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Abstract

As large language models (LLMs) are pro-
gressively deployed in various real-world ap-
plications, personalization of LLMs has be-
come increasingly important. While various
approaches to LLM personalization such as
prompt-based and training-based methods have
been actively explored, the development of
effective decoding-time algorithms remains
largely overlooked, despite their demonstrated
potential. In this paper, we propose COPE
(Contrasting Personal Preference), a novel
decoding-time approach applied after perform-
ing parameter-efficient fine-tuning (PEFT) on
user-specific data. Our core idea is to lever-
age reward-guided decoding specifically for
personalization by maximizing each user’s im-
plicit reward signal. We evaluate COPE across
five open-ended personalized text generation
tasks. Our empirical results demonstrate that
COPE achieves strong performance, improv-
ing personalization by an average of 10.57% in
ROUGE-L,without relying on external reward
models or additional training procedures.1

1 Introduction

Personalization of Large Language Models (LLMs)
(Achiam et al., 2023; Team et al., 2023; Anthropic,
2024; Touvron et al., 2023), which refers to the
process of aligning model outputs with individual
user preferences, has received growing attention
as LLMs are increasingly deployed in real-world
applications such as writing assistants (Mysore
et al., 2024), content recommendation (Zhang
et al., 2024), and review generation (Peng et al.,
2024). Prompt-based personalization (Santurkar
et al., 2023; Hwang et al., 2023), which augments
a user query by retrieving prior interactions or
constructing a summarized user profile, is arguably
considered as one of the most straightforward

*Equal contribution (listed in alphabetical order).
1Code is available at https://github.com/

cleverscent/CoPe.

Figure 1: Implicit reward maximization via con-
trastive preference. Under an implicit reward model
that leverages the interaction between a personalized
and a non-personalized generic model, generated texts
better align with user preferences. The highlighted text
marks words that overlaps with the gold answer.

approaches. However, its effectiveness is often
limited by the absence of direct learning from user
data. In contrast, training-based personalization
(Zhao et al., 2024; Kim and Yang, 2025) captures
user preferences more effectively by updating
model parameters, but it also suffers from chal-
lenges such as catastrophic forgetting and increased
computational costs. To mitigate these limitations,
recent works such as One PEFT per User (Tan
et al., 2024) have demonstrated that lightweight
parameter-efficient fine-tuning (PEFT) offers a
viable solution for personalizing LLMs (Tan et al.,
2025; Zhang et al., 2025a; Kim et al., 2025b). Un-
like prior works mentioned above, we turn to a new
perspective for effective LLM personalization.

In this work, we introduce COPE (Contrasting
Personal preference), a new paradigm for LLM
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Figure 2: Illustration of COPE (Contrasting Preference for Personalized LLM Decoding). The training pipeline
(left) builds an expert user model via Direct Preference Optimization (DPO) with synthetic negatives. The reward-
guided decoding method (right) contrasts this user model with a base model at the token level, maximizing implicit
user reward during both training and decoding for improved personalization.

personalization that operates at the decoding stage,
applied after PEFT on user-specific data. At a high
level, COPE is a form of reward-guided decod-
ing (Deng and Raffel, 2023; Khanov et al., 2024;
Lightman et al., 2024), an approach that effectively
steers LLM outputs toward desired properties (e.g.,
improved reasoning) by maximizing a reward func-
tion, adapted specifically for personalizing LLMs
across varying contexts and user goals.

Unlike conventional reward-guided decoding
methods, COPE does not require an external re-
ward model to estimate rewards. Instead, it lever-
ages the implicit user reward signal, which can be
efficiently approximated using the likelihoods from
both the PEFT-tuned model and the original base
model. Building on our key insight which connects
this implicit reward to the objective of contrastive
decoding (Li et al., 2023),we can implement the
proposed COPE easily (see overview in Figure 2).

In addition, we further enhance PEFT for LLM
personalization by encouraging the model to better
capture the implicit user reward. The core idea
is to contrast implicit rewards between a positive
response (provided by the user) and a negative re-
sponse (unlikely to be from the user, e.g., from
other users), using Direct Preference Optimization
(DPO) (Rafailov et al., 2023). To avoid the practi-
cal and privacy challenges of relying on data from
other users, we synthesize negative responses by
generating outputs with low implicit rewards via
Best-of-N sampling (Gui et al., 2024). This train-
ing method not only improves the effectiveness

of PEFT, but also enhances the performance of
our proposed reward-guided decoding by enabling
more accurate modeling of the implicit user reward.
An overview of the pipeline is shown in Figure 2.

We demonstrate the effectiveness of COPE with
experiments in five different personalized open-
ended text generation tasks from Language Model
Personalization (LaMP) (Salemi et al., 2024) and
LongLaMP (Kumar et al., 2024) benchmarks.
Specifically, COPE achieves an average relative
improvement of 10.57% in ROUGE-L across all
tasks, compared to the task-finetuned model. No-
tably, COPE also outperforms a simply personal-
ized model that lacks the contrastive mechanism,
with an average ROUGE-L gain of 5.67% across
tasks. Furthermore, the effectiveness of COPE is
well-generalized across different scales and types
of state-of-the-art LLMs. Our robust experimental
results show that the implicit reward maximization
of COPE further enhances alignment with individ-
ual user preferences. Together, these findings high-
light COPE as a promising approach for scalable
and effective LLM personalization.

2 Related Works

LLM personalization. Given the diversity of
user goals and preferences, various approaches to
personalization of LLM have been explored. One
common strategy is prompt-based personalization,
wherein techniques such as retrieval-augmented
generation (RAG) (Lewis et al., 2021) and prompt-
augmented generation (PAG) (Richardson et al.,
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2023) dynamically inject user-specific context
into each prompt at inference. However, these
methods lack parametric memory and rely entirely
on prompt construction, making them vulnerable
to context length limitations and insufficient
grounding. On the other hand, training-based
personalization methods, which fine-tune the
model on user-specific data, have demonstrated
superior performance in capturing user preferences
compared to prompting-based approaches (Zhao
et al., 2024; Zhuang et al., 2024). Nevertheless,
even these methods face several limitations. Firstly,
these methods are computationally intensive, as
they involve modifying model parameters. In fact,
in the worst case, frequent retraining may be neces-
sary to reflect evolving user preferences (Madotto
et al., 2021). Moreover, these methods are sus-
ceptible to catastrophic forgetting, a phenomenon
in which adapting to new user data can lead the
model to forget previously learned preferences or
even general knowledge (McCloskey and Cohen,
1989; de Masson d’Autume et al., 2019).

A recent and practical method to address
these limitations is the utilization of lightweight
parameter-efficient fine-tuning (PEFT), which
offers an effective and scalable approach to
personalizing LLMs (Zhang et al., 2024, 2025b).
Meanwhile, personalization at the decoding
stage remains largely unexplored in existing
methods. Motivated by this gap, we aim to
address the aforementioned limitations through a
decoding-based approach to personalization.

LLM decoding. Various decoding strategies
have been explored and applied in LLMs to
boost their performance. For instance, contrastive
decoding has demonstrated strong effectiveness
not only in open-ended text generation (Li
et al., 2023), but also in reasoning (O’Brien and
Lewis, 2023), retrieval-augmented generation
(RAG) (Shi et al., 2023), and even multi-modal
generation (Leng et al., 2023). On the other hand,
reward-guided decoding has emerged as another
promising approach, aiming to improve alignment
and reasoning capabilities directly at the decoding
stage, without additional model training. To
further explain, reward-guided decoding guides the
generation process using reward signals, offering
a lightweight yet effective alternative for steering
outputs toward desired behaviors (Deng and Raffel,
2023; Lightman et al., 2024). In fact, adaptive re-
ward shaping, as proposed by Khanov et al. (2024),

has also been shown to improve sample efficiency
during decoding. Despite the growing interest in
both decoding strategies and personalization, there
is no prior work that effectively leverages decoding
methods for personalization due to the challenge
of modeling separate rewards for each user. In
this aspect, we propose the first guided decoding
approach for personalization that does not require
any external reward models. Specifically, our
method can be easily implemented using con-
trastive decoding, thereby enabling more practical
and scalable deployment in real world settings.

