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Abstract

Retrieval-Augmented Generation (RAG) is an
effective approach to enhance the factual ac-
curacy of large language models (LLMs) by
retrieving information from external databases,
which are typically composed of diverse
sources, to supplement the limited internal
knowledge of LLMs. However, the standard
RAG often risks retrieving incorrect informa-
tion, as it relies solely on relevance between a
query and a document, overlooking the hetero-
geneous reliability of these sources. To address
this issue, we propose Reliability-Aware RAG
(RA-RAG), a new multi-source RAG frame-
work that estimates the reliability of sources
and leverages this information to prioritize
highly reliable and relevant documents, ensur-
ing more robust and accurate response gener-
ation. Specifically, RA-RAG first estimates
source reliability by cross-checking informa-
tion across multiple sources. It then retrieves
documents from the top-κ reliable and relevant
sources and aggregates their information using
weighted majority voting (WMV), where the
selective retrieval ensures scalability while not
compromising the performance. Comprehen-
sive experiments show that RA-RAG consis-
tently outperforms baselines in scenarios with
heterogeneous source reliability while scaling
efficiently as the number of sources increases.
Furthermore, we demonstrate the ability of RA-
RAG to estimate real-world sources’ reliabil-
ity, highlighting its practical applicability. Our
code and data are available at RA-RAG.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable performance across various tasks (Zhao
et al., 2023b; Brown et al., 2020). However, they
often produce incorrect outputs, particularly when
handling up-to-date knowledge that is absent from
their internal knowledge (Shuster et al., 2021;
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Figure 1: Comparison between the standard RAG and
RA-RAG. The standard RAG retrieves documents with-
out distinguishing sources, leading to the risk of incor-
porating incorrect information from unreliable sources
(e.g., falsely associating COVID-19 with 5G networks).
In contrast, RA-RAG estimates the reliability of each
source (denoted by the numbers inside circles) and se-
lectively retrieves documents from highly reliable and
relevant sources, detailed in Section 4.1. The informa-
tion from multiples sources are then aggregated using
Weighted Majority Voting (WMV), ensuring a more
accurate final answer (e.g., correctly identifying SARS-
CoV-2 as the cause of COVID-19).

Zhang et al., 2024; Dhuliawala et al., 2024; Huang
et al., 2023; Zhao et al., 2023a). To address this
limitation, retrieval-augmented generation (RAG)
(Guu et al., 2020; Lewis et al., 2020; Asai et al.,
2024; Yan et al., 2024) has emerged as a promis-
ing approach, leveraging external knowledge from
large-scale databases that integrate an extensive set
of sources to enhance coverage and enable richer
responses (Vu et al., 2024; Kasai et al., 2024). How-
ever, while such databases provide valuable infor-
mation, they also risk retrieving incorrect infor-
mation from unreliable sources (Pan et al., 2023;
Chen et al., 2024; Greshake et al., 2023). More-
over, even Perplexity(Perplexity AI, 2025), state-
of-the-art commercial RAG systems, have been
observed to spread misinformation by retrieving
content from AI-generated spam blogs (Shrivas-
tava, 2024).

This vulnerability stems from a fundamental lim-
itation of retrieval, which relies solely on relevance
measures between queries and documents (Robert-

34268

https://github.com/ml-postech/RA-RAG
jungseul@postech.ac.kr


son and Walker, 1994; Karpukhin et al., 2020;
Ni et al., 2022; Izacard et al., 2022), overlooking
source reliability heterogeneity. Furthermore, mali-
cious sources can exploit this limitation by crafting
highly relevant yet incorrect documents, leading to
misleading outputs (Zhong et al., 2023; Zou et al.,
2024). While existing methods (Weller et al., 2024;
Xiang et al., 2024; Deng et al., 2024; Pan et al.,
2024) attempt to mitigate this issue by refining re-
trieved documents, they do not address the retrieval
problem itself, allowing unreliable sources to dom-
inate the retrieval process.

In light of this, we consider a proactive approach
that retrieves documents separately for each source
while accounting for its reliability to mitigate the
influence of unreliable sources. This allows to pri-
oritize the documents based on source reliability,
thereby preventing unreliable sources from domi-
nating retrieval. However, this approach presents
two key challenges: (i) it requires prior knowl-
edge of source reliability, which typically relies on
manual fact-checking—a costly and labor-intensive
process, and (ii) retrieving documents per source
increases computational overhead, limiting scala-
bility for large-scale databases.

To overcome these challenges, we propose
Reliability-Aware RAG (RA-RAG), a new multi-
source RAG framework that estimates source re-
liability and effectively integrates it into both the
retrieval and aggregation processes. Compared to
standard RAG, which retrieves documents with-
out distinguishing between sources, RA-RAG per-
forms source-level retrieval and aggregates in-
formation based on estimated reliability using
weighted majority voting (WMV), as illustrated
in Figure 1. Specifically, RA-RAG consists of two
steps. First, given a set of fact-checking queries,
we estimate source reliability by cross-checking
information across multiple sources without re-
quiring manual fact-checking. This is achieved
by leveraging RAG’s ability to automatically re-
trieve and generate responses (Section 4.2). Sec-
ond, using the estimated reliability, we propose
κ-reliable and relevant source selection (κ-RRSS)
for WMV, where RA-RAG consults only a small
number of reliable sources with relevant documents
(Section 4.1). This enhances robustness against un-
reliable sources while maintaining computational
scalability without compromising performance.

The effectiveness of RA-RAG stems from its
ability to estimate source reliability, a crucial first
step in combating misinformation (Popat et al.,

2017; Baly et al., 2018, 2020; Burdisso et al., 2024).
While source reliability remains underexplored in
RAG despite its significance, RA-RAG explicitly
incorporates it to improve retrieval and answer gen-
eration. Comprehensive experiments and analy-
ses demonstrate that RA-RAG not only effectively
estimates source reliability but also robustly ag-
gregates information from multiple sources with
heterogeneous reliability. Moreover, it remains
scalable even as the number of sources increases.
Furthermore, our method effectively estimates the
reliability of real-world sources, highlighting its
practical applicability. Our main contributions are
summarized as follows:

• We propose RA-RAG, a multi-source RAG frame-
work that estimates source reliability by cross-
checking information across multiple sources
without relying on manual fact-checking (Sec-
tion 4.2). Based on the estimated reliability, it
retrieves reliable and relevant documents by κ-
RRSS and aggregates them with WMV, generat-
ing robust answers while remaining scalable to a
large number of sources (Section 4.1).

• We conduct comprehensive experiments demon-
strating that RA-RAG significantly outperforms
a set of baselines by effectively aggregates infor-
mation from multiple sources, even when they
contain conflicting or unreliable information. Ex-
tensive analysis and ablation studies further vali-
date its effectiveness (Section 5).

• We demonstrate the practical applicability of our
reliability estimation method by evaluating it on
real-world sources, highlighting its effectiveness
and feasibility for real-world applications (Sec-
tion 6).

2 Related Works

Retrieval-augmented generation. Since irrele-
vant documents are prevalent in retrieval results,
many studies have focused on enhancing RAG’s ro-
bustness through advanced retrieval methods, such
as adaptive retrieval (Asai et al., 2024; Jiang et al.,
2023), reranking retrieved documents (Glass et al.,
2022), and query reformulation (Wang et al., 2023;
Ma et al., 2023). While these approaches improve
the retrieval process, they still rely on relevance
measures between queries and documents, leaving
them vulnerable to misinformation. (Zou et al.,
2024).
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Robust RAG against misinformation. In re-
sponse to misinformation risks in RAG, several ro-
bust methods have been proposed, primarily focus-
ing on improving answer generation after retrieval.
Weller et al. (2024); Xiang et al. (2024) utilize ma-
jority voting, which is effective only when most
retrieved documents are trustworthy. Deng et al.
(2024) evaluates document credibility using LLMs’
internal knowledge, but this approach is inherently
limited as it misaligns with RAG’s core rationale
of leveraging external knowledge to address LLMs’
limitations. Pan et al. (2024) assigns binary cred-
ibility scores (high/low) to retrieved documents
based on source reputation and incorporates them
into prompts. However, this approach is unsuitable
for sources with obscure reputations, and reputa-
tion does not necessarily reflect actual reliability.
In contrast, RA-RAG explicitly estimates source
reliability and incorporates it into RAG systems.

