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Abstract

Large language models (LLMs) require con-
tinual knowledge updates to keep pace with
the evolving world. While various model edit-
ing methods have been proposed, most face
critical challenges in the context of lifelong
learning due to two fundamental limitations:
(1) Edit Overshooting - parameter updates in-
tended for a specific fact spill over to unrelated
regions, causing interference with previously
retained knowledge; and (2) Knowledge Entan-
glement - polysemantic neurons’ overlapping
encoding of multiple concepts makes it diffi-
cult to isolate and edit a single fact. In this
paper, we propose MicroEdit, a neuron-level
editing method that performs minimal and con-
trolled interventions within LLMs. By lever-
aging a sparse autoencoder (SAE), MicroEdit
disentangles knowledge representations and ac-
tivates only a minimal set of necessary neu-
rons for precise parameter updates. This tar-
geted design enables fine-grained control over
the editing scope, effectively mitigating inter-
ference and preserving unrelated knowledge.
Extensive experiments show that MicroEdit
outperforms prior methods and robustly han-
dles lifelong knowledge editing across QA
and Hallucination settings on LLaMA1 and
Mistral2. Our code can be found at: https:
//github.com/wangshiqii/MicroEdit.

1 Introduction

Large language models (LLMs) accumulate sub-
stantial world knowledge during pretraining. How-
ever, as real-world knowledge continually evolves,
these models inevitably retain outdated or incorrect
information, necessitating timely updating and cor-
rection. To address this limitation, lifelong knowl-
edge editing (Hartvigsen et al., 2024) emerges as a
strategic solution, aiming to enable continuous and

*Corresponding author
1meta-llama/Meta-Llama-3-8B
2mistralai/Mistral-7B-v0.1

dynamic knowledge updates over extended time
horizons.

Previous knowledge editing methods (Meng
et al., 2022a; Mitchell et al., 2022a) are designed
primarily for single or limited edits, lacking the
capacity to support long-term, multi-round knowl-
edge updates, which often leads to catastrophic
forgetting or model collapse. Thus, these methods
struggle to accommodate the evolving knowledge
requirements in real world scenarios.

Through systematic evaluation experiments with
LLMs, we observe that current editing methods
suffer from two major issues under lifelong editing
scenarios: (1) Edit Overshooting, where updates
inadvertently modify parameters unrelated to the
target knowledge, leading to degraded performance
on unrelated tasks; (2) Knowledge Entanglement,
a phenomenon induced by the polysemanticity of
neurons, where semantically overlapping represen-
tations may lead to unintended modifications of
non-target knowledge, even when edits are applied
to the correct parameters. Section 2 presents a de-
tailed quantified analysis to reveal the origins of
these limitations and their effects on editing relia-
bility and accuracy.

To address these issues, we propose MicroEdit,
a framework for controlled knowledge updates.
It performs neuron-level minimal editing within
LLMs. For Edit Overshooting, the Sparse Autoen-
coder (SAE) activates only a minimal subset of
neurons for knowledge instance, naturally limiting
the scope of reconstruction and parameter updates
to target-specific regions and reducing interference
with unrelated parameters. For Knowledge Entan-
glement, SAE adopts an overcomplete hidden layer,
where sparsely activated neurons are encouraged to
learn monosemantic representations. This reduces
semantic overlap in the parameter space, effectively
mitigating Knowledge Entanglement and enabling
more precise, controlled edits. The contributions
of this paper are summarized as follows:
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Figure 1: (a) The proportion of activated neurons across different layers of the LLM under varying activation
thresholds; (b) The results when only neurons above a specific threshold are activated, we evaluate outputs using
three metrics: Top-1 (exact match of the highest probable token), Top-5 (top-5 token predictions are strictly matched),
and Jaccard similarity (set overlap of top-5 predictions); (c) Results of three activation strategies: activating neurons
above the threshold (Active), randomly selected neurons (Random), and only activating neurons below the threshold
(Mutex); (d) Visualization of semantic similarity among 10 randomly selected knowledge instances; (e-f) neuron
activation similarities of these 10 knowledge instances computed by averaging across all tokens (e) or using only
the last token (f).

• We identify two key limitations in current
knowledge editing methods by quantified anal-
ysis: Edit Overshooting and Knowledge En-
tanglement, which hinder precise and reliable
knowledge modification.

• We develop MicroEdit, an editing method that
performs sparse neuron-level updates via a
pretrained SAE to enhance reliability and pre-
cision in lifelong knowledge editing.

• Extensive experiments are conducted on life-
long knowledge editing across LLaMA and
Mistral models. The results demonstrate the
effectiveness of MicroEdit.

2 Empirical Insights into Editing Limits

We conduct an empirical analysis and identify two
key factors that limit the effectiveness of current
methods in lifelong knowledge editing scenarios.

Inefficient Parameter Updates: Edit Overshoot-
ing. Prior work has shown that not all neurons
contribute equally to the computation of specific
knowledge during inference (Geva et al., 2021; Dai

et al., 2022). We investigate this with three empir-
ical studies (Figure 1(a–c)). We measure neuron
activation rates across layers under varying thresh-
olds in Figure 1(a). Early layers exhibit sparse
activation, which increases in deeper layers, with
output layers being most active. Neurons with ac-
tivation above 0.1 are rare in lower and middle
layers. In Figure 1(b), we compare original out-
puts with those obtained by masking low-activation
neurons. We find that retaining only the top 60% ac-
tivated neurons preserves performance, indicating
that inference relies on a subset of critical neurons.
Further experimental results in Figure 1(c) confirm
that only highly activated neurons are essential for
representing the target knowledge. These results
suggest that updating only the parameters associ-
ated with highly activated neurons is sufficient for
editing. However, existing methods often ignore
this sparsity and perform overly broad updates, af-
fecting irrelevant parameters, a phenomenon we
refer to as Edit Overshooting. The key challenge
lies in identifying and updating only the parameters
most relevant to the target knowledge.
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Figure 2: Overview of MicroEdit. (a) illustrates the Switch Mechanism, which distinguishes between in-scope
(Green Square) and out-of-scope (Red Square) knowledge for inference. (b) shows the knowledge modification
process using the SAE. The model’s original intermediate features are mapped to a sparse set of neurons via the
SAE encoder. These sparse activations are then decoded through the corresponding sub-parameters of the decoder
to reconstruct a targeted representation, enabling the model to modify the original output (e.g., from Cat to Dog).

