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Abstract

Personalized content moderation can protect
users from harm while facilitating free expres-
sion by tailoring moderation decisions to indi-
vidual preferences rather than enforcing univer-
sal rules. However, content moderation that is
fully personalized to individual preferences, no
matter what these preferences are, may lead
to even the most hazardous types of content
being propagated on social media. In this pa-
per, we explore this risk using hate speech as
a case study. Certain types of hate speech are
illegal in many countries. We show that, while
fully personalized hate speech detection models
increase overall user welfare (as measured by
user-level classification performance), they also
make predictions that violate such legal hate
speech boundaries, especially when tailored to
users who tolerate highly hateful content. To
address this problem, we enforce legal bound-
aries in personalized hate speech detection by
overriding predictions from personalized mod-
els with those from a boundary classifier. This
approach significantly reduces legal violations
while minimally affecting overall user welfare.
Our findings highlight both the promise and the
risks of personalized moderation, and offer a
practical solution to balance user preferences
with legal and ethical obligations.

Content warning: This paper contains obfus-
cated examples of hate speech.

1 Introduction

Content moderation on social media has to strike
a careful balance between protecting users from
harm while enabling freedom of expression. This
is difficult because users disagree on what content
should be moderated (Kumar et al., 2021; Jhaver
et al., 2023; Pradel et al., 2024), meaning that any
platform-wide moderation decision will necessarily
go against the preferences of some users. Personal-
ized content moderation has the potential to resolve
this dilemma by enabling every user to set their

Personalization can violate

i You are a safety policy
legal hate speech boundaries.

expert. Determine, based
on the European Union’s

All women should be *** 1 Digital Services Act..

——  Hate LAW @
®—> Hate
g /> Not hate

We build a boundary classifier
based on hate speech laws.

|

@ & ® &

We show that enforcing boundaries on personalization
reduces legal violations while maintaining user welfare.

user welfare
legal violations

Figure 1: Personalized content moderation can violate
legal hate speech boundaries. We address this issue by
limiting personalization.

own limits on what content is shown to them. Con-
sequently, a large body of work has sought to de-
velop classification models that reflect and predict
the perspectives of individual users — or annota-
tors — rather than single majority labels (see Frenda
et al., 2024, for an overview).

In this paper, we highlight one particular risk
of personalized content moderation, which arises
when classification models are tailored to the pref-
erences of individual users, no matter what these
preferences are. While content preferences are sub-
jective, some kinds of content violate clear bound-
aries, such as laws set by regulators. The danger
is that fully personalized moderation could allow
even such content to go unmoderated (Figure 1).

As a case study, we focus on hate speech, which
is among the most prominent types of content sub-
ject to moderation on social media. For hate speech,
there are laws such as the European Union’s Dig-
ital Services Act (DSA) that define certain types
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of hate speech to be illegal (§2.3). Holocaust de-
nial, for example, is illegal under the DSA and can
lead to prison sentences for offending users in over
a dozen EU Member States as well as large fines
for platforms (Bakowski, 2021). Hate speech de-
tection models that are fully personalized even to
the preferences of extreme users (e.g., neo-Nazis)
would plausibly classify such content as harmless,
enabling its spread on social media among extreme
users. This motivates our first research question:

RQ1: To what extent do hate speech detec-
tion models personalized to the preferences
of individual users violate independent legal
boundaries of hate speech?

To answer this question, we train a personalized
hate speech detection model on a large annotator-
level dataset (§2.1), and then test this model on
another dataset that matches the DSA’s legal defini-
tion of hate speech (§2.3). In this setting, we show
that personalized hate speech detection models
make predictions that violate legal boundaries
of hate speech, especially when personalized to
extreme users who tolerate highly hateful content
(§2.1). This finding suggests a need for setting
boundaries to personalization, which motivates our
second research question:

RQ2: How can we enable personalized con-
tent moderation while also enforcing bound-
aries based on legal definitions?

To answer this question, we explore the use of
a boundary classifier (§2.4), which overrides pre-
dictions from personalized models based on an
enforcement threshold that can be calibrated. We
show that combining personalized models with
a boundary classifier has minimal impacts on
overall user welfare (as measured by user-level
classification performance) while substantially
reducing the rate at which personalized models
violate legal boundaries of hate speech (§3.2).

Overall, we make the following contributions:

1. We provide the first empirical evidence for fully
personalized hate speech detection models vio-
lating legal boundaries of hate speech.

2. To address this risk, we introduce a simple yet ef-
fective method that is model-agnostic and adapt-
able to different legal standards.

3. We quantify trade-offs between personalization
and enforcement of legal standards, and show
that our method enables consistent enforcement
with minimal impacts on overall user welfare.

All code and data is available at
https://github.com/MilaNLProc/personal-hate-
bounds.

2 Experimental Setup
2.1 Annotator-Level Hate Speech Dataset

Personalized hate speech detection models require
datasets with hate speech ratings that can be at-
tributed to individual annotators' for training and
evaluation. Further, each annotator should provide
enough ratings to enable meaningful personaliza-
tion, and the dataset overall should contain rea-
sonably many instances to allow for an effective
classifier to be trained. For our experiments, we use
the DTC dataset by Kumar et al. (2021), as it fully
meets our requirements. The full dataset contains
107,620 English-language texts from social media
annotated by 17,280 annotators in total for toxicity
levels. Each text has exactly 5 annotations and each
annotator labeled 31 texts on average. We drop non-
unique (text, annotator) pairs, i.e., annotators that
labeled the same text multiple times.