Learning from noise sources. Learning from
noisy sources has been extensively studied due to
the scarcity of clean datasets in real-world applica-
tions (Liu et al., 2012; Li and Yu, 2014; Ok et al.,
2016; Khetan et al., 2017; Zeng et al., 2018; Ok
et al., 2019; Kim et al., 2022). A common approach
is to estimate the reliability of data providers to
aggregate trustworthy information from mixed-
quality data. RAG systems face a similar challenge,
as internet sources vary in reliability, but existing
methods lack mechanisms for robust aggregation.
To the best of our knowledge, this is the first work
to explicitly embed reliability estimation to obtain
robust information in RAG systems.

3 Problem Formulation

In this section, we first introduce the standard RAG
framework in Section 3.1, widely used in previous
works but has a clear limitation: overlooking the
source reliability heterogeneity. To address this,
we introduce a multi-source RAG framework that
accounts for source reliability in Section 3.2, fol-
lowed by a discussion of its key challenges.

3.1 Standard RAG

A standard RAG framework consists of three com-
ponents: a database D, a retriever R, and a LLM
G. Given a query q, the retriever R selects the top-
K most relevant documents from the database D
based on a similarity measure between q and each
document t ∈ D. The set of retrieved documents
is denoted as R(q,D). Using the retrieval result
R(q,D) with the query q, the language model G

generates a response ŷ, which can be represented
as follows: ŷ = G(q,R(q,D)). However, a key
limitation of this framework arises when unreli-
able sources are present. As demonstrated in Zou
et al. (2024), the retrieval process can be easily
manipulated by adversarial sources that generate
misleading yet highly similar documents, leading
to the retrieval and generation of incorrect infor-
mation. This motivates us to devise a multi-source
RAG framework that explicitly incorporates source
reliability to mitigate the influence of untrustworthy
sources.

3.2 Multi-source RAG with source reliability

We introduce a multi-source RAG framework
that distinguishes between the sources of docu-
ments and incorporates source reliability. Let N
be the number of distinct sources contributing
to the database D. We partition the database as
D =

⋃N
i=1 Si, where Si is the set of documents

from source i ∈ [N ]. The definition of a “source”
is application-dependent and may vary in granular-
ity: sources can be fine-grained (e.g., individual
social media accounts or statements by specific
individuals such as politicians) or coarse-grained
(e.g., news websites). In Section 6, we demonstrate
practical applications of this framework.

This partitioning enables the system to account
for the reliability of each document’s source, based
on weighted majority voting (WMV). For a given
query q, let ŷi = G(q,R(q,Si)) represent the gen-
erated response using retrieved documents exclu-
sively from source Si. Once the probability of a
retrieved document from source i being correct is
estimated as vi, and a set of candidate responses M
is obtained from ŷi’s, we apply WMV to aggregate
the responses as follows:

ŷ = argmax
u∈M

∑

i∈[N ]

vi1(ŷi = u) . (1)

If all sources are assumed to have equal reliability,
this reduces to majority voting (MV), which se-
lects the most consensus among the ŷi’s. However,
WMV is superior to MV when source reliability
vi is properly estimated, as it aggregates informa-
tion by prioritizing more trustworthy sources. To
achieve this, the multi-source RAG framework re-
quires two key components: (i) the reliability es-
timation for vi’s and (ii) the response aggregation
of ŷi’s for WMV. To devise such components, we
need to address three key challenges as follows:
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Inherent issues with LLM. LLMs may generate
hallucinations or misaligned answers influenced by
their internal knowledge (Kaddour et al., 2023; Ji
et al., 2023; Kortukov et al., 2024; Xu et al., 2024),
distorting their alignment with retrieved documents
and complicating the WMV process. Addition-
ally, LLMs often generate semantically identical
responses with paraphrasing, making response ag-
gregation of ŷi’s more challenging.
Limited access to ground truth. Reliability
estimation typically relies on human annotators
for fact-checking, which is highly labor-intensive,
highlighting the need for an automated and scalable
approach.
Scalability in the number of sources. In a multi-
source RAG framework, as the number of sources
in the database increases, generating responses ŷi
for every source during inference can lead to sig-
nificant computational overhead.

4 Method: RA-RAG

We propose Reliability-Aware RAG (RA-RAG) to
address key challenges in multi-source RAG. Prior
to deployment, RA-RAG estimates source relia-
bility using an iterative reliability estimation al-
gorithm, which cross-checks information across
multiple sources through fact-checking queries de-
signed to verify documents within each source (Sec-
tion 4.2). Leveraging RAG’s ability to retrieve rel-
evant documents and generate responses automati-
cally, RA-RAG enables automated reliability esti-
mation without manual fact-checking. During in-
ference, RA-RAG then aggregates responses from
different sources based on the estimated reliability
(Section 4.1).

For ease of presentation, we first introduce the
aggregation process in Section 4.1, then propose
the iterative reliability estimation method in Sec-
tion 4.2.

4.1 Aggregation process

Although the instruction prompt guides the model
to output “I don’t know" (IDK) when there is no
relevant information, LLMs may still produce mis-
aligned responses, undermining effective aggre-
gation. To address this, a filtering function falign
is necessary to detect and replace misaligned re-
sponses with IDK. In this work, we utilize Align-
Score (Zha et al., 2023), which evaluates the factual
consistency of a response ŷi relative to the query q
and retrieved documents R(q,Si):

falign(ŷi, q,R(q,Si))

=

{
IDK if E(ŷi; q,R(q,Si)) < τ ,

ŷi otherwise ,

(2)

where E represents AlignScore function and τ
is threshold. For simplicity, we omit E in
falign(ŷi, q,R(q,Si)). Further details on the fil-
tering method and threshold are provided in Ap-
pendix A. By applying this filtering method, we
obtain a refined set of candidate responses:

Mfiltered = {falign(ŷi, q,R(q,Si)) | i ∈ [N ]} .

Additionally, since LLMs often paraphrase re-
sponses with equivalent meanings (e.g., “There are
24 hours in a day." vs. “Each day has 24 hours.”),
we cluster responses in Mfiltered based on semantic
equivalence. We denote the refined set obtained
through semantic clustering as C(Mfiltered) =
{Ck ⊆ Mfiltered}Kk=1, where each Ck represents
a distinct cluster such that Ci

⋂
Cj = ∅ for all i

̸= j. For semantic clustering method C, we em-
ploy the algorithm by Kuhn et al. (2023), which
clusters responses that mutually entail each other
using a pretrained natural language inference (NLI)
model. Following Kuhn et al. (2023), we use the
DeBERTa-large model (He et al., 2021) for cluster-
ing.

Finally, integrating filtering and semantic clus-
tering into the WMV process, the final aggregated
response is as follows:

ŷ= argmax
u∈C(Mfiltered)

∑

i∈[N ]

vi1(falign(ŷi, q,R(q,Si))= u) .

(3)
To generate the final response ŷ, we select the first
response in the cluster Ck, as all responses within
the cluster are considered semantically equivalent.
Efficient aggregation. In real-world applications,
aggregating information from all sources can be
computationally expensive, especially when the
number of sources is large. To mitigate this, we
propose κ-Reliable and Relevant Source Selection
(κ-RRSS). This method iterates over sources in de-
scending order of reliability vi and selects the first
κ sources that contain relevant information, where
κ < N . A source is deemed irrelevant if its filtered
response falign(ŷi, q,R(q,Si)) is IDK. For the for-
mal algorithm, please refer to Algorithm 1. Given
the set of responses from the selected sources, de-
noted as Mκ, the final response is aggregated as

34271



follows:

ŷ= argmax
u∈C(Mκ-filtered)

∑

i∈[N ]

vi1(falign(ŷi, q,R(q,Si))= u) ,

(4)
where Mκ-filtered denotes the set of responses from
Mκ after applying falign. By focusing on reliable
and relevant sources, κ-RRSS significantly reduces
inference overhead while maintaining robust per-
formance.

