € D, and we construct a prompt, P;,
composed of two components:

Pj = (Q;,5;(d5)) (D

where (); denotes the task instruction specifying
the phenomenon relevant to task j and S; denotes
the contextual sentence for instance d;.

We extract features from the likelihood distribu-
tion over Sj, treating this distribution as a proxy
for the model’s internal interpretation of the input.!
These features are computed either over the en-
tire sentence (global) or over spans informed by
linguistic structure (localized).

3.2 Measures

We define a set of information-theoretic measures,
as:
® = {SPR, H,CWS, CIS}

Each measure, k € ®, captures a distinct facet of
model’s predicative behaviour over various granu-
larity (e.g., S;) of the input. These features require
no task-specific information and are broadly appli-
cable across inputs.

From these metrics, we derive sentence-level fea-
tures by aggregating values across the context sen-
tence (.S;) (e.g., mean surprisal, maximum entropy).
Together, these features provide complementary
perspectives on the model’s internal belief state,
capturing token-level fit, uncertainty sharpness,
confidence calibration, and contextual salience, and
serve as interpretable signals for anticipating down-
stream error.

Surprisal Surprisal measures the unexpectedness
of a token ¢;, defined as the negative log-probability
of the token given its preceding context:

SPR(t;) = P(t; | t<i)

Entropy. Shannon entropy reflects the model’s
uncertainty over the next token distribution at each
position. Unlike surprisal, which is token-specific,
entropy quantifies the overall spread of the model’s
prediction:

— log,

H(tj) == P(w|te)logy P(w | t<;)
- weV

'While we do not explicitly design or optimize prompts,
we acknowledge that the distribution over S; is shaped by I
due to the model’s autoregressive architecture.

Confidence-Weighted Surprisal (CWS) We
propose a variant of surprisal that incorporates a
penalty for low-confidence or diffuse next-token
distributions. CWS augments surprisal with a KL
divergence term measuring deviation from an ide-
alized, peaked distribution:

CWS(t;) = —logy P(t; | t<;) +~v- DxL(P || Q)

Here, P is the model’s predicted distribution,
and @ is a reference distribution that assigns 0.9
probability to the observed token and distributes
the remaining 0.1 uniformly. The penalty weight ~y
controls sensitivity to this divergence:

> P(t)

teV

DxL(P || Q) = [logy P(t) — logy Q(t)]

We introduce CWS to explicitly combine token
correctness and sharpness of the belief, since there
are settings where a model assigns moderately high
probability to the observed input tokens but with
a diffuse overall distribution (high entropy), thus,
indicating low semantic commitment. This hybrid
aims to penalise such diffuse predictions more di-
rectly.

Contextual Influence Score (CIS). CIS mea-
sures the incremental informatoin that ¢; con-
tributes to predicting ¢;1:

CIS(t;) = logy P(tit1 | t<,)
—logy P(tit1 | t<i)

Equivalently, it is a conditional PMI term. Oper-
ationally, the second term is computed by rescoring
t;+1 under the shortened prefix t-; (i.e.,”without
t;”). Thus, CIS measures the conditional PMI be-
tween t; and ;11 given the prefix, and quantifies
the incremental predictive contribution of ¢; during
autoregressive inference.

3.3 Features Localized to Challenging Input
Regions

While sentence-level features summarize the
model’s input-conditioned belief profile, many rea-
soning failures stem from localized comprehension
difficulties. In tasks with semantically complex
constructions, the model must integrate context
and resolve ambiguity within a confined span (e.g.,
the idiomatic phrase in S;: Sjexpr). We hypoth-
esize that token-level likelihood patterns in such
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spans can more precisely indicate potential errors
than global averages. When the boundaries of these
challenging regions are known or can be inferred
(e.g., via dataset annotation), we compute localized
features informed by linguistic theory. We opera-
tionalize three linguistically motivated hypotheses
that link likelihood dynamics to characteristic com-
prehension challenges.

Fixedness of Idioms (FOI). Idiomatic expres-
sions are often syntactically rigid and lexically con-
strained (Chafe, 1968; Fraser, 1970). Once the
idiom is initiated, its subsequent tokens become
increasingly predictable. In surprisal terms, we ex-
pect a decreasing pattern. We capture this with two
features:

Monotonic Decrease: A binary feature indicat-
ing whether information decrease throughout the
span:

Decreasing,,,,, = 1 <Vi < J € Sjexpr;

uwg>k@m>

Surprisal Spikes: The number of local surprisal
maxima in the span, reflecting unpredictability:

Nipikes = ‘{Z € Sj,expr } kE(w;) > k(w;—1) A
k(wi) > k(wis1) }

Selectional Preference Violations (SPV).
Metaphorical constructions often involve semantic
mismatches between verbs and their arguments
(Wilks, 1975, 1978), which may lead to sharp
information transitions. We define Boundary
Shift, which represents the change in information
from the final token in the span to the token
immediately following it:

Aboundary = k(wpost) - k(wend)

where wenq s the last token of the span, and wpo
is the following token.

