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Abstract

Large language models (LLMs) rely on key-
value cache (KV cache) to accelerate decoding
by reducing redundant computations. How-
ever, the KV cache memory usage grows sub-
stantially with longer text sequences, posing
challenges for efficient deployment. Existing
KV cache eviction methods prune tokens us-
ing prefilling-stage attention scores, causing
inconsistency with actual inference queries, es-
pecially under tight memory budgets. In this
paper, we propose Lookahead Q-Cache (LAQ),
a novel eviction framework that generates low-
cost pseudo lookahead queries to better approx-
imate the true decoding-stage queries. By using
these lookahead queries as the observation win-
dow for importance estimation, LAQ achieves
more consistent and accurate KV cache evic-
tion aligned with real inference scenarios. Ex-
perimental results on LongBench and Needle-
in-a-Haystack benchmarks show that LAQ out-
performs existing methods across various bud-
get levels, achieving a 1 ∼ 4 point improve-
ment on LongBench under limited cache bud-
get. Moreover, LAQ is complementary to exist-
ing approaches and can be flexibly combined
to yield further improvements.

1 Introduction

Large language models (LLMs) have demonstrated
strong capabilities in long-sequence text modeling
tasks (Liu et al., 2025a,b) such as code generation
(Guo et al., 2024a; Hui et al., 2024), document sum-
marization (Liu et al., 2024c), and mathematical
reasoning (Chen et al., 2025). To improve infer-
ence efficiency during the decoding stage, LLMs
leverage key-value cache (KV-Cache) to reduce
redundant computations and accelerate inference.
However, increasing text lengths lead to a substan-
tial rise in KV cache memory usage, introducing
considerable obstacles (Shi et al., 2024; Li et al.,
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Figure 1: Illustration of the differences between the
proposed Lookahead approach and existing methods.
Pseudo queries are introduced to probe the importance
of cached keys and values.

2024a; Yuan et al., 2024) to efficient model deploy-
ment. Recent work (Liu et al., 2024d; Sun et al.,
2024) has focused on lightweighting the KV cache
in long-context scenarios.

As a straightforward and effective compres-
sion method, KV cache eviction has attracted
widespread attention (Ge et al., 2024; Liu et al.,
2023; Tang et al., 2024) from researchers. The
method improves decoding efficiency by perform-
ing token-level pruning on the prefilling-stage KV
cache. Following the observations of Liu et al.
(2023); Zhang et al. (2023), the majority of studies
adopt cumulative attention scores as the criterion
for token pruning. Compared to direct accumu-
lation, SnapKV (Li et al., 2024b) achieves more
accurate KV cache importance estimation by lever-
aging an observation window. In addition, some
studies (Cai et al., 2024; Feng et al., 2024) aim to
allocate finer-grained budgets across layers or at-
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tention heads to achieve higher compression rates.
Although existing methods have partially allevi-

ated the KV cache overhead in long-context scenar-
ios, several challenges remain to be addressed. One
key issue is the inconsistency between compres-
sion and inference. Under a constrained budget,
KV cache eviction seeks to maintain the key-value
pairs most likely to be accessed by future queries
during decoding. However, as shown in Figure 1,
current approaches rely on prefilling-stage queries
to approximate those in the decoding stage when
selecting key-value pairs for KV cache retention.
This inconsistency significantly reduces the accu-
racy of cache selection under a low budget, thereby
degrading the performance of eviction algorithms.

In this paper, we observe that employing the pre-
fix of the generated response as the observation win-
dow leads to more consistent KV cache selection.
Notably, this phenomenon is insensitive to the quan-
lity of the generated response: even incorrect an-
swers are often able to recall the key cache entries
required for generating the correct one. Motivated
by these findings, we propose a KV cache eviction
framework, LookAhead Q-Cache (LAQ), which
aligns more closely with the actual inference situa-
tion. Specifically, unlike prior works that select ob-
servation windows from the input text to compute
the importance of KV cache, our method generates
lookahead queries in a low-cost manner that are
more consistent with the actual response queries.
Once the lookahead queries are cached, we use
them as the observation window for importance es-
timation, and then proceed with standard KV cache
eviction. Experimental results on LongBench and
Needle-in-a-Haystack tasks demonstrate that LAQ
consistently outperforms existing methods across
various budget settings. By leveraging Q-Cache,
which better aligns with inference scenarios, the
proposed method even outperforms some dynam-
ically budgeted approaches under low-budget set-
tings. Furthermore, experiments show that the pro-
posed method can be integrated with existing meth-
ods to yield orthogonal improvements.

The main contributions of this paper are as fol-
lows:

• We propose the Lookahead Q-Cache, a novel
framework that mitigates the inconsistency
issue during both compression and infer-
ence phases by leveraging pre-generated low-
quality pseudo queries.

• The proposed method offers orthogonal im-

provements when combined with existing ap-
proaches, and its flexible configuration en-
ables broad applicability.

• Experiments across diverse benchmarks indi-
cate that the proposed method significantly
outperforms existing strategies, consistently
achieving performance improvements of 1 ∼
4 percentage points on LongBench.

2 Related Works

2.1 KV Cache Eviction
KV Cache eviction aims to prune redundant KV
cache entries from the prefill stage at the token
level, improving decoding speed and alleviating
memory usage without compromising decoding
performance. Previous work primarily builds on
Liu et al.; Zhang et al.’s (2023; 2023) findings,
utilizing the attention mechanism as an inherent
evaluation criterion to assess the importance of KV-
Cache entries and guide their eviction. However,
using global attention scores often lacks specificity.
Li et al. (2024b) discover that the suffix of the input
window exhibits behavior more consistent with the
generation phase. By maintaining a local window
to guide KVCache eviction, lower performance
degradation is achieved.

Due to conflicts between obtaining attention
scores and existing acceleration techniques (such
as FlashAttention (Dao et al., 2022; Dao, 2024)),
some methods focus on identifying alternative im-
portance evaluation metrics. Devoto et al. (2024)
identify a correlation between the norm of the
key values and their importance, and propose an
L2 norm-based KV cache eviction method that is
compatible with existing acceleration frameworks.
Building on this, Guo et al. (2024b) also explore
the norm of the value vectors and achieve more
precise KV Cache eviction by combining the atten-
tion mechanism with the L2 norm of Value caches.
Despite alleviating performance degradation, exist-
ing KV Cache eviction strategies continue to face
the inconsistency problem in compressed inference
illustrated in Figure 1, thereby constraining the
upper bound of eviction performance.

2.2 KV Cache Compression
In addition to direct eviction, some studies (Wan
et al., 2024) focus on merging similar KV cache
entries to improve efficiency. To preserve as much
information from the prefill stage as possible, some
methods (Bolya et al., 2023; Zhang et al., 2024)
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build upon KV cache eviction and further explore
token-level cache fusion, leading to improved task
performance after eviction. Going further, with
appropriate processing and training (Sun et al.,
2024; Liu et al., 2024b; Zuhri et al., 2024; Ma
et al., 2024), KV cache entries across layers can
be merged and compressed to reduce memory con-
sumption, offering additional efficiency gains.