4.2 Iterative reliability estimation
To estimate source reliability and effectively ag-
gregate outputs, we extend the WMV method pro-
posed by Li and Yu (2014), a simple yet effective
approach for aggregating crowdsourced labels in
classification tasks. Specifically, we first generate
fact-checking queries for documents. For exam-
ple, if a document in a source states, “COVID-
19 is caused by 5G networks”, we can gener-
ate a query such as “What causes COVID-19?”.
Given a set of M fact-checking queries, denoted as
{qj | j ∈ [M ]}, the iterative reliability estimation
process is described as follows:
• Step 0. Initialize weight vi = 1 for each source
i ∈ [N ] and repeat Step 1 to Step 2 until
vi’s converge or the maximum iterations η are
reached.

• Step 1. Estimate ŷj for each j ∈ [M ] using
WMV:

ŷj = argmax
u∈C(Mj

filtered)

∑

i∈[N ]

vi1(ŷ
j
i = u) , (5)

where ŷji = G(qj ,R(qj ,Si)) is a response to
qj based on documents retrieved from Si and
Mj

filtered = {falign(ŷ
j
i , q

j ,R(q,Si)) | i ∈ [N ]}
is the filtered candidates of responses and C is a
semantic clustering method.

• Step 2. Given the estimated ŷj’s, source relia-
bility ŵi for i ∈ [N ] is computed as follows:

ŵi =

∑M
j=1 1

(
falign(ŷ

j
i , q

j ,R(qj ,Si)) = ŷj
)

∑M
j=1 1

(
falign(ŷ

j
i , q

j ,R(qj ,Si)) ̸= IDK
) .

(6)

The estimated reliability ŵi is then rescaled as
vi = Nŵi − 1, assigning higher weights to re-
liable sources and lower weights to unreliable
sources, leading to more accurate estimates of
wi and vi. 1

1The scaling factor N represents the maximum possible
distinct responses, with each source providing a different an-
swer. However, it can be limited to a manageable size, espe-
cially when N is large.

After reliability estimation, the final weights {vi}
are incorporated into the inference phase using
Equation (4).

5 Experiments

We conduct comprehensive experiments to evaluate
the effectiveness of RA-RAG. Details of the exper-
imental setup are provided in Section 5.1, and the
results are presented in Section 5.2. We perform
ablation studies on individual modules of RA-RAG
in Section 5.3.

5.1 Experimental setups
Datasets. We construct a multi-source RAG bench-
mark with heterogeneous source reliability, using
three question-answering (QA) datasets: Natural
Questions (NQ) (Kwiatkowski et al., 2019), Triv-
iaQA (TQA) (Joshi et al., 2017), and HotpotQA
(Yang et al., 2018). For each dataset, we generate
both diverse factual documents and misinforma-
tion to simulate a source Si with varying reliability.
Each source Si is characterized by two parame-
ters: reliability pi, which represents the probability
of providing factual information, and coverage ri,
which indicates the probability of containing rele-
vant documents for a given query. To model source
reliability pi, we adopt two widely used priors from
the reliability estimation literature (Liu et al., 2012;
Li and Yu, 2014):

• Beta prior: pi is sampled from Beta (2w̄/1−w̄, 2)
with an expected mean of w̄. This setup reflects
scenarios where sources exhibit a continuous spec-
trum of reliability, rather than strictly “reliable"
or “unreliable". Following Liu et al. (2012); Li
and Yu (2014), we set w̄ = 0.6, balancing the
presence of reliable and unreliable sources.

• Adversary-hammer prior: A discrete prior
where pi is either 0.1 (adversary) or 0.9 (ham-
mer), representing an extreme reliability distribu-
tion. This setup reflects scenarios where malicious
sources (adversaries) provide mostly false infor-
mation, while highly trustworthy sources (ham-
mers) provide mostly factual content, enabling
worst-case performance evaluation.

For analytical simplicity, we set ri = 0.6 for both
priors to focus on evaluating pi. The details of
the data generation and source construction pro-
cesses are provided in Appendix G. Due to the
computational and financial constraints, we use
1,600 queries per dataset, allocating 200 queries
for reliability estimation and 1,400 queries for test
evaluation.
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Figure 2: Accuracy performance on NQ and TQA datasets. (a) Results with heterogeneous reliability via beta
priors for varying sources (4 to 9) across the Llama3-8B-Instruct and GPT-4o-mini models. See Appendix E.1 on
the HotpotQA dataset and Phi3-mini-Instruct model. (b) Results with adversarial setting via adversary-hammer
prior for varying adversaries (1 to 7) with Llama3-8B-Instruct model, highlighting overall trends. Exact values,
which may overlap significantly, are provided in Appendix A4 with HotpotQA results.

Baselines. We compare our framework against RA-
RAG and six baselines. (1) Oracle WMV assumes
perfect knowledge of source reliability and directly
uses these values as weights in Equation (3), rep-
resenting the ideal scenario for multi-source RAG.
(2) MV assigns equal weight to all sources, set-
ting vi = 1 in Equation (3), disregarding source
reliability. (3) Vanilla RAG (Lewis et al., 2020)
follows the standard RAG approach, retrieving doc-
uments without additional modules. (4) Robust
RAG (Xiang et al., 2024) is the first certifiably
robust defense framework that enhances robust-
ness by aggregating keywords from independent
passages, assuming that the majority of retrieved
documents are trustworthy. (5) Self-RAG (Asai
et al., 2024) is an advanced RAG that improves
performance through adaptive retrieval, reducing
irrelevant documents by leveraging specialized re-
flection tokens to improve factual accuracy. (6)
Vanilla LLM generates responses without retrieval.
Among these baselines, (1) and (2) are designed for
multi-source RAG, while (3), (4), and (5) follow
the standard RAG approach.
Models. For language models, we use Llama3-
8B-Instruct (Dubey et al., 2024), Phi3-mini-
Instruct (Abdin et al., 2024), GPT-4o-mini (Ope-
nAI, 2024), and Llama2-7B (Touvron et al., 2023).
As a retriever, we use Contriever (Izacard et al.,
2022). Due to space limitations, the results for
Llama2-7B with Self-RAG fine-tuned on Llama2-
7B are provided in Appendix D.

Inference settings. In our multi-source RAG setup,
we retrieve the top-3 documents from each source
and set κ = 4 for κ-RRSS process. For Vanilla
RAG, Robust RAG, and Self-RAG, we retrieve the
top-10 documents.
Evaluation metric. Following prior works (Mallen
et al., 2023; Asai et al., 2024), we use accuracy
as an evaluation metric, based on whether gold
answers are included in model-generated responses.
All results are averaged over 10 random trials.

5.2 Main results

Beta prior. We evaluate RA-RAG across vary-
ing numbers of sources to assess its effectiveness
in heterogeneous source reliability. As shown in
Figure 2a, RA-RAG consistently outperforms base-
lines, with performance gains increasing as more
sources are incorporated. These results demon-
strate the robustness of our approach in aggregat-
ing information from multiple sources with vary-
ing reliability. Notably, by selecting a subset of
reliable and relevant sources using κ-RRSS, RA-
RAG achieves performance comparable to Oracle
WMV while improving efficiency by relying on
fewer sources. In contrast, Robust RAG struggles
with varying source reliability, as its certification
assumption does not hold, resulting in lower per-
formance than MV. Additionally, RA-RAG signif-
icantly outperforms Self-RAG, as shown in the
Appendix D. These results emphasize the impor-
tance of differentiating between sources to prevent
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Query: When does season 8 of shameless come back?

  Ground Truth (GT): November 2017

Multi-Source Outputs I don’t know
November 

2018

November 

2017
I don’t know 11/2018 I don’t know

True Reliability 0.84 0.26 0.86 0.99 0.29 0.94

Estimated Reliability 0.80 0.26 0.89 0.98 0.32 0.93

MV Answer: November 2018 RA-RAG Answer: November 2017

Figure 3: A qualitative example comparing the answers produces by MV and RA-RAG for a query from the NQ
dataset. Additional examples are available in Appendix F.

retrieval results from being overwhelmed by misin-
formation.