Our experiments require building a training and
a test split out of the full dataset, with specific con-
straints (e.g., no text should appear in both splits)
that force us to subset the data, restricting both the
number of unique texts and the number of annota-
tors considered (details in Appendix A). In the end,
we use 93,153 texts labeled by 15,563 annotators
in total, with on average 5 annotations per text and
24 labeled texts per annotator. The percentage of
hateful samples is 47.3% in the training split and
47.0% in the test split, and the train-test split at
the instance level has 19.7% of the samples in the
test set. When training the personalized model, we
restrict to a subset of the annotators in the splits
to guarantee we have enough training samples for
each annotator. This procedure does not alter the
set of texts in the splits (details in Appendix A).

Originally, annotators were asked to rate the tox-
icity of each instance on a 5-point scale from 0 (not

'We use the terms annotator and user interchangeably.
Our research questions aim at content moderation in actual
use. However, we do not have access to live user data. Instead,
we use a hate speech dataset that provides annotations by
individual annotators. We treat these annotations as a snapshot

of each individual’s perspective and preferences, just as users
would provide for personalization.
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at all toxic) to 4 (extremely toxic). We binarize this
scale, considering all scores >0 to be toxic. Hate
speech is generally considered a subset of toxic
content (Poletto et al., 2021), meaning that content
rated as hateful should also be rated as toxic. There-
fore, the binarized version of DTC is compatible
with our experimental setup, which is concerned
with the lower boundaries to hate speech.

Extreme Annotators For the purpose of our
analyses, we identify a subset of extreme anno-
tators. Conceptually, we define extreme annotators
as those annotators who are much more lenient in
their ratings than most annotators, rating content
as non-hateful even when most other annotators
consider it hateful. For DTC, we consider an an-
notator to be extreme if, for more than 50% of the
instances they rated across both the training and
test split, they rated the instances as “non-hateful”
despite the most common label for these instances
across all annotators being “hateful”. This results
in 155 extreme annotators, i.e., around 4% of all
annotators in our dataset.

2.2 Hate Speech Detection Models

For training personalized hate speech detection
models, we use the SepHeads architecture intro-
duced by Mostafazadeh Davani et al. (2022) and
Heinisch et al. (2023). The SepHeads architecture
contains a separate classification head (linear layer)
for each annotator on top of a pre-trained text en-
coder model. During training, each annotator head
is trained only on annotations by a specific anno-
tator, referenced by an unique identifier. The text
encoder receives updates from all annotations. Dur-
ing inference, the architecture produces a predic-
tion for a specific annotator. We train a SepHeads
model (SEP) on the DTC annotator-level dataset.
As a baseline that reflects standard, i.e., non-
personalized hate speech detection, we also train
a model on the instance-level majority-vote labels
(MAJ) on DTC. The architecture used in this case
is analogous to SepHeads, but with a single classi-
fication head, with no concept of annotator.
Functionally, given a text, SEP predicts one label
per annotator, allowing for a simulation of the pre-
dictions from all possible annotators, while MAJ
predicts a single label. SEP can only predict for
annotators it has been trained on. Therefore, we
make sure that SEP is trained and tested on labels
from the same annotators on the DTC dataset. For
further implementation details, see Appendix B.

2.3 Boundary Dataset: HateCheck

In order to measure whether personalized hate
speech detection models violate independent legal
standards of hate speech (RQ1), we need to 1) se-
lect a legal standard, and then 2) identify a dataset
that reflects this standard for model evaluation.

1) We focus on the European Union’s Digital
Services Act (DSA), which sets a legal standard
for hate speech in all 27 EU member states, affect-
ing a combined population of around 450 million
people. For defining illegal hate speech, the DSA
refers to the EU’s Council Framework Decision
2008/913/JHA, Article 1(1), which makes punish-
able by law content that “publicly incit[es] to vio-
lence or hatred directed against a group of persons
or a member of such a group defined by reference
to race, color, religion, descent or national or ethnic
origin”. We choose the DSA because it is one of the
clearest and most widely applied legal standards for
hate speech. The US, for example, lacks equivalent
regulation. However, our approach to boundaries
for personalization in this paper is compatible with
any legal standard or otherwise defined external set
of rules (e.g., set by platform providers). Related
work has similarly explored connecting legal defi-
nitions and hate speech detection (Khurana et al.,
2022; Luo et al., 2023; Korre et al., 2025), situating
our study within a broader effort to operationalize
legal frameworks for moderation.

2) To our knowledge, there is no hate speech
dataset annotated directly for whether content vio-
lates the DSA or not. As an approximation, we use
the HateCheck test suite created by Rottger et al.
(2021). HateCheck was originally designed as a set
of functional tests for hate speech detection models,
comprising manually constructed, human-validated
examples of clear-cut hate and non-hate. Since
our goal is to evaluate the enforcement of legal
boundaries, where there must be no room for sub-
jectivity or annotator disagreement, HateCheck’s
clear-cut labels make it a suitable dataset choice.
More specifically, HateCheck contains 2,563 in-
stances of very explicit hate (e.g., “I am going to
shoot the next Muslim I see.”) across categories
such as “direct threat” and “explicit dehumanisa-
tion”, which meet the criteria for illegal hate speech
under DSA as outlined above. By construction, all
hate in HateCheck is targeted at sociodemographic
groups protected under DSA. HateCheck also con-
tains 1,165 instances of contrasting non-hate (e.g.,
“I am going to shoot you”, which is threatening
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but does not reference any group characteristics),
making it ideal for testing how well models can
distinguish between hate as defined by the DSA
and clear non-hate.