Preference learning. Preference learning is an
approach that ensures alignment with human or
task-specific preferences by leveraging relative
feedback between outputs, rather than relying on
absolute labels. One traditional approach to pref-
erence learning is Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022),
which involves fitting a reward model based on
human-labeled comparisons and optimizing model
policies through reinforcement learning. However,
RLHF often requires complex and costly training
procedures. To address this limitation, recent meth-
ods such as Direct Preference Optimization (DPO)
(Rafailov et al., 2023) simplify the process by di-
rectly fine-tuning models through binary classifica-
tion between preferred and dispreferred outputs.

Building on these advances, we propose a per-
sonalized fine-tuning method that integrates pref-
erence learning by treating user profile responses
as positive examples and non personalized outputs
as negative examples. This training formulation
supports contrastive decoding, due to the fact that
maximization of implicit user reward is plausible
both in the training and decoding section. In other
words, this conceptual alignment between prefer-
ence learning and contrastive decoding ensures con-
sistency between training and inference, enabling
more effective personalization without external re-
ward models or additional training procedures.

3 COPE: Contrasting Preference for
Personalized LLM Decoding

In this section, we present our new decoding frame-
work for LLM personalization by Contrasting
Personal preference (COPE). Our key idea is in-
corporating implicit reward signals for user prefer-
ence to guide both training and inference. We first
present our problem setup in Section 3.1. Next, we
present the proposed decoding scheme, COPE, in
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Section 3.2. Lastly, in Section 3.3, we present our
training scheme to further improve PEFT for per-
sonalization, by explicitly maximizing user reward
based on the synthetic negative response.

3.1 Preliminary
Let us first assume that we have the historical in-
teraction data Huser = {(xi, yi)}Ni=1 for a target
user. Then, for a given input query x, the goal of
LLM personalization is to generate a personalized
output y from LLM π that aligns with the user’s
preferences and behaviors exhibited in Huser. A
representative approach for LLM personalization
is to adapt a generic pre-trained LLM πbase using
parameter-efficient fine-tuning (PEFT) techniques,
such as LoRA (Hu et al., 2021).

Formally, let ∆user denote the user-specific
PEFT module.2 The personalized model is then
defined as πuser = πbase +∆user, such that only
∆user is optimized using the user’s data Huser.
For example, Tan et al. (2024) optimizes ∆user

on Huser via conventional supervised fine-tuning
(SFT) that minimizes cross-entropy between the
output of πuser(xi) and ground-truth label yi. Af-
ter optimizing ∆user, πuser is expected to generate
the responses that align with the user’s preferences.

3.2 Optimizing personal preference via
contrastive decoding with PEFT

Assume that we have access to a base model πbase
and a personalized model πuser. Then, to generate
a response y that better aligns with the user’s pref-
erences for a given test query x, COPE adopts a
reward-guided decoding strategy that contrasts the
token-level likelihoods under these two models.

Let y<t = (y1, . . . , yt−1) denote the partial out-
put sequence at decoding step t. Then, follow-
ing Li et al. (2023), we first define a plausibility-
constrained candidate set of next tokens as:

Vt
head =

{
yt ∈ V

∣∣πuser(yt | y<t) ≥ τt}, (1)

where τt := τ · maxw∈V πuser(w | y<t) is an
adaptive threshold determined by a hyperparam-
eter τ ∈ [0, 1] and V denotes the vocabulary for
πuser. For each candidate token yt ∈ Vt

head, we
compute an implicit user reward by contrasting its
likelihoods under the personalized and base mod-
els:

ruser(yt) = log
πuser(yt | y<t)

πbase(yt | y<t)α
, (2)

2In this work, we only consider LoRA.

where α ≥ 0 is a contrastive weight hyperparam-
eter. This reward encourages the selection of to-
kens that are strongly preferred by the personalized
model while being penalized under the base model,
yields the outputs that are both user-aligned and
distinctive. Finally, the next token y∗t is selected
which maximizes the implicit user reward:

y∗t = arg max
yt∈Vt

head

ruser(yt). (3)

Rationale behind implicit user reward. Here,
we present the theoretical intuition behind our pro-
posed implicit user reward ruser (Eq. 2). To this
end, we revisit the concept of implicit reward in-
troduced in DPO (Rafailov et al., 2023), which has
been widely adopted in the LLM alignment liter-
ature (Chen et al., 2025; Kim et al., 2025a; Cui
et al., 2025). Specifically, Rafailov et al. (2023)
show that the reward function r, which captures
human preferences, can be approximated under
the RLHF framework (Ouyang et al., 2022) as the
log-likelihood ratio between the optimal (aligned)
LLM policy πr and a reference policy πref:

r(y) ≈ β · log πr(y)

πref(y)
, (4)

where β is a hyperparameter controlling the
strength of KL regularization in RLHF.3 This
derivation of implicit reward enables reward model-
ing without an explicit reward model using only the
relative likelihoods under two LLM policies, and
yields a much more efficient preference learning
algorithm, called DPO (see details in Appendix I).

In our setting, however, the personalized model
πuser is not trained with explicit KL regularization,
as in standard RLHF. Nevertheless, we argue that
the PEFT used for training πuser implicitly imposes
a similar constraint. For example, in LoRA (Hu
et al., 2021), only the newly introduced low-rank
matrices are updated, while the original model pa-
rameters remain fixed. This architectural constraint
implicitly regularizes the updated model, prevent-
ing it from deviating significantly from the base
model. As a result, the personalized model πuser
trained via PEFT remains close to the base model
πbase, and the log-likelihood ratio between them
can serve as a valid proxy for an implicit reward
signal—namely, ruser. We further empirically vali-
date that these log-likelihood ratios (Eq. 2) encode

3While y is generated for input x, we omit this in Eq. 4 for
the simplicity.
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meaningful personalized signals through detailed
analyses and results in Appendix D.

Interestingly, we note that this formulation,
based on the ratio of log-likelihoods between two
models, also appears in contrastive decoding (Li
et al., 2023). In this sense, our insight reveals
a novel connection between two popular decod-
ing paradigms, contrastive decoding and reward-
guided decoding. Following Li et al. (2023), we
additionally introduce a hyperparameter α to con-
trol the strength of contrastive adjustment during
decoding and further enhance personalization.

3.3 Aligning PEFT to user preference via
DPO with synthetic negative response

While COPE effectively maximizes the implicit
user reward during decoding with the personalized
model πuser, its performance can be further im-
proved by explicitly aligning πuser with the user’s
individual preferences during training.

One natural approach is to apply preference
learning algorithms such as RLHF or DPO. How-
ever, a key practical challenge is a lack of negative
examples ((i.e., responses unlikely to come from
the user) in the user dataset Huser. To address
this, we propose a simple yet effective approach
that synthesizes negative examples leveraging the
implicit user reward ruser. Specifically, for each
train query xi ∈ Huser, we sample K candidate
responses {ỹi,1, . . . , ỹi,K} from the generic base
model πbase. Among these, we select the response
with the lowest implicit user reward, i.e., the one
that is most unlikely from the user:

ỹi,∗ = arg min
y∈{ỹi,1,...,ỹi,K}

∑

t

ruser(yt), (5)

where the contrastive weight α is set to 1.
Then, we construct a preference dataset Dpref :=
{(xi, yipos, yineg)}Ni=1 where (xi, yipos) from Hu,
i.e., yipos = yi, and yineg = ỹi,∗.

Using this preference dataset Dpref, we further
fine-tune πuser with the following DPO loss:

Ldpo = E
(x,ypos,yneg)∈Dpref

[
− log σ

(
β · rdpo

)]
, (6)

where rdpo = ruser(y
pos) − ruser(y

neg), and σ(·)
denotes the sigmoid function. Optimizing this loss
encourages the personalized model πuser to assign
higher reward to user-aligned responses compared
to generic ones. This better modeling of implicit
user reward further improves the effectiveness of
reward-guided decoding through COPE.

4 Experiments

In this section, we design our experiments to inves-
tigate the following questions:

◦ Does COPE yield better personalization than
existing baselines? (Table 1)

◦ Is COPE applicable to models of varying archi-
tectures and parameter scales? (Table 2)

◦ How do different components in COPE con-
tribute to personalization performance? (Ta-
ble 3)

◦ How sensitive is the performance of COPE to
different configuration settings? (Figure 3)

4.1 Setups

Datasets and metrics. We evaluate the effec-
tiveness of COPE primarily on personalized text
generation tasks from the Large Language Model
Personalization (LaMP) (Salemi et al., 2024) and
LongLaMP (Kumar et al., 2024) benchmarks,
which represent the most practical and impactful
use cases of LLM personalization. In particular, we
consider the following five tasks: News Headline
Generation (LaMP 4), Scholarly Title Generation
(LaMP 5), Abstract Generation (LongLaMP 2),
Review Writing (LongLaMP 3), and Topic Writing
(LongLaMP 4).4 For evaluation, we mainly report
ROUGE-1 and ROUGE-L scores across all tasks,
which serve as standard evalaution metrics to mea-
sure the content relevance and structural similarity
between the generated and ground-truth texts.