Figure 3 highlights the importance of consider-
ing source reliability when aggregating informa-
tion across sources. While MV selects “Novem-
ber 2018” based only on response frequency, al-
though it has low reliability, RA-RAG correctly
identifies “November 2017” by leveraging well-
estimated source reliabilities.
Adversary-hammer prior. To evaluate the ro-
bustness of RA-RAG in the worst-case scenario,
we use the adversary-hammer prior with a total
of 9 sources on the NQ dataset with Llama3-8B-
Instruct, as shown in Figure 2b. Our RA-RAG
demonstrates significant robustness against adver-
saries, whereas Robust RAG and Vanilla RAG suf-
fer severe performance degradation as the number
of adversaries increases. Similarly, Self-RAG ex-
periences significant performance degradation, as
detailed in Appendix D. Notably, when the num-
ber of adversaries exceeds four, the performance of
MV significantly degrades due to the dominance
of misinformation, leading MV to select incorrect
answers.
5.3 Ablation studies and analysis

Due to space limitations, we present the analysis
of the effectiveness of filtering in Appendix C.

Impact of κ for κ-RRSS. We conduct an abla-
tion study on κ across three datasets using Llama3-
8B-Instruct with 9 sources. As shown in Fig-
ure 4, RA-RAG achieves stable performance start-
ing from κ = 4, indicating that selecting a small
subset of reliable and relevant sources can maintain
performance while significantly reducing compu-
tational overhead. This trend is consistent across
other datasets; refer to Appendix E.2.
Computational efficiency of κ-RRSS. To assess
the impact of κ-RRSS on computational efficiency,
we compare RA-RAG in two configurations: with
and without κ-RRSS. We measure four computa-
tional metrics: token consumption, API calls, infer-
ence cost, and wall-clock time. Specifically, token
consumption refers to the total number of tokens

processed per query during inference, including
both input and output tokens. API calls measure
the number of external API requests per query. In-
ference cost represents the computational expense
($ per query) based on the GPT-4o-mini pricing
policy.

As shown in Table 2, incorporating κ-RRSS con-
sistently enhances computational efficiency across
all metrics, with the reduction rate increasing as the
number of sources grows. For example, in terms of
token consumption, κ-RRSS reduces the total to-
kens processed by 2.6% with 5 sources, 32.3% with
10 sources, and 99.1% with 1000 sources. These
significant efficiency gains indicate that κ-RRSS
reduces computational overhead while maintain-
ing reliable performance. Additional wall-clock
time comparisons with baseline methods are pro-
vided in Appendix J. Further comparisons of accu-
racy between w/ and w/o κ-RRSS across different
number of sources and models can be found in
Appendix E.3.

# Src κ-RSS κ-RRSS

5 0.588 0.597
10 0.663 0.727
1000 0.689 0.768

Table 1: Accuracy comparison between κ-RSS and κ-
RRSS (κ = 4) under different numbers of sources on
GPT-4o-mini and NQ dataset.

The importance of relevance in κ-RRSS. To ana-
lyze the importance of incorporating relevance in
κ-RRSS, we explore κ-Reliable Source Selection
(κ-RSS), which chooses only the κ most reliable
sources without checking for relevance. Table 1
shows that incorporating relevance consistently im-
proves accuracy, as high reliability alone does not
ensure that sources contain documents relevant to
the given query. This effect becomes more signifi-
cant as the number of sources increases, providing
a broader pool of relevant sources for selection.
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# Src κ-RRSS Token Consumption (↓) API Calls (↓) Inference Cost (↓) Accuracy (↑)

5
w/o 3138 5 0.00048 0.597
w/ 3055 (↓ 2.6%) 4.87 (↓ 2.6%) 0.00046 (↓ 4.2%) 0.597

10
w/o 6272 10 0.00096 0.744
w/ 4251 (↓ 32.3%) 6.79 (↓ 32.1%) 0.00065 (↓ 32.3%) 0.727

1000
w/o 627115 1000 0.096 0.780
w/ 5415 (↓ 99.1%) 8.66 (↓ 99.1%) 0.00083 (↓ 99.1%) 0.768

Table 2: Comparison of computational efficiency with and without κ-RRSS
evaluated on the NQ dataset using GPT-4o-mini. The reported values represent
the average per query, with the values in parentheses (·) indicating the reduction
rate achieved with κ-RRSS.
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Figure 4: Accuracy across differ-
ent values of κ on Llama3-8B-
Instruct and NQ dataset. Results
for other datasets are provided in
Appendix E.2

6 Real-world Application

We demonstrate the practical applicability of our it-
erative reliability estimation method by applying it
to real-world sources. The experimental setup is de-
scribed in Section 6.1, and the results are presented
in Section 6.2.

6.1 Setup

Data collections. To collect real-world claims,
we leverage a fact-checking platform PolitiFact
that evaluates the truthfulness of claims requiring
verification, such as those made by public figures.
Specifically, we select two prominent public fig-
ures, Politician A and Politician B, as sources,
and collect 388 claims (64 true, 324 false) and
104 claims (63 true, 41 false), respectively, using
PolitiFact’s verdicts to determine their truthfulness.
As an alternative information source, we gather
posts from social media, where unverified infor-
mation spreads rapidly. We select User A, an ac-
count on X that shares breaking news, collecting
244 posts (180 true, 64 false) from January 1-13,
2025. We manually verify their truthfulness by
cross-checking with fact-checking sites.
Experimental settings. We conduct experiments
in two settings: (i) using the full set of collected
real-world data, and (ii) augmenting the dataset
by varying oracle reliability levels, adjusting the
true-to-false ratio from 0.1 to 0.9 through random
sampling.

As the data collected from the three sources may
not fully capture the diversity of real-world scenar-
ios, we include setting (ii) to evaluate our method
under a broader range of reliability conditions.
Given the inherent challenge of fact-checking, this
augmentation offers a scalable alternative for eval-
uating reliability estimation across different relia-
bility levels.
Reliability estimation process. To apply our relia-
bility estimation method, we generate yes/no fact-

checking queries for each collected claim (e.g., “Is
it true that {claim}?”), allowing for straightforward
cross-checking of claims across multiple sources.
We use Google News as the retriever, which pro-
vides rich sources for retrieving relevant documents
by selecting the top 20 results. GPT-4o-mini is used
as the language model to generate responses.
Evaluation. We evaluate the accuracy of the es-
timated responses for each source. Then, across
varying reliability levels by the augmented data, we
assess the correlation between estimated and oracle
reliability using the Pearson Correlation Coefficient
(PCC) for linear correlation and the Spearman Rank
Correlation Coefficient (SRCC) for monotonic re-
lationships, following Burdisso et al. (2024).

Source
Estimated
Reliability

Oracle
Reliability Accuracy

Politician A 0.175 0.165 0.949
Politician B 0.539 0.606 0.932

User A 0.660 0.738 0.795

Table 3: Results of reliability estimation and accuracy
on real-world sources for Politician A, Politician B, and
User A.
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Figure 5: Results of reliability estimation under aug-
mented variation for User A. Additional results for
Politician A and B are in Appendix K.

6.2 Experimental results

Table 3 demonstrates that our method effectively
estimates the reliability of three sources, closely
aligning with oracle reliability while achieving
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high accuracy. Notably, the accuracy for Politi-
cian A and Politician B is high due to the abun-
dance of publicly available information about their
claims. In contrast, User A’s accuracy is relatively
lower due to the limited availability of corroborat-
ing sources for recent content.

Figure 5 further illustrates that our estimated
reliability for User A closely matches the oracle re-
liability across different reliability levels. The PCC
of 0.991 and SRCC of 0.992 (both with p-values
< 0.001) indicate a strong correlation. Addition-
ally, an average accuracy of 0.801 demonstrates the
effectiveness of our method in validating claims
across varying reliability levels.

While our method also estimates the reliability
of other sources retrieved from Google News, our
fact-checking queries are primarily designed for
the target sources (Politician A, Politician B, and
User A), resulting in more precise reliability es-
timation for them. While generating additional
queries could enhance the reliability estimation of
other sources, we focus on these target sources
for evaluation due to computational and financial
constraints.