2.4 Boundary Classifier

To enable the enforcement of legal boundaries
in personalized hate speech detection (RQ2), we
develop a boundary classifier that detects DSA-
violating hate speech. Specifically, we create a
detailed classification prompt based on the DSA’s
legal definition of hate speech, as outlined above,
along with targeted clarifications for edge cases
such as counter-speech and reclaimed slurs scenar-
ios where standard models often misclassify con-
tent. In addition to a binary assessment, the prompt
also asks for a verbalized confidence score on a
0-100 scale.? In our later analyses, we vary an en-
forcement threshold based on this confidence score,
to calibrate the extent to which predictions from
personalized models are overridden by predictions
from the boundary classifier (e.g., only when the
boundary classifier is >X% confident that a piece
of content is DSA-violating hate speech).

For this paper, we base our boundary classi-
fier on GPT-40-mini. We validate its performance
on HateCheck, our boundary dataset, where it
achieves a macro F1 score of 0.936 and a hateful-
class recall of 0.996. High recall is especially im-
portant for our study, where failing to flag a bound-
ary violation is more critical than false positives.
These results indicate strong adherence to the de-
fined boundaries and provide empirical support for
the reliability of our boundary classifier.

3 Experiments

3.1 RQ1: Fully Personalized Models

Our first research question (see §1) concerns the
extent to which personalized hate speech detection
models violate independent legal definitions of hate
speech, in terms of the predictions they make.

To answer this question, we evaluate the perfor-
mance of the personalized hate speech detection
models (SEP) against the instance-level majority
models (MAJ) trained on DTC, testing on the DTC
evaluation set and our legal boundary dataset, Hate-
Check. Table 1 reports both macro F1 and Recall*
for the positive class. We measure Recall* because
it specifically captures how well the model identi-
fies hate speech, which is the primary focus of our

2For the full classification prompt, see Appendix C.

analysis and directly relevant for assessing com-
pliance with legal definitions. We show results by
evaluation dataset (DTC test split and the boundary
dataset HateCheck), model type (MAJ or SEP), and
by annotator group (non-extreme or extreme anno-
tators) when available. HateCheck cannot be used
for evaluation at the annotator level for the Major-
ity Vote models, as these models do not produce
user-specific predictions and HateCheck itself in-
cludes only a single gold-standard label rather than
multiple annotator judgments. We also compare re-
sults to two baselines: a Random classifier and the
Boundary classifier described in §2.4 without con-
sidering the enforcement thresholds, i.e., accepting
all predictions from the boundary classifier.

Personalization Evaluation We find that the per-
sonalized model SEP clearly outperforms the ma-
jority model MATJ on the DTC dataset. This is
expected, since DTC is an annotator-level dataset,
and personalized models are designed to better re-
flect individual annotator preferences.

Breaking down performance by annotator group,
we observe a drop in performance for extreme an-
notators from both types of models, suggesting
that classification is harder for annotators deviat-
ing from the majority. A notable exception arises
in the case of the majority model, which achieves
a substantially higher positive recall for extreme
annotators compared to non-extreme annotators.
This difference is due to the tendency of the major-
ity model MA7J to predict more instances as hate-
ful, aligning with the annotator consensus, which
typically contrasts with the views of extreme an-
notators, which are a minority. As a result, MAJ
captures nearly all truly hateful cases for the ex-
treme group, at the cost of a low precision for the
non-hateful class (0.480).

By contrast, the personalized model SEP tends to
predict non-hateful labels more often for extreme
annotators, where we observe high recall for the
non-hateful class (0.888) and low precision for the
hateful class (0.514). Notably, SEP always predicts
the non-hateful class for all samples annotated by
62% of extreme annotators. This indicates that,
while the personalized model better reflects the an-
notators’ overall labeling patterns, in the context of
hate speech detection, it is inadvertently reinforc-
ing the biases of more extreme annotators.

Both SEP and MAT consistently outperform the
zero-shot boundary classifier, confirming the value
of learning from the annotated data.
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Eval Dataset  Model F1 F1 F1 Recall* Recall” Recall*
val Datase ode (All) (Non-Extreme) (Extreme) (Al (Non-Extreme) (Extreme)

MAJ 0.690 0.693 0.544 0.678 0.676 0.866

DTC SEP 0.746 0.746 0.673 0.735 0.738 0.441
Boundary  0.579 0.578 0.634 0.290 0.289 0.465
MAJ 0.613 - - 0.941 - -

HateCheck SEP 0.644 0.648 0.535 0.842 0.866 0.418
Boundary  0.936 - - 0.996 - -

Table 1: Macro F1 and Recall* scores for MAJ and SEP evaluated on the DTC test split and HateCheck. Where
possible, results are broken down by annotator group. For SEP on HateCheck, the annotator group breakdown is
based on the learned annotators. Best performance highlighted in bold. Random baselines achieve F1 scores of
0.499 (DTC) and 0.482 (HateCheck). The boundary classifier does not apply any enforcement threshold.