Baselines. We compare COPE against several
baselines to generate personalized responses from
LLMs as follows: (1) Base – generation us-
ing a vanilla model without any supervised fine-
tuning; (2) RAG (Lewis et al., 2021) – a retrieval-
augmented generation method that directly injects
user-related histories into the prompt without addi-
tional training; (3) PAG (Richardson et al., 2023) –
a prompt-augmented generation approach that ad-
ditionally incorporates user profiles to the prompt;
(4) TAM (Tan et al., 2024) – generation with a
task-adapted model trained on data from users ex-
cluding the test user, allowing familiarity with the
task but lacking personalization; (5) OPPU (Tan
et al., 2024) – generation with a personalized model
equipped with user-specific adapters trained via
simple supervised fine-tuning on user data.

4See behind rationale for this choice in Appendix A.
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Table 1: Main Results. ROUGE-1 and ROUGE-L scores are reported for five tasks: Abstract Generation, Review
Writing, and Topic Writing from LongLaMP; News Headline Generation and Scholarly Title Generation from
LaMP. All experiments are conducted using Mistral-7B-Instruct-v0.3.

Methods
Abstract Generation Review Writing Topic Writing News Headline Scholarly Title

ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L

Base 0.341 0.186 0.287 0.126 0.246 0.105 0.119 0.105 0.409 0.324
RAG 0.347 0.205 0.272 0.128 0.243 0.115 0.141 0.124 0.425 0.347
PAG 0.344 0.186 0.256 0.125 0.262 0.107 0.118 0.102 0.372 0.289
TAM 0.357 0.204 0.289 0.122 0.253 0.107 0.200 0.179 0.514 0.456
OPPU 0.378 0.218 0.319 0.134 0.278 0.112 0.203 0.182 0.510 0.454

CoPE (Ours) 0.392 0.239 0.335 0.146 0.281 0.120 0.205 0.184 0.519 0.461

Implementation details. For methods that in-
clude a training step (TAM, OPPU, COPE), all
models are trained using AdamW (Loshchilov and
Hutter, 2019) with a weight decay of 0.01. Linear
learning rate decay was used with a warm-up ratio
of 0.1. The batch size for the initial training of the
task-adapted model is set to 8, while subsequent
training stages use 4 to better capture the style of
each user. Supervised training is conducted for 2
epochs with a learning rate of 1e-4 for LongLaMP
and 1e-5 for LaMP. Subsequently, DPO training
uses a 5e-6 learning rate for 1 epoch on LongLaMP
and 2 epochs on LaMP. Also, we note that OPPU
is continuously applied after TAM, following Tan
et al. (2024). Similar to this, the proposed DPO
step (Eq. 6) is applied after OPPU (see Figure 1).

All of the experiments are conducted using
Mistral-7B-Instruct-v0.3,5 except for those
reported in Table 2. Greedy decoding is used to
eliminate randomness, except for negative sample
generation. In this case, we use vLLM (Kwon et al.,
2023) with a temperature of 1.0 for faster decoding,
generate K = 3 candidates using the task-adapted
model, and select the final negative using the re-
ward function (Eq. 5). For DPO training (Rafailov
et al., 2023), we set coefficient for KL regular-
ization β = 3.0 for LaMP tasks and β = 0.05
for LongLaMP tasks. At this point, we treat the
task-adapted model as the base model πbase and
the DPO-trained model as the user model πuser in
Eq. 2. To implement the proposed reward-guided
decoding (Eq. 3), we adopt the contrastive decod-
ing (Li et al., 2023), with a plausibility threshold
of τ = 0.1 for both LaMP and LongLaMP tasks.
The contrastive weight α is set to 0.3 for LaMP
and 0.1 for LongLaMP tasks. We apply a repetition
penalty of 1.0 for LaMP and 7.0 for LongLaMP,

5https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

after observing that these values offered acceptable
control over repetition in preliminary experiments.

4.2 Main results

Table 1 summarizes the experimental results on
five personalized open-ended text generation
tasks. First, it is observed that the effectiveness
of prompting-based methods is indeed limited.
In particular, RAG and PAG exhibit limited im-
provement compared to training-based approaches,
and even they are sometimes worse than the Base
method, which does not apply any personalization
technique. This observation validates the necessity
for developing a training-based method like the
proposed framework. Next, the experimental
results in Table 1 also demonstrate that COPE con-
sistently outperforms all baseline methods across
all tasks and metrics. For instance, COPE achieves
an average relative improvement of 10.57%
in ROUGE-L compared to the task-adapted
model, TAM. Notably, COPE even outperforms
a personalized model OPPU that relies solely on
explicit user-specific fine-tuning, with average
relative improvement of 5.67% in ROUGE-L.
These results highlight the effectiveness of our
framework, which maximizes implicit reward
signals to better align with user preferences.

We further observe a task-specific trend across
benchmarks. While RAG shows some effective-
ness in LaMP tasks, its performance declines
in the LongLaMP setting. For instance, RAG
scores 5.23% lower than Base in Review Writing
(ROUGE-1) and 1.22% lower in Topic Writing
(ROUGE-1). This highlights the increased diffi-
culty of LongLaMP tasks, where simple retrieval
of user history is no longer sufficient. In con-
trast, COPE remains effective even in this more
demanding setting. In fact, COPE demonstrates
a significantly higher relative improvement in the
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Table 2: Compatibility of COPE. ROUGE-L scores on
the Abstract Generation task across different LLMs.

Methods LLaMA 3.1-8B Gemma 3-4B Qwen 2.5-1.5B

Base 0.172 0.135 0.130
RAG 0.183 0.170 0.128
PAG 0.183 0.169 0.130
TAM 0.198 0.181 0.150
OPPU 0.202 0.194 0.163

COPE (Ours) 0.261 0.237 0.233

more challenging LongLaMP setting—achieving
a 16.33% gain in ROUGE-L over the task-adapted
model, compared to just 1.95% in LaMP. This sug-
gests that LongLaMP tasks may offer greater room
for personalization gains when properly modeled
and carefully optimized. We also note that the
tasks in LongLaMP tend to involve more subjec-
tive or user-specific expression, making them espe-
cially well-suited for personalized generation when
guided by an effective framework like COPE.

4.3 Additional analyses

Here, we provide additional analyses of COPE

with the experiments on Abstract Generation from
LongLaMP and News Headline Generation from
LaMP. More analyses are in Appendix C.

Generalization to various LLMs. In this sec-
tion, we explore the applicability of COPE to
various LLMs and sizes. Results are presented
in Table 2. The experimental results validate
that COPE generalizes well across a diverse
range of LLMs, including LLaMA-3.1-8B-Instruct
(Grattafiori et al., 2024), Gemma-3-4B-it (Team
et al., 2025), and Qwen2.5-1.5B-Instruct (Qwen
et al., 2025). Compared to TAM, COPE signifi-
cantly improves ROUGE-L by 31.8% on LLaMA-
3.1-8B , 30.9% on Gemma-3-4B-it, and 55.3%
on Qwen2.5-1.5B. Similarly, compared to OPPU,
COPE achieves a relative improvement of 29.2%
on LLaMA-3.1-8B, 22.2% on Gemma-3-4B-it, and
42.9% on Qwen2.5-1.5B. These consistent im-
provements suggest that COPE does not simply
rely on a specific environment setting. Instead, our
framework is generalizable and flexible with re-
spect to model architecture and parameter scale.
This makes COPE a broadly applicable framework
for deployment across diverse LLMs.

Ablation study. We now proceed to validate the
individual components of COPE. To assess the con-
tribution of each component to overall performance
of COPE, we perform a detailed ablation study.

Table 3: Ablation study. The effects of contrastive de-
coding (CD) and direct preference optimization (DPO).