Neuron-Level Semantic Coupling: Knowledge
Entanglement. In addition to the phenomenon
discussed above, deep neural networks neurons are
polysemantic, meaning that individual neurons of-
ten encode multiple, semantically unrelated pieces
of information (Bricken et al., 2023; Elhage et al.,
2022). To empirically study this issue, we con-
ducted an activation similarity analysis across dif-
ferent knowledge statements (Figure 1 (d-f)): In
Figure 1(d), we show the semantic similarity be-
tween 10 randomly selected knowledge statements.
Figure 1(e) and (f) report neuron activation simi-
larities computed by averaging across all tokens
or using only the last token. Interestingly, even
for semantically unrelated knowledge pairs, such
as knowledge 5 "Bananas contain high amounts
of potassium" and knowledge 8 "The Sun revolves
around the Earth in geocentric models", we ob-
serve up to 18% overlap in activated neurons. This
indicates that modifying the parameters associated
with one piece of knowledge may unintentionally
impact others encoded by the same neurons. We
refer to this phenomenon as Knowledge Entan-
glement, which highlights the risk of knowledge
interference when updating shared neural repre-
sentations. Such representational overlap poses
a fundamental challenge to editing precision and
motivates the need for more disentangled update
mechanisms. The central challenge is to isolate
more disentangled features that uniquely represent
the target knowledge without disrupting others.

3 Preliminary

3.1 Lifelong Knowledge Editing
Lifelong Knowledge Editing refers to the process
of incrementally transforming an initial model fθ0
into an edited model fθT through multiple rounds
of knowledge updating, enabling continual incorpo-
ration of new information while preserving existing
knowledge and ensuring behavioral stability of the
model. We denote the model update process as
fθ0 → fθT , where θ0 represents the initial param-
eters of the language model, and θT denotes the
parameters after T rounds of knowledge editing.
Each editing objective is defined as a pair (xe, ye)
in edit dataset Dedit , where xe is the knowledge
prompt and ye is the desired output that the initial
model fails to produce correctly. Accordingly, the
editing objective can be formally defined as:

fθT (xi) =

{
yi if xi ∈ Dedit

fθ0(xi) if xi /∈ Dedit
(1)

To evaluate the effectiveness of model editing
methods, we adopt the following three metrics:

Reliability measures the average accuracy of
the model on the edited samples after the T -th edit,
indicating whether the model successfully incorpo-
rates the intended knowledge change.

E(xe,ye)∼{(xt
e,y

t
e)}Tt=0

1 {argmaxyfθT (y | xe) = ye}
(2)
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Generalization measures the average accuracy
on an extended datasetR(x, y) related to the edited
knowledge, reflecting the model’s ability to gener-
alize the edit to semantically similar contexts.

E(x′
e,ye)∼{R(xt

e,y
t
e)}Tt=0

1
{
argmaxyfθT (y | x′e) = ye

}

(3)
Locality measures the relative accuracy change

on unrelated dataO(x, y) before and after the T -th
edit, assessing whether the edit introduces unde-
sired side effects on the model’s original behavior.

E(x′,y′)∼{O(xt,yt)}Tt=0
1
{
argmaxyfθT (y | x′) = y′

}

(4)

3.2 Sparse Autoencoder
Sparse Autoencoders (SAEs) are neural architec-
tures that learn efficient and structured representa-
tions by encouraging sparsity in the hidden layer.
This is typically achieved by applying a sparse
activation function ϕ(·) to limit the number or mag-
nitude of active neurons for each input. Wenc ∈
Rd×n and benc ∈ Rn is the weight and bias of SAE
encoder. Wdec ∈ Rn×d and bdec ∈ Rd is the weight
and bias of decoder. Given an input vector z ∈ Rd,
the encoder maps it to a hidden representation:

ĥ = fenc(z) = ϕ(z ·Wenc + benc) (5)

The decoder reconstructs the featrue from the
sparse code:

ẑ = fdec(ĥ) = ĥ ·Wdec + bdec (6)

The imposed sparsity promotes more interpretable
and disentangled representations, making sparse
autoencoders (SAEs) valuable for tasks such as
model interpretability, concept discovery, and con-
trollable model editing.

4 Methodology

To address the challenges of Edit Overshooting and
Knowledge Entanglement in lifelong knowledge
editing, we propose MicroEdit, a neuron-level edit-
ing framework consisting of two components: a
Sparse Autoencoder (SAE) for precise localization
and a Switch module for scope control. The overall
framework is illustrated in Figure 2.