7 Conclusion

In this paper, we consider the vulnerability of RAG
systems to heterogeneous source reliability, as they
lack preventive measures against retrieving incor-
rect documents from unreliable sources, leading
to misleading outputs. To address this issue, we
propose RA-RAG, a new multi-source RAG frame-
work that estimates source reliability and incor-
porates it into the retrieval and answer generation
processes.

While our work focuses on short-form question
answering, the RA-RAG framework extends to
more complex tasks like long-form and multi-hop
question answering. For example, in biography
generation, an LLM can first decompose the task
into atomic subquestions (e.g., “What is the per-
son’s age?”; “Where did the person live?”). Then,
our framework can be applied to obtain reliable an-
swers to each of these short questions, after which
an LLM aggregates these answers to compose a
coherent long-form response. A promising direc-
tion for future work is the construction of datasets
that comprise diverse sources with heterogeneous
reliability for long-form and multi-hop question
answering, enabling more rigorous evaluation and
the development of stronger source-aware method

Limitations

We show that our reliability estimation method
effectively estimates the reliability of real-world
sources, particularly for news-related claims with
abundant fact-checking sources. However, it re-
mains challenging to apply to specialized topics
due to limited references for cross-verification. Ex-
ploring expert knowledge as an alternative could
help address this limitation and presents a promis-
ing direction for future work. Additionally, since
our framework operates in an offline setting, it
requires periodic updates to capture changes in
source reliability over time. While such updates
can be performed efficiently, as demonstrated in
Appendix J.2, there remains a risk that even reliable
sources may suddenly disseminate large volumes of
unreliable information, such as in cases of account
hacking. Although such cases are uncommon, this
threat underscores the need for more responsive
systems. A promising direction for future work
is the development of an online framework that
continuously updates reliability estimates in real
time, enabling adaptive responses to the evolving
information landscape.
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A Details of Misalignment Filtration

AlignScore (Zha et al., 2023) is a factual consis-
tency evaluation method that assesses how well
the generated text aligns with the given context.
However, LLM outputs are often not in declarative
sentences, and important contextual information is
sometimes embedded in the query, making direct
consistency evaluation challenging. To address this,
we employ a sequence-to-sequence model from
(Song, 2022), previously used in (Zha et al., 2023),
to convert outputs into declarative sentences. For-
mally, we denote the declarative form of ŷi as ŷ∗i .
With this conversion, the misalignment filtering
process is as follows:

falign(ŷi, q,R(q,Si))

=

{
IDK if E(ŷi; q,R(q,Si)) < τ

ŷi otherwise
,

where E is the Alignscore function,

E(ŷi; q,R(q,Si)) = E(ŷ∗i ,R(q,Si)), and τ
is the threshold. In all experiments, we set τ = 0.1
following Lei et al. (2023), which identifies this
threshold as optimal for a real-world dataset
comprising CNN and Daily Mail articles. For
further analysis, we also conduct an ablation study
on τ in Section L.

B κ-Reliable and Relevant Source
Selection (κ-RRSS)

Algorithm 1 κ-Reliable and Relevant Source Se-
lection (κ-RRSS)
Input: Query q, sources {Si}Ni=1 with reliability score
{vi}Ni=1, language model G,R retriever, falign filtering func-
tion, κ number of sources to select (where κ < N )
Output:Mκ set of sources
1: Sort sources {Si} in descending order by vi. Denote the

sorted list as {S1, . . . ,SN}.
2: Mκ ← ∅
3: count← 0
4: for i = 1→ N do
5: ŷi ← G(q,R(q,Si))
6: ŷi ← falign

(
ŷi, q,R(q,Si)

)
7: if ŷi ̸= IDK then
8: Mκ ←Mκ ∪ {ŷi}
9: count← count + 1

10: if count = κ then
11: break
12: end if
13: end if
14: end for
15: returnMκ

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign) Factual Misinformation Irrelevant

Correct w/o 96.38 5.05 26.07
w/ 94.32 2.53 (−2.52) 4.16 (−21.93)

Incorrect w/o − 75.76 −
w/ − 70.96 −

IDK w/o 0.26 4.80 50.92
w/ 2.58 13.89 (+9.09) 91.19 (+40.27)

Hallucination w/o 8.01 10.10 22.89
w/ 7.75 8.33 (−1.77) 4.53 (−18.36)

Table A1: Answer type distribution (%) by retrieved
document type in the filtering falign ablation study
on Llama3-8B-Instruct model and TQA dataset. Ad-
ditional results for other datasets and models are
provided in Appendix L.

Method Accuracy

Oracle WMV 0.541
Ours (w/) 0.537
Ours (w/o) 0.490

Table A2: Ablation study on distortion of reliability es-
timation without falign on Llama3-8B-Instruct and TQA
dataset.

C Analysis of Filtering

Effectiveness of filtering. We evaluate the effec-
tiveness of falign across three types of retrieved
documents: factual, misinformation, and irrelevant.
Table A1 shows the proportions of responses, both
without (w/o) and with (w/) filtering, categorized
by response types: correct, incorrect, IDK, and
hallucination (i.e., not belonging to any other cat-
egory). These results are based on 1,600 queries
in the TQA dataset, using a single source with
pi = 0.5 and ri = 0.5. Notably, without falign,
LLMs often generate correct (26.07%) or halluci-
nated responses (22.89%) that are not grounded in
the retrieved documents when the retrieved docu-
ments are irrelevant. A similar trend is observed
with misinformation documents. After applying
falign, these misaligned responses are substantially
reduced (highlighted in blue), by replacing them
with IDK (highlighted in red).
Distortion of reliability estimation without fil-
tering. As shown in our filtering analysis, LLMs
often generate misaligned responses when pro-
cessing misinformation and irrelevant documents.
This issue is particularly problematic for unreliable
sources with low coverage, leading to frequent mis-
aligned responses that hinder reliability estimation.

To illustrate this risk, we conduct experiments us-
ing the adversary-hammer prior, where four adver-
saries have ri = 0.1 and one hammer has ri = 0.6,
utilizing Llama3-8B-Instruct and the TQA dataset.
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Figure A1: Accuracy performance under the heterogeneous reliability via beta priors across different numbers of
sources (4 to 9) on the NQ, TQA, and HotpotQA datasets on the Llama2-7B model.

Due to the small ri of adversaries, which results in
a lack of relevant documents, we use 800 queries
for reliability estimation and the remaining 800
queries for test evaluation. As shown in Table A2,
without filtering, the estimated weights become dis-
torted, assigning more weight to adversaries and
degrading performance. However, applying filter-
ing effectively mitigates this distortion, bringing
performance close to Oracle WMV.

D Experiments Results on Llama2-7B
Model

We present the experimental results conducted us-
ing the Llama2-7B model on the beta prior and the
adversary-hammer. Self-RAG (Asai et al., 2024)
is included to enable a fair comparison, as it is
specifically fine-tuned on the Llama2-7B architec-
ture. Across both priors, our RA-RAG consistently
achieves performance levels comparable to the op-
timal Oracle WMV while outperforming all other
evaluated methods, as shown in Figure A1 and Ta-
ble A3.

E Additional Experimental Results

E.1 Beta prior and adversary-hammer prior
Figure A2 shows results with a beta prior across
varying numbers of sources and datasets, using
different models. Table A4 shows results with the
adversary-hammer prior across varying numbers
of adversaries, using 9 sources, the LLaMA3-8B
Instruct model, and multiple datasets.

E.2 Ablation study of κ for κ-RRSS
We conduct an ablation study using different values
of κ with 9 sources on the NQ, TQA and HotpotQA
datasets. As shown in Figure A3, RA-RAG demon-
strates stable performance from κ = 4, a trend that
remains consistent across all datasets. This result,
with κ being less than half of the total number of
sources, demonstrates that selecting a small subset

of sources can achieve performance close to using
all sources.