CD DPO
Abstract Generation News Headline

ROUGE-1 ROUGE-L ROUGE-1 ROUGE-L

OPPU ✗ ✗ 0.378 0.218 0.203 0.181
✓ ✗ 0.385 0.232 0.204 0.183
✗ ✓ 0.386 0.230 0.203 0.182

COPE (Ours) ✓ ✓ 0.392 0.239 0.205 0.184

For this analysis, we primarily conducted exper-
iments on Abstract Generation and News Headline
Generation tasks, serving as representative tasks
for LongLaMP and LaMP, respectively. The results
are presented in Table 3. Here, it is observed that
adding each component progressively improves the
performance. Comparing with the OPPU baseline,
applying only contrastive decoding increases the
scores in both tasks, as it encourages the model
to generate outputs that are more distinguishable
from less preferred candidates. Meanwhile, in the
training side, introducing only preference-aligned
training also improves the performance of the
model, as it guides the model to internalize user
preferences by learning to favor higher-quality
responses over inferior ones during fine-tuning.

Finally, when combining these components to
formulate an implicit reward maximization objec-
tive both during training and decoding, we observe
the highest performance. These results indicate
that each component independently contributes to
performance improvements, and their integration
yields the most substantial gains across tasks. This
is because both components work synergistically to
align model outputs with implicit user preferences:
training encourages the model to internalize
preference signals through comparisons between
better and worse responses, while decoding
promotes outputs that more closely reflect these
learned preferences at inference time. Together,
they implicitly guide the model to maximize a
user-aligned reward signal, even in the absence of
explicit supervision from an external model.

Sensitivity of COPE. Figure 3 presents a
sensitivity analysis of key components in the
proposed framework. In this section, we conduct
experiments on the News Headline Generation
task, chosen for its shorter runtime, to explore the
behavior of COPE under different settings.

We begin by examining the choice of base model
for contrastive decoding (i.e., πbase to calculate
likelihood for the denominator in Eq. 2). We first
note that TAM is originally used as the base model

33953



Initial OPPU TAM
0.195

0.198

0.200

0.202

0.205
RO

UG
E-

1

ROUGE-1
ROUGE-L

0.175

0.177

0.180

0.182

0.185

RO
UG

E-
L

(a) Choice of base model πbase

0.1 0.3 0.5 0.7
contrastive strength 

0.170

0.175

0.180

0.185

0.190

0.195

0.200

0.205

0.210

Sc
or

e

ROUGE-1
ROUGE-L

(b) Contrasting strength α

0.1 0.3 0.5
DPO KL Regularization 

0.12

0.14

0.16

0.18

0.20

Sc
or

e

ROUGE-1
ROUGE-L

(c) DPO KL regularization β

Figure 3: Different hyperparameters. (a) Performance variation by base model choice. (b) Effect of contrastive
strength α. (c) Effect of KL regularization β in DPO. ROUGE-1 and ROUGE-L scores are reported.

Figure 4: A qualitative example of COPE on the News Headline Generation task (LaMP 4). The output of
COPE contains more words that align with the user gold response compared to TAM and OPPU. Words overlapping
with the user’s answer are highlighted, and tokens that COPE uniquely emphasizes for personalization, which are
not captured by other baselines, are boxed. More qualitative examples from other tasks are provided in Appendix L.

in COPE, as it yields better understanding of the
target task. To investigate this, we performed
experiments by varying the base models from
TAM to init (i.e., initial Mistral model) and OPPU
(i.e., after adaption to user and before DPO). The
results are presented in Figure 3(a), and one can
verify that the current design choice is the best
and using init is the worst. The findings suggest
that using either OPPU or TAM as the base model
yields the best performance. We hypothesize
that these models help isolate and downweigh
non-personalized features, allowing user-specific
characteristics to be more prominently reflected.

Next, we analyze the sensitivity of COPE to
two key hyperparameters: the contrastive strength
(α) and the KL regularization coefficient (β) in
preference-aligned training. These two hyperpa-

rameters are crucial in the decoding and training
components of our framework, respectively. Figure
3(b) shows the effect of varying the contrastive
strength α under fixed β = 3.0. We observe that
COPE performs reliably across a range of α values,
with a slight peak around α = 0.3. While stronger
contrastive signals may lead to marginal decreases
in output quality, the overall performance remains
consistently stable, which demonstrates the
robustness of COPE to decoding-time variations.

Figure 3(c) illustrates the impact of varying the
KL regularization coefficient β during training.
As β increases from 0.1 to 0.3, both ROUGE-1
and ROUGE-L scores improve, after which perfor-
mance growth starts to hinder. This suggests that
COPE benefits from moderate regularization while
remaining resilient to further increases. These
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results indicate that COPE performs consistently
well across a range of configurations, underscoring
its robustness and reliability without signs of
overfitting to specific hyperparameter values.

5 Conclusion
In this work, we propose COPE, the first decoding-
based framework for personalizing LLMs. Specifi-
cally, COPE is a reward-guided decoding approach
that maximizes implicit rewards of each user,
thereby enhancing personalization without requir-
ing external reward models. Our comprehensive
experiments show that COPE consistently outper-
forms various baselines across multiple tasks and
also is well-generalized to various types and scales
of LLMs. Consequently, these results demonstrate
that it is not only effective but also a practical frame-
work for decoding-time personalization.

Limitations

While COPE shows consistent improvements in
personalized generation, it uses a fixed set of hyper-
parameters (e.g., learning rate, batch size, LoRA
rank) for all users, regardless of dataset size or
characteristics. This uniform setting may be subop-
timal when data varies in volume or domain.Future
work should explore adaptive strategies that adjust
hyperparameters to user-specific profiles. In
addition, we focus only on LoRA as the PEFT
method, but different PEFT approaches (Li and
Liang, 2021; Liu et al., 2022) are also considerable.
Since our approach does not depend on a particular
method and most PEFT variants share architectural
constraints with LoRA, we expect that COPE is
also easily deployed for these approaches.

Ethics Statement

We investigate LLM adaptation to individual users
using PEFT methods such as LoRA. To ensure
user privacy, our approach neither stores nor ex-
poses raw user data and updates only a small set of
task- and user-specific parameters. In addition, all
negative samples for preference optimization are
synthetically generated from a base model, rather
than extracted from real user outputs. Although
we do not explicitly assess membership inference
risks, the use of PEFT and synthetic negatives may
provide stronger privacy protection than full-model
fine-tuning. All datasets and models used in this
study are publicly available and used in line with
their designated purposes. An AI assistant (Chat-
GPT) was used to refine the manuscript writing.
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A Datasets

For the experiments, we focus mainly on the text
generation tasks provided in the LaMP (Salemi
et al., 2024) and LongLaMP (Kumar et al., 2024)
benchmarks. Following these benchmarks, we use
ROUGE-1 and ROUGE-L as metrics for evaluation.
Detailed descriptions of each task are as follows.

LaMP 4: News Headline Generation. This task
evaluates the ability of a model to automatically
generate headlines for given news articles, con-
ditioned on an author profile containing histori-
cal article-title pairs, thereby capturing distinctive
stylistic patterns in journalistic writing.

LaMP 5: Scholarly Title Generation. This task
assesses the capacity of a model to generate ap-
propriate titles for scholarly article abstracts condi-
tioned on an author profile of historical article-title
pairs, reflecting distinct academic writing style.

LongLaMP 2: Abstract Generation. This task
focuses on evaluating the proficiency of a model in
generating scientific abstracts given paper titles and
keywords by leveraging an author profile of previ-
ous publications to emulate characteristic academic
writing style and domain-specific terminology

LongLaMP 3: Review Writing. This task tests
the ability of a model to automatically generate
comprehensive product reviews based on product
specifications and user experiences, conditioned on
a user profile of review history to reflect distinctive
evaluative style and subjective perspective.

LongLaMP 4: Topic Writing. This task
evaluates the capability of a model to generate
Reddit post content based on post summaries while
maintaining the unique writing style of individual
users, requiring the generation of content from
a given summary conditioned on a user profile
containing their historical Reddit posts.