4.1 SAE for Knowledge Editing
Recent work (Geva et al., 2021; Meng et al., 2022a)
reveals that Transformer FFNs function as key-
value memories and are effective targets for knowl-
edge editing. Similarly, SAE can be viewed as a

key-value structure, where Wenc determines the
key activation patterns, and Wdec serves as the
value generator. As shown in Figure 2(b), we freeze
the parameters of the LLM and the SAE encoder,
updating only the SAE decoder during editing. We
hook the pretrained SAE into the l-th layer of the
LLM, and extract the residual stream z as the SAE
input for each prompt. Top-k activation is adopted
in the SAE to enforce sparsity by retaining only the
k most activated neurons. The inference process of
the encoder is as follows:

ĥ = Topk(z ·Wenc + benc) (7)

Unlike conventional autoencoding objectives that
aim to reconstruct the original input z, our goal is
to steer the model’s behavior toward generating the
desired output y. In this setting, the reconstruction
ẑ serves as an intervention that alters the model’s
internal representations to produce the target out-
put. To ensure that model behavior changes only
in a controlled and localized manner, our method
confines representation modifications to a minimal
subspace. Specifically, due to the Top-k sparse ac-
tivation, the modified residual ẑ is reconstructed
solely from a limited set of decoder vectors:

ẑ =
∑

i∈Ik
ĥi ·Wdec[i] + bdec (8)

Ik ⊂ {1, ..., n} denotes the position indices of
the Top-k activated neurons within the SAE. As a
result, the update to the model’s internal represen-
tation is constrained within the subspace spanned
by the selected decoder weights:

△z = ẑ− z ∈ Span(Wdec[Ik]) (9)

This subspace constraint naturally limits the propa-
gation of edits, reduces interference with unrelated
knowledge, and contributes to the stability of suc-
cessive edits. Accordingly, the loss function for the
editing process at round t is defined as follows:

Ledit = − logP (yte | ẑ(t); θ(t−1)
dec ), (10)

where ẑ(t) = fdec(fenc(f
≤l
LM(xte))), (11)

yte = f>l
LM(ẑ(t)). (12)

where θ
(t−1)
dec denotes the trainable parameters of

the decoder after t− 1 rounds of editing, f≤l
LM de-

notes the computation of the language model from
the input up to and including the l-th layer, while
f>l

LM denotes the computation from the (l + 1)-th
layer to the output.
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Table 1: Main results for ZsRE. Bold is the best result, underline denotes the second-best. T : Num Edits.

Method QA

T = 1 T = 10 T = 100 T = 1000

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

LLaMA-3-8B

FT 1.00 0.99 0.02 0.67 0.69 0.64 0.01 0.45 0.64 0.57 0.02 0.41 0.62 0.56 0.02 0.40
FT-EWC 1.00 0.99 0.02 0.67 0.69 0.63 0.01 0.44 0.65 0.58 0.02 0.42 0.62 0.56 0.02 0.40
ROME 0.99 0.97 0.96 0.97 0.42 0.42 0.19 0.34 0.07 0.07 0.01 0.05 0.02 0.02 0.01 0.02
MEMIT 0.88 0.69 1.00 0.86 0.77 0.69 0.98 0.81 0.76 0.70 0.89 0.78 0.00 0.00 0.00 0.00
MEND 0.98 0.97 0.99 0.98 0.00 0.01 0.11 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 0.90 0.28 1.00 0.73 0.90 0.28 1.00 0.73 0.90 0.28 1.00 0.78 0.90 0.39 1.00 0.76
WISE 0.95 0.95 0.84 0.91 0.86 0.80 0.99 0.88 0.71 0.64 1.00 0.78 0.61 0.57 1.00 0.73

MicroEdit 1.00 0.92 0.95 0.96 0.93 0.78 0.95 0.89 0.89 0.71 0.97 0.86 0.87 0.65 1.00 0.84
Mistral-7B

FT 1.00 0.99 0.01 0.67 0.77 0.72 0.02 0.50 0.74 0.67 0.05 0.49 0.70 0.65 0.08 0.48
FT-EWC 1.00 0.99 0.01 0.67 0.77 0.72 0.01 0.50 0.74 0.67 0.05 0.49 0.70 0.65 0.08 0.48
ROME 0.87 0.83 0.99 0.90 0.44 0.42 0.41 0.42 0.07 0.07 0.01 0.05 0.01 0.01 0.00 0.01
MEMIT 0.88 0.85 1.00 0.91 0.23 0.22 0.23 0.23 0.03 0.03 0.01 0.02 0.04 0.04 0.02 0.03
MEND 0.99 0.96 1.00 0.98 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GRACE 0.78 0.36 1.00 0.71 0.77 0.36 1.00 0.71 0.79 0.36 1.00 0.72 0.78 0.36 1.00 0.71
WISE 0.99 0.97 0.99 0.98 0.85 0.81 0.99 0.88 0.78 0.73 1.00 0.84 0.66 0.63 1.00 0.76

MicroEdit 0.95 0.68 1.00 0.88 0.91 0.78 1.00 0.89 0.86 0.73 1.00 0.86 0.80 0.68 0.98 0.82

4.2 Switch Mechanism

The original SAE is trained to reconstruct ẑ to ap-
proximate the original hidden states z. But recon-
struction is not fully accurate, forcing all knowl-
edge to pass through the SAE during inference
may distort non-target information and compro-
mise model stability. Motivated by the SAE’s capa-
bility in anomaly detection, we introduce a switch
mechanism to distinguish between in-scope knowl-
edge and out-of-scope knowledge as illustrated in
Figure 2(a).

Specifically, the switch mechanism computes
SAE output ẑ for all inputs, but substitutes ẑ for
the original hidden state z only when the input is in-
scope. Otherwise, z is retained and propagated un-
changed. This design ensures that unrelated knowl-
edge remains unaffected during the editing process.
To support this mechanism, we introduce the Aver-
age Reconstruction Distance (ARD) as follows:

Lrec = ARD(xedit) =
1

α · S
S∑

s=1

∥ẑs − zs∥22
(13)

where S is the length of the edited tokens, D is the
feature dimension of each token, α is the scaling
factor. We apply a threshold τ on ARD to separate
editable targets from high-ARD local knowledge.