Moreover, dimensionality reduction of the KV
cache (Shazeer, 2019) serves as an effective ap-
proach to improve efficiency. The most straightfor-
ward compression method is to reduce the preci-
sion bit-width (He et al., 2024) of the KV Cache.
Liu et al. (2024d) propose separate quantization
methods based on channels and tokens to address
the distinct distribution characteristics of the key
and value, achieving nearly lossless 2-bit quantiza-
tion. Additionally, some methods employ low-rank
techniques for compression. GQA (Ainslie et al.,
2023) achieves significant compression by sharing
keys and values across multiple groups of queries,
and has been widely adopted in various applica-
tions (Grattafiori et al., 2024). Multi-Head Latent
Attention (MLA) (Liu et al., 2024a) of DeepSeek
significantly reduces KV cache size through low-
rank compression and decoupled RoPE, achieving
efficient inference while maintaining model perfor-
mance.

3 Observasions

To investigate the inconsistency between the com-
pression and inference stages, we first evaluate the
recall rate of the selected KV cache using fix-length
observation windows at different positions. Specif-
ically, the position includes not only the input por-
tion but also the output tokens generated during
the inference stage. The recall rate of the selected
KV cache is defined as the proportion of indices se-
lected by the observation window that overlap with
those selected by all response tokens. The final
recall rate RecallW can be calculated as follows:

Mgold = ArgSort(
∑

i∈R
qiK

T )[: Budget] (1)

Mpred = ArgSort(
∑

i∈W
qiK

T )[: Budget] (2)

RecallW =
|Mpred ∩Mgold|

|Mgold|
(3)

As shown in Figure 2, we conduct evaluations on
the GovReport dataset (Huang et al., 2021) for the
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Figure 2: An illustration of the average recall rate
with different starting index of the observation window,
where 0 indicates the position of the first generated to-
ken. The observation window has a fixed length of 8,
and the budget is set to 1024.

summarization task. By analyzing the figure, we
obtain several insightful findings.

(1) Response prefix queries significantly boost re-
call over instruction. Similar to the conclusion
of Li et al. (2024b), we find that local windows
near the end of the input achieve higher recall rates
compared to other input windows. However, once
tokens from the output portion appear in the ob-
servation window (as indicated by the red vertical
line in the figure), the recall rate of the window
experiences a sudden increase. Although the re-
call rate gradually increases as the window shifts
forward, just 1-2 tokens from the generation phase
are sufficient to bring a substantial improvement.
This phenomenon indicates a significant discrep-
ancy between input and output queries and suggests
that existing eviction methods still have substantial
room for improvement.

(2) Queries from low-quality responses remain
effective. Although output queries are effective,
they are not accessible during the actual inference
stage. To address this, we further evaluate the recall
rate of observation windows composed of queries
from low-quality responses generated under com-
mon KV-Cache eviction strategies. As shown by
the dashed lines in Figure 2, the recall rate is lower
than that achieved with the full KV cache, yet a
noticeable jump in recall can still be observed with
these low-quality queries. This suggests that the
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Figure 3: Main workflow of the proposed Lookahead Q-
Cache. Queries from incorrect answers can still retrieve
KV cache entries aligned with the actual outputs.

selection of KV cache may not be highly sensitive
to response correctness. Actually, cache patterns at-
tended by incorrect responses remain more consis-
tent with those of correct responses than traditional
input-based selections.

Based on the above insights, if we can obtain
the query corresponding to the response prefix as
a observation window, the consistency between
the compression and inference stages can be im-
proved, leading to substantial gains for existing
KV-Cache eviction strategies. Notably, although
the golden query is not accessible during infer-
ence, some pseudo queries obtained through evic-
tion strategies can still achieve strong performance.
These pieces of evidence motivate the design of
a two-stage KV-Cache eviction algorithm, which
enables more precise cache eviction by leveraging
pseudo response-prefix windows with more consis-
tent distributions.

4 Lookahead Q-Cache

4.1 Overall Workflow

Given the outcomes in Section 3, the proposed
LookAhead Q-Cache (LAQ) aims to cache queries
from some low-quality responses in advance as
the observation window to achieve KV-Cache evic-
tion more consistent with the inference stage. Our
main workflow, as illustrated in Figure 3, consists
of three stages: the prefilling stage, the lookahead
stage (Section 4.2), and the eviction-based decod-
ing stage (Section 4.3).

4.2 Lookahead Query Construction
After obtaining the KV cache during the pre-filling
stage, we first employ certain KV cache selection
strategies to construct lookahead queries. To bal-
ance efficiency, we adopt KV cache eviction meth-
ods (such as StreamingLLM (Xiao et al., 2024) and
snapKV (Li et al., 2024b)) with a low budget to
generate a specified number of response tokens at
a lower cost. Considering that the primary bottle-
neck for model generation in long-text scenarios
lies in the pre-filling stage, a few additional decod-
ing steps introduce minimal impact on the overall
latency. We further analyze the latency introduced
by the Lookahead Q-Cache in Section 6.3.

Unlike standard generation, the lookahead gen-
eration process requires retaining the Query hidden
states as a Q-Cache for use in subsequent obser-
vation windows. However, since we decode only
up to 8 steps ahead, the additional memory over-
head introduced by the Q-Cache is negligible in the
context of long sequences.

4.3 KV-Cache Re-eviction
Given the previously obtained Q-Cache Q, we use
it as an observation window to perform a second-
round eviction of the KV-Cache. The retained KV-
Cache indices under budget B can be formulated
as:

Mahead = ArgSort(
∑

qi∈Q
qiK

T )[: B] (4)

After obtaining the KV cache ranking under the
lookahead observation window, we can perform
cache re-eviction based on the given budget, fol-
lowed by standard autoregressive decoding for gen-
eration. Specifically, the pseudo Query cache can
be combined with the queries from the local win-
dow obtained during the prefilling stage to form a
unified observation window for generation:

Mahead = ArgSort(
∑

qi∈W∪Q
qiK

T )[: B] (5)

where W represents the local context window, sim-
ilar to that employed in SnapKV (Li et al., 2024b).
We denote this integrated method as LAQ++.

5 Experiments

5.1 Setup
Evaluation benchmarks and model setup. Fol-
lowing prior works (Li et al., 2024b; Cai et al.,
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Table 1: Performance comparison of different methods across various LLMs on LongBench.

LLMs

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

M
is

tr
al

-7
B

-v
0.