High Context Information (HCS). Comprehen-
sion failures often correlate with local information
peaks. We test whether the model’s highest uncer-
tainty is localized within the span using Peak-in-
Span Indicator:

d(z) = 1L(i" € Sjexpr), @ = argmaxk(w;)

We also design additional features that are in-
spired by there linguistic theories (see Appendix A.

Collectively, these localized features are designed
to complement sentence-level likelihood sum-
maries by providing finer-grained signals of con-
ceptual instability within semantically challenging
parts of the input.

Granularities. To capture cues for distinguishing
literal from figurative usage, we compute features
at four granularities. Sentence-level applies metrics
to the full sentence. Expression-level restricts to the
idiomatic span. Boundary-level focuses on words
immediately flanking the idiom. Context-level uses
the surrounding sentence with the idiom removed.
These complementary views isolate internal, local,
and contextual signals shaping interpretation.

3.4 Feature Set

For each tokenwise metric defined in Section 3.2
(e.g., surprisal, entropy, CIS, CWS), and for each
example j with prompt P; tokenized as x; =
(Tj1,---,Tjm;), we derive features at different
levels of granularity. With ® denoting the set of
measures and G = {sentence-level, expression-
level, boundary-level, context-level} the granulari-
ties. For any region g € G, let Ijg C{1,...,m;}
be the corresponding index set of tokens (e.g., all
tokens for sentence-level, the annotated span for
expression-level, etc.). We aggregate over a set of
operators A = {mean, maxmin, std }:

1
Wzteljk(l‘j,l;t), a = mean,
j

atelgk(xj71:t), a € {max, min, std}.

fikga=

Thus, our feature set for our linguistically tar-
geted setting is:

Fi={finrgalk€® geG, ac A}

Sentence-level restriction. When restricting to
sentence-level evaluations, we fix the granularity to
sentence-level and apply the mean and maximum
aggregations across the sentence. Formally,

f»;ent = {f‘%k’Sj,meanv fj,k, Sj, max ‘
ked®}. (3

4 Experimental Setup

4.1 Datasets

We utilize five benchmark datasets spanning three
distinct types of non-literal language understand-
ing: idiomaticity, metaphor, and metonymy.
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DICE (Mi et al., 2025) is an idiomaticity de-
tection dataset that preserves the fixed lexical and
syntactic form of idioms across both literal and fig-
urative uses. Unlike prior datasets that alter idiom
structure in literal cases, DICE forces models to
rely on context rather than form to disambiguate
meaning. MOH-X (Mohammad et al., 2016) and
TRoFi (Birke and Sarkar, 2006) are datasets for
verbal metaphorical/literal identification. We use
Task 14 Reference via Metonymy of PUB (Sravan-
thi et al., 2024) (henceforth, PUB 14), which are
challenging cases where named entities refer not to
themselves but to entities closely associated with
them (e.g., "Washington" referring to the U.S. gov-
ernment). Similarly, ConMeC (Ghosh and Jiang,
2025) focuses on metonymy of common, high-
frequency nouns (such as ‘glass’ for ‘wine’).

4.2 Evaluation Paradigm

Given a LLM M, we use zero-shot prompts to
assess the knowledge that the model has learned
during training, rather than its ability to adapt to the
task using in-context learning. Since understanding
context is an inherent aspect of language ability,
and not a downstream task, we aim to evaluate the
model in its unaltered state. The only variation
in the task instruction is the specification of the
particular phenomenon relevant to each task. We
provide our prompts for each task in Appendix B.1.
Thus, the model prediction is then given by:

i = M(P;) “4)

The accuracy of the model for each instance is
evaluated by comparing y;with the gold label ;.
We provide the accuracy of the models evaluated
in Appendix C.1.

Accuracy = — Z I[y; = ;] %)

Lete = (ey, .. .,ep|) denote the vector of error
labels, where e; = 1[y; # y;].

4.3 Classifiers

We fit logistic regression and an MLP to map F;
to an error probability p;. For binary decisions we
use a threshold 7 (Appendix B.3). Further details
are in Appendix B.3.