Thus, the output of MicroEdit during inference is:

MicroEdit(z) =

{
ẑ if ARD ≤ τ

z if ARD > τ
(14)

At the same time, we also use ARD as an auxil-
iary loss to enlarge the gap between edited and unre-
lated knowledge. However, during editing training,
we observe that jointly optimizing for editing accu-
racy and ARD deviation is challenging. To address
this, we adopt a two-stage training strategy: (1)
First, optimize the reconstruction loss Lrec to max-
imize deviation from the global ARD reference; (2)
Then, optimize the combined objectiveLrec+Ledit,
encouraging both ARD deviation and accurate edit-
ing. To ensure localized updates during knowledge
editing, we apply an explicit gradient mask to the
Wdec. The mask matrix is defined as:

M (t)(i, ·) =
{
1, if i ∈ I(t)k

0, otherwise
(15)

Let G(t) = ▽Wdec
Lt be the full gradient, and

M (t) ∈ {0, 1}n×d is the broadcasted row mask.
The decoder update becomes:

W
(t)
dec = W

(t−1)
dec − η · (M (t) ⊙G(t)) (16)

This ensures that only the activated neurons influ-
ence the decoder during each editing round. The
pseudo-code of our method is provided in Algo-
rithms 1 and 2 in appendix B.2.
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Table 2: Main results for SelfCheckGPT. Bold is the best result, underline denotes the second-best. - denotes
out-of-range values without comparative significance. T : Num Edits.

Hallucination

LLaMA-3-8B Mistral-7B

T = 1 T = 10 T = 100 T = 600 T = 1 T = 10 T = 100 T = 600

Method Rel. Loc. Rel. Loc. Rel. Loc. Rel. Loc. Rel. Loc. Rel. Loc. Rel. Loc. Rel. Loc.

FT 1.01 0.06 4.93 0.08 3.40 0.16 4.01 0.22 1.02 0.05 3.01 0.10 2.20 0.18 2.56 0.24
FT-EWC 1.01 0.06 4.90 0.08 3.41 0.16 4.01 0.22 1.02 0.05 3.06 0.10 2.21 0.18 2.56 0.24
ROME 1.93 0.97 8.76 0.65 - 0.02 - 0.02 1.89 0.99 2.67 0.91 - 0.02 - 0.02
MEMIT 4.37 1.00 2.69 0.99 - 0.01 - 0.00 1.60 1.00 11.32 0.93 - 0.06 - 0.06
MEND 4.17 0.98 - 0.01 - 0.00 - 0.00 3.39 0.99 - 0.01 - 0.00 - 0.00
GRACE 1.03 1.00 9.18 1.00 9.92 1.00 9.94 1.00 1.15 1.00 7.23 1.00 11.09 1.00 9.24 1.00
WISE 1.47 0.88 1.22 0.92 1.41 1.00 3.70 1.00 1.29 0.98 1.47 0.95 2.48 0.94 6.22 0.94

MicroEdit 1.10 0.99 1.04 1.00 1.10 1.00 2.26 1.00 1.22 1.00 1.04 1.00 1.24 1.00 2.20 1.00

5 Experiment

5.1 Experimental Setup

Datasets and Evaluation Metrics. Following
(Hartvigsen et al., 2024), we select ZsRE (Levy
et al., 2017) as a closed-book question-answering
dataset to evaluate knowledge editing capabilities,
and SelfCheckGPT (Potsawee et al., 2023) as a
benchmark for hallucination correction. For ZsRE,
we assess MicroEdit using three metrics: Reliabil-
ity, Generalization, and Locality. For the halluci-
nation dataset, the Generalization is not applicable,
we instead use Perplexity (PPL) to evaluate Relia-
bility, while still computing Locality to assess the
model performance after editing.

Models and Baselines. We evaluate our pro-
posed method, MicroEdit, on two widely used
large language models, LLaMA-3-8B and Mistral-
7B. Meanwhile, we employ the corresponding
SAEs: sae-llama-3-8b-32x from EleutherAI3 and
mistral-7b-res-wg from SAE Lens (Joseph et al.,
2024). Comparisons are made against a broad
range of baselines, including direct parameter mod-
ification methods such as standard fine-tuning
(FT), continual learning-based fine-tuning with
Elastic Weight Consolidation (FT-EWC), locate-
then-edit approaches (ROME, MEMIT), and meta-
learning based method (MEND). We further com-
pare against parameter-preserving methods, includ-
ing hidden state modification (GRACE), and side
MLP memory augmentation (WISE). More details
about baselines can be found in Appendix D.

3EleutherAI/sae-llama-3-8b-32x

5.2 Main Results

To demonstrate the effectiveness of MicroEdit, we
conduct experiments on two foundational language
models under both QA and Hallucination settings.
The results are shown in Table 1 and Table 2.
Across nearly all configurations, MicroEdit consis-
tently achieves strong performance, especially in
long-term sequential editing scenarios. In contrast,
fine-tuning-based methods tend to overfit rapidly.
The locate-then-edit approach suffers from signifi-
cant Edit Overshooting problem during sequential
edits, often leading to model collapse. MEND fails
entirely after multiple rounds of editing. GRACE
performs well in terms of reliability and locality,
but demonstrates limited generalization capability.
While WISE accounts for knowledge storage con-
straints, it is still affected by Knowledge Entangle-
ment, leading to performance drop as the number
of edits T increases.