2-
In

st
ru

ct

Full KV 26.90 33.14 49.26 42.77 27.35 18.77 32.95 24.21 27.13 71.00 86.23 42.72 2.75 86.98 57.12 54.51 42.74
KV Cache Size = 128

H2O 21.62 21.34 38.61 30.46 20.38 12.20 20.59 22.51 22.03 39.00 82.33 40.64 3.06 80.56 51.17 48.46 34.69
SnapKV 19.71 21.13 42.75 36.45 22.36 15.76 19.05 21.81 21.36 47.50 84.15 40.29 2.41 68.26 52.26 48.75 35.25
PyramidKV 21.98 22.78 43.78 32.30 22.31 15.81 20.41 21.82 21.23 66.00 83.51 39.83 2.99 65.81 51.61 46.42 36.16
LAQ 24.94 27.77 45.43 40.35 25.25 17.91 22.06 22.68 22.50 69.50 86.36 41.16 1.49 76.85 53.31 51.02 39.29
LAQ++ 25.62 27.21 46.16 40.60 25.93 18.44 21.60 23.07 22.42 70.00 86.18 42.03 3.51 74.81 54.68 50.92 39.57

KV Cache Size = 256
H2O 21.42 23.04 42.60 30.75 22.42 13.82 22.35 22.54 23.12 40.50 83.78 40.73 3.51 85.85 53.18 49.95 36.22
SnapKV 22.44 24.07 48.01 38.66 22.66 15.59 21.83 23.23 22.94 61.50 85.45 41.32 3.13 85.79 55.11 51.73 38.97
PyramidKV 21.69 25.18 47.61 38.77 26.12 15.23 22.52 22.52 22.59 68.00 84.27 42.10 3.43 76.60 53.08 48.40 38.63
LAQ 24.68 29.25 48.00 40.56 26.01 18.24 24.04 22.96 23.80 70.00 85.81 42.52 2.01 82.34 54.96 53.00 40.51
LAQ++ 25.23 29.16 49.24 41.70 26.85 18.62 23.73 23.69 23.38 70.50 86.24 42.54 3.36 86.11 55.59 52.49 41.15

KV Cache Size = 512
H2O 21.72 25.54 44.72 32.39 23.16 14.75 23.61 23.03 24.58 42.00 85.22 41.61 3.42 86.45 54.82 51.11 37.38
SnapKV 24.14 28.11 48.78 39.49 25.09 17.40 23.67 23.18 24.60 67.00 85.88 41.39 2.78 86.56 56.61 53.47 40.51
PyramidKV 22.99 28.74 48.45 39.73 25.74 16.58 24.48 23.40 24.52 70.00 85.99 42.40 3.32 81.63 55.93 52.38 40.39
LAQ 24.65 31.21 49.15 39.90 27.18 18.38 25.55 23.91 24.87 71.00 86.33 42.14 1.87 86.41 56.84 53.08 41.40
LAQ++ 25.49 30.92 49.72 41.50 26.84 19.20 25.67 24.04 25.31 71.00 86.43 43.14 2.90 85.27 56.80 53.54 41.70

L
la

m
a3

.1
-8

B
-I

ns
tr
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t

Full KV 31.85 15.55 28.17 29.93 22.98 18.20 34.39 23.79 27.12 72.50 92.14 43.66 8.37 97.59 65.05 54.78 41.63
KV Cache Size = 128

H2O 25.06 7.09 18.58 17.86 19.88 9.14 22.28 22.68 21.55 40.00 90.89 40.78 8.30 92.96 59.15 49.36 34.10
SnapKV 24.65 7.29 22.01 19.11 18.85 11.07 20.48 21.62 20.16 47.50 90.24 40.47 10.75 92.51 59.99 49.08 34.74
PyramidKV 24.79 8.29 20.72 14.86 13.84 8.90 22.41 22.76 21.53 62.00 90.35 39.23 9.27 93.51 58.77 46.46 34.86
LAQ 27.80 10.66 24.86 20.64 20.04 15.40 24.18 23.09 22.88 72.00 91.55 43.43 9.04 95.85 61.12 50.33 38.30
LAQ++ 28.65 10.65 26.04 24.23 21.56 15.67 23.50 23.74 22.75 72.00 91.95 42.19 8.37 94.81 62.18 50.95 38.70

KV Cache Size = 256
H2O 26.01 8.42 19.69 17.28 18.21 9.91 23.64 22.89 23.20 41.50 91.29 41.60 8.00 94.31 60.79 50.31 34.82
SnapKV 28.05 9.83 22.71 21.48 19.36 10.96 22.86 22.75 22.98 58.00 92.28 40.87 8.10 95.30 63.64 51.35 36.91
PyramidKV 26.40 10.08 22.46 15.20 16.38 8.60 23.86 22.93 23.17 69.00 90.99 40.60 8.42 93.74 60.59 48.11 36.28
LAQ 28.86 12.40 26.44 21.80 20.91 15.77 25.83 23.30 24.26 72.50 93.08 42.57 7.53 95.80 63.51 51.09 39.10
LAQ++ 30.25 12.43 26.63 25.77 22.83 18.45 25.07 23.67 23.75 72.00 91.97 43.17 6.93 94.59 64.07 53.38 39.69

KV Cache Size = 512
H2O 25.44 8.35 20.97 20.08 19.23 9.51 24.44 23.50 24.35 44.00 92.10 41.16 7.43 96.41 62.73 51.77 35.72
SnapKV 30.34 10.75 23.54 24.65 21.55 12.98 24.82 23.15 24.61 68.00 92.33 42.16 7.83 96.86 64.74 53.60 38.87
PyramidKV 28.38 11.59 25.02 20.06 18.80 10.64 25.73 24.03 25.01 70.00 92.22 41.73 8.47 96.42 63.44 51.02 38.29
LAQ 30.89 14.04 25.86 26.00 23.19 17.73 27.07 24.01 25.29 72.50 92.25 43.13 6.96 96.97 64.87 52.58 40.21
LAQ++ 29.64 13.22 26.79 27.58 23.49 18.63 26.94 24.04 25.21 72.50 92.25 42.83 8.43 96.25 65.00 53.37 40.39

2024), we evaluate the proposed method using the
LongBench benchmark (Bai et al., 2023) and the
Needle-in-a-Haystack test (Kamradt, 2023). For
LongBench, we adopt three KV cache budget set-
tings: 128, 256, and 512. To comprehensively
evaluate the generalization ability of the proposed
method, we conduct experiments on Mistral-7B-
v0.2-Instruct (Jiang et al., 2023), Llama3.1-8B-
Instruct (Grattafiori et al., 2024), and Qwen2.5-7B-
Instruct (Yang et al., 2025). Due to space limita-
tions, additional experimental results are presented
in Appendix D.

Selected baselines. To highlight the effectiveness
of our proposed method, we select three commonly
used and strong KV-Cache eviction strategies as
baselines: (1) H2O (Zhang et al., 2023) evalu-
ates and evicts existing KV cache entries based
on cumulative attention scores. (2) SnapKV (Li
et al., 2024b) utilizes a local observation window to
achieve more accurate importance estimation and
employs average pooling to retain a more coher-
ent KV Cache. (3) PyramidKV (Cai et al., 2024)
leverages the characteristics of attention distribu-
tion across layers by allocating different budgets to
the KV cache at shallow and deep layers, thereby
achieving lower performance degradation under

low-budget settings.

Method config. In the main experiments, we em-
ploy LAQ and LAQ++ as the proposed methods
for comparison. Specifically, for LAQ, we adopt
a configuration of 8 forward Q-Caches, while for
LAQ++, the setup consists of 8 local observation
windows in addition to 8 forward Q-Caches. Ad-
ditionally, we employ SnapKV as the lookahead
method, ensuring consistency in budget and experi-
mental settings. We further discuss the impact of
hyperparameter choices in LAQ on performance in
Sections 6.1 and 6.2.