In LaMP, we only consider News Headline Gen-
eration (LaMP 4) and Scholarly Title Generation
(LaMP 5) as they are only applicable generation
tasks with proper labels; Citation Identification
(LaMP 1), Movie Tagging (LaMP 2), and Product
Rating (LaMP 3) are discriminative, while Email
Subject Generation (LaMP 6) and Tweet Paraphras-
ing (LaMP 7) lack gold labels, so none of these
are included. For LongLaMP, we only considered
Abstract Generation (LongLaMP 2), Review Writ-
ing (LongLaMP 3), and Topic Writing (LongLaMP

3) because Email Completion (LongLaMP 1) re-
lies on the Avocado Research Email Collection,
a private dataset with restricted access. Overall,
our task selection focuses on (1) accessible and (2)
evaluable (3) text-generation tasks for assessing
LLM personalization. Throughout our framework,
we follow the setup of an earlier work (Tan et al.,
2024): we use 100 users with the longest activity
histories as the test set, and the remaining users to
train the task-adapted base model.

B Baselines Details

Detailed explanations for each baseline are pro-
vided below. Black boxes indicate vanilla mod-
els and prompt-base baselines (i.e., training-free),
while white boxes represent training-base ones.

■ Base model refers to the generation with
the original LLM without any task-specific
fine-tuning or additional conditioning. It
represents the vanilla, commonly used
standard pre-trained model as released.

■ RAG: Retrieval-Augmented Generation
(Lewis et al., 2021) is a method that retrieves
user-related history records and directly
incorporates them into the prompt. Following
the setup in LaMP (Salemi et al., 2024), we
retrieve the top-k history records for each
user. In our experiments, we set k = 3,
meaning the three most relevant records are
selected using BM25 (Robertson and Walker,
1994)—a standard keyword-based retrieval
method. We implement BM25 using the
rank_bm25 library with BM25Okapi.

■ PAG: Profile-Augmented Generation
(Richardson et al., 2023) is a technique for
personalizing LLM outputs by conditioning
on structured user profiles. Following the
prior work (Tan et al., 2024), we generate user
profiles using the vicuna-7B model (Chiang
et al., 2023), based on the past responses
of a typical user. Each profile captures key
stylistic characteristics, such as tone, lexical
choices, and recurring templates. The model
then uses these profiles as a guide to generate
output that aligns closely with the user style.

❑ TAM: Task Adapted Model (Tan et al., 2024)
is trained on data from users other than the
selected 100 test users. The objective of this
model is to adapt the base model to the task
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Table 4: Dataset statistics. Base LLM training corresponds to TAM, and Personal PEFT training to OPPU.

Task Base LLM Training (TAM) Personal PEFT Training (OPPU)
#Train Lin Lout #Profile Lin Lout

Abstract Generation 31,808 70.4 ± 13.3 233.1 ± 117.5 1,296.7 ± 446.4 604.4 ± 142.7 210.5 ± 92.8
Review Writing 19,649 185.1 ± 109.0 407.2 ± 299.5 759.3 ± 324.2 1,143.0 ± 343.3 511.8 ± 294.2
Topic Writing 21,119 56.6 ± 54.8 358.3 ± 316.9 260.6 ± 314.0 759.8 ± 321.8 358.3 ± 255.4
News Headline Generation 7,275 53.6 ± 19.0 15.5 ± 6.0 270.1 ± 182.1 92.2 ± 11.3 18.6 ± 5.2
Scholarly Title Generation 16,076 230.6 ± 97.9 17.9 ± 6.1 444.0 ± 121.6 266.4 ± 85.9 16.4 ± 5.8

Table 5: Compatibility of COPE. ROUGE-1 scores on
the Abstract Generation task across different LLMs.

Methods LLaMA 3.1-8B Gemma 3-4B Qwen 2.5-1.5B

Base 0.340 0.270 0.278
RAG 0.330 0.295 0.240
PAG 0.333 0.292 0.241
TAM 0.355 0.326 0.298
OPPU 0.363 0.347 0.304

COPE (Ours) 0.417 0.393 0.384

in a general manner via LoRA (Low-Rank
Adaptation) (Hu et al., 2021), enabling it to
understand the task setup without being ex-
posed to the specific styles of the target users.

❑ OPPU: One PEFT Per User Model (Tan
et al., 2024) is a baseline that fine-tunes the
LoRA adapter from the TAM model on indi-
vidual users. Specifically, the historical data
of each user is used to fine-tune the LoRA
adapter from the TAM model, resulting in 100
separate personalized adapters. Intuitively,
each LoRA adapter is specialized to learn the
unique style of a specific user.

C More Quantitative Results

In this section, we provide more quantitative results.
In Table 5, we present the results under various
LLMs on Abstract Generation using ROUGE-1,
instead of ROUGE-L in Table 2. One can verify
that COPE significantly improve ROUGE-1 as well.
Next, in Tables 6 and 7, we present the results on
News Headline Generation using ROUGE-1 and
ROUGE-L scores, respectively. Here, it is observed
that the proposed COPE is continuously effective.

D Empirical Validation of Log-Likelihood
Ratios as Implicit Rewards

To empirically validate our use of log-likelihood
ratios as implicit reward signals, we conducted
an analysis comparing scores produced by user-
specific models and those produced by models
trained on other users. For example, given user 1,

Table 6: Compatibility of COPE. ROUGE-1 scores
on the News Headline Generation task across different
LLMs.

Methods LLaMA 3.1-8B Gemma 3-4B Qwen 2.5-1.5B

Base 0.127 0.070 0.117
RAG 0.146 0.098 0.136
PAG 0.129 0.099 0.128
TAM 0.188 0.161 0.142
OPPU 0.191 0.164 0.143

COPE (Ours) 0.211 0.168 0.147

Table 7: Compatibility of COPE. ROUGE-L scores
on the News Headline Generation task across different
LLMs.

Methods LLaMA 3.1-8B Gemma 3-4B Qwen 2.5-1.5B

Base 0.110 0.063 0.104
RAG 0.129 0.089 0.121
PAG 0.112 0.089 0.114
TAM 0.169 0.144 0.127
OPPU 0.171 0.147 0.127

COPE (Ours) 0.190 0.151 0.131

we compute the log-likelihood ratio score (Eq. 2).
on user 1’s training samples using two models:
(1) the OPPU model of user 1 (score_user),
and (2) OPPU models trained on all other users
(score_others). Our core intention with this val-
idation is to demonstrate that the log-likelihood
ratio with personalized model meaningfully cap-
tures user-specific signals. In other words, if it
truly reflects personalization, then a model fine-
tuned for a given user should consistently assign
higher scores to that user’s own data than models
fine-tuned for different users. To ensure robustness,
we repeated this comparison across 10 randomly
selected users. For each user, we evaluated the
scores on a randomly sampled 20% subset of their
profile history. The results are presented in Table 8.

By comparing score_user and score_others
across users and averaging over profile data, we
find that each user’s model assigns higher scores
to their own data. This shows that log-likelihood
ratios capture personalized signals, supporting their
use as an implicit reward approximator.
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Table 8: Validation of implicit reward approximation.
Comparison of log-likelihood ratio scores from user-
specific models (score_user) and models trained on
other users (score_others).

User Index
User Own Other 9 Users Avg

(score_user) (score_others)

3 0.087 0.025
13 0.096 0.028
14 0.131 0.023
17 0.083 0.023
28 0.097 0.029
31 0.090 0.026
35 0.082 0.025
81 0.099 0.030
86 0.088 0.025
94 0.093 0.026

Avg 0.095 0.026

Table 9: Ablation study. The effects of contrastive de-
coding (CD) and direct preference optimization (DPO).
R-1 and R-L represents Rouge-1 and Rouge-L scores
respectively.

CD DPO
Abstract Gen. Review Writing Topic Writing
R-1 R-L R-1 R-L R-1 R-L

OPPU ✗ ✗ 0.378 0.218 0.319 0.134 0.278 0.112
✓ ✗ 0.385 0.232 0.335 0.145 0.285 0.122
✗ ✓ 0.386 0.230 0.323 0.138 0.280 0.114

COPE (Ours) ✓ ✓ 0.392 0.239 0.335 0.146 0.281 0.120

CD DPO
News Headline Scholarly Title Average
R-1 R-L R-1 R-L R-1 R-L

OPPU ✗ ✗ 0.203 0.181 0.510 0.454 0.338 0.220
✓ ✗ 0.204 0.183 0.514 0.456 0.345 0.227
✗ ✓ 0.203 0.182 0.517 0.457 0.342 0.224

COPE (Ours) ✓ ✓ 0.205 0.184 0.519 0.461 0.346 0.230

E Extended Ablation Experiments

A full ablation table covering all tasks is presented
in Table 9. Overall, our proposed framework CoPe
continues to show a clear trend of performance im-
provement upon each component (CD and DPO).