Legal Boundary Violations When considering
HateCheck, which serves as an external benchmark
aligned with a legal definition of hate speech, the
boundary classifier achieves the best performance,
as it has been explicitly designed to adhere to this
legal standard. Notably, the personalized model
SEP consistently outperforms the majority model
MAIJ, which seems to suggest benefits of aligning
predictions with individual annotator preferences
even for HateCheck. However, a closer look reveals
important nuances. When breaking down results
by annotator group, the F1 score for extreme anno-
tators under SEP is not only lower than the model’s
overall average but also lower than that of the ma-
jority model MAJ. This discrepancy becomes even
more pronounced when examining recall for the
hateful class: SEP has substantially lower recall
than MAJ. Furthermore, recall for extreme annota-
tors drops significantly under personalization, re-
inforcing the previous finding that personalized
models, while better aligned with annotator pref-
erences, lead to systematic under-enforcement of
legal standards for more lenient annotators.

When examining the false negatives produced
by both models, we observe a mix of expected and
concerning patterns, particularly when analyzing
the functional test categories (i.e., group-level clas-
sifications of expressions) provided by HateCheck.
MAT produces most of its false negatives due to
spelling variations (53%) and derogation expressed
in more implicit forms (18%). Similarly, the SEP’s
false negatives are largely driven by spelling varia-
tions, which make up 38% of its errors. However,
the next most common source is explicit deroga-
tion, accounting for 11%. More problematically,
the SEP also generates false negatives in categories
not present in the majority model’s errors, includ-
ing threatening language, pronoun reference, and

profanity usage. This suggests that for some ex-
treme annotators, even clearly hateful content in-
volving threats may not be labeled as hate speech,
highlighting the risk of personalization reinforc-
ing overly permissive interpretations of hate. Re-
garding false positives, both models predominantly
struggle with counter speech, a category that is no-
toriously challenging to classify due to its overlap
in form with actual hate speech despite its opposing
intent (Chung et al., 2019; Gligoric et al., 2024).

3.2 RQ2: Models With Boundaries

Our second research question (see §1) concerns the
development of personalized hate speech detection
models that respect legal boundaries. For this pur-
pose, we make use of the boundary classifier (§2.4)
to override predictions from the personalized model
(SEP), whenever the boundary classifier predicts
something to be hateful but the personalized model
does not. The boundary classifier gives a 0-100
confidence score alongside each binary prediction.
We use these confidence scores as an enforcement
threshold to decide when to accept the boundary
classifier’s prediction to override the personalized
model, enforcing our legal boundaries. Accept-
ing more overrides (lower thresholds) leads to less
personalization in the final combined model.

Below, we first analyze results at the annotator
level to assess user welfare, and then at the instance
level, to contextualise overall model performance
and identify common sources of error.

User Welfare We aim to measure “user welfare”,
which we define as the extent to which a classi-
fier makes predictions that match this user’s prefer-
ences, as measured by the labels (hate / not hate)
provided by this user. If the classifier was used for
content moderation, and it made predictions that
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Eval Dataset Enforcement % Annotafors % Annotators % Annotators Median Median
Threshold with overrides Welfare Welfare | F1 Increase F1 Decrease

100 0.00 0.00 0.00 - -
DTC 95 6.04 3.30 2.74 0.12 -0.06

90 8.32 4.44 3.88 0.11 -0.06

85 33.02 17.34 15.57 0.10 -0.07

100 88.62 88.62 0.00 0.00 -
HateCheck 90 91.47 91.36 0.1 0.04 0.00

95 91.43 91.33 0.10 0.03 0.00

85 91.54 91.43 0.10 0.04 0.00

Table 2: Annotator-level statistics for the personalized SepHeads model with legal boundary enforcement via the
boundary classifier, evaluated on the DTC test split and HateCheck.
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Figure 2: Average annotator-level macro F1 for the
personalized SEP model with legal boundary enforce-
ment, evaluated on the DTC evaluation dataset. Results
are shown for extreme, non-extreme and all annotators
across legal boundary enforcing levels. Dashed lines
represent baseline SEP performance without boundary
overrides for extreme and non-extreme annotators.

do not match a user’s labels, the user would either
have been exposed to content they consider hateful,
or deprived of content they considered not hateful.

Table 2 reports the effect of the boundary clas-
sifier on DTC when overriding predictions from
the personalized model (SEP). We compute met-
rics at annotator level and evaluate the percentage
of annotators that are better off and worse off due
to the overrides, as measured by F1 scores with
the overridden predictions compared to predictions
from SEP. We define the annotators with overrides
as the ones with at least one prediction overridden
by the boundary model. As the enforcement thresh-
olds lowers, we observe a notable percentage of
the annotators with overridden predictions, with
performance getting better for roughly half of them
and worse for the other half.