5.2 Results on LongBench.

Overall. As shown in Table 1, we evaluate the
performance of various methods across multiple
models on the LongBench benchmark. Overall, the
proposed methods achieve a significant improve-
ment of 1∼4 percentage points over existing KV
cache eviction strategies across different models
and budget settings. By leveraging a pre-fetched
lookahead Q-Cache, LAQ is able to make cache se-
lection decisions that are more aligned with those in
the actual inference stage. Furthermore, by integrat-
ing local observation windows, LAQ++ achieves
an orthogonal improvement.
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Figure 4: The results of SnapKV and LAQ++ on the needle-in-a-haystack test under a budget setting of 128.

Table 2: The score on Needle-in-a-Haystack task under
different KV cache budgets.

Budget Method

FullKV H2O SnapKV PyraKV LAQ++

Mistral-7B-v0.2-Instruct
64 100 43.2 60.7 84.3 99.3
96 100 54.1 71.5 88.2 99.6

128 100 59.2 76.2 88.1 99.2

Llama3.1-8B-Instruct
64 100 35.4 68.4 80.7 99.8
96 100 42.1 72.0 85.9 100

128 100 46.1 73.1 89.9 100

Qwen2.5-7B-Instruct
64 100 46.7 72.8 69.3 85.1
96 100 50.2 75.0 84.8 89.5

128 100 53.0 76.6 89.7 92.9

Results across diverse output length settings.
Moreover, beyond the overall performance gains,
LAQ also demonstrates consistently promising
improvements across tasks with varying output
lengths. The construction of an 8-step lookahead
Query cache enables LAQ to achieve a justified
advantage on tasks characterized by shorter out-
put lengths. Nonetheless, it is observed that the
proposed method maintains strong performance on
summarization tasks where the output length ex-
ceeds 300 tokens. This clearly demonstrates that
the proposed method can partially mitigate the dis-
crepancy of queries between the compression and
inference stages. It achieves this by incorporating
pseudo-queries within the observation window. As
a result, the method attains performance improve-
ments that are independent of output length.

Performance under varying budgets. In addi-
tion to varying models, we also conduct exper-
iments under diverse KV cache budget settings.
Compared to baseline methods, we find that LAQ
achieves more pronounced improvements under
low budget settings. Such low-budget scenarios

typically impose greater demands on the recall ac-
curacy of the KV cache within the observation win-
dow. This result further highlights the significant
gap between queries in the input and output win-
dows, and demonstrates that incorporating a lim-
ited number of lookahead queries can effectively
mitigate this issue. Furthermore, to ensure a fair
comparison, the proposed method employs a fixed
budget and has already outperformed the dynamic-
budget PyramidKV approach in low-budget sce-
narios. It is conceivable that combining both ap-
proaches could yield greater improvements by en-
abling more fine-grained budget allocation.

5.3 Results on Needle-in-a-Haystac Test.

Overall setting. In addition to various tasks on
LongBench, we also evaluate the proposed method
on the Needle-in-a-Haystack test. This test is de-
signed to evaluate ability of LLMs to retrieve spe-
cific keys within ultra-long contexts. Since FullKV
already achieves strong performance with a 32K
context length, in KV cache eviction scenarios, we
typically conduct evaluations after evicting a given
budget from the KV cache.

Main results. As shown in Table 2, we conduct
experiments on various models and budgets under
a 32K context length. With a complete KV cache
available, the model demonstrates strong capabil-
ity in successfully completing the retrieval task.
However, after evicting a certain portion of the
KV cache, all methods experience some degree
of performance degradation. The retrieval experi-
ment results exhibit less variability and are more
intuitive compared to task performance metrics. Al-
though PyramidKV achieves significant advantages
among baseline methods through dynamic budget-
ing, LAQ++ attains near-lossless performance by
leveraging a more consistent Q-Cache mechanism.
As discussed above, our proposed method can also
be further enhanced by integrating dynamic budget-
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Figure 5: Ablation analysis of Q-Cache with respect to quality and length.

ing. A more intuitive example is shown in Figure
4, where compared to SnapKV, LAQ++ can recall
nearly all “needles” from a 32K context using only
a 128 budget. Further experimental results can be
found in Appendix E.

6 Analysis

6.1 The Impact of Q-Cache Quality

As observed in Section 3, queries from low-quality
responses still achieve a high recall rate of target
KV cache entries compared to those derived from
the input. In this subsection, we quantitatively
analyze the impact of Q-Cache quality on model
performance. Specifically, we employ Lookahead
with different budgets and eviction strategies to
obtain Q-Cache of varying quality, and we also use
the queries obtained under the Full-KV setting as
an upper-bound reference. For the configuration
of the LAQ method, we conduct experiments on
LongBench using two different settings: 1-step and
8-step Lookahead.

The relationship between overall performance
and Q-Cache quality is shown in Figure 5(a). The
x-axis represents the budget used in the Lookahead
stage for each eviction strategy, while the y-axis in-
dicates the final performance on LongBench based
on the KV cache entries selected by the Q-Cache.
As shown in the table, reducing the budget has a
limited impact on the performance of the proposed
method. In addition, under the same number of
steps, the performance differences among different
eviction strategies are also minimal. Notably, under
the 8-step LAQ setting, the Q-Cache generated by
the full KV-Cache exhibits worse task performance
than that produced by SnapKV with a lower budget.
These results further demonstrate the robustness of
the proposed method to the quality of the Q-Cache,

as responses generated with lower budgets can still
effectively mitigate inconsistencies between the
compression and inference stages. Compared to
the quality of the Q-Cache, the length has a more
significant impact on the results.

6.2 The Impact of Q-Cache Length

As described above, compared to the budget, the
number of lookahead steps exerts a greater influ-
ence on the results. Therefore, we further investi-
gate the impact of different LAQ configurations
combined with varying numbers of Lookahead
steps on the experimental results. As shown in Fig-
ure 5(b), the final task performance increases with
the length of the Q-Cache across all settings. This
is consistent with the recall trend observed in Fig-
ure 2. Moreover, as the performance of low-budget
eviction methods gradually degrades during long-
sequence generation, the overall effectiveness of
subsequent LAQ also tends to converge. Consider-
ing the additional latency introduced by lookahead
stage, a balanced configuration must be chosen to
trade off between performance and efficiency. In
the main experiments, we set the step number hy-
perparameter to 8.

6.3 Latency Analysis

Despite achieving significant performance improve-
ments, the proposed method still incurs additional
latency for lookahead operations. To balance task
performance and efficiency, we conduct a stage-
wise latency analysis of the proposed LAQ (LookA-
head Q-Cache) framework. As shown in Figure 6,
we evaluate the latency distributions under both
2-step and 8-step configurations. We evaluate on
two LongBench scenarios corresponding to short-
output (avg. length 11.20 tokens) and long-output
(avg. length 402.83 tokens) contexts. The addi-

34153



short output
(avg. output length = 11.20)

7.0%

82.4%

10.5%

long output
(avg. output length = 402.83)

1.3%9.4%

89.3%

Latency Distribution with 2 Steps

lookahead latency
prefilling latency
decoding latency

(a) Lookahead Q-Cache with 2-step lookahead.
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(b) Lookahead Q-Cache with 8-step lookahead.