On average across tasks, DPO improved
ROUGE-1 and ROUGE-L by 1.09% and 2.3%,
while CD yielded higher gains (2.13% ROUGE-1,
5.02% ROUGE-L). Their combination achieved
the best performance, with 2.51% and 5.79% in-
creases over OPPU. Although a few tasks (e.g.,
Topic Writing) showed weaker results under both
methods, likely due to universal hyperparameters
being suboptimal, the overall trend supports their
combined effectiveness.

F Perplexity and Fluency Analysis

A common concern with decode-time manipula-
tion methods such as contrastive decoding (CD) is
whether they degrade fluency or coherence of the
generated text. In this section, we explore the rela-
tionship between perplexity, our ratio-based reward
proxy, and overall personalization quality.

Perplexity measures how well a reference model
predicts a sequence in absolute terms. In contrast,
the user/base probability ratio (Eq. 2) we employ is
a relative measure that captures shifts in predicted
token probabilities between a user-specific model
and the base model. This relative shift serves as
the personalization signal in our framework. Thus,
while perplexity is informative about fluency un-
der a particular reference model, it is not directly
comparable to the ratio we use as implicit reward.

To empirically assess whether CD harms flu-
ency, we measured the perplexity of all meth-
ods’ outputs using the same reference LM
(Mistral-7B-Instruct-v0.3). Results are sum-
marized in Table 10. CD does not increase perplex-
ity by more than ±2.4 points compared to the base
OPPU_SFT, and in fact achieves the lowest perplex-
ity on three of the five tasks (e.g., 7.01 vs. 12.34 on
Abstract Generation). Additionally, standard devia-
tions are small, which indicates stable behavior.

Furthermore, we also observe that human gold
texts show higher perplexity than model outputs.
This phenomenon is a natural outcome in person-
alization settings, as authentic user texts often in-
clude creative, informal, and unusual elements that
are harder for a reference LM to predict.

Analytically, in Figure 5 the gold text contains
spelling variations (“washignton”, “feild”) ans col-
loquial phrases (“So yah, cool”), which raise per-
plexity under a reference LM, but this does not
undermine our ratio-based reward, which relies on
relative shifts between user-specific and base mod-
els rather than the absolute perplexity value itself.

G Robustness to User Heterogeneity

While evaluating based on average performance
across users is widely adopted, one may be con-
cerned that the result can be over-estimated by few
outlier users. Therefore, to test the robustness of
COPE under such heterogeneous user conditions,
we compared it with TAM and the OPPU base-
line at the instance level. Specifically, we measure
how many instances are improved by our method
compared to the baselines.
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Table 10: Perplexity analysis. Mean and standard deviation (std) of perplexity measured with Mistral-7B-Instruct-
v0.3 as the reference LM.

Task Metric Gold Data TAM OPPU OPPU+CD OPPU+DPO COPE

Abstract Generation
mean 214.43 13.27 12.34 7.01 13.00 15.91
std 396.39 10.11 14.75 2.91 12.12 21.91

Topic Writing
mean 363.10 26.32 13.41 16.86 15.80 17.79
std 439.49 21.40 11.30 20.12 15.13 20.21

Review Writing
mean 780.07 17.13 20.69 15.78 20.86 19.01
std 1233.23 11.28 18.47 12.73 15.26 13.90

News Headline
mean 41.79 28.71 25.86 28.25 27.20 27.32
std 26.30 30.34 17.26 19.09 17.81 17.88

Scholarly Title
mean 79.79 55.65 47.37 47.37 67.27 70.48
std 64.57 40.29 30.72 30.72 49.52 54.24

It is legalin washignton state to pay feild workers less then minimum wage provided you give 
them basic shelter. … So yah, cool. And as to your 'we can't make everyone a citizin' …

Gold

It is not as simple as 'just' doing this or that, and there are many reasons why people don't 
want to go into politics…

Generated

Figure 5: Example illustrating perplexity differences between gold and generated text. A user’s gold text often
contains spelling variations, colloquial expressions, and conversational truncations, which are harder for a reference
LM to predict, resulting in higher perplexity. In contrast, model-generated text tends to be more regular and thus
achieves lower perplexity.

As shown in Table 11, COPE outperformed
TAM on 56%–80% of instances, while OPPU
improved on only about 50-69%. Although
this analysis is conducted at the instance level,
it provides strong evidence that even under a
fixed hyper-parameter setting, COPE generalizes
robustly across heterogeneous writing styles,
domains, and data sizes. We leave exploring effi-
cient, light-weight user-specific hyper-parameter
adaptation as promising future work to pursue.

H Statistical Reliability of Results

To assess the reliability and significance of the re-
ported performance, we quantify the variability
of ROUGE scores by measuring the standard er-
ror (SE) across test samples. Table 12 shows the
averaged results across datasets. Both ROUGE-1
and ROUGE-L exhibit very small SE values (be-
low ≈ 0.009), corresponding to only 2–3% of the
mean score and yielding a 95% confidence interval
within ±0.02 ROUGE points. This indicates that
the observed improvements are unlikely to be due
to random variation in the evaluation set.

In addition, to complement mean/SE figures with
an instance-level view, we compute the percentage
of test instances (IDs) where a model’s ROUGE
score matches or exceeds TAM. As shown in Ta-
ble 13, COPE surpasses TAM on 66.77% of in-
stances for ROUGE-1 and 71.55% for ROUGE-L,
about 8 and 12 points above OPPU. Overall, the
low SE values and high win-or-tie rates show that
COPE’s gains are statistically reliable and consis-
tently realized at the instance level.

I Background for RLHF and DPO

Let us denote LLM as πθ, which generates an out-
put sequence (e.g., response) y for a given input
sequence (e.g., prompt) x, i.e., y ∼ πθ(·|x). Then,
the goal of LLM alignment is to make πθ provide
human-aligned responses to various input prompts.
To this end, let assume that the preference dataset
D = {(x, yl, yw)} is available which consists of
the triplets of input prompt x, preferred response
yw, and dispreferred response yl. Here, the pref-
erence labels were annotated by a ground truth
annotator, that is usually a human expert.

33961



Table 11: Instance-level robustness comparison. “R-1 Improved (%)” and “R-L Improved (%)” denote the
percentage of test instances for which the model outperforms TAM. The Average row reports a macro-average
across the five tasks (unweighted by instance counts); hence Total Instances is not applicable.

Task Model CD DPO R-1 Improved (%) R-L Improved (%) Total Instances

Abstract Generation

OPPU ✗ ✗ 50.35 52.45

143
+ CD ✓ ✗ 58.04 65.03

+ DPO ✗ ✓ 56.64 66.43
COPE (ours) ✓ ✓ 63.64 76.22

Review Writing

OPPU ✗ ✗ 69.33 68.10

163
+ CD ✓ ✗ 75.46 75.46

+ DPO ✗ ✓ 68.10 72.39
COPE (ours) ✓ ✓ 77.91 81.60

Topic Writing

OPPU ✗ ✗ 58.33 60.61

132
+ CD ✓ ✗ 56.06 65.15

+ DPO ✗ ✓ 59.09 55.30
COPE (ours) ✓ ✓ 56.06 65.91

News Headline

OPPU ✗ ✗ 61.01 60.86

6725
+ CD ✓ ✗ 56.85 57.71

+ DPO ✗ ✓ 61.32 61.56
COPE (ours) ✓ ✓ 79.61 80.24

Scholarly Title

OPPU ✗ ✗ 52.83 53.77

106
+ CD ✓ ✗ 52.83 53.77

+ DPO ✗ ✓ 65.09 66.98
COPE (ours) ✓ ✓ 56.60 53.77

Average

OPPU ✗ ✗ 58.37 59.16

-
+ CD ✓ ✗ 59.85 63.43

+ DPO ✗ ✓ 62.05 64.53
COPE (ours) ✓ ✓ 66.77 71.55

Table 12: Mean ROUGE and standard error (SE)
across test samples. SE values remain consistently
small (< 0.009), indicating stable results.

Model Mean R-1 ↑ Mean R-L ↑ SE R-1 ↓ SE R-L ↓
TAM 0.323 0.214 0.008 0.007
OPPU 0.338 0.220 0.009 0.007
COPE (ours) 0.346 0.228 0.009 0.007

Table 13: Instance-level win rates against TAM. Val-
ues denote the percentage of test instances where a
model’s ROUGE is equal to or higher than TAM.