In addition, we scale the experiment to 3K and
5K edits. As shown in Table 3, MicroEdit outper-
forms the strongest baselines GRACE and WISE,
with a 12% improvement over the second-best
method at 5K edits. GRACE maintains high re-
liability but suffers from poor generalization, while
WISE shows performance degradation as the num-
ber of edits increases. Only MicroEdit achieves
stable and balanced performance under extremely
long sequential editing, demonstrating its effective-
ness in lifelong knowledge editing scenarios.

5.3 Ablation Study

We conduct a series of ablation studies to evaluate
the impact of key components as shown in Table 4.

(1) Ablating the Top-k sparse activation leads
to a substantial performance drop, rendering the
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(c)(b)(a)

Figure 3: (a) Performance of MicroEdit across different layers of LLaMA-3-8B; (b–c) The ARD of ZsRE and
SelfCheckGPT data during the inference stage. LLaMA-3-8B.

Table 3: Scaling to 3K and 5K edits. Bold is the best
result. ZsRE. LLaMA-3-8B.

Method T = 3000 T = 5000

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

GRACE 0.89 0.28 1.00 0.72 0.90 0.27 1.00 0.66
WISE 0.47 0.44 1.00 0.64 0.42 0.40 1.00 0.61
MicroEdit 0.83 0.59 1.00 0.81 0.80 0.54 1.00 0.78

Table 4: Results of ablation study using 1K edits. Bold
font indicates the best result. ZsRE. LLaMA-3-8B.

Rel. Gen. Loc. Avg.

MicroEdit 0.87 0.65 1.00 0.84
- TopK activation 0.27 0.27 1.00 0.51
- Switch Mechanism 0.85 0.64 0.67 0.72
- Distance Regularization 0.50 0.43 1.00 0.64

editing module nearly ineffective. This degradation
arises from two key factors. First, the lack of spar-
sity amplifies Edit Overshooting, resulting in pro-
nounced forgetting of unrelated knowledge. Sec-
ond, without sparsity constraints, ARD becomes
difficult to regulate, undermining the effectiveness
of the switch mechanism and further weakening
the editing capability.

(2) The absence of the switch mechanism leads
to a notable degradation in Locality, as existing
SAE cannot reliably reconstruct the full range of
original representations. However, model retains
around 67% performance, showing a degree of ro-
bustness. This indicates that the switch mechanism
can effectively isolate non-target knowledge during
editing, enhancing both precision and stability.

(3) Without the Distance Regularization step, the
model struggles to keep ARD below the average
while optimizing toward the editing target, leading
to uncontrolled ARD increases, which hinder the
separation of in-scope and out-of-scope knowledge,
ultimately degrading editing performance.

5.4 Detailed Analysis and Discussion

Effect of Editing Layer on SAE Behavior. To
examine the effect of layer depth on MicroEdit, we
conduct editing experiments at early, middle, and
late layers. The results in Figure 3(a) show that edit-
ing at early layers leads to suboptimal performance,
as these layers mainly capture low-level linguis-
tic patterns, which makes it difficult to precisely
localize target knowledge. Performance improves
in the middle layers and reaches its peak in the
later layers. We attribute this to the hierarchical
structure of language models, where semantic rep-
resentations become increasingly refined in deeper
layers. Late layers tend to encode factual knowl-
edge more explicitly, enabling more targeted and
stable edits. Editing at these layers aligns better
with the model’s representational structure, allow-
ing MicroEdit to more precisely locate and modify
neurons associated with the target knowledge, lead-
ing to more effective and robust outcomes.

Effect of k in Top-k Activation. We further
analyze how the choice of k affects editing perfor-
mance. We use the SAE trained on the LLaMA-
3-8B model by EleutherAI, which is roughly fol-
lowing the recipe detailed in (Gao et al., 2024).
Accordingly, this SAE is trained with k = 192 ac-

Figure 4: Model performance under different Top-k
settings.

33877



tivated neurons. To explore the influence of this
hyperparameter, we conduct experiments by vary-
ing the value of k. The results in Figure 4 show
that the original setting of k = 192 yields the best
performance. When k is too small, the activated
neurons fail to adequately cover all relevant knowl-
edge features, resulting in incomplete representa-
tion. Conversely, when k is too large, neuron shar-
ing across different knowledge instances becomes
more frequent, leading to interference between in-
jected knowledge and a decline in performance. In
light of these findings, we retain the original SAE
setting and use k = 192 in our experiments.

Effect of ARD Threshold on Edit-Locality
Separation. We analyze the impact of the ARD
threshold on editing performance. During infer-
ence, ARD is used to distinguish between in-scope
and out-of-scope knowledge, as shown in Fig-
ure 3(b–c). In the hallucination experiment Fig-
ure 3(c), a threshold of 0.55 effectively separates
in-scope from out-of-scope knowledge. In the QA
setting Figure 3(b), although the the separation
is less distinct with some overlap, the model still
achieves robust editing performance, demonstrat-
ing strong resilience and generalization. We at-
tribute the difference to dataset characteristics: the
QA data has simple structure and higher seman-
tic overlap, leading to limited activation variation
and less clear ARD separation. In contrast, the
Hallucination data exhibits greater semantic diver-
sity, promoting more stable and separable repre-
sentations. More details are in Appendix A.2 and
Appendix C.3.