Figure 6: Latency breakdown under long- and short-output scenarios for 2-step and 8-step decoding, with green
segments indicating the additional latency introduced by the proposed method.

100 50 0 50 100

100

75

50

25

0

25

50

75

t-SNE of query vector

lookahead query
local window query
golden query

(a) Visualization of query distribution after dimen-
sionality reduction by t-SEN algorithm.

Question: Which Facebook pages did they look at? \n
Answer:

local window instruction

They looked at pages initially selected on availability
and intuition, and later grouped ...

lookahead response

They chose different pages, including FoxNews,
CNN, ESPN, New York ...
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(b) Text comparison of the local window in-
struction, lookahead response, and golden
response.

Figure 7: Case study of lookahead phase.

tional latency introduced by the proposed method
is indicated by the green segments.

As evidenced by the results, both 2-step and 8-
step configurations achieve significant performance
improvements while contributing only 2 ∼ 10% to
the total latency. In short-output scenarios, the pre-
filling phase dominates the latency budget, making
the overhead of additional steps negligible. For
long-output scenarios, the substantial number of
decoding steps renders the overhead of processing
a few extra tokens marginal, typically accounting
for less than 5% of the total runtime.

6.4 Case Study

To further investigate how the proposed method
improves the final KV cache eviction performance
through the use of the pseudo Q-Cache, we con-
duct a case analysis of the queries and responses
generated during the lookahead stage. As shown
in Figure 7, we select a specific case to illustrate
the response content and the distribution among the
corresponding Q-Cache.

In Figure 7(b), we present the local context win-
dow, along with the low-quality response gener-

ated in advance and the gold response generated
using the full KV cache. The three responses differ
semantically in their textual content. Due to the
constraints with low budget KV cache, the looka-
head response fails to provide a sufficiently accu-
rate answer. However, as shown in Figure 7(a),
dimensionality reduction reveals a striking consis-
tency between the Query representations of the
two responses across the three text segments. This
also validates our observation above that the gap
between the input and output queries is greater
than that between the incorrect outputs and the cor-
rect outputs. Our proposed method leverages this
feature by employing a pre-generated Q-Cache to
achieve more consistent KV cache eviction.

7 Conclusion

In this paper, we investigate the inconsistency
between the Query entries of input and output.
Based on our observational findings, we propose
the Lookahead Q-Cache, which performs KV
cache eviction by using pre-generated pseudo re-
sponses as the observation window. Experiments
across multiple backbones demonstrate that the pro-
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posed method significantly outperforms existing
KV cache eviction techniques, achieving improve-
ments of 1 to 4 points on LongBench.

Limitations

Although the additional computational cost intro-
duced by our method is minimal, there remains
room for further optimization, particularly with
respect to latency. Given the potential overlap be-
tween pseudo and golden responses, one promising
direction is to integrate the Lookahead Q-Cache
mechanism with acceleration techniques such as
speculative decoding. This combination could re-
duce unnecessary computations and improve real-
time performance. Building on this idea, our future
work will focus on designing a more efficient KV
Cache strategy that unifies these complementary
approaches, aiming to achieve consistent improve-
ments in both task performance and inference effi-
ciency.
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A Detailed Latency Comparison

To provide a more intuitive comparison of our
method with other baselines, such as SnapKV, we
conducted additional latency analysis experiments.
These experiments were performed on a single
A100-80GB GPU. We calculated the average wall-
clock time (in seconds) for each method at different
stages, with a fixed output length of 256 tokens and
varying input lengths.

As shown in the Table 3, the additional Stage 2
in our method incurs a minimal time overhead, typi-
cally less than 5%. This minor increase in latency is
a small trade-off for the significant performance en-
hancements in the eviction algorithm, particularly
under low-budget conditions (see Table 1 in the
main text and Tables 6 and 7 in the appendix). This
demonstrates the practical value of our approach.

B Analysis of Forward Templates

To investigate the impact of different forward tem-
plates, we conducted experiments using templates

Table 3: Average wall-clock time (in seconds) for differ-
ent methods. The output length is fixed at 256 tokens.

Method Pre-filling Stage 2 Decoding

INPUT 16K

Full KV 1.46615 - 12.38489
StreamingLLM 1.49165 - 8.79209
H2O 1.47285 - 8.62985
SnapKV 1.48718 - 8.64949
LAQ++ (2) 1.46968 0.12636 8.75256
LAQ++ (8) 1.46952 0.31302 8.61714

INPUT 32K

Full KV 3.58076 - 18.63942
StreamingLLM 3.65054 - 8.73857
H2O 3.58777 - 8.75228
SnapKV 3.61811 - 8.61096
LAQ++ (2) 3.59406 0.22643 8.83214
LAQ++ (8) 3.59088 0.41255 8.64124

such as "The answer is" and "I have found the
answer!". These templates were designed to pro-
vide a fixed semantic guide without requiring ad-
ditional decode computation. The goal was to de-
termine if the performance gains observed in our
method, LAQ++, were due to semantic guidance
rather than the query vector information derived
from lookahead. The Table 4 shows the experi-
mental results on the LongBench benchmark with
a 512 KV-Cache budget for two different base
models: Mistral-7B-v2.0-Instruct and Llama3.1-
8B-Instruct. Unfortunately, our findings indicate

Table 4: LongBench scores for different forward tem-
plates with a 512 KV-Cache budget.

Base Model Method Score

Mistral

Full KV 42.74
Streaming 31.63
H2O 37.38
SnapKV 40.51
"The answer is" 38.20
"I have found the answer!" 37.79
LAQ++ 41.70

Llama

Full KV 41.63
Streaming 34.61
H2O 35.72
SnapKV 38.87
"The answer is" 36.86
"I have found the answer!" 36.59
LAQ++ 40.39

that these simple, fixed templates do not yield sub-
stantial performance improvements compared to
other baselines. The scores for "The answer is"
and "I have found the answer!" are significantly
lower than those of our LAQ++ method and even
SnapKV. This suggests that the performance gains
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Table 5: RULER Task Performance on Llama 3.1-8B-
Instruct

Method Budget Avg.

FullKV 32K 89.28

StreamingLLM 128 12.19
H2O 128 14.40
SnapKV 128 36.87
LAQ++ 128 51.57

StreamingLLM 256 13.31
H2O 256 25.25
SnapKV 256 51.58
LAQ++ 256 62.81

StreamingLLM 512 14.83
H2O 512 36.44
SnapKV 512 60.89
LAQ++ 512 69.83

from LAQ++ are likely not due to simple seman-
tic guidance provided by the text, but rather from
the pseudo vector information that is more effec-
tively aligned with the output distribution. Conse-
quently, constructing the Q-Cache through a looka-
head mechanism remains a crucial and necessary
component of our approach.

