SATBench: Benchmarking LLLMs’ Logical Reasoning via Automated
Puzzle Generation from SAT Formulas

Anjiang Wei'*" Yuheng Wu'!* Yingjia Wan?
Tarun Suresh® Huanmi Tan* Zhanke Zhou!
Sanmi Koyejo' Ke Wang® Alex Aiken!
!Stanford University ~2UCLA *UIUC *CMU SNanjing University
Abstract ReClor (Yu et al., 2020), which combine logical

We introduce SATBench, a benchmark for eval-
uating the logical reasoning capabilities of large
language models (LLMs) through logical puz-
zles derived from Boolean satisfiability (SAT)
problems. Unlike prior work that focuses on
inference rule-based reasoning, which often
involves deducing conclusions from a set of
premises, our approach leverages the search-
based nature of SAT problems, where the objec-
tive is to find a solution that fulfills a specified
set of logical constraints. Each instance in SAT-
Bench is generated from a SAT formula, then
translated into a puzzle using LLMs. The gen-
eration process is fully automated and allows
for adjustable difficulty by varying the num-
ber of clauses. All 2100 puzzles are validated
through both LLM-based and solver-based con-
sistency checks, with human validation on a
subset. Experimental results show that even the
strongest model, 04-mini, achieves only 65.0%
accuracy on hard UNSAT problems, close to
the random baseline of 50%. Our error analysis
reveals systematic failures such as satisfiabil-
ity bias, context inconsistency, and condition
omission, highlighting limitations of current
LLMs in search-based logical reasoning. Our
code and data are publicly available at https:
//github.com/Anjiang-Wei/SATBench

1 Introduction

Logical reasoning is a fundamental component of
human intelligence and continues to be a signifi-
cant challenge in the field of artificial intelligence.
The growing interest in the reasoning capabilities
of large language models (LLMs) highlights the
pressing need for robust benchmarks and evalua-
tion methods (Luo et al., 2023).

While many datasets have been proposed to eval-
uate logical reasoning capabilities of LLMs, earlier
datasets do not exclusively evaluate logical reason-
ing in isolation, e.g., LogiQA (Liu et al., 2020), and

“Equal contribution.
TCorrespondence to: anjiang@cs.stanford.edu

reasoning with commonsense reasoning.

Recently, new datasets have been introduced to
assess logical reasoning in isolation, such as FO-
LIO (Han et al., 2024a) and P-FOLIO (Han et al.,
2024b). These datasets are manually curated by
researchers and focus on logical problems based on
inference rules, which involve deriving conclusions
from a set of premises.

In this work, we introduce SATBench, a bench-
mark designed to create logical puzzles from
Boolean satisfiability (SAT) problems (Cook, 1971;
Pan et al., 2024) with LLMs. Unlike benchmarks
based on inference rules, SAT problems are char-
acterized as search-based logical reasoning tasks,
where the objective is to determine a truth assign-
ment that fulfills a specified set of logical con-
straints (Madusanka et al., 2024). This approach to
logical reasoning emphasizes a search process akin
to backtracking used in SAT solvers. Unlike other
search-based benchmarks such as ZebralL.ogic (Lin
et al., 2025), which presuppose the existence of a
valid solution, SAT problems can result in either a
satisfiable solution (SAT) or no solution (UNSAT).

As shown in Figure 1, starting from a SAT for-
mula in Conjunctive Normal Form (CNF), such
as (AV —=B) A (=C V =D), our framework uses
LLMs to generate a story context and define a map-
ping between formula variables and entities in the
story. Each clause is then translated into a natu-
ral language condition based on this mapping. By
sampling CNF formulas with varying numbers of
clauses, we can control puzzle difficulty. To ensure
the quality of resulting logical puzzles, we reverse
the generation process: LLMs translate the natu-
ral language conditions back into logical formulas,
which are then compared to the originals using
a combination of LLM-assisted and solver-based
consistency checks. In the evaluation pipeline, we
check the result and employ the LL.M-as-a-judge
strategy to assess the reasoning trace. To validate