6 Related Works

6.1 Knowledge Editing

Knowledge editing aims to modify models pre-
cisely while maintaining their performance and sta-
bility. ROME and MEMIT (Meng et al., 2022a,b)
insert factual knowledge into specific layers iden-
tified through causal tracing. While WilKE (Hu
et al., 2024) selects specific layers for each fact. To
isolate edit effects, AlphaEdit (Fang et al., 2025)
applies a null-space constraint, confining changes
to the target knowledge. Another strategy exempli-
fied by MEND is to train a small editing network to
generate parameter updates (Mitchell et al., 2022a;
Tan et al., 2024). In contrast, other methods pre-
serve original model parameters by using external
memory or small trainable modules. SERAC and
Grace (Mitchell et al., 2022b; Hartvigsen et al.,

2024) keep new information in an explicit memory
or local codebook, avoiding any change to base
weights. T-Patcher (Huang et al., 2023) introduces
a small number of additional neurons, achieving the
desired edits with minimal editing cost. MELO (Yu
et al., 2024), inspired by DyLoRA (Valipour et al.,
2023), implements edits via LoRA without altering
the model’s core parameters. REMEDI (Hernandez
et al., 2024) maps natural language statements to
fact encodings within a model’s internal representa-
tions. WISE (Wang et al., 2024a) use a side mem-
ory to modify and store knowledge. STA (Wang
et al., 2025) identifies target atoms from the SAE to
construct a behavioral steering vector that guides
LLMs behavior. EasyEdit (Wang et al., 2024b)
integrates multiple knowledge editing methods to
construct a unified framework for knowledge edit-
ing in LLMs.

6.2 Sparse Autoencoder

Sparse Autoencoder is an autoencoder that learns
interpretable representations by enforcing sparse
activations in the hidden layer. k-Sparse Autoen-
coders are proposed by (Makhzani and Frey, 2013).
By retaining only the top k most highly activated
neurons, they effectively improves classification
performance and is well-suited for large-scale prob-
lems. Recently, Sparse Autoencoders have been
widely used for interpreting LLMs (Shu et al.,
2025). By reconstructing internal activations of
the model into more monosemantic representations,
SAEs help clarify previously uninterpretable neu-
ron behaviors caused by polysemanticity, improv-
ing model transparency (Cunningham et al., 2023;
Bricken et al., 2023; Templeton et al., 2024). In
addition, numerous open-source SAE toolkits pre-
trained on various LLMs have been released (He
et al., 2024; Lieberum et al., 2024; Joseph et al.,
2024). Research on SAEs continues to advance.
OpenAI has further explored existing SAE frame-
works and discovered clean scaling laws with re-
spect to autoencoder size and sparsitys (Gao et al.,
2024). (O’Neill and Bui, 2024) leverages SAEs to
identify interpretable computational circuits within
LLMs. (Paulo et al., 2024) proposes a pipeline for
generating and evaluating SAE feature interpreta-
tions.

7 Conclusion

In this work, we identify two core challenges in
lifelong model editing: Edit Overshooting caused
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by excessive updates to irrelevant parameters and
Knowledge Entanglement which stems from the
inherent polysemanticity of neurons in LLMs. To
alleviate these issues, we propose MicroEdit, which
adopts Top-k sparse activation to restrict parame-
ter updates and leverages the structural properties
of an overcomplete sparse autoencoder to encour-
age more monosemantic neuron representations,
thereby reducing representation overlap and unin-
tended interference. Extensive experiments demon-
strate that MicroEdit achieves competitive perfor-
mance across different scenarios and LLMs.

Limitation

MicroEdit leverages on a pre-trained Sparse Au-
toencoder (SAE) as a pluggable component to
extract and modify internal representations. Ap-
plying MicroEdit to less common or customized
models may require training an SAE from scratch,
thereby introducing additional time and computa-
tional costs. The positive aspect is that most main-
stream LLMs already come with publicly available
SAEs, such as the widely used LLaMA, Mistral,
Gemma, GPT, Pythia, etc. Also, the SAE ecosys-
tem is developing and has established a solid foun-
dation. Moving forward, we will further explore
broader and more general knowledge disentangle-
ment mechanisms and implementation paths.
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Figure 5: Model performance across multilingual sce-
narios.

German and French subsets of the multilingual
knowledge editing dataset MzsRE (Wang et al.,
2024c). The results are presented in Figure 5.
These results demonstrate that our approach main-
tains strong performance across datasets with dif-
ferent characteristics, confirming its robustness and
broad applicability.

A.2 ARD Threshold Analysis

The ARD threshold plays a critical role in our
Switch Mechanism. The design of ARD was in-
spired by the anomaly detection capability of the
SAE. For the initial threshold setting, we referred to
the SAE model’s response to the data distribution.
Specifically, we calculated the average ARD over
1k samples using the 30th-layer SAE in LLaMA3-
8B, obtaining an initial threshold value of 0.55. To
further validate the rationality of this threshold set-
ting strategy, we dynamically adjusted the ARD
threshold during training and compared the edit-
ing performance under different threshold values.
Experimental results in Table 5 show that the best
performance was achieved when ARD threshold
was set to 0.55, which confirms the effectiveness
of our initial threshold selection strategy.

Table 5: Results of different ARD threshold study using
1K edits. Bold font indicates the best result. ZsRE.
LLaMA-3-8B.

ARD threshold Rel. Gen. Loc. Avg.
0.75 0.86 0.65 0.73 0.75
0.65 0.86 0.65 0.85 0.79
0.55 0.86 0.64 0.97 0.82
0.45 0.83 0.61 1.00 0.81
0.35 0.71 0.47 1.00 0.73

Table 6: Results under different editing scales. ZsRE.
LLaMA-3-8B.

Rel. Gen. Loc. Avg.