4.4 Baselines

Typically, methods such as log probability and max
token probability have been used as signals for

error detection. Thus, we fit our logistic regression
model and MLP model on: log probability, max
token probability and oddballness as baselines (see
Appendix B.5).

5 Results

5.1 Can input likelihood features signal model
failures?

Table 1 reports F1 for error detection across mod-
els and datasets, comparing simple input-likelihood
heuristics (mean log likelihood, mean max token
probability, Oddballness) with our input-side fea-
ture sets.

For a given model—task pair, switching the clas-
sifier (LogReg vs. MLP) rarely changes out-
comes for the baselines, and on the hardest bench-
marks, DICE (idiomaticity) and TroFi/MOH-X
(metaphor), they often show no signal (F1 = 0 for
several large models, e.g., Llama-3.1-8B, Qwen2.5-
7B, Qwen2.5-14B). This observation show that
coarse confidence summaries are too blunt to
capture the context-dependent failures these non-
compositional tasks probe.

The sentence-level set (Surprisal + CIS + En-
tropy + CWS) yields substantial gains on every
dataset and for every model family, turning many of
the zero-F1 cases into non-trivial detection perfor-
mance. The gains are especially visible on smaller
models (0.5B-1.5B), where errors are more fre-
quent but the input-conditioned belief patterns our
features exploit are still systematic.

Classifier choice effects are modest but consis-
tent. The MLP generally provides broader task
coverage (fewer near-zero cases) and more stable
performance across models and datasets. Logistic
regression sometimes edges out MLP on smaller
models (=0.5B-3B), which is consistent with lin-
ear separability of these features at lower capacity;
the MLP tends to do better on the harder datasets
(e.g., TroFi, ConMeC) and on larger models, indi-
cating that our features encode non-trivial structure
that benefits from a more expressive classifier.

5.2 Do linguistically localized features
improve error prediction?

We next ask whether prediction improves when we
localize input-side features to regions marked by
the datasets as potential sites of misreading (e.g.,
the annotated phrase).

As shown in Table 1, span-localized features
often provide stronger signal than sentence-level
aggregation alone, particularly for larger models.
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Tasks DICE MOHX TroFi PUB 14 ConMeC \ DICE MOHX TroFi PUB 14 ConMeC
Baseline MAX PROBABILITY CONFIDENCE

Llama-3.1-8B-Instruct 0.0 0.0 0.0 74.8 28.9 0.0 0.0 0.0 68.6 0.0
Llama-3.2-3B-Instruct 60.8 0.0 0.0 95.5 72.2 68.2 0.0 0.0 95.5 72.2
Llama-3.2-1B-Instruct 85.3 76.6 89.2 85.0 98.9 85.0 76.6 89.2 85.0 98.9
Qwen2-1.5B-Instruct 79.5 69.1 74.9 96.0 69.1 76.8 60.9 74.9 96.0 70.4
Qwen2.5-0.5B-Instruct 70.6 63.8 82.7 98.3 89.4 70.8 67.0 82.7 98.3 89.4
Qwen2.5-7B-Instruct-1M 0.0 0.0 1.4 97.2 0.0 0.0 0.0 0.0 97.2 0.0
Qwen?2.5-14B-Instruct-1M 0.0 0.0 0.0 87.8 0.0 0.0 0.0 0.0 87.8 0.0
Baseline LOG PROBABILITY

Llama-3.1-8B-Instruct 22.8 0.0 0.0 74.8 8.0 0.0 0.0 0.0 74.8 9.5
Llama-3.2-3B-Instruct 74.8 0.0 0.0 95.5 72.2 76.2 0.0 1.1 95.5 72.2
Llama-3.2-1B-Instruct 85.6 76.6 89.2 85.0 98.9 85.3 76.6 89.2 85.0 98.9
Qwen2-1.5B-Instruct 78.8 64.3 74.9 96.0 70.4 73.5 61.5 74.5 96.0 70.4
Qwen2.5-0.5B-Instruct 73.9 66.7 82.7 98.3 89.4 72.9 66.3 82.7 98.3 89.4
Qwen2.5-7B-Instruct-1M 5.6 0.0 0.0 97.2 0.0 0.0 0.0 0.0 97.2 0.0
Qwen2.5-14B-Instruct-1M 0.0 0.0 0.0 87.8 0.0 0.0 0.0 0.0 87.8 0.0
Baseline ODDBALLNESS