=
=

Macro F1

N

0.60

0.55
—eo— All annotators
0.50 —o— Non-extreme annotators
Extreme annotators
0.45
100 95 90 85 80 1G] 70
Enforcement threshold

Figure 3: Average annotator-level macro F1 for the per-
sonalized SEP model with legal boundary enforcement,
evaluated on the HateCheck dataset. Results are shown
for extreme, non-extreme and all annotators across le-
gal boundary enforcing levels. Dashed lines represent
baseline SEP performance without boundary overrides
for extreme and non-extreme annotators.

Notably, the median increase in F1 score for an-
notators who benefit from the overrides is larger
than the median decrease for those whose perfor-
mance declines. This suggests that, even though
the number of annotators affected positively or neg-
atively is similar, the typical performance gains
tend to outweigh the typical losses, pointing to a
modest net benefit from applying the boundary clas-
sifier. This is also reflected in the overall average
annotator-level macro F1 (Figure 2), where we ob-
serve that the enforcement of legal boundaries
does not harm user welfare, on aggregate, with
overall performance varying by less than 1% across
enforcement thresholds.

Figure 2 also breaks down the macro F1 between
extreme and non-extreme annotators, as well as pro-
viding the comparison with the personalized model

34009



@ e O

0.74

0.72

& -
o —o— Non-extreme annotators
g 0.70 Extreme annotators
=
0.68
0.66
100 95 90 85 80 75 70
Enforcement threshold
(a) DTC.
0.85
0.80
0.75
= 0.70 /'
2065 7
=1
0.60
0.55
0.50 —eo— Non-extreme annotators

Extreme annotators

100 95 90 85 80 75 70
Enforcement threshold

(b) HateCheck.

Figure 4: Personalized model performance comparison
of extreme and non-extreme annotators with bound-
ary classifier intervention on DTC and HateCheck at
different levels of legal boundary enforcing. Dashed
lines indicate baseline performance of the SepHeads
model without boundary overrides for extreme and non-
extreme annotators.

with no legal boundary enforcement. The results
show that performance for non-extreme annota-
tors remains largely stable (no statistically signifi-
cant difference), consistent with the overall trend,
whereas performance for extreme annotators de-
creases marginally (independent-sample t-test with
p = 0.0831, significant at the 0.1 level), suggest-
ing that overridden predictions are less aligned with
annotator-level labels. This reflects exactly what
we would want from the enforcing of legal bound-
aries: non-extreme annotators’ performance is not
hurt (or even increases), while extreme annotators
are heavily penalized, reflecting the fact that the le-
gal boundary is naturally enforced on the part of
the annotator base for which it is most relevant.
Note that this is not reflected on the overall score,

as the non-extreme annotators make up for around
96% of all annotators and are thus main drivers
when aggregating. The percentage of extreme an-
notators with overrides is consistently above that
of the non-extreme ones, with a 42% against 31%
difference at enforcement threshold 85, providing
further evidence that extreme annotators are more
affected by the boundary model.

Table 2 also reports the effect of the boundary
classifier on the predictions of SEP using the bound-
ary dataset HateCheck as evaluation. In this case,
we used the predictions of SEP on the HateCheck
instances, which yields one prediction per learned
annotator. These annotator-level predictions are
then compared against the instance-level labels pro-
vided by HateCheck in order to compute F1 scores
and assess the impact of overriding personalization.
Compared to DTC, the percentage of annotators
with overrides is much higher for HateCheck, be-
ing close to 90% at enforcement threshold 100.
This means that, even if we only accept bound-
ary classifications when the model claims 100%
confidence, 90% of the annotators have at least
one prediction overridden. Moreover, enforcing
the boundary classifier on the personalized model
yields a strongly positive effect, with around 90%
of annotators showing improved performance and
almost none experiencing a decline.

In Figure 3, we assess the effect of the bound-
ary classifier on the annotator-level performance
on the overall annotator set (with and without over-
ride). The results show an increase from thresholds
100 to 95, with the annotator-averaged macro F1
jumping by 8 percentage points (statistically signif-
icant, independent-sample t-test with p < 0.001),
followed by a plateau. This increase is even more
visible in the annotator groups breakdown, show-
ing that the performance for both extreme and non-
extreme annotators against HateCheck’s gold labels
benefits from enforcing the legal boundary, espe-
cially in the extreme annotators case, whose macro
F1 increases by more than 30 percent points. As for
the DTC evaluation set, the percentage of extreme
annotators with overrides from the boundary model
is consistently higher than that of non-extreme an-
notators. However, both groups are broadly af-
fected: at an enforcement threshold of 95, 91%
of non-extreme annotators and nearly all extreme
annotators have at least one overridden prediction.

However, the extent of overrides or the absolute
performance gain from overriding predictions is not
the key takeaway here: we already know that, in our
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specific evaluation setting, we could get the best
performance on HateCheck by always accepting
the boundary classifier’s prediction. Basically, the
more we override, the better our performance. But,
more importantly, the performance gains show that
we can steer personalized models away from ignor-
ing illegal cases of hate, in particular for extreme
annotators. Thus, enforcing legal boundaries on the
boundary dataset HateCheck further demonstrates
that personalized models can not only uphold legal
standards without compromising user welfare, but
also significantly reduce legal violations.

Models with Boundaries Evaluation Figure 4
shows the personalized model macro F1 scores
evaluated on DTC (Figure 4a) and on HateCheck
(Figure 4b), comparing extreme and non-extreme
annotators at different boundary classifier enforce-
ment thresholds, this time at the instance level
instead of at the annotator level. This can be used
to evaluate how enforcing legal boundaries affects
the overall predictive performance of the model,
irrespective of the specific annotator.