E.3 Ablation study of κ-RRSS in RA-RAG
To evaluate the impact of κ-RRSS on performance,
we conduct an ablation study, as presented in Fig-
ure A4. The results indicate that κ-RRSS leads
to only marginal differences in accuracy across
all models and datasets. Given the substantial ef-
ficiency gains demonstrated in Table 2, κ-RRSS
effectively preserves model performance while sig-
nificantly reducing computational overhead.
F Qualitative Examples

As shown in Figure A5, RA-RAG effectively ag-
gregates information from multiple sources using
WMV. For example, even when the correct answer
appears less frequently than incorrect ones, RA-
RAG can accurately estimate the answer by assign-
ing higher weights to more reliable sources. In
contrast, MV fails in such cases, highlighting the
importance of considering source reliability.

G Benchmark of Multi-source RAG

To create a benchmark for multi-source RAG
with heterogeneous source reliability, we gener-
ate factual and misleading documents using three
question-answering (QA) datasets: Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019), HotpotQA
(Yang et al., 2018), and TriviaQA (TQA) (Joshi
et al., 2017). For HotpotQA, we focus on single-
hop queries. Additionally, we restrict our dataset to
closed-ended queries, as open-ended queries (e.g.,
“Describe the various uses of forests to human be-
ings" from NQ) often lack definitive answers, mak-
ing them unsuitable for fact-checking tasks. Due
to computational and financial constraints, we use
1,600 queries per dataset. The details of the data
generation process are as follows:

1. Collecting factual documents.: We first col-
lect documents containing the correct answers
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The Number of Adversaries
Dataset Method 1 2 3 4 5 6 7

NQ

MV 0.744 0.719 0.686 0.632 0.554 0.445 0.312
Vanilla RAG 0.560 0.475 0.408 0.345 0.287 0.228 0.168
Robust RAG 0.678 0.613 0.531 0.444 0.355 0.269 0.192
Self-RAG 0.744 0.700 0.640 0.575 0.482 0.394 0.302
Vanilla LLM 0.238 0.238 0.238 0.238 0.238 0.238 0.238
RA-RAG 0.738 0.725 0.715 0.693 0.670 0.625 0.552
Oracle WMV 0.750 0.735 0.718 0.698 0.667 0.628 0.555

TQA

MV 0.906 0.884 0.853 0.791 0.706 0.583 0.425
Vanilla RAG 0.827 0.768 0.714 0.655 0.574 0.484 0.396
Robust RAG 0.899 0.844 0.771 0.675 0.570 0.458 0.357
Self-RAG 0.941 0.911 0.868 0.812 0.734 0.644 0.538
Vanilla LLM 0.596 0.596 0.596 0.596 0.596 0.596 0.596
RA-RAG 0.903 0.891 0.881 0.862 0.830 0.781 0.701
Oracle WMV 0.911 0.898 0.885 0.863 0.830 0.782 0.706

HotpotQA

MV 0.739 0.705 0.667 0.623 0.556 0.470 0.348
Vanilla RAG 0.703 0.651 0.594 0.540 0.478 0.418 0.343
Robust RAG 0.701 0.661 0.607 0.544 0.463 0.387 0.303
Self-RAG 0.740 0.713 0.680 0.625 0.563 0.486 0.400
Vanilla LLM 0.279 0.279 0.279 0.279 0.279 0.279 0.279
RA-RAG 0.736 0.714 0.690 0.674 0.643 0.609 0.535
Oracle WMV 0.743 0.718 0.693 0.675 0.643 0.608 0.542

Table A3: Accuracy performance comparison across different numbers of adversaries (1 to 7) via adversary-hammer
prior on the NQ, TQA, and HotpotQA datasets with Llama2-7B model.

The Number of Adversaries
Dataset Method 1 2 3 4 5 6 7

NQ

MV 0.740 0.719 0.686 0.634 0.557 0.454 0.327
Vanilla RAG 0.612 0.553 0.503 0.458 0.409 0.359 0.294
Robust RAG 0.676 0.619 0.540 0.457 0.368 0.282 0.201
Vanilla LLM 0.253 0.253 0.253 0.253 0.253 0.253 0.253
RA-RAG (Ours) 0.737 0.731 0.717 0.696 0.672 0.627 0.558
Oracle WMV 0.745 0.736 0.719 0.699 0.670 0.629 0.558

TQA

Vanilla LLM 0.621 0.621 0.621 0.621 0.621 0.621 0.621
MV 0.914 0.892 0.862 0.812 0.730 0.619 0.477
Vanilla RAG 0.868 0.833 0.794 0.753 0.698 0.630 0.544
Robust RAG 0.920 0.869 0.799 0.705 0.590 0.479 0.367
Vanilla LLM 0.621 0.621 0.621 0.621 0.621 0.621 0.621
RA-RAG (Ours) 0.913 0.901 0.888 0.870 0.842 0.797 0.722
Oracle WMV 0.916 0.904 0.890 0.873 0.841 0.798 0.726

HotpotQA

MV 0.744 0.714 0.678 0.632 0.574 0.488 0.382
Vanilla RAG 0.740 0.702 0.669 0.637 0.586 0.539 0.472
Robust RAG 0.750 0.712 0.654 0.595 0.511 0.432 0.340
Vanilla LLM 0.323 0.323 0.323 0.323 0.323 0.323 0.323
RA-RAG (Ours) 0.745 0.723 0.704 0.677 0.654 0.615 0.557
Oracle WMV 0.748 0.727 0.704 0.678 0.654 0.616 0.556

Table A4: Accuracy performance comparison across different numbers of adversaries (1 to 7) via adversary-hammer
prior on the NQ, TQA, and HotpotQA datasets with Llama3-8B-Instruct model.

from the Wikipedia corpus using Contriever
(Izacard et al., 2022) for the NQ, TQA, and
HotpotQA datasets.

2. Generating diverse factual information.: To
generate diverse factual information that con-
veys the same meaning but in different expres-

sions, we use GPT-4o-mini to paraphrase the
collected documents, creating 9 documents
for each query. This diversity makes it more
challenging to aggregate the LLM’s outputs.

3. Generating diverse misinformation.: Un-
like classification tasks with predefined label
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Figure A2: Accuracy performance under the heterogeneous reliability via beta priors across different numbers of
sources (4 to 9) on the NQ, TQA, and HotpotQA datasets across the Llama3-8B-Instruct, Phi3-mini-Instruct, and
GPT-4o-mini models.
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Figure A3: Accuracy for different values of κ the NQ, TQA, and HotpotQA datasets, using Llama3-8B-Instruct
model.

sets, incorrect answers can vary infinitely in
question-answering tasks. To simplify our ex-
periment, we use GPT-4o-mini to generate 9
distinct incorrect answers for each query and
then create three corresponding documents for
each incorrect answer using GPT-4o-mini.

The specific prompts used to generate the data are
provided in Appendix H.

Constructing the corpus for Si. Using the gen-
erated factual and misinformation documents, we
construct a corpus for each source Si. Importantly,
all sources are derived from the same single QA
dataset—that is, we first select one of the three QA
datasets (NQ, TQA, or HotpotQA) and use only
that dataset to generate all sources.

Each source Si is generated independently,
based on its ri and pi. If Si contains relevant

documents for a given query (as determined by
ri), the truthfulness of these documents is dictated
by pi. If Si is designated to provide factual
information, it randomly selects three documents
from the pool of previously generated factual
documents. Conversely, if Si is designated to
provide misinformation, it randomly selects one
of the nine incorrect answers and includes the
corresponding three misinformation documents
generated earlier.

Since each source is constructed indepen-
dently, different sources contain different sets
of knowledge. For example, one source Si may
include relevant documents for a given query,
while another source Sj may not, where i ̸= j and
i, j ∈ [N ].
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9) on NQ, TQA, and HotpotQA datasets using Llama3-8B-Instruct, Phi3-mini-Instruct, and GPT-4o-mini models.