Llama-3.1-8B-Instruct 13.8 0.0 0.0 73.1 2.2 0.0 0.0 0.0 74.8 0.0
Llama-3.2-3B-Instruct 64.9 0.0 0.0 95.5 72.2 66.0 4.3 2.3 95.5 72.2
Llama-3.2-1B-Instruct 85.2 76.6 89.2 85.0 98.9 85.3 76.6 89.2 85.0 98.9
Qwen2-1.5B-Instruct 7.6 61.0 74.9 96.0 70.4 74.0 64.4 74.8 96.0 70.4
Qwen2.5-0.5B-Instruct 73.6 68.4 82.7 98.3 89.4 72.0 69.4 82.7 98.3 89.4
Qwen?2.5-7B-Instruct-1M 2.0 0.0 0.0 97.2 0.0 0.0 0.0 0.0 97.2 0.0
Qwen?2.5-14B-Instruct-1M 0.0 0.0 0.0 87.8 0.0 0.0 0.0 0.0 87.8 0.0
Ours (Sentence-level) SURPRISAL + CIS + ENTROPY + CWS

Llama-3.1-8B-Instruct 27.7 0.0 0.7 74.3 317 41.3 0.0 20.9 66.7 45.9
Llama-3.2-3B-Instruct 74.8 0.0 15.0 95.5 72.0 78.0 27.4 33.3 95.5 61.0
Llama-3.2-1B-Instruct 85.6 74.5 89.1 85.0 98.9 84.8 71.1 89.2 8.7 98.9
Qwen2-1.5B-Instruct et 54.7 71.3 96.0 65.8 73.1 57.1 70.3 96.0 63.3
Qwen2.5-0.5B-Instruct 75.3 67.1 81.9 98.3 89.4 75.5 59.0 81.8 97.8 88.7
Qwen?2.5-7B-Instruct-1M 3.7 0.0 1.5 97.2 0.0 27.0 114 23.6 97.2 8.4
Qwen?2.5-14B-Instruct-1M 0.0 0.0 0.8 87.8 0.0 5.7 9.5 26.1 88.3 33.5
Ours LINGUISTICALLY TARGETED

Llama-3.1-8B-Instruct 41.00 (+13.3) 7.14 +7.1) 18.34 (+17.6)  65.55(8.7) 48.02 (+16.4) | 50.00 +8.7)  10.53 (+10.5) 42.07 +21.1) 6545 (-12)  48.92 (+3.0)
Llama-3.2-3B-Instruct 79.78 +5.0)  17.24 +172)  40.87 (+258) 9240 (:3.1)  65.79 (-6.2) 76.22 (-1.8) 32.56 (+5.2)  49.40 (+16.1)  94.86 (-0.6)  61.64 (+0.7)
Llama-3.2-1B-Instruct 8429 (-13)  75.86(+1.4)  89.18 +0.1)  77.85(7.1) =) 81.90 (-2.8) 64.20 (-6.9) 84.55 (47  76.60 (2.1)  98.80 (-0.1)
Qwen?2-1.5B-Instruct 79.30 (+1.9)  66.18 (+11.5)  70.08 (-1.2) 96.00 (-0.0)  59.56 (-6.2) 74.24 (+1.1) 63.45 (+6.3) 70.12 (-0.2) =) 57.96 (-5.3)
Qwen?2.5-0.5B-Instruct 75.20 (-0.1) 63.69 (-3.4) 80.61 (-1.3) 96.05 (-2.3) 89.31 (-0.1) 71.55 (3.9 63.69 (+4.7) T4.79 (-7.0) 98.34 (+0.6) 83.60 (-5.1)
Qwen?2.5-7B-Instruct-1M 26.85 (+23.1)  22.86 (+22.9) 9.80 (+8.3) 97.75 (+0.5)  24.55 (+24.5) | 42.62 (+15.6) 1277 +1.3)  39.55 (+16.0)0  97.18 (:0.0)  38.55 (+30.1)
Qwen2.5-14B-Instruct-1M 9.88 (+9.9) 1111 +11.1)  13.94 (+132)  83.87 (:3.9)  23.97 (+24.0) | 27.59 (+21.9) 11.76 (+2.2) 3520 +9.1)  84.21 (-4.1)  40.38 (+6.9)

Table 1: Results on logistic regression (left panel) and MLP (right panel) classifiers. Top three panels shows the
results obtained using baseline features. Bottom two panels shows performance using features derived from surprisal
cues, with and without the presence of linguistic spans. All values presented are F1 scores of detecting error,

averaged across three runs.