C RULER Task Evaluation

Beyond the standard LongBench and "needle in a
haystack" benchmarks, we have included a more
challenging evaluation using the RULER task to as-
sess the long-context capabilities of our model. The
experimental setup is consistent with the methodol-
ogy described in Section 5.1. The following Table
5 presents the experimental results for the Llama
3.1-8B-Instruct model:

As demonstrated by the results, the RULER task
reveals a more significant performance differentia-
tion among the various methods, particularly with
a low KV-Cache budget. The proposed method,
LAQ++, shows a nearly 10-point improvement over
SnapKV when evaluated on this task.

D Full Evaluation on LongBench

We present additional experimental results, includ-
ing those for Qwen2.5-7B-Instruct. The evalua-
tion is conducted with a context length of 32K for
Mistral and Qwen, 8K for Llama3, and 100K for
Llama3.1.

E Evaluation on Needle-in-a-Haystack

Due to space limitations, we present the complete
results of the needle-in-a-haystack tests in the ap-
pendix. The evaluation covers models from the

Mistral, Qwen, and LLaMA families, along with a
range of representative KV cache eviction methods.
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Table 6: Performance comparison of different methods across various LLMs on LongBench. The brackets in LAQ
denote the Q-Cache length.

LLMs

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique
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QMSum
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SAMSum
PCount
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Full KV 26.90 33.14 49.26 42.77 27.35 18.77 32.95 24.21 27.13 71.00 86.23 42.72 2.75 86.98 57.12 54.51 42.74
KV Cache Size = 128

StreamingLLM 17.12 13.43 27.31 29.54 21.91 11.94 15.61 19.18 17.72 44.00 79.92 37.37 3.50 23.77 51.44 45.95 28.73
H2O 21.62 21.34 38.61 30.46 20.38 12.20 20.59 22.51 22.03 39.00 82.33 40.64 3.06 80.56 51.17 48.46 34.69
SnapKV 19.71 21.13 42.75 36.45 22.36 15.76 19.05 21.81 21.36 47.50 84.15 40.29 2.41 68.26 52.26 48.75 35.25
PyramidKV 21.98 22.78 43.78 32.30 22.31 15.81 20.41 21.82 21.23 66.00 83.51 39.83 2.99 65.81 51.61 46.42 36.16
LAQ(2) 24.12 24.60 43.96 40.84 25.94 17.37 21.51 21.82 22.81 70.50 86.22 40.27 2.69 66.00 51.78 47.44 37.99
LAQ(8) 24.94 27.77 45.43 40.35 25.25 17.91 22.06 22.68 22.50 69.50 86.36 41.16 1.49 76.85 53.31 51.02 39.29
LAQ(2)++ 24.40 25.32 46.06 39.37 26.11 17.05 21.05 22.56 21.80 70.50 86.39 41.19 3.33 66.46 52.33 49.03 38.31
LAQ(8)++ 25.62 27.21 46.16 40.60 25.93 18.44 21.60 23.07 22.42 70.00 86.18 42.03 3.51 74.81 54.68 50.92 39.57

KV Cache Size = 256
StreamingLLM 19.22 15.08 28.01 30.40 22.02 11.21 18.09 19.59 20.09 51.00 80.71 39.89 2.96 18.40 54.30 47.38 29.90
H2O 21.42 23.04 42.60 30.75 22.42 13.82 22.35 22.54 23.12 40.50 83.78 40.73 3.51 85.85 53.18 49.95 36.22
SnapKV 22.44 24.07 48.01 38.66 22.66 15.59 21.83 23.23 22.94 61.50 85.45 41.32 3.13 85.79 55.11 51.73 38.97
PyramidKV 21.69 25.18 47.61 38.77 26.12 15.23 22.52 22.52 22.59 68.00 84.27 42.10 3.43 76.60 53.08 48.40 38.63
LAQ(2) 25.50 26.54 46.12 40.57 26.46 17.84 23.29 22.47 23.84 70.50 86.03 41.98 3.63 79.75 53.91 49.97 39.90
LAQ(8) 24.68 29.25 48.00 40.56 26.01 18.24 24.04 22.96 23.80 70.00 85.81 42.52 2.01 82.34 54.96 53.00 40.51
LAQ(2)++ 25.52 26.90 47.71 41.12 27.17 18.93 23.02 23.24 23.25 70.50 86.41 41.83 3.38 79.25 54.59 50.86 40.23
LAQ(8)++ 25.23 29.16 49.24 41.70 26.85 18.62 23.73 23.69 23.38 70.50 86.24 42.54 3.36 86.11 55.59 52.49 41.15

KV Cache Size = 512
StreamingLLM 20.91 16.47 30.56 29.62 22.16 11.02 21.51 20.10 23.03 61.50 81.86 41.66 2.84 18.57 55.27 49.07 31.63
H2O 21.72 25.54 44.72 32.39 23.16 14.75 23.61 23.03 24.58 42.00 85.22 41.61 3.42 86.45 54.82 51.11 37.38
SnapKV 24.14 28.11 48.78 39.49 25.09 17.40 23.67 23.18 24.60 67.00 85.88 41.39 2.78 86.56 56.61 53.47 40.51
PyramidKV 22.99 28.74 48.45 39.73 25.74 16.58 24.48 23.40 24.52 70.00 85.99 42.40 3.32 81.63 55.93 52.38 40.39
LAQ(2) 25.32 28.71 47.79 40.87 26.60 18.48 25.18 23.51 24.96 71.00 86.30 42.91 2.50 83.90 55.05 51.30 40.90
LAQ(8) 24.65 31.21 49.15 39.90 27.18 18.38 25.55 23.91 24.87 71.00 86.33 42.14 1.87 86.41 56.84 53.08 41.40
LAQ(2)++ 26.24 29.51 48.32 40.67 27.11 18.98 25.05 23.48 24.72 71.00 86.29 42.95 2.91 83.28 55.75 52.51 41.17
LAQ(8)++ 25.49 30.92 49.72 41.50 26.84 19.20 25.67 24.04 25.31 71.00 86.43 43.14 2.90 85.27 56.80 53.54 41.70
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Full KV 31.85 15.55 28.17 29.93 22.98 18.20 34.39 23.79 27.12 72.50 92.14 43.66 8.37 97.59 65.05 54.78 41.63
KV Cache Size = 128

StreamingLLM 16.46 5.11 14.05 14.52 14.61 7.08 17.16 20.00 18.10 40.50 87.93 38.31 11.50 95.47 58.39 47.52 31.67
H2O 25.06 7.09 18.58 17.86 19.88 9.14 22.28 22.68 21.55 40.00 90.89 40.78 8.30 92.96 59.15 49.36 34.10
SnapKV 24.65 7.29 22.01 19.11 18.85 11.07 20.48 21.62 20.16 47.50 90.24 40.47 10.75 92.51 59.99 49.08 34.74
PyramidKV 24.79 8.29 20.72 14.86 13.84 8.90 22.41 22.76 21.53 62.00 90.35 39.23 9.27 93.51 58.77 46.46 34.86
LAQ(2) 24.74 11.12 22.02 20.02 20.53 13.87 23.72 22.74 22.79 72.50 91.59 41.51 8.25 95.45 60.09 47.06 37.38
LAQ(8) 27.80 10.66 24.86 20.64 20.04 15.40 24.18 23.09 22.88 72.00 91.55 43.43 9.04 95.85 61.12 50.33 38.30
LAQ(2)++ 28.68 10.51 24.92 20.53 20.32 14.50 22.88 23.16 22.45 72.50 91.65 41.59 8.21 91.96 61.72 49.30 37.81
LAQ(8)++ 28.65 10.65 26.04 24.23 21.56 15.67 23.50 23.74 22.75 72.00 91.95 42.19 8.37 94.81 62.18 50.95 38.70