T = 3K 0.83 0.59 1.00 0.81
T = 5K 0.80 0.54 1.00 0.78
T = 10K 0.72 0.47 1.00 0.73

We observed that the ARD threshold affects
the Locality (Loc.) score significantly. When the
threshold is set too low, it fails to effectively dis-
tinguish between edited and irrelevant knowledge.
Conversely, an excessively high threshold leads
to a large amount of irrelevant knowledge being
erroneously transmitted to the SAE, resulting in
unpredictable outcomes and degrading Loc. per-
formance. As the ablation study results in Table 4
demonstrate, when the Switch Mechanism is re-
moved and all knowledge is passed through the
SAE, the model can still maintain a Loc. score of
0.67. This is mainly because SAE is pre-trained
with a reconstruction loss, which encourages it
to preserve the original outputs for out-of-scope
knowledge, thereby providing MicroEdit with a
degree of fault tolerance. Even when there is an
overlap in the ARD distribution between edited and
non-edited samples, the SAE may still preserve the
out-of-scope knowledge that has been mistakenly
edited, thereby maintaining a relatively high Loc.
score.

A.3 Larger-scale Experiments

We conducted another 10k-editing experiment, and
the results are in Table 6. It can be observed that the
performance progressively declines with increasing
T . It can be attributed to the common neuron pol-
ysemy phenomenon in neural networks, which is
nearly unavoidable in LLMs under current architec-
tures and training paradigms. Notably, despite per-
formance degradation at 10k edits, our method still
maintains reasonably good performance, indicat-
ing that our proposed disentanglement mechanism
remains effective.

B Experimental Details

B.1 Hyperparameters

In our experiments, we freeze both the parameters
of the base language model and the SAE encoder,
and train only the decoder of the SAE. For all mod-
els, batch size is 1, the learning rate is set to 5e-5
with the Adam (Kingma, 2014) optimizer and the α
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Algorithm 1 Editing Stages

Input: Edit data Dedit; Edit round T ; LLM f(·);
the designated layer l in LLM; SAE encoder
fenc and decoder fdec; The trainable parameter
W

(t−1)
dec at round t

Output: Trained decoder parameters θdec
for each record (xte, y

t
e) from Dedit, t ∈ [T ] do,

z← f≤l(xte)
ĥ← fenc(z) = Topk(z ·Wenc + benc)

▷ Eq. 7
ẑ← fdec(ĥ) = ĥ ·W (t−1)

dec + bdec
▷ Eq. 8

Stage 1: Distance Regularization
L ← Lrec(z, ẑ) ▷ Eq. 13
W

(t′)
dec ←W

(t−1)
dec − η · (M (t) ⊙▽Wdec

L)
▷ Eq. 16

Stage 2: Reconstruction Editing
L ← Lrec(z, ẑ) + Ledit(f>l(ẑ), yte)

▷ Eq. 10
W

(t)
dec ←W

(t′)
dec − η · (M (t) ⊙▽Wdec

L)
▷ Eq. 16

end for
return the final SAE θdec

is 600. For LLaMA-3-8B, we use the sae-llama-3-
8b-32x model from EleutherAI4 , with an interme-
diate expansion dimension of 32. We set k = 192,
a sparsity threshold of 0.55 for T ≥ 100, and 0.5
for T < 100. The SAE is inserted at layer 30. For
Mistral-7B, we use the 7b-res-wg model from SAE
Lens (Joseph et al., 2024), with an intermediate
expansion of 16. We set k = 400, a threshold of
0.15 for T ≥ 100, and 0.1 for T < 100. The SAE
is inserted at layer 24.

B.2 Pseudo Code of MicroEdit

The pseudo-code of the MicroEdit editing stage
is in Algorithm 1, and the inference stage is in
Algorithm 2.

C Datasets Details

C.1 ZsRE

ZsRE is a classic zero-shot question-answering
dataset widely used in the model editing litera-
ture. Each record in the dataset contains a prompt-
answer pair (xedit, yedit) that requires editing, a
paraphrased prompt xgen for evaluating general-
ization, and a locality pair (xloc, yloc) for mea-

4EleutherAI/sae-llama-3-8b-32x

Algorithm 2 Inference Stage

Input: Test data Dtest; LLM f(·);the designated
layer l in LLM; SAE encoder fenc and decoder
fdec; threshold τ
Output: LLM output
for each query x ∈ Dtest do

z← f≤l(x)
ĥ← fenc(z) = Topk(z ·Wenc + benc)

▷ Eq. 7
ẑ← fdec(ĥ) = ĥ ·Wdec + bdec ▷ Eq. 8
if ARD(z, ẑ) ≤ τ then ▷ Eq. 14

Edited Output← f>l(ẑ)
else

Original Output← f>l(z)
end if

end for

suring locality preservation. We adopt the same
train/test split as (Mitchell et al., 2022a), consist-
ing of 163,196 training examples and 19,086 test
examples. Notably, MEND is the only method that
requires fitting a hyper network on the training set;
other methods discard the training set and directly
perform edits and evaluations on the test set.