For example, on Qwen2.5-14B (LogReg), localiza-
tion yields clear improvements on ConMeC and
TroFi, and Qwen2.5-7B shows consistent gains
across multiple datasets. This suggests that larger
models, while strong on average, benefit from fo-
cused measurement at the span and its boundary,
where local instability can be more diagnostic than
global summaries.

For smaller models (e.g., Llama-3.2-1B,
Qwen2.5-0.5B), sentence-level features capture
most of the available signal, and span-localization
brings only modest, or occasionally negative,
changes, consistent with errors that are predom-
inantly global and already reflected in the input-
likelihood profile.

Overall, sentence-level features provide a strong,
pre-output signal on their own. Span-localized fea-
tures are complementary, offering clear gains when
region of interests are available (or can be inferred)
and the base model has capacity for improvement.
This points toward future work on automatic local-

ization to bring these benefits without task-specific
annotations.

5.3 Where is the information for error?

In this section, we aim to pinpoint the most impor-
tant signals for error. To this end, we analyze the
impact of removing individual surprisal-based cues
from the sentence-level models by computing the
performance delta across logistic regression and
MLP classifiers. As shown in Table 2, the abla-
tions affect the MLP classifier more significantly,
which reflects its higher sensitivity to input features
and its capacity to model more complex, non-linear
interactions than logistic regression.

For logistic regression, most changes are small
(often within a few F1 points), with the larger neg-
ative deltas appearing when Surprisal or Entropy is
removed. In contrast, CIS and CWS generally con-
tribute less under the linear model, with ablations
producing little movement in many model-task
pairs.
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Tasks DICE MOHX TroFi PUB 14 ConMeC \ DICE MOHX TroFi PUB 14 ConMeC
Ablation of CWS SURPRISAL + CIS + ENTROPY

Llama-3.1-8B-Instruct -1.3 0 -0.7 2.0 0.8 -2.2 7.1 -1.8 1.6 -10.4
Llama-3.2-3B-Instruct -0.4 0 -6.7 0 0.3 0.5 -3.7 3.7 0 4.0
Llama-3.2-1B-Instruct 0.1 -1.2 0.1 0 0 -0.7 -1.7 -0.4 -1.4 0
Qwen2-1.5B-Instruct -0.6 8.1 3.5 0 3.8 2.5 -3.0 1.9 0 -8.0
Qwen2.5-0.5B-Instruct -0.5 -3.5 0.8 0 0 -1.5 -13.2 -0.1 0.6 0.3
Qwen?2.5-7B-Instruct-1M 3.4 0 3.2 0 0 -14.2 0 0.3 0 10.7
Qwen2.5-14B-Instruct-1M 0 0 -0.0 0 1.0 5.2 0.5 -3.9 -1.4 -8.7
Ablation of Surprisal CIS + ENTROPY + CWS

Llama-3.1-8B-Instruct -0.5 0 -0.7 0.9 0.3 -1.9 7.1 -0.1 0 -4.6
Llama-3.2-3B-Instruct -3.3 0 -5.3 0 0 -0.0 -4.0 7.2 0 5.8
Llama-3.2-1B-Instruct -0.9 -1.5 0.1 0 0 -0.5 -2.9 -0.4 -4.9 0
Qwen2-1.5B-Instruct -0.6 8.1 35 0 3.6 1.5 -1.7 2.6 0 -7.4
Qwen2.5-0.5B-Instruct -0.7 -1.6 0.8 0 0 -2.5 -7.2 0.1 0.6 0.0
Qwen2.5-7B-Instruct-1M -0.0 0 1.2 0 0 -14.1 0 2.6 0 11.1
Qwen2.5-14B-Instruct-1M 0 0 -0.8 0 1.0 7.4 0.5 -7.4 2.1 -10.2
Ablation of CIS SURPRISAL + ENTROPY + CWS

Llama-3.1-8B-Instruct -0.6 0 -0.1 2.5 -2.0 -1.1 0 -12.9 7.2 -15.8
Llama-3.2-3B-Instruct 0.8 -2.8 0 0.3 1.6 -6.2 -0.6 0 5.1
Llama-3.2-1B-Instruct 0.0 -1.4 0.1 0 0 -0.3 2.3 -0.1 2.6 0
Qwen2-1.5B-Instruct -0.7 9.5 34 0 -1.5 1.1 6.0 3.2 0 -3.0
Qwen2.5-0.5B-Instruct -0.6 1.5 0.8 0 0 -1.0 -5.6 0.2 0.6 0.6
Qwen2.5-7B-Instruct-1M 1.9 0 0.5 0 0 -15.1 -11.4 -3.1 0 6.7
Qwen2.5-14B-Instruct-1M 0 0 -0.8 0 0 -5.7 -9.5 -14.0 -0.7 -28.2
Ablation of Entropy SURPRISAL + CIS + CWS