KV Cache Size = 256
StreamingLLM 18.76 5.47 13.88 13.81 14.32 6.73 19.94 20.19 20.85 44.50 89.01 40.51 11.33 92.42 61.87 49.33 32.68
H2O 26.01 8.42 19.69 17.28 18.21 9.91 23.64 22.89 23.20 41.50 91.29 41.60 8.00 94.31 60.79 50.31 34.82
SnapKV 28.05 9.83 22.71 21.48 19.36 10.96 22.86 22.75 22.98 58.00 92.28 40.87 8.10 95.30 63.64 51.35 36.91
PyramidKV 26.40 10.08 22.46 15.20 16.38 8.60 23.86 22.93 23.17 69.00 90.99 40.60 8.42 93.74 60.59 48.11 36.28
LAQ(2) 28.23 11.51 24.66 21.57 22.81 15.15 24.81 23.18 23.83 72.50 92.25 43.13 8.52 94.30 62.01 49.93 38.65
LAQ(8) 28.86 12.40 26.44 21.80 20.91 15.77 25.83 23.30 24.26 72.50 93.08 42.57 7.53 95.80 63.51 51.09 39.10
LAQ(2)++ 30.49 11.95 25.79 22.99 21.36 15.35 24.40 23.38 23.53 72.50 91.97 42.45 7.50 94.49 63.65 50.55 38.90
LAQ(8)++ 30.25 12.43 26.63 25.77 22.83 18.45 25.07 23.67 23.75 72.00 91.97 43.17 6.93 94.59 64.07 53.38 39.69

KV Cache Size = 512
StreamingLLM 20.86 6.62 14.97 14.74 13.87 6.79 22.78 20.84 23.93 57.00 89.57 41.10 11.75 93.73 63.37 51.79 34.61
H2O 25.44 8.35 20.97 20.08 19.23 9.51 24.44 23.50 24.35 44.00 92.10 41.16 7.43 96.41 62.73 51.77 35.72
SnapKV 30.34 10.75 23.54 24.65 21.55 12.98 24.82 23.15 24.61 68.00 92.33 42.16 7.83 96.86 64.74 53.60 38.87
PyramidKV 28.38 11.59 25.02 20.06 18.80 10.64 25.73 24.03 25.01 70.00 92.22 41.73 8.47 96.42 63.44 51.02 38.29
LAQ(2) 30.65 12.95 26.69 25.29 22.31 16.57 26.51 22.99 25.27 72.50 92.25 42.88 8.11 96.66 64.09 51.56 39.83
LAQ(8) 30.89 14.04 25.86 26.00 23.19 17.73 27.07 24.01 25.29 72.50 92.25 43.13 6.96 96.97 64.87 52.58 40.21
LAQ(2)++ 30.85 12.95 26.03 27.31 21.66 17.73 26.40 23.51 24.83 72.50 91.97 43.01 7.90 96.79 64.17 52.84 40.03
LAQ(8)++ 29.64 13.22 26.79 27.58 23.49 18.63 26.94 24.04 25.21 72.50 92.25 42.83 8.43 96.25 65.00 53.37 40.39
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Table 7: Performance comparison of different methods across various LLMs on LongBench. The brackets in LAQ
denote the Q-Cache length.

LLMs

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code
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Full KV 17.07 43.76 52.61 57.70 47.13 29.85 32.00 23.61 23.95 39.50 87.65 40.08 8.50 100.00 6.62 9.79 38.74
KV Cache Size = 128

StreamingLLM 11.77 23.65 26.44 40.90 37.09 16.42 16.12 18.03 14.69 12.00 76.26 35.50 8.50 24.50 10.26 13.44 24.10
H2O 16.61 29.58 37.25 51.04 42.14 20.82 20.33 22.05 18.07 18.50 80.85 39.04 8.50 98.00 6.29 9.77 32.43
SnapKV 16.23 32.72 45.14 52.95 44.10 24.16 19.27 20.81 17.27 21.50 85.83 37.75 8.50 95.00 7.26 11.28 33.74
PyramidKV 15.40 30.67 44.89 51.54 41.22 25.62 19.51 19.71 16.69 25.75 84.22 34.08 8.50 96.00 5.29 6.32 32.84
LAQ(2) 15.32 35.05 46.87 54.16 42.66 25.82 21.52 20.90 18.48 33.50 87.52 37.58 8.50 97.00 4.90 7.25 34.81
LAQ(8) 17.98 39.17 48.85 56.76 44.96 28.96 22.39 20.66 18.77 35.00 87.78 37.75 8.50 98.00 5.82 9.35 36.29
LAQ(2)++ 18.21 36.81 48.80 55.97 44.96 28.91 21.24 21.22 18.09 33.00 87.96 36.52 8.50 96.00 5.35 7.58 35.57
LAQ(8)++ 18.14 39.40 50.26 56.83 46.07 28.12 21.74 21.80 18.65 35.50 87.56 37.06 8.50 98.00 6.13 9.96 36.48

KV Cache Size = 256
StreamingLLM 11.50 24.44 26.81 41.85 37.25 17.39 18.90 18.12 17.11 17.50 80.66 37.47 9.00 24.50 8.42 13.54 25.28
H2O 16.05 32.25 43.63 52.73 43.40 23.98 22.66 22.30 19.60 19.50 83.55 39.24 8.50 99.50 6.71 9.29 33.93
SnapKV 16.25 36.47 50.35 55.44 44.37 26.62 21.96 21.76 19.35 31.00 86.89 38.47 8.50 98.00 6.52 9.98 35.75
PyramidKV 16.81 34.46 47.17 54.72 42.74 25.86 21.45 20.39 17.61 33.75 85.76 36.93 8.50 98.50 5.15 7.21 34.81
LAQ(2) 16.31 39.64 47.04 57.01 44.78 27.35 23.86 21.59 19.69 36.00 87.81 38.98 8.50 98.50 5.35 7.51 36.25
LAQ(8) 17.62 41.16 50.84 57.16 46.48 29.37 24.23 22.17 20.30 38.50 88.10 39.12 8.50 99.00 6.14 9.83 37.41
LAQ(2)++ 16.79 38.96 49.78 57.13 45.59 27.95 23.27 21.33 19.92 39.00 87.51 37.82 8.50 98.50 5.40 8.07 36.60
LAQ(8)++ 16.76 41.04 51.23 57.50 45.94 28.28 24.09 22.36 20.24 38.00 87.61 38.54 8.50 98.50 6.93 9.84 37.21