Aggregating at the instance level brings a com-
pletely different evaluation of performance w.r.t.
the annotator-level case for DTC (Figure 4a), with a
similar trend but higher F1 scores for non-extreme
annotators and lower ones for the extreme ones.
This is due to the fact that the evaluation of the
instance-level performance depends on the total
number of overridden instances between the two
groups of annotators, thus better reflecting a mea-
sure of the overall performance of the classifier.

For HateCheck, Figure 4b shows that the macro
F1 behavior at the instance level closely mirrors
that at the annotator level, primarily because each
annotator is predicted for the same set of instances.

These results validate the design of the person-
alized model with the enforcement of legal bound-
aries, demonstrating that, at the instance level, the
model preserves the benefits of personalization for
non-extreme annotators while substantially improv-
ing legal compliance for extreme ones.

4 Related Work

Prior work has highlighted that perceptions of
toxic content and preferences for moderation
vary across people from different backgrounds
(Talat, 2016; Binns et al., 2017; Larimore et al.,
2021; Jiang et al., 2021; Sap et al., 2022; Goyal
et al., 2022; Hettiachchi et al., 2023; Rastogi et al.,
2024; Mishra et al., 2025). Importantly, differences

were found to extent to the individual level and vary
within demographic groups (Salminen et al., 2018;
Mostafazadeh Davani et al., 2024). This variation is
often seen manifested as low inter-annotator agree-
ment for annotations of toxicity and hate speech
(Vidgen and Derczynski, 2020). In this situation,
when aggregating to a single gold label for each
piece of annotated content, minority views might
be overwritten - potentially (but not exclusively,
as we show) views of groups who are affected the
most (Prabhakaran et al., 2021).

Poor agreement and fairness issues motivated
annotator-level modeling and personalization in
research on detecting toxic or hateful content
(Mostafazadeh Davani et al., 2022; Orlikowski
et al., 2023; Fleisig et al., 2023; Weerasooriya et al.,
2023; Hu and Collier, 2024; Mokhberian et al.,
2024; Jaggi et al., 2024; Anand et al., 2024). “Jury
Learning”, for example, uses a recommender ar-
chitecture to learn individuals’ toxicity perceptions
to predict the distribution of views in defined sub-
populations (Gordon et al., 2022). Some works
effectively personalize classifiers using only back-
ground information such as demographics (Tahaei
and Bergler, 2024), while others argue that attitudi-
nal information (Jiang et al., 2024; Hu and Collier,
2025) or personal values (Sorensen et al., 2025; Hu
and Collier, 2025) lead to stronger personalization.
However, individual-level performance seems to
be highest when learning from examples of each in-
dividual using unique identifiers (Orlikowski et al.,
2025), as we do in our experiments.

Plepi et al. (2022) discuss annotator modeling in
relation to established settings of personalization,
highlighting the shared goal of modeling identifi-
able individuals. Although some works discuss the
issue of extreme annotators who are insensitive to
hateful content (Sachdeva et al., 2022), the problem
of limiting personalization went largely unexplored
(see, e.g., Jhaver et al. 2023). As exceptions, bound-
aries for personalization are discussed by Kirk et al.
(2024) and River Dong et al. (2025), albeit in the
context of Large Language Model alignment. Kirk
et al. (2024) propose a hierarchy of bounds where
the lowest tier is formed by regulatory boundaries,
followed by organization-specific bounds, while
River Dong et al. (2025) demonstrate that person-
alization can introduce significant safety misalign-
ments. These discussions, however, have so far
remained mostly conceptual or evaluative.

Our work advances the study of personalization
in the context of hate speech moderation and, to the
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best of our knowledge, is the first to introduce the
concept of enforcing legal boundaries within per-
sonalized moderation models, showing that fully
unconstrained personalization can lead to the prop-
agation of harmful or even illegal content, particu-
larly among extreme users who tolerate or endorse
such speech. Our contribution is both conceptual
and practical: we propose a simple yet effective
framework for enforcing legal boundaries that is
model-agnostic and adaptable to different regula-
tory standards.

5 Conclusion

Personalized content moderation offers a promis-
ing way to protect users from harm while respect-
ing individual preferences. However, as we have
demonstrated, fully personalized moderation mod-
els, tailored without constraints, can inadvertently
allow highly harmful and even illegal hate speech
to spread, particularly among extreme users who
tolerate or endorse such content.

In this work, we addressed this critical risk by en-
forcing legal boundaries based on legal definitions
on personalized hate speech detection models. Our
findings show that enforcing these legal boundaries
drastically reduces violations while maintaining
a high degree of model performance and without
compromising user welfare. This demonstrates that
it is both feasible and beneficial to integrate legal
constraints into personalized moderation systems,
offering a safer and more responsible path forward
for content platforms.

Overall, this paper contributes empirical evi-
dence of the risks inherent in unregulated person-
alized content moderation and offers a scalable
solution that safeguards users and platforms by har-
monising personalization with legal accountability.