Llama-3.1-8B-Instruct -0.2 0 -0.7 0.2 -0.2 -1.3 7.4 -5.7 7.0 -16.9
Llama-3.2-3B-Instruct -0.1 0 -6.9 0 0.1 -0.6 -4.8 -4.5 0 9.1
Llama-3.2-1B-Instruct -0.3 2.2 0.1 0 0 0.7 1.1 -0.0 0.2 0
Qwen2-1.5B-Instruct -0.5 34 3.7 0 0.3 2.0 -1.1 2.8 0 -2.9
Qwen2.5-0.5B-Instruct -0.2 -0.4 0.8 0 0 -3.3 -5.0 0.1 0.6 0.5
Qwen2.5-7B-Instruct-1M 1.8 0 -0.1 0 0 -25.0 6.2 -16.7 0 10.3
Qwen?2.5-14B-Instruct-1M 0 0 -0.8 0 0 -5.7 9.5 -19.3 -0.5 -20.5

Table 2: Feature ablation results for the logistic regression (left panel) and MLP (right panel) classifiers. Values
represent the performance difference (A) between the full results on all four metrics and the ablated model results,
computed as: A = ablated model — full model. All values are results averaged from three runs. Negative values
indicate that removing the feature decreases performance (i.e., the feature is important), while Positive values
suggest the feature may be redundant or detrimental. Each panel shows the effect of ablating a specific metric.

The pattern shifts with the MLP: CIS and En-
tropy account for much of the signal, with their
ablations producing the largest drops overall, while
Surprisal remains useful but is no longer the domi-
nant driver of performance. CWS shows the least
consistent impact across both classifiers, since it
is essentially surprisal augmented with a confi-
dence/peakiness penalty and is therefore highly
collinear with the explicit Surprisal and Entropy
features already included, limiting its marginal con-
tribution. Taken together, these results suggest that
feature importance depends on the decision surface:
a linear model primarily exploits Surprisal/Entropy,
whereas a non-linear model leverages interactions
that make CIS and Entropy comparatively more
informative, with CWS contributing the least.

6 Conclusions

We showed that a language model’s perception of
the input, captured by its token-level probabilities
over the given prompt, provides a reliable, pre-
output signal of error. Operationalizing this idea
with simple, interpretable features over the input-
side likelihood surface (Surprisal, Entropy, CIS,
CWS), our framework anticipates failures without
consulting generated outputs or hidden activations,
requiring only token log-probabilities. Across five
context-sensitive benchmarks and a range of model
scales, these structured input-side features consis-
tently recover usable signal where coarse input-
likelihood summaries (e.g., mean log likelihood,
mean max token probability, Oddballness) often
show little or no separability, especially on id-
iomaticity and metaphor. This establishes a clear
result: errors can be foretold from how the model
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reads the input, not just from what it later says.
We further find a consistent deployment pattern in
our experiments. Sentence-level features alone de-
liver strong performance, particularly for smaller
models, while localizing the measurement to an-
notated regions of interest yields substantial ad-
ditional gains for larger models. In practice, this
gives a simple recipe: use sentence-level features
by default; add span-localized measurement when
regions of interest are known or can be inferred.
This input-only view is complementary to output-
or activation-based detectors and can be composed
with them to further improve reliability.

Limitations

While this work focuses on evaluation using En-
glish data, this work can be extended to other lan-
guages, given availability of evaluation data, as
the relevant input signals can be generated and are
expected to be similarly informative.

Due to limited research budget, an important
direction for future work involves extending our
framework to evaluate and leverage cognitively in-
spired signals from closed-source models such as
OpenAl’s GPT-40. These models are increasingly
prevalent in deployed NLP systems, yet their opac-
ity poses challenges for extracting internal metrics
like layerwise activations or fine-tuned representa-
tions.