KV Cache Size = 512
StreamingLLM 12.56 27.00 29.75 42.48 36.44 16.15 22.30 18.68 20.01 24.00 83.99 38.09 8.50 24.00 8.36 12.54 26.55
H2O 16.77 35.32 45.82 52.30 44.39 24.29 24.20 22.29 21.45 21.00 86.29 39.16 8.50 100.00 6.82 9.09 34.86
SnapKV 17.63 40.73 50.71 55.63 45.18 27.85 24.41 22.84 21.16 38.50 88.12 39.21 8.50 99.50 7.09 10.16 37.33
PyramidKV 17.49 37.81 50.45 56.36 44.64 27.46 23.00 20.97 19.60 35.25 87.62 37.82 8.50 99.00 5.62 7.94 36.22
LAQ(2) 16.46 41.86 49.68 57.64 46.46 27.79 25.71 21.72 21.58 38.50 87.55 40.02 8.50 100.00 5.45 8.42 37.33
LAQ(8) 17.26 42.64 51.73 57.56 46.59 29.12 26.57 22.67 21.86 39.00 87.65 39.40 8.50 100.00 6.52 9.91 37.94
LAQ(2)++ 17.92 41.84 50.99 57.76 46.74 28.72 25.30 22.05 21.63 38.75 87.65 39.13 8.50 99.50 5.56 8.25 37.52
LAQ(8)++ 17.31 43.32 51.17 57.61 46.81 29.29 25.98 22.97 21.96 39.00 87.65 39.01 8.50 99.50 6.75 10.11 37.93
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Full KV 25.56 32.27 39.71 43.56 35.09 21.18 28.71 23.26 26.64 73.50 90.48 42.33 4.80 69.25 59.29 54.05 41.86
KV Cache Size = 128

StreamingLLM 18.13 8.54 21.21 32.86 26.27 15.41 16.71 20.46 18.06 45.00 74.58 36.32 5.75 68.50 56.12 53.06 32.31
H2O 22.12 13.19 29.53 37.42 32.71 18.25 20.49 22.03 21.11 38.50 87.75 39.14 5.83 69.50 57.01 54.74 35.58
SnapKV 20.96 13.63 30.75 36.65 29.24 19.12 19.07 21.67 20.19 45.00 87.82 38.01 5.13 69.35 57.51 55.31 35.59
PyramidKV 21.40 16.92 31.62 38.45 28.72 18.59 19.96 22.49 20.96 66.50 89.35 38.43 5.92 69.00 57.86 51.80 37.37
LAQ(1)++ 25.01 16.34 33.73 42.92 35.00 19.54 20.23 22.32 21.73 73.50 90.25 39.18 5.18 69.50 59.05 54.61 39.26
LAQ(8)++ 24.75 18.87 34.84 41.13 36.50 20.13 21.32 22.20 22.32 74.00 90.37 40.38 5.39 69.50 60.94 57.64 40.02

KV Cache Size = 256
StreamingLLM 17.98 11.10 20.58 33.68 26.16 16.03 19.24 20.46 20.80 52.50 80.18 39.31 5.83 68.37 58.56 54.46 34.08
H2O 23.82 16.61 31.66 38.64 31.72 20.05 21.28 22.22 22.19 39.00 89.22 39.52 5.57 69.50 58.01 54.28 36.46
SnapKV 24.35 18.32 33.83 42.23 32.89 20.73 20.74 22.05 22.54 62.00 90.14 39.51 5.75 70.00 59.76 56.66 38.84
PyramidKV 23.99 20.51 36.06 42.47 31.34 20.28 21.37 22.69 22.79 71.00 90.48 39.86 5.83 69.25 58.64 54.06 39.41
LAQ(1)++ 24.57 21.01 35.80 43.52 35.23 20.62 21.61 22.20 23.18 73.50 90.44 40.32 5.50 69.70 59.46 56.62 40.21
LAQ(8)++ 24.51 22.56 37.15 44.31 36.79 21.60 22.61 22.30 23.47 73.50 90.37 41.46 5.64 69.70 62.04 58.00 41.00

KV Cache Size = 512
StreamingLLM 20.70 12.16 22.06 35.93 26.75 15.79 21.00 20.62 23.73 62.00 83.36 39.98 5.35 67.97 60.32 55.13 35.80
H2O 23.52 17.89 33.52 41.71 33.56 19.27 22.17 22.64 23.83 41.00 90.46 40.20 5.87 69.50 58.14 56.01 37.46
SnapKV 24.85 23.49 36.53 42.96 34.93 20.28 22.40 22.66 23.80 70.50 90.52 40.39 5.81 70.00 60.45 56.17 40.36
PyramidKV 24.83 23.32 35.19 43.29 31.87 20.55 23.41 22.80 24.29 71.50 90.61 40.81 5.91 69.50 59.60 54.71 40.14
LAQ(1)++ 24.96 25.91 37.07 43.19 37.09 21.49 23.10 22.61 24.26 73.50 90.64 41.61 5.43 69.70 60.89 57.83 41.21
LAQ(8)++ 25.53 27.59 37.99 43.82 36.52 21.55 23.58 22.64 24.63 73.50 90.64 42.34 5.13 69.70 62.77 58.45 41.65
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(a) Mistral LAQ++ (Score=99.3)
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(b) Mistral PyramidKV (Score=84.3)
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(c) Mistral SnapKV (Score=60.7)
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(d) Mistral H2O (Score=43.2)

Figure 8: The results of different methods of Mistral-7B-v0.2-Instruct on the needle-in-a-haystack with 32k context
size under a budget setting of 64.
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(a) Llama3.1 LAQ++ (Score=99.8)
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(b) Llama3.1 PyramidKV (Score=80.7)
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(c) Llama3.1 SnapKV (Score=68.4)
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(d) Llama3.1 H2O (Score=35.4)

Figure 9: The results of different methods of Llama3.1-8B-Instruct on the needle-in-a-haystack with 32k context
size under a budget setting of 64.

34162



800
1600

2400
3200

4000
4800

5600
6400

7200
8000

8800
9600

10400
11200

12000
12800

13600
14400

15200
16000

16800
17600

18400
19200

20000
20800

21600
22400

23200
24000

24800
25600

26400
27200

28000
28800

29600
30400

31200
32000

Token Limit

0.0

11.0

22.0

33.0

44.0

56.0

67.0

78.0

89.0

100.0

De
pth

 Pe
rce

nt
Lookahead Query-Cache     KV Cache Size=64

0.0

0.2

0.4

0.6

0.8

1.0

Sc
ore

(a) Qwen2.5 LAQ++ (Score=85.1)
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(b) Qwen2.5 PyramidKV (Score=69.3)
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(c) Qwen2.5 SnapKV (Score=72.8)
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(d) Qwen2.5 H2O (Score=46.7)

Figure 10: The results of different methods of Qwen2.5-7B-Instruct on the needle-in-a-haystack with 32k context
size under a budget setting of 64.
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