Limitations

Our annotator-level analysis is based on a single
dataset (DTC), which we selected specifically be-
cause it aligns closely with the goals of our study,
namely, examining how personalized moderation
interacts with legal boundaries of hate speech. This
dataset allowed us to explore the core questions
of our work in a focused and principled manner.
However, we acknowledge that results may vary
across different datasets, particularly those reflect-
ing other languages, cultural norms, or moderation
practices. While broader validation is an impor-
tant direction for future work, our aim here is not

to benchmark performance across datasets, but to
foreground a key conceptual risk: the potential for
personalization to conflict with legal constraints.

Because the dataset we used is broadly aligned
with the legal boundary definitions we apply, we
observe relatively minimal negative impact on user
welfare when those constraints are enforced. How-
ever, in contexts where user preferences diverge
more significantly from legal standards, such as on
platforms with highly extremist user bases, strict
enforcement may lead to more substantial trade-
offs in user welfare. We discuss the dynamics of
moderation frameworks and the individuals, plat-
forms, or institutions responsible for their imple-
mentation in the Ethical Considerations section.

Our findings regarding legal boundary violations
rely in part on our operational definition of extreme
users. We adopted a threshold that we consider
reasonable and interpretable, enabling a meaning-
ful analysis of how personalized models behave
for users with fringe preferences. Nonetheless, we
recognize that the exact threshold value for when
to consider a user to be extreme is, to some de-
gree, arbitrary. A stricter threshold might have
captured more ideologically extreme users, but it
would yield too small a sample to generalize from.
Conversely, a looser threshold would have resulted
in a group more representative of the average user,
potentially obscuring the effects we aimed to study.
Our results should be understood in light of this
methodological trade-off.

Ethical Considerations

A central ethical challenge in personalized content
moderation is balancing individual user preferences
with shared societal standards (Kirk et al., 2024).
These standards may be defined by law, platform
policy, or broader community norms. While our ap-
proach allows for moderation to be tailored through
adjusting the boundary classifier prompt, it raises
important questions about which boundaries should
be respected, who defines them, and how strictly
they should be enforced.

Legal definitions of hate speech vary signifi-
cantly across jurisdictions, and platform policies
differ in how permissive or restrictive they are.
Some platforms may choose to enforce stricter con-
tent rules than what the law requires, reflecting
internal values or the expectations of their user
base. Our framework is designed to accommo-
date for this diversity. The boundary classifier can
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be trained to reflect any agreed-upon threshold,
whether legal, ethical, or policy-based. This makes
the system both flexible and adaptable to a wide
range of moderation regimes.

However, this flexibility introduces a meaning-
ful ethical risk. While we maintain that legal stan-
dards should serve as the minimum threshold for
moderation, there is a possibility that our approach
could be used to weaken enforcement. This con-
cern points to a deeper normative issue: the ques-
tion of who has the authority to define and enforce
the limits of acceptable speech.

We argue that any system of personalized moder-
ation must be grounded in a clear and enforceable
baseline that at least reflects legal requirements.
Personalization should improve user experience
within these boundaries, not undermine them. In
this sense, our dual-layer framework is more than
a technical mechanism. It also serves as a structure
for promoting accountability by enabling flexible
content moderation while maintaining a firm com-
mitment to fundamental standards.
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A Dataset Construction

The construction of the training and test splits from
the full DTC dataset requires careful attention to
two key criteria: (i) ensuring that no data contam-
ination occurs between the splits (each text only
appears either in the training or in the test split)
and (i) maintaining a consistent set of annotators
across both splits. To meet these requirements,
an initial data cleaning phase is conducted. Dur-
ing this phase, all duplicate (text, annotator) pairs,
which result from cases in which an annotator la-
beled the same text multiple times, are removed to
prevent ambiguity. In addition, all samples associ-
ated with annotators who have labeled fewer than
18 texts in total are excluded from the dataset.

Then, we proceed with the following filtering
steps:

1. We randomly choose 20% of the texts to be in
the test split (the rest of the texts will be in the
training one).

2. We drop the annotators that appear only in one
split.

3. We drop the annotators that have less than 12
samples in the training dataset.

4. We repeat the previous points 100 times and
keep the version of the splits with the most total
samples.

This procedure allows for cleaner and more re-
liable splits, though it may influence the class dis-
tribution and the proportion of samples assigned to
each split. Nevertheless, we verify a posteriori that
the class distribution remains consistent between
the training and test sets (approximately 47%), and
that the resulting split maintains a desirable bal-
ance, with roughly 80% of instances in the training
set and 20% in the test set.

The SEP model is trained on a restricted subset
of the DTC training split. This subset includes all
samples from the 2,730 annotators who contributed
at least 35 annotations to the training set, as well as
the samples annotated by the 155 extreme ones. In
the end SEP is trained 152, 528 samples and tested
on 35,447. The original training and testing split
are in fact built so that the texts are the same with
and without this subsampling: this way MAT is
trained and tested on datasets containing the same
texts SEP is trained upon, allowing for a compari-
son like-for-like of the two models. Moreover, this
allows the majority-vote labels to be computed on
the full annotators population

B Model Training

Following the architectures introduced by Heinisch
et al. (2023), our non-personalized hate speech
detection model, MAJ, adopts the Majority ar-
chitecture, while our personalized, annotator-
specific model, SEP, is based on the SepHeads
architecture. = For both models, we use the
microsoft/deberta-v3-base® (He et al., 2021)
pre-trained model as text encoder, which is then
fine-tuned along with the classification head(s) (see
below). The annotator heads (or single classifi-
cation head, in the M AJ case) share the same ar-
chitecture as the default DeBERTa classifier from
Hugging Face (a pooling linear layer mapping se-
quences to latent vectors of dimension 768 fol-
lowed by a linear readout outputting class prob-
abilities, with each layer having its own dropout).
The M AT model contains 184, 423, 682 parameters
in total.