33821

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 33821-33838
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/Anjiang-Wei/SATBench
https://github.com/Anjiang-Wei/SATBench

Generation Pipeline
Story Background

In a small town, there are three LLM

® © ® Formula Sampling

54 @

musicians who are preparing for 2(2,1) A ~z(0,0) A (z(
performances in two genres ... % ET solver Equivalent!
LLMJ 2
Conditions

1. Carol decides to perform in rock.
2. Alice does not perform in jazz...

Condition 1 2
Condition 2

° —z(0,0)

] (z(2,1) A —~z(0,0) A (2(0,1) V z(1, 1)))

Evaluation Pipeline

Background 3
e SO0 SAT.
Conditions {5 A feasible
as assignment is ...
Question ' LLM under
Evaluation

Variable Assignment

Q LLM Clause Result
z(2,1) True
Check & e

Results Check Reasoning Trace

Figure 1: Overview of the SATBench methodology. The generation pipeline begins with sampling Conjunctive
Normal Form (CNF) formulas, followed by LLM-driven creation of story backgrounds and conditions. To ensure the
logical puzzle’s quality, both LLM-assisted and solver-based consistency validations are employed. The evaluation
pipeline then examines the puzzle’s prediction outcomes and checks its reasoning process.

the overall process of story generation and reason-
ing trace evaluation, we manually checked 100
examples, with passing rates above 90%, which
increases confidence in the quality of the dataset
and evaluation protocol.

The evaluation on our generated 2100 logical
puzzle dataset demonstrates that reasoning mod-
els exhibit strong performance on SATBench, with
the o4-mini model achieving the highest accuracy.
However, as the complexity of the problems in-
creases, with a larger number of conditions in
the logical puzzles, there is a noticeable decline
in model performance. Specifically, the 04-mini
model achieves an average accuracy of 65.0% for
the hard subset of UNSAT problems. This high-
lights the challenges posed by our benchmark, par-
ticularly for hard instances, where even the best-
performing model only marginally surpasses the
random baseline of 50%, leaving significant room
for improvement. Moreover, our analysis shows
that while models often achieve higher accuracy on
SAT than UNSAT problems, their reasoning traces
are less reliable in the SAT setting, frequently pre-
dicting satisfiability without a valid assignment.
To better understand these failures, we conduct an
error analysis that identifies systematic patterns
such as satisfiability bias, context inconsistency,
and condition omission (Section 5.3). These find-
ings show that SATBench exposes limitations in

current LLMSs’ ability to perform search-based log-
ical reasoning. We further explore prompting and
fine-tuning to improve performance on SATBench
(Section 6.2). In summary, our work makes the
following contributions:

» Task: We present SATBench, a benchmark
that uses large language models to generate
logical puzzles from Boolean satisfiability
(SAT) problems. The benchmark highlights
the search-based nature of logical reasoning
by focusing on finding truth assignments that
satisfy given constraints.

* Dataset: Our generation process is fully auto-
mated and features adjustable difficulty levels
by varying the number of clauses in SAT for-
mulas. We ensure the quality of the 2100
generated logical puzzles through LLM-based
and solver-based checks, with human valida-
tion showing passing rates above 90%.

* Analysis: We show that accuracy declines
sharply on the hard UNSAT problems and that
reasoning traces for SAT are often unreliable.
Our error analysis reveals systematic failures
such as satisfiability bias, context inconsis-
tency, and condition omission, highlighting
limitations of current LLMs in search-based
logical reasoning.