Model R-1 ↑ R-L ↑
OPPU 58.37 59.16
COPE (ours) 66.77 71.55

Reward modeling and RL fine-tuning. Since
a pairwise preference between yw and yl is hard
to model directly, one of the common practices
is introducing reward function r(x, y) and
modeling the preference based on this using the

Bradley-Terry model (Bradley and Terry, 1952):

p(yw ≻ yl | x) =
exp (r(x, yw))

exp (r(x, yw)) + exp (r(x, yl))
.

From this, one can introduce a parametrized reward
model rϕ(x, y) by estimating its parameters with
the maximum-likelihood objective:

Lr = E
(x,yw,yl)∼D

[− log σ (rϕ(x, yw)− rϕ(x, yl))] ,

where σ is a sigmoid function. After this reward
modeling procedure, one could improve the align-
ment of LLM πθ by optimizing it to maximize the
reward from rϕ. Here, KL-distance from the refer-
ence model πref is incorporated as a regularization
to prevent the reward over-optimization of πθ, with
a hyper-parameter β > 0 (Ouyang et al., 2022):6

LRLHF =− Ey∼πθ, x∼ρ [rϕ(x, y)]

+ βDKL (πθ(y|x)∥πref(y|x)) .

6πref is usually initialized with supervised fine-tuned (SFT)
LLM. Also, πθ is initialized with πref.
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Direct preference optimization. Rafailov et al.
(2023) propose an alternative approach to align
LLM πθ with the preference dataset D, which is
called Direct Preference Optimization (DPO). DPO
integrates a two-step alignment procedure with re-
ward modeling and RL fine-tuning into a single
unified fine-tuning procedure. Specifically, the op-
timal reward function is derived from the RLHF
objective, with the target LLM πθ and the reference
model πref, which is often called implicit reward:

r(x, y) = β log
πθ(y | x)
πref(y | x) + β logZ(x),

where Z(x) =
∑

y πref(y | x) exp
(

1
β r(x, y)

)
.

Then, the preference between two responses could
be measured using this reward derivation, and πθ is
optimized to maximize this preference of yw over
yl using the preference dataset D.

pθ(yw ≻ yl | x) = σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)
,

LDPO = E(x,yw,yl)∼D [− log pθ(yw ≻ yl|x)] .

J Prompts

Below are prompts used in our experiments. Note
that the text in {BRACES} is a placeholder for user-
and query-specific input.

News Headline Generation
You are a news headline generator.
Generate a headline for the following article.
article: {ARTICLE}
headline:

Scholarly Title Generation
You are a scholarly title generator.
Generate a title for the following abstract of a pa-
per. abstract: {ABSTRACT}
title:

Abstract Generation
You are an abstract writer.
Generate the review text written by a reviewer who
has a given an overall rating of "{RATING}" for a
product with description "{PRODUCT}". The sum-
mary of the review text is "{SUMMARY}".
Review:

Review Writing
You are a review writer.
Generate an abstract for the title “{TITLE}”.
Abstract:

Topic Writing
You are a creative content generator for Reddit
posts.
Generate the content for a reddit post.
post: {POST}
content:

K Chat Templates

In this section, we provide the chat templates we
applied for experiments. We also include the chat
templates of other LLMs used to test the general-
ization of COPE.

Mistral-7B-Instruct-v0.3

MISTRAL_CHAT_TEMPLATE = """
{% if messages[0]['role'] == 'system' %}
{% set loop_messages = messages[1:] %}
{% set system_message = messages[0]['content'].

strip() + '\n' %}
{% else %}
{% set loop_messages = messages %}
{% set system_message = '' %}
{% endif %}
{% for message in loop_messages %}

{% if loop.index0 == 0 %}
{% set content = system_message + message

['content'] %}
{% else %}

{% set content = message['content'] %}
{% endif %}
{% if message['role'] == 'user' %}

{{ '[INST] ' + content.strip() + ' [/INST
]' }}

{% elif message['role'] == 'assistant' %}
{{ ' ' + content.strip() + ' ' +

eos_token }}
{% endif %}

{% endfor %}
"""

LLaMA-3.1-8B-Instruct

LLAMA_CHAT_TEMPLATE = """
{{- bos_token }}
{%- if messages[0]['role'] == 'system' %}

{%- set system_message = messages[0]['
content'].strip() %}

{%- set loop_messages = messages[1:] %}
{{- '<|start_header_id|>system<|

end_header_id|>\\n\\n' + system_message
+ '<|eot_id|>' }}

{%- else %}
{%- set loop_messages = messages %}

{%- endif %}
{%- for message in loop_messages %}

{%- if message['role'] == 'user' %}
{{- '<|start_header_id|>user<|

end_header_id|>\\n\\n' + message['
content'].strip() + '<|eot_id|>' }}

{%- elif message['role'] == 'assistant' %}
{{- '<|start_header_id|>assistant<|

end_header_id|>\\n\\n' + message['
content'].strip() + '<|eot_id|>' }}
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{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}

{{- '<|start_header_id|>assistant<|
end_header_id|>\\n\\n' }}

{%- endif %}"""

GEMMA-3-4B-it

GEMMA_CHAT_TEMPLATE = """
"{% set bos_token = '<bos>' %}
{% set eos_token = '<eos>' %}

{{ bos_token }}
{% if messages[0]['role'] == 'system' %}
{{ 'System: ' + messages[0]['content'].strip()

+ '\n' }}
{% set loop_messages = messages[1:] %}

{% else %}
{% set loop_messages = messages %}

{% endif %}

{% for message in loop_messages %}
{% if message['role'] == 'user' %}
{{ 'User: ' + message['content'].strip() + '\

n' }}
{% elif message['role'] == 'assistant' %}
{{ 'Assistant: ' + message['content'].strip()

+ eos_token + '\n' }}
{% endif %}

{% endfor %}
{{ 'Assistant:' }}"
"""

Qwen2.5-1.5B-Instruct

QWEN_CHAT_TEMPLATE = ''' {%- if messages[0]['
role'] == 'system' %}
{{- '<|im_start|>system\\n' + messages[0]['

content'].strip() + '<|im_end|>\\n' }}
{%- set loop_messages = messages[1:] %}

{%- else %}
{%- set loop_messages = messages %}

{%- endif %}
{%- for message in loop_messages %}

{%- if message['role'] == 'user' %}
{{- '<|im_start|>user\\n' + message['

content'].strip() + '<|im_end|>\\n'
}}

{%- elif message['role'] == 'assistant' %}
{{- '<|im_start|>assistant\\n' + message

['content'].strip() + '<|im_end|>\\n
' }}

{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}

{{- '<|im_start|>assistant\\n' }}
{%- endif %}
'''

L More Qualitative Examples

In this section, we present the additional qualitative
examples similar to Figure 4. Figures 6, 7, 8, and
9 clearly show the advantages of COPE, compared
to the baseline methods.
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Scholarly Title

Query Generate a title for the following abstract of a paper: Despite advances in multicore
smartphone technologies, battery consumption still remains one of customer's least
satisfying features. This is because existing energy saving techniques do not consider the
electrochemical characteristics of batteries, which causes battery consumption to vary
unpredictably, both within and across applications. Additionally, these techniques provide
application specific fixed performance degradation in order to reduce energy consumption.
Having a performance penalty, even when a battery is fully charged, adds to customer
dissatisfaction. We propose a control-based approach for runtime power management of
multicore smartphones, which scales the frequency of processing cores in response to the
battery consumption, taking into account the electrochemical characteristics of a battery.
The objective is to enable graceful performance modulation, which adapts with application
and battery availability in a predictable manner, improving quality-of-user-experience. Our
control approach is practically demonstrated on embedded Linux running on Cortex A15-based
smartphone development platform from nvidia. A thorough validation with mobile and Java
workloads demonstrate 2.9\u00d7 improvement in battery availability compared to state-of-
the-art approaches.

User Answer Graceful Performance Adaption through Hardware-Software Interaction for Autonomous Battery
Management of Multicore Smartphones

TAM Predictable Quality-of-User-Experience Management for Multicore Smartphones.