3https://huggingface.co/microsoft/
deberta-v3-base
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In the SEP model, the classification head to use
is selected during the forward pass using the anno-
tator’s ID. Training batches are created randomly to
avoid batches of samples all from the same annota-
tor, which might bias the weight updates of the text
encoder. The total number of parameters for SEP,
with 2, 883 classification heads, is 188, 856, 198.

Training is performed using the Hugging
Face API, with the default AdamW optimizer
(Loshchilov and Hutter, 2019) and linear learning
rate decay. MAJ is trained with a starting learn-
ing rate of 1076 and a training batch size of 64,
while SEP is trained with a starting learning rate of
5- 1079 and a training batch size of 16. We report
the results for a single run. Both models are trained
for 10 epochs on two NVIDIA RTX A5000 GPUs.
Training times amount to ~ 3.5 hours for MAJ and
~ 24 hours for SEP.

C Legal Boundary Classifier

The boundary classifier consists of the o4-mini-
2025-04-16 model invoked via the OpenAl API
using a structured prompting approach, with all
data collected between April 17th and May 10th
2025. We extracted scores by parsing the JSON re-
sponses returned by the model in structured output
mode. The temperature parameter was set to O to
ensure deterministic and consistent outputs.

We use the following prompt to implement the
boundary classifier:

You are a safety policy expert. Your task
is to determine whether a given TEXT
violates the safety policy below. Your
decision must strictly follow the specific
language used in the safety policy.
<SAFETY_POLICY>

This safety policy is based on: - “Council
Framework Decision 2008/913/JHA of
28 November 2008 on combating cer-
tain forms and expressions of racism
and xenophobia by means of criminal
law” - Article 8 of the “Directive (EU)
2024/1385 of the European Parliament
and of the Council of 14 May 2024 on
combating violence against women and
domestic violence” - The inclusion of
additional protected groups (e.g. based
on sexual orientation) in Member States’
laws.

The following types of content violate
this safety policy: 1) Content that

publicly incites to violence or hatred
directed against a group of persons
or a member of such a group defined
by reference to race, colour, religion,
descent, national or ethnic origin,
gender, sex, sexual orientation, age,
or disability; 2) Content that publicly
condones, denies, or grossly trivializes
genocide, crimes against humanity and
war crimes as defined in Articles 6, 7
and 8 of the Statute of the International
Criminal Court, directed against a group
of persons or a member of such a group
defined by reference to race, colour,
religion, descent, national or ethnic
origin, gender, sex, sexual orientation,
age, or disability, when the conduct is
carried out in a manner likely to incite to
violence or hatred against such a group
or a member of such a group;
</SAFETY_POLICY>

Note that texts which clearly oppose ha-
tred or discrimination, including educa-
tional content, journalistic reporting, or
counter-arguments that quote problem-
atic language specifically to refute it, do
*not* violate the safety policy.

Note also that texts which use reclaimed
slurs in clearly innocuous contexts do not
violate the safety policy.

Does the TEXT below violate the safety
policy? Your answer must start with
“yes” or “no”. After your answer, pro-
vide a score between 0-100 that reflects
your confidence in your assessment. Do
not write anything else. Here is the text
for you to classify.

TEXT:

We conducted limited internal ablations of the
boundary prompt to assess its sensitivity to differ-
ent formulations. In particular, we tested a variant
where the model is not provided with a safety pol-
icy or article references but is simply instructed
to recall the DSA regulations, using the simplified
safety policy “The European Union’s Digital Ser-
vices Act (DSA) and its definition of illegal hate
speech.” The recall remains identical (0.996), but
our original prompt achieves higher precision, re-
sulting in a better macro F1 score: 0.936 (ours)
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versus 0.927 (recall DSA only, without detailed
legal clauses). We therefore rely on the original
prompt formulation in this work, as it provides a
more reliable balance between recall and precision.

Regarding the confidence scores, we adopt the
method of (Tian et al., 2023), who show that ver-
balized confidence scores provide well-calibrated
estimates. In our case, we assessed calibration on
HateCheck, where we found consistently high con-
fidence levels (minimum approximately 75) and
already strong overall performance (hateful-class
recall of 0.996). As a result, standard calibration
diagnostics provided limited additional insight in
this setting. To investigate further, we turned to the
DTC dataset. We used the standard deviation of
the gold-label toxicity scores across annotators as
a proxy for sample difficulty, based on the assump-
tion that lower variance reflects higher agreement
and therefore easier instances. We then computed
the Pearson correlation between this difficulty mea-
sure and the boundary classifier’s confidence scores.
We observed a strong negative correlation (R =
0.81), indicating that the classifier assigns lower
confidence to samples with greater annotator dis-
agreement. This supports the conclusion that the
confidence scores are meaningfully calibrated and
reflect item-level uncertainty.
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