33822

Benchmark Search- Logic Automated Difficulty Natural Template- Reasoning
Based Isolation Generation Control Language Free Evaluation
LogiQA (Liu et al., 2020) X X X X v 4 X
BIG-bench (Srivastava et al., 2022) X X X X v v X
ReClor (Yu et al., 2020) X X X X v v X
RuleTaker (Clark et al., 2020) X v v v v X X
LogicNLI (Tian et al., 2021) X v v X v v X
FOLIO (Han et al., 2024a) X v X X v v X
P-FOLIO (Han et al., 2024b) X v X X v 4 v
LogicPro (Jiang et al., 2024) X X 4 X 4 4 v
Zebralogic (Lin et al., 2025) v v v v v X X
AutoLogi (Zhu et al., 2025) v v v v v v X
PARAT (Pan et al., 2024) v v v v X v v
LogicBench (Parmar et al., 2024) X v v X v X X
LogicAsker (Wan et al., 2024) X v v X v X X
Unigram-FOL (Sileo, 2024) X v v X v X X
Multi-LogiEval (Patel et al., 2024) X v v v v X X
SATBench (ours) v v v v v v v

Table 1: Comparison of existing logical reasoning benchmarks. An ideal evaluation framework should meet
the following five criteria: (1) Logic Isolation: the benchmark exclusively evaluates logical reasoning in isolation;
(2) Automated Generation: the benchmark construction is automated and scalable; (3) Difficulty Control: the
difficulty levels of the benchmark questions are adjustable; (4) Natural Language: the questions are written in
natural language rather than formal formulas; (5) Template-Free: the benchmark does not rely on expert-designed
templates, enhancing diversity; (6) Reasoning Evaluation: the benchmark evaluates both the accuracy of model

predictions and the correctness of their reasoning traces.

2 Related Work

Logical Reasoning Benchmarks for LLMs
Reasoning is a longstanding focus in NLP, with
many benchmarks developed to assess model per-
formance. Early efforts targeted natural language
inference (Bowman et al., 2015) and commonsense
reasoning (Talmor et al., 2018), while recently
there has been increasing attention to assessing log-
ical reasoning, as seen in LogiQA (Liu et al., 2020),
ReClor (Yu et al., 2020), BoardgameQA (Kazemi
et al., 2023), and CLUTRR (Sinha et al., 2019).
These typically involve reasoning that relies on
real-world knowledge. In contrast, datasets like
FOLIO (Han et al., 2024a), RuleTaker (Clark
et al., 2020), and P-FOLIO (Han et al., 2024b)
aim to isolate formal logical reasoning from
commonsense knowledge. Logical puzzles have
emerged as a compelling testbed in this area (Gi-
adikiaroglou et al., 2024), with benchmarks includ-
ing Zebral.ogic (Lin et al., 2025), AutoLogi (Zhu
et al., 2025), and LogicNLI (Tian et al., 2021).
PARAT (Pan et al., 2024) examines LLMs directly
on SAT formulas, whereas our benchmark frames
SAT problems as natural language puzzles, a more
realistic setting given LLMSs’ training on text and
the availability of efficient SAT solvers for formula
inputs. Unlike AutoLogi, which builds on existing
corpora and risks data contamination, our dataset
is generated entirely from scratch with solver and

human validation to ensure correctness and diver-
sity. A systematic comparison of these benchmarks
is provided in Table 1.

Logical Reasoning with Language Models Re-
cent work investigates how large language models
engage in logical reasoning via prompting tech-
niques, supervised training on reasoning datasets,
and translation into formal logic. A prominent
line of research focuses on prompting methods
that elicit step-by-step reasoning, including chain-
of-thought prompting (Wei et al., 2022), tree-of-
thought prompting (Yao et al., 2023), along with
other methods (Zelikman et al., 2022; Kojima et al.,
2022; Li et al., 2022; Tyagi et al., 2024; Chen et al.,
2025). Another approach involves fine-tuning
LLMs on datasets specifically designed for logi-
cal reasoning (Young et al., 2022; Morishita et al.,
2023; Luo et al., 2023; Dziri et al., 2023; Ranaldi
and Freitas, 2024), which has demonstrated im-
proved performance on formal reasoning bench-
marks. Complementary to these methods, some
work treats LLMs as semantic parsers that convert
natural language reasoning tasks into formal log-
ical representations, which are then executed or
verified by external solvers or theorem provers (Ye
et al., 2023; Ryu et al., 2024). In our evaluation,
we use chain-of-thought prompting and prohibit
models from invoking external tools; solvers are
used only during dataset generation for validation.