H Prompts for Constructing
Multi-Source Benchmark

H.1 Prompt for factual data generation

Generate {num_pairs} different paraphrased contexts
based on the given query, answer, and context. Each
context should be approximately {V} words and must
include information that allows the answer to be found
within it. Write in English.
Context: {context}
Question: {question}
Answer: {answer}

Figure A6: Prompt used for generating factual contexts.
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Query: Who is directly elected according to the constitution?
Ground Truth (GT): senators
Multi-Soruce Outputs: judges, i don’t know, president, senators, i don’t know, president, president, senators
MV Answer: president
RA-RAG Answer: senators
True Reliability: 0.83, 0.67, 0.47, 0.84, 0.57, 0.64, 0.47, 0.79
Estimated Reliability: 0.83, 0.64, 0.43, 0.89, 0.6, 0.66, 0.51, 0.8

Query: Nickname given to railroad executives due to shady practices of their businesses?
Ground Truth (GT): robber baron, robber barons
Multi-Source Outputs: i don’t know, robber barons, magnate, mogul, i don’t know, robber barons, i don’t know,
magnate
MV Answer: magnate
RA-RAG Answer: robber barons
True Reliability: 0.4, 0.72, 0.28, 0.23, 0.62, 0.81, 0.9, 0.52
Estimated Reliability: 0.48, 0.74, 0.29, 0.21, 0.62, 0.82, 0.87, 0.51

Query: Where does the synthesis of new dna from existing dna occurs?
Ground Truth (GT): origins of replication
Multi-Source Outputs: interphase, i don’t know, origins of replication, at origins of replication, chloroplasts, mito-
chondria, nucleus, cell nucleus, muscle cells
MV Answer: nucleus
RA-RAG Answer: origins of replication
True Reliability: 0.53, 0.24, 0.21, 0.87, 0.65, 0.68, 0.56, 0.58, 0.6
Estimated Reliability: 0.56, 0.29, 0.27, 0.93, 0.68, 0.69, 0.58, 0.5, 0.64

Query: Where is the oldest civilization known to man?
Ground Truth (GT): mesopotamia
Multi-Source Outputs: i don’t know, indus valley, located in present-day pakistan and northwest india, greece, i don’t
know, i don’t know, i don’t know, mesopotamia, pakistan and northwest india, mesopotamia
MV Answer: indus valley, located in present-day pakistan and northwest india
RA-RAG Answer: mesopotamia
True Reliability: 0.53, 0.24, 0.21, 0.87, 0.65, 0.68, 0.56, 0.58, 0.6
Estimated Reliability: 0.56, 0.29, 0.27, 0.93, 0.68, 0.69, 0.58, 0.5, 0.64

Figure A5: Qualitative examples comparing between MV and our RA-RAG answers.

H.2 Prompt for misinformation generation

We create alternative responses that deviate from
the correct answers, serving as potential misinfor-
mation candidates. A secondary prompt is then
designed to incorporate these incorrect alternatives,
to elicit misleading or false information from the
model.

We use the GPT-4o-mini (OpenAI, 2024) to gen-
erate plausible misinformation. However, GPT-4o-
mini often shows resistance to producing misin-
formation (Wallace et al., 2024), sometimes rein-
serting correct answers even in contexts intended
to contain falsehoods. To mitigate this, we care-
fully craft prompts and manually post-process the
model’s outputs to filter out incorrectly generated
cases.

Generate nine counterfactual answers, based on
the question and its original answers.
Ensure that each counterfactual answer is a plau-
sible but incorrect response, clearly different
from the original answers.
Avoid repeating or paraphrasing the original an-
swer or question.
The counterfactual answers should be relevant to
the context but should introduce a distinct and
clearly incorrect or alternative response.
You should write the answers in short closed
form, limit to maximum 4 words length.
The answers should not be sentence form, but
rather a short phrase or word.
Write in English.

Figure A7: Prompt used for generating counterfac-
tual answers.
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Answer the question based on the given context without using any internal knowledge. Provide only essential keywords
without explanations or additional details. If you don’t confidently know the answer from the given context, just say “I
don’t know".

Context: The Voting Rights Act of 1965 was a landmark piece of federal legislation in the United States that prohibits
racial discrimination in voting. This act was signed into law by President Lyndon B. Johnson during the height of
the Civil Rights Movement. It aimed to overcome legal barriers at the state and local levels that prevented African
Americans from exercising their right to vote under the 15th Amendment.
Question: Who was the Voting Rights Act of 1965 designed to help?
Answer: African Americans

Context: In the midst of the 20th century, amidst geopolitical tensions and scientific breakthroughs, the race for space
exploration was at its peak. Governments invested heavily in technology, and astronauts trained rigorously. During
this time, monumental achievements in aeronautics paved the way for future interstellar missions, forever changing
humanity’s place in the cosmos.
Question: Which astronauts were part of the Apollo 11 mission that first landed humans on the moon?
Answer: I don’t know

Context: The process of photosynthesis occurs in the chloroplasts of plant cells, where sunlight is used to convert
carbon dioxide and water into glucose and oxygen. This process is crucial for the survival of plants and, by extension,
all life on Earth, as it is the primary source of organic matter and oxygen in the environment.
Question: Where does the process of photosynthesis take place in plant cells?
Answer: chloroplasts

Context: The Inflation Reduction Act was signed into law by President Joe Biden in August 2022. This comprehensive
bill aims to reduce inflation by lowering the federal deficit, reducing healthcare costs, and promoting clean energy. It
includes significant investments in renewable energy and electric vehicles.
Question: What was the total cost of the Inflation Reduction Act?
Answer: I don’t know

Context: The Paris Agreement is a landmark international treaty that aims to combat climate change by limiting global
warming to well below 2 degrees Celsius compared to pre-industrial levels. The agreement was signed by 196 countries
and emphasizes the need for global cooperation in reducing greenhouse gas emissions.
Question: What is the main goal of the Paris Agreement?
Answer: Limiting global warming

Figure A8: Instruction prompt used for answer generation.

I Instruction for Answer Generation

Figure A8 illustrates the instruction prompt used
for answer generation.

J Computational efficiency with
wall-clock time

We further evaluate computational efficiency by
measuring wall-clock time for both inference (Sec-
tion J.1) and source reliability estimation (Sec-
tion J.2). Experiments were conducted using the
Beta prior on the NQ dataset, as described in Sec-
tion 5.1, with a single RTX 6000 Ada GPU.

J.1 Inference phase
Table A5 demonstrates that our method maintains
efficient inference times, even as the number of
sources increases, due to the scalability of the κ-
RRSS.

J.2 Reliablity estimation phase
Table A6 demonstrates that the computational over-
head for source reliability estimation is practical

Method Inference time per task (wall-clock)

Vanilla RAG 0.32 sec
Self-RAG 7.44 sec
Ours (5 src) 1.21 sec
Ours (10 src) 1.65 sec
Ours (20 src) 1.76 sec
Ours (1000 src) 1.82 sec

Table A5: Wall-clock time for inference per task for
different methods and number of sources.

# Src Reliability Estimation Time (wall-clock)

5 4.65 min
10 9.42 min
20 20.04 min

1000 14.81 hr

Table A6: Wall-clock time for reliability estimation
across different numbers of sources.

and serves as a one-time preprocessing step during
database construction. We note that all measure-
ments were obtained using a single GPU, suggest-
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Figure A9: Reliability estimation results on real-world sources under augmented variation for Politician A, Politician
B, and User A.

ing room for further optimization. Specifically,
inference with filtering for each source takes ap-
proximately 52 seconds. As inference tasks are in-
dependent, this latency can be significantly reduced
through parallel execution on multiple GPUs. Addi-
tionally, the iterative reliability estimation process
is highly efficient, requiring less than 0.2 seconds
even when scaled to 1,000 sources.

K Experimental Results on Estimating
the Reliability of Real-World Sources

Figure A9 presents the experimental results for
reliability estimation of Politician A, Politician B,
and User A under data augmentation.