OPPU Predictable performance management for multicore smartphones

CoPe (ours) Predictable Performance Management for Battery-Powered Multicore Smartphones

Figure 6: Qualitative example for Scholarly Title Generation

Abstract Generation

Query Generate an abstract for the title \"A resolved CFD-DEM coupling model for modeling two-
phase fluids interaction with irregularly shaped particles\" using the following items: 1. 
Resolved coupling model\n2. Multi-sphere clumps\n3. Benchmark cases\n4. Dambreak wave 
impact\n5. Coastal engineering

User Answer \u2022A resolved coupling model to directly simulate interaction between two-phase fluids 
and irregularly shaped particles.\u2022The irregularly shaped particles are modeled by 
multi-sphere clumps in DEM.\u2022A number of benchmark cases are conducted and compared 
with experimental works.\u2022A case study of dambreak wave impact on a rock pile 
demonstrates the model's potential to coastal engineering.

TAM \u2022Resolved coupling model is developed to simulate two-phase fluid interactions with
multi-sphere clumps.\u2022The model can be applied in a wide range of particle sizes and
concentrations.\u2022Benchmark cases show good agreement between simulation results and
experimental data.\u2022Dambreak wave impacts on single sphere, cluster of spheres and
cylinder are investigated.\u2022Applications include coastal engineering, sediment
transport and environmental studies.

OPPU \u2022Resolved coupling model is developed to simulate two-phase fluid interactions with
irregularly shaped particles.\u2022Multi-sphere clumps are used as a surrogate of real
particles in simulations.\u2022Benchmark cases show that the proposed method can capture
the particle motion and sediment transport accurately.\u2022Dambreak wave impacts on multi-
particle bed, and dune formation process are investigated by the present model.\u2022The
results provide useful insights into coastal engineering problems involving complex
geometries.

CoPe (ours) \u2022A resolved coupling model is proposed to simulate two-phase fluid interactions with
irregularly shaped particles.\u2022The multi-sphere clumps method is used to represent the
irregularly shaped particles.\u2022Benchmark cases are conducted to verify the accuracy of
the proposed model.\u2022Dambreak wave impact on a rigid cylinder and a rough surface is
simulated by the proposed model.\u2022The results show that the proposed model can be
applied in coastal engineering.

Figure 7: Qualitative example for Abstract Generation
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Review Writing

Query Generate the review text written by a reviewer who has a given an overall rating of \"4.0\" 
for a product with description \"In the taut thriller, when Nancy (Blake Lively) is surfing 
on a secluded beach, she finds herself on the feeding ground of a great white shark. Though 
she is stranded only 200 yards from shore, survival proves to be the ultimate test of 
wills, requiring all of Nancys ingenuity, resourcefulness, and fortitude.\". The summary of 
the review text is \"I found myself holding my breath in certain spots and actually willing 
her to survive. That is the sign of a good movie.\".

User Answer Im gonna get off this rock. Im gonna fight. Nancy (Lively) has just lost her mom and 
travels to her favorite place in the world in order to hopefully reconnect with her one 
last time. What begins as a relaxing beach getaway takes a terrifying turn when she swims 
right into the feeding ground of a Great White Shark. Now, with a severely bitten leg and a 
tiny rock just above the water line Nancy must survive long enough for someone to find her, 
but she isn't the only one fighting for survival. This is a very tense movie that is scary 
in the fact that this is something that could actually happen. Looking back on the movie I 
realized there wasn't a whole lot of dialog but I didn't notice it when I was watching. You 
really feel for her and live and die with every scene. I found myself holding my breath in 
certain spots and actually willing her to survive. That is the sign of a good movie. The 
movie defiantly has the feel of Open Water and if you like movies like that you will enjoy 
this as well. Overall, the way the movie makes you feel makes this more of an experience 
than a movie. I liked this a lot more than I expected to. I give this a B+.

TAM I'm not sure what it says about me that this film had me so engrossed. It was like watching 
a train wreck unfold before your eyes. A young woman goes out into the ocean alone while 
her boyfriend surfs. She gets attacked by a shark and then spends hours trying to get back 
to land. There isn't much dialogue or action but there were moments where I literally held 
my breath as she tried to swim away from the shark. This is one of those films you watch 
because you know something bad is going to happen and you want to see how it plays out. I 
don't think I would have watched it if I didn't already own it. But once I started I 
couldn't stop until the end. Blake Lively does a very good job playing someone who is 
terrified yet determined to live through this experience. If you enjoy suspenseful movies, 
give this one a try

OPPU "Ive been bitten before but never like this. After being attacked by a Great White Shark 
while swimming alone at sea Nancy (Lively) struggles to stay alive until help arrives. This 
was not what I expected. Going into it I thought that there would be lots of blood and gore 
and a lot of suspense. While there were some tense moments the movie was more about how one 
woman copes with the situation rather then just trying to get away. There really wasn't 
much gore or anything like that so if you are looking for a horror type movie this may 
disappoint you. On the other hand though this was very intense and kept me interested 
throughout. I did find myself holding my breath in certain spots and actually willing her 
to survive. That is the sign of a good movie. Overall, a very interesting take on a shark 
attack story. I give this a B+."

CoPe (ours) "Ive been bitten by a shark! Nancy (Lively) is out surfing alone when she is attacked by a 
shark. She manages to get back to shore but not before being injured. When she realizes 
that help is not coming she must find a way to stay alive until someone comes along. This 
is a very tense movie. It is hard to make a movie about one person trying to survive 
against something else without it getting boring or repetitive. This one does a pretty good 
job of keeping you interested and involved in what is happening. There are some parts that 
drag a little but for the most part this is a really good movie. Blake Lively does a great 
job in this and makes you feel everything she is feeling. Overall, a very tense and 
exciting movie that keeps you guessing and wondering if she will make it. I give this a B+.

Figure 8: Qualitative example for Review Writing
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Topic Writing

Query Generate the content for a reddit post Indoor cat doesn't like car ride or outdoors, tries 
to kill me, cat poo in car preferable.

User Answer You got off lucky. When I was in college, one of my roommates had a cat that would spend 
all day on the windowsill, staring out the window (it was an indoor cat). I decided one day 
it would be nice to drive the cat to the park to let it experience the outdoors for its 
first time. In the car, it tried to shred my shoulder, and then camped out under the brake 
pedal, almost causing me to wreck. At the park, it just cowered and wouldn't move. On the 
ride home, it decided the best place to be was on top of my head, using its claws for 
purchase.

TAM I have an indoor/outdoor cat that is about 10 years old now and she has always been very 
skittish around people (she was found as a stray when she was younger). She will not let 
anyone pick her up unless they know how to handle her properly. If you try to grab her by 
the scruff of the neck she will bite your hand off. So we just pet her on the head and rub 
her belly until she calms down enough to be picked up. We also keep her nails trimmed so 
she can't do any real damage if she does decide to attack. \n The problem is that my wife 
wants to take our cat with us when we go camping this weekend but I am worried because she 
hates being in cars and hates going outside. When we first got her she would hide under the 
bed whenever someone came over and wouldn't come out until everyone left. Now she comes out 
from time to time but still only likes to stay inside. \n My question is what should I do? 
Should I put her in a carrier and hope for the best? Or should I leave her at home? Also, 
if it helps, she has never had diarrhea before and she is litter trained.

OPPU I have an indoor/outdoor cat that hates being outside and hates riding in cars. He is also 
very smart (and has been known to open doors). One day we were going on vacation and he was 
not allowed to come with us because of his issues. We put him in a carrier and took it into 
our bedroom so he wouldn't be able to see us leave. When we got back from vacation, he had 
somehow gotten into the house while we were gone, found the carrier, opened it up, climbed 
inside, and then proceeded to shit all over himself and the box. Then he waited until we 
came home, walked around the corner when we entered the room, and jumped at my face as hard 
as he could. It knocked me off balance and I fell onto the bed. The little bastard ran away 
before I could get my hands on him.

CoPe (ours) I was driving my mom's car with her cat in it. The cat had been an indoor cat all of its 
life and didn't like being in the car. It kept trying to get out through the window (it 
wasn't rolled down). So I put on some gloves and held onto him so he couldn't escape. He 
then proceeded to try to claw my eyes out. \n 2) I was driving home from work one day when 
I saw a cat sitting in the middle of the road. I stopped and got out to move it off the 
road. As soon as I touched it, it started spraying pee everywhere. I quickly dropped it 
back into the street and drove away.

Figure 9: Qualitative example for Topic Writing
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