C.2 SelfCheckGPT

Following GRACE, we adopt the SelfCheckGPT
dataset to evaluate the ability of knowledge editing
methods to alleviate hallucinations. This dataset
consists of factually incorrect sentences generated
by GPT-3, each paired with a corrected version
derived from Wikipedia. Compared to the ZsRE
dataset, SelfCheckGPT features longer, more com-
plex sentences that more closely resemble real-
world knowledge editing scenarios. Each instance
is formatted as either (xedit, yedit) and (xloc, yloc),
aligning with the standard editing and locality
evaluation settings. Unlike GRACE, which con-
ducts experiments on GPT2-XL(1.5B), we per-
form experiments on larger scale LLMs such as
LLaMA(8B) and Mistral(7B). Due to memory con-
straints similar to those in (Wang et al., 2024a),
we follow the same dataset split strategy, using
a train/test split of 306/600 samples. Except for
MEND, which requires training on the training set,

Table 7: Datasets statistics

SETTING EDITING DATA T Pre-edit(LLaMA/Mistral)

QA ZsRE 1000 0.27/0.36 ACC
Hallucination SelfCheckGPT 600 15.83/11.06 PPL
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Figure 6: t-SNE visualization of semantic representations from the ZsRE and SelfCheckGPT datasets

all other methods perform edits exclusively on the
test set. Table 7 reports the corresponding dataset
statistics and Table 8 provides illustrative examples
from the two datasets.

C.3 Analysis of the Dataset

We conduct a visualization analysis of the Edit
Prompts and Locality Prompts from the ZsRE and
SelfCheckGPT datasets as Figure 6. The results
show that representations in SelfCheckGPT exhibit
clearer separation and less semantic overlap, mak-
ing it more suitable for long-term editing with im-
proved stability and reduced interference. In con-
trast, ZsRE exhibits certain semantic overlaps, in-
creasing the risk of knowledge interference and
forgetting, thus posing greater challenges for long-
term editing. Nevertheless, our method achieves
strong performance on both datasets, demonstrat-
ing its robustness and effectiveness.

D Implementation of Baselines

FT Following (Hartvigsen et al., 2024) We use
Fine-tuning updates model parameters by minimiz-
ing the task-specific loss on the new data, allowing
the model to adapt to the edited knowledge.

FT-EWC (Hartvigsen et al., 2024)incorporates
Elastic Weight Consolidation (EWC) during fine-
tuning, aiming to mitigate catastrophic forgetting
in continual learning by regularizing updates to
parameters deemed important for previous tasks.

ROME (Meng et al., 2022a) utilizes causal trac-
ing techniques to localize factual knowledge within
MLP layers and performs parameter editing by
solving a constrained least-squares problem. Under
the assumption that MLP layers serve as the pri-
mary knowledge storage mechanism (Geva et al.,
2021), ROME modifies a specific MLP layer in the
model using a rank-one update to inject new factual
associations.

MEMIT (Meng et al., 2022b) is also built on
the assumption that the FFN functions as a knowl-
edge key-value store. Unlike ROME, which up-
dates only a single layer, MEMIT performs joint
updates across multiple layers, enabling batch edit-
ing of a large number of facts. In sequential editing
scenarios, MEMIT requires real-time correction
whenever the model produces an error, often involv-
ing multiple rounds of operations on the original
model.

MEND (Mitchell et al., 2022a) updates the
model by introducing a hyper-network that adjusts
the gradients generated during standard finetuning.
Specifically, it approximates the original gradients
with a rank-1 decomposition and uses this represen-
tation to derive new update directions, which are
then applied to specific layers of the target model.

GRACE (Hartvigsen et al., 2024) introduces a
dynamic discrete key-value memory that evolves
via key addition, expansion, and splitting. At in-
ference, it retrieves the nearest key and selectively
replaces the corresponding hidden activation to en-
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able precise knowledge updates.

WISE (Wang et al., 2024a) introduces a dual-
memory architecture for lifelong knowledge edit-
ing in large language models, where immutable
main memory preserves pretrained knowledge and
editable side memory stores newly edited facts. A
routing mechanism dynamically selects between
memories during inference, while a knowledge
sharding strategy allocates edits into disentangled
subspaces to prevent interference. This design ef-
fectively balances reliability, generalization, and
locality, overcoming the trade-offs faced by prior
editing methods.

D.1 Case Study
We present representative successful editing cases
from ZsRE and SelfCheckGPT datasets in Table 9.
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Table 8: Datasets examples

Dataset Type Text

ZsRE

xedit, yedit What university did Watts Humphrey attend?
University of Michigan

xgen, yedit What university did Watts Humphrey take part in?
University of Michigan

xedit, yedit Who played desmond doss father in hacksaw ridge?
Hugo Weaving

SelfCheckGPT

xedit, yedit This is a Wikipedia passage about heinz christian pan-
der. Heinz Christian Pander (1794 - 1865) was a German
anatomist and embryologist who was born in Riga, Latvia.
He studied medicine at the University of Dorpat and later at
the University of Berlin.In 1820, he took part in a scien-
tific expedition to Bokhara as a naturalist.

xloc, yloc Tired and restlessly, drifting in and out of sleep. Hearing
crashing and banging, thinking the roof will cave in. Not
alert enough to quite know what.it was, I yelled loudly
for whoever was making those noises at such an hour to
stop. They heard and listened, I’m guessing

Table 9: Case study

State Text

Prompt What language is Garowe Principles written in?
Label Dutch

Before Edit Garowe

After Edit Dutch

Prompt This is a Wikipedia passage about carole gist. Carole Gist (born April
28, 1969) is an American beauty pageant titleholder from Detroit,
Michigan who was crowned Miss USA 1990. She was the first
African-American woman to win the Miss USA title. Gist represented
the United States at the Miss Universe 1990 pageant held in Los
Angeles, California, where she placed first runner-up to Mona Grudt
of Norway. Gist was the first African-American woman to place in
the Miss Universe pageant.

Label She was also the first contestant from Michigan to win Miss USA,
and broke the five-year streak of winners from Texas.

Before Edit Gist was born in Detroit, Michigan. She is the daughter of a Detroit
police officer and a homemaker.

After Edit She was also the first contestant from Michigan to win Miss USA,
and broke the five-year streak of winners from Texas.
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