L Extended ablation studies for filtering

We conduct an ablation study on τ across the NQ,
TQA, and HotpotQA datasets using the Llama3-
8B-Instruct, Phi3-mini-Instruct, and GPT-4o-mini
models (Tables A7 to A15). We observe that
a higher τ improves the filtering of misaligned
responses but also increases information loss by
incorrectly filtering aligned responses across the
given models and datasets.
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Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign)

Threshold
Factual Misinformation Irrelevant

Correct

w/o − 80.36 2.02 4.53
0.1 76.74 0.76 1.84

w/ 0.5 72.61 0.51 1.35
0.8 68.22 0.25 0.98

Incorrect

w/o − − 87.63 −
0.1 − 86.87 −

w/ 0.5 − 84.60 −
0.8 − 82.32 −

IDK

w/o − 2.33 1.01 80.29
0.1 6.20 4.55 91.31

w/ 0.5 11.89 7.83 94.25
0.8 17.57 10.86 94.86

Hallucination

w/o − 17.31 9.34 15.18
0.1 17.05 7.83 6.85

w/ 0.5 15.50 7.07 4.41
0.8 14.21 6.57 4.16

Table A7: Answer type distribution (%) by retrieved document types in the filtering falign ablation study with various
thresholds on Llama3-8B-Instruct and NQ dataset.

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign)

Threshold
Factual Misinformation Irrelevant

Correct

w/o − 96.38 5.05 26.07
0.1 94.32 2.53 4.16

w/ 0.5 89.41 1.26 1.71
0.8 84.50 1.01 0.73

Incorrect

w/o − − 75.76 −
0.1 − 70.96 −

w/ 0.5 − 66.67 −
0.8 − 62.12 −

IDK

w/o − 0.26 4.80 50.92
0.1 2.58 13.89 91.19

w/ 0.5 8.01 20.20 96.57
0.8 13.44 25.76 98.04

Hallucination

w/o − 8.01 10.10 22.89
0.1 7.75 8.33 4.53

w/ 0.5 7.24 7.58 1.59
0.8 6.72 6.82 1.10

Table A8: Answer type distribution (%) by retrieved document types in the filtering falign ablation study with various
thresholds on Llama3-8B-Instruct and TQA dataset.
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Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign)

Threshold
Factual Misinformation Irrelevant

Correct

w/o − 82.95 6.57 14.69
0.1 75.97 3.79 2.20

w/ 0.5 66.93 2.27 0.73
0.8 58.66 1.01 0.24

Incorrect

w/o − − 65.40 −
0.1 − 54.55 −

w/ 0.5 − 45.45 −
0.8 − 35.61 −

IDK

w/o − 0.26 8.59 59.24
0.1 9.30 26.01 91.43

w/ 0.5 20.93 41.16 96.94
0.8 31.01 55.05 98.16

Hallucination

w/o − 17.57 16.16 27.29
0.1 15.50 12.37 7.59

w/ 0.5 12.92 7.83 3.55
0.8 11.11 5.05 2.82

Table A9: Answer type distribution (%) by retrieved document types in the filtering falign ablation study with various
thresholds on Llama3-8B-Instruct and HotpotQA dataset.

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign)

Threshold
Factual Misinformation Irrelevant

Correct

w/o − 80.36 2.02 4.53
0.1 78.81 0.25 2.20

w/ 0.5 72.61 0.51 1.35
0.8 68.22 0.25 0.98

Incorrect

w/o − − 87.63 −
0.1 − 89.65 −

w/ 0.5 − 84.60 −
0.8 − 82.32 −

IDK

w/o − 2.33 1.01 80.29
0.1 6.20 3.03 88.13

w/ 0.5 11.89 7.83 94.25
0.8 17.57 10.86 94.86

Hallucination

w/o − 17.31 9.34 15.18
0.1 14.99 7.07 9.67

w/ 0.5 15.50 7.07 4.41
0.8 14.21 6.57 4.16

Table A10: Answer type distribution (%) by retrieved document types in the filtering falign ablation study with
various thresholds on Phi3-mini-Instruct and NQ dataset.
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Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign)

Threshold
Factual Misinformation Irrelevant

Correct

w/o − 96.38 4.80 36.72
0.1 93.80 1.77 5.51

w/ 0.5 89.41 1.26 1.71
0.8 84.50 1.01 0.73

Incorrect

w/o − − 77.27 −
0.1 − 72.98 −

w/ 0.5 − 66.67 −
0.8 − 62.12 −

IDK

w/o − 0.26 4.55 32.56
0.1 2.84 13.38 89.47

w/ 0.5 8.01 20.20 96.57
0.8 13.44 25.76 98.04

Hallucination

w/o − 8.01 9.09 30.60
0.1 8.01 7.58 4.90

w/ 0.5 7.24 7.58 1.59
0.8 6.72 6.82 1.10

Table A11: Answer type distribution (%) by retrieved document types in the filtering falign ablation study with
various thresholds on Phi3-mini-Instruct and TQA dataset.

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign)

Threshold
Factual Misinformation Irrelevant

Correct

w/o − 83.98 4.55 18.73
0.1 77.00 3.54 3.67

w/ 0.5 68.22 2.53 0.86
0.8 58.91 1.26 0.49

Incorrect

w/o − − 74.24 −
0.1 − 61.62 −

w/ 0.5 − 48.74 −
0.8 − 37.63 −

IDK

w/o − 1.03 3.79 39.53
0.1 10.34 22.47 87.39

w/ 0.5 21.96 40.91 96.08
0.8 32.82 55.30 97.92

Hallucination

w/o − 15.76 14.14 42.96
0.1 13.44 9.09 10.16

w/ 0.5 10.59 4.55 4.28
0.8 9.04 2.53 2.82

Table A12: Answer type distribution (%) by retrieved document types in the filtering falign ablation study with
various thresholds on Phi3-mini-Instruct and HotpotQA dataset.
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Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign)

Threshold
Factual Misinformation Irrelevant

Correct

w/o − 78.55 0.51 1.84
0.1 75.45 0.51 0.86

w/ 0.5 71.58 0.51 0.61
0.8 67.70 0.00 0.49

Incorrect

w/o − − 88.64 −
0.1 − 87.88 −

w/ 0.5 − 85.61 −
0.8 − 83.08 −

IDK

w/o − 4.91 4.04 92.78
0.1 8.27 5.05 95.10

w/ 0.5 13.18 7.58 95.84
0.8 18.09 10.86 95.96

Hallucination

w/o − 16.54 6.82 5.39
0.1 16.28 6.57 4.04

w/ 0.5 15.25 6.31 3.55
0.8 14.21 6.06 3.55

Table A13: Answer type distribution (%) by retrieved document types in the filtering falign ablation study with
various thresholds on GPT-4o-mini and NQ dataset.

Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign)

Threshold
Factual Misinformation Irrelevant

Correct

w/o − 96.64 1.52 9.67
0.1 94.32 0.76 2.45

w/ 0.5 89.41 0.51 1.10
0.8 84.75 0.25 0.86

Incorrect

w/o − − 68.43 −
0.1 − 66.41 −

w/ 0.5 − 62.63 −
0.8 − 59.09 −

IDK

w/o − 0.78 16.92 87.76
0.1 3.10 21.21 96.82

w/ 0.5 8.53 25.76 98.41
0.8 13.70 30.30 98.65

Hallucination

w/o − 7.24 8.84 2.45
0.1 7.24 7.32 0.61

w/ 0.5 6.72 6.82 0.37
0.8 6.20 6.06 0.37

Table A14: Answer type distribution (%) by retrieved document types in the filtering falign ablation study with
various thresholds on GPT-4o-mini and TQA dataset.
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Types of Retrieved DocumentsTypes of
Answers

Filtering
(falign)

Threshold
Factual Misinformation Irrelevant

Correct

w/o − 86.30 5.56 9.42
0.1 78.81 3.03 1.71

w/ 0.5 69.51 2.27 0.73
0.8 59.69 1.01 0.37

Incorrect

w/o − − 63.38 −
0.1 − 54.29 −

w/ 0.5 − 45.20 −
0.8 − 36.11 −

IDK

w/o − 0.78 16.67 85.19
0.1 9.30 30.30 96.21

w/ 0.5 20.93 42.93 97.92
0.8 31.78 55.56 98.41

Hallucination

w/o − 13.70 11.11 6.61
0.1 12.66 9.09 3.30

w/ 0.5 10.34 6.31 2.57
0.8 9.30 4.04 2.45

Table A15: Answer type distribution (%) by retrieved document types in the filtering falign ablation study with
various thresholds on GPT-4o-mini and HotpotQA dataset.
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