In our preliminary investigation, we also evalu-
ated several smaller models to assess their perfor-
mance. Namely, SmolLM models under 2B param-
eters (Allal et al., 2025). However, we encountered
a contradictory challenge: in order to test our clas-
sifiers, the LLM models must first be capable of
generating meaningful responses to the non-literal
language evaluation prompts. Unfortunately, the
smaller models consistently failed to produce any
correct outputs - they misclassified all instances. In
other words, without at least some correct predic-
tions to contrast against the errors, the requirement
for error detection of distinguishing between right
and wrong responses could not be met.
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A Additional Linguistics Features

Context-level Span We define context-level span
as considering the surprisal distribution, surround
the targeted expression.

kctx(-r) = kleft(l') U kright(x)>

where:

Fiere(z) C {1,..., min(kexpr(x)) — 1},
Erighi(x) C {max(kexpr(z)) +1,...,n}.

Relative magnitude of max surprisal in the id-
iom To assess the relative importance of surprisal
within the idiom, we define the following ratio.
Let:

Sf‘l)l(gi( = irEnSaX k;($l)a Srest = Z k;(fz)a
- i€5\Sexpr
(6)
Stmbx
Reontrast = S @)

rest +e ’
where € > ( is a small constant added for numer-
ical stability. This feature quantifies how prominent
the idiom’s most surprising token is relative to the
rest of the sentence.

Position of min/max We find the position of the
smallest and largest token in a sentence. Then, nor-
malize this position by the total number of tokens
in the sentence.

imin = arg min k(t;),

7 = arg max k(t;
195<n max g ( ])7

1<j<n
Imin Imax
Pmin = ——  Pmax — )
n n
where k(t;) is the scoring function applied to

token ¢;.

B Experimental Setup
B.1 Prompts

DICE "Is the expression ’{target_expression}’
used figuratively or literally in the sentence: {sen-
tence} Answer ’i’ for figurative, I’ for literal. Put

sn

your answer after ’output: ’.

MOH-X and TroFi "Is the word ’{target_word}’
used metaphorically or literally in the sentence:
sentence Answer 'm’ for metaphorical, ’1’ for lit-

*n

eral. Put your answer after “output: ’.

PUB 14 Metonymy The PUB Task 14 dataset
provides existing task instructions in this format:

Context: She is attracted to blue jacket.
Question: What does ‘blue jacket’ refer
to?

Choices:

‘Colour’, Jacket', ‘Sailor’,‘Sea’
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Tasks DICE MOHX TroFi PUB14 ConMeC | DICE MOHX TroFi PUB14 ConMeC
Llama-3.1-8B-Instruct 20.6 0.0 0.0 74.5 28.9 5.7 0.0 2.6 66.7 31.1
Llama-3.2-3B-Instruct 74.5 0.0 0.6 95.5 724 78.7 15.6 20.3 95.5 67.1
Llama-3.2-1B-Instruct 85.2 76.6 89.2 85.0 98.9 85.0 72.7 89.2 84.3 98.9
Qwen2-1.5B-Instruct 79.7 63.5 74.9 96.0 68.7 76.5 59.7 74.0 96.0 67.6
Qwen2.5-0.5B-Instruct 73.6 65.2 82.7 98.3 89.4 73.7 60.6 82.8 98.3 89.4
Qwen2.5-7B-Instruct-1M 3.7 0.0 3.3 97.2 0.0 0.0 0.0 2.7 97.2 0.0
Qwen2.5-14B-Instruct-1M 0.0 0.0 0.0 87.8 0.0 0.0 0.0 1.5 85.7 1.9

Table 3: Results on logistic regression (left panel) and MLP (right panel) classifiers, trained on all three baselines.
All values presented are F1 scores of detecting error, averaged across three runs.

Therefore, we formulate our prompt as:

The following are multiple choice ques-
tions.

[pretext]

Your options are:

[choices]

ConMeC "Is the word ’{target_word}’ used
metonymically or literally in the sentence: {sen-
tence} Answer 'm’ for metonymical, ’1” for literal.

 n

Put your answer after ’output: ’.

B.2 Model Access

We use HuggingFace (Wolf et al., 2020) to evaluate:
Llama 3 models (Grattafiori et al., 2024) and Qwen
2.5 models (Qwen et al., 2025).

We use two A100 GPUs to complete all our fea-
ture extraction aspects, as these require (1) prompt-
ing LL.Ms and (2) obtaining the logits from LLMs.

The classifier part of our work can be run on
CPUs.

B.3 Classifiers
B.3.1 MLP

We employ a multi-layer perceptron to perform
binary classification over . The architecture con-
sists of three fully connected layers: an input layer
mapping to 512 hidden units, a second hidden layer
of 512 units, and a final output layer of a single
unit. The two hidden layers are followed by ReLLU
activation functions, and the output layer employs
a sigmoid activation to produce a scalar probability.
This design follows that used in (Quevedo et al.,
2025).

Formally, given an input vector z € R?, the
output y is computed as:

hy = RCLU(WL%' + bl),
hy = ReLU(Wth + bQ),
Yy = O'(Wghg + bg),

where o denotes the sigmoid function.

Prior to training, all features are standardized to
zero mean and unit variance.

We partition the dataset into training and valida-
tion splits using an 80/20 ratio, stratified to preserve
class distribution across splits. This stratification
is critical given the class imbalance commonly ob-
served in error detection tasks.

Training is conducted using the binary cross-
entropy loss, optimized via the Adam optimizer
with a fixed learning rate of 10~3. Models are
trained for 20 epochs with mini-batches of size
32. All computations are performed using PyTorch.
At each epoch, we monitor both the binary cross-
entropy loss and classification accuracy on the train-
ing set. Model evaluation is deferred until training
completion.

B.3.2 Logistic Regression

We employ a regularized logistic regression classi-
fier to perform binary classification over E € {0, 1}.
Given an input vector F, the predicted probability
1y is given by:

Yy = o(wT:c +b),

where w € R? is the weight vector, b is the bias
term, and o(+) denotes the sigmoid function.

We train the model using the 1bfgs solver with
an increased maximum number of iterations (2,500)
to ensure convergence on the standardized feature
set. For each task, the dataset is split into train-
ing (80%) and testing (20%) sets using stratified
sampling to maintain class balance across splits.

To ensure compatibility with linear models and
to improve convergence, all features are standard-
ized using StandardScaler to have zero mean and
unit variance.

B.4 Evaluation Metrics

The performance of the classifiers is evaluated us-
ing the predicted labels on the held-out test set. We
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compute standard classification metrics including
precision, recall, and F1 score, as well as class-
wise scores. These metrics provide insights into the
classifier’s ability to correctly identify both positive
(error) and negative (non-error) instances.

B.5 Baseline Definitions

Log Likelihood In line with (McCoy et al.,
2024), we compute log-likelihood of a text se-
quence using a causal language model.

1 n
ﬁ ZlogP(tl ’ tl,tg, c. ,tifl)
=1

Max Token Probability This function computes
a confidence score for a given text based on a lan-
guage model’s predictions. For each token in the
input (except the last, due to causal shifting), it cal-
culates the maximum probability assigned to any
token in the vocabulary at that position, which rep-
resents the model’s confidence in its top prediction.
These maximum probabilities are then aggregated
using mean across the sequence using a specified
method to produce a single scalar confidence value.
This score reflects how confident the model is, on
average or otherwise, about its predictions across
the entire input sequence.

n—1
Confidence = max P(v | t1,...,t;)
n—14= vev
=1
Oddballness We calculate the maximum Odd-

ballness (Gralinski et al., 2025) of a text sequence
using a decoder-only language model. For each
token in the sequence, it computes the softmax
distribution over the vocabulary and compares the
probability assigned to the actual token with all
other tokens. The difference between these values
(only when positive) is passed through a ReLU,
summing the total surplus probability assigned to
alternative tokens. This gives a per-token oddball-
ness score, reflecting how much more likely the
model thought other tokens were compared to the
actual one. The function returns the maximum of
these scores across the sequence, indicating the
point where the model found the actual token most
surprising or inconsistent.

oddball; = » " ReLU(P;[v] — p;)
veV

C Complementary Results

C.1 Model Performance on All Tasks

Table 4 presents the performance of the evaluated
LLMs on all five non-literal language tasks.

Model DICE MOHX TroFi PUB 14 ConMeC

Llama-3.1-8B-Instruct 69.8 80.7 628 40.2 54.0
Llama-3.2-3B-Instruct 56.1 66.8  56.2 8.7 43.7
Llama-3.2-1B-Instruct 25.7 383 209 26.2 22
Qwen2-1.5B-Instruct 34.7 488 428 7.2 45.6
Qwen2.5-0.5B-Instruct 435 457 312 3.1 18.9
Qwen2.5-7B-Instruct-1M 76.3 77.1  63.5 5.5 62.4
Qwen2.5-14B-Instruct-1M ~ 83.7 86.1 669 214 62.3

Table 4: Models performance results (classification ac-
curacy) on each task.

C.2 Combined Baselines

We further evaluate a model using all three base-
line feature sets jointly. The same training and
evaluation protocols as in the main experiments are
applied, except that the feature vectors are concate-
nated before training the classifiers. Results are
presented in Table 3.
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