33823

3 Method

Our objective is to create logical puzzles derived
from Boolean satisfiability (SAT) formulas, ensur-
ing the quality of the dataset through both LLM-
based and solver-based consistency checks. We fur-
ther validate each LLM-involved process with hu-
man review. The generation method is divided into
three stages: SAT formula sampling (Section 3.1),
LLM-based story generation (Section 3.2), and con-
sistency validation (Section 3.3). In the evaluation
phase, we assess the correctness of the reasoning
trace (Section 3.4).

3.1 SAT formula Sampling

Conjunctive Normal Form (CNF) Conjunctive
Normal Form is a structured way of expressing
logical formulas, where a formula is a conjunction
(AND) of one or more disjunctions (OR) of liter-
als. Each disjunction is referred to as a clause, and
each clause consists of literals, which can be either
a variable or its negation. For instance, the for-
mula (z(2,1))A(—x(1,0)Vz(0,0))A(=2(0,0))A
(—z(2,1) V 2(1,0)) is in CNF. Here, x represents
a two-dimensional array with boolean elements, in-
dicating true or false values. The SAT problem ex-
pressed in CNF form involves determining whether
there exists an assignment of boolean values to the
variables that satisfies the entire formula, making
it true. If such an assignment exists, the formula
is satisfiable. Conversely, if no such assignment
can be found, the formula is unsatisfiable, and an
UNSAT-Core can be identified, which is a subset
of clauses that are inherently unsatisfiable. This
approach constructs puzzles that challenge LLMs
to determine if all conditions can be satisfied.

Automation and Difficulty Control The SAT
problem can be solved using a SAT solver, which
provides a soundness guarantee and allows for an
automated and scalable solution. To systematically
generate problems with varying levels of difficulty,
we can sample formulas that differ in the number of
boolean variables and clauses. Additionally, we can
increase the dimensionality of the array to create
more complex story contexts. By increasing the
number of boolean variables, we can generate more
clauses to be translated into story conditions. This
approach effectively controls the difficulty level by
expanding the search space and adding complexity
to the constraints, making the search-based logical
reasoning more challenging.

3.2 Puzzle Story Generation

Background and Variable Mapping To trans-
form the sampled SAT formula into a narrative
context, we utilize a language model, such as GPT-
40, to generate a story background and establish
a mapping of variables. For example, as shown
in Figure 2, given the SAT formula, the language
model creates a scenario involving three musicians:
Alice, Bob, and Carol. These musicians are decid-
ing on their performances in two musical genres,
jazz and rock. Each musician can independently
choose whether to perform in one or both genres,
or not at all. The musicians and the genres corre-
spond to the two dimensions of the array z. This
mapping is defined as:

x(i,7) — “musician ¢ performs in genre ;"
For example:

e 2(0,0): Alice performs in jazz

* z(1,0): Bob performs in jazz

* 2(2,1): Carol performs in rock

Clause-to-Condition Mapping To transform
each clause of the CNF formula into a narrative
condition, we employ a large language model (e.g.,
GPT-40). This transformation leverages the pre-
viously established story background and variable
mapping. For example, the clause —z(0, 0) is trans-
lated to the condition “Alice does not perform in
jazz,” while the clause —z(2,1) V z(1,0) is ex-
pressed as “Either Carol does not perform in rock,
or Bob performs in jazz.” The final puzzle inte-
grates the story background with these translated
conditions and concludes with a question like “Is
there a way for all these performance choices to
work?” This question serves to assess the satisfia-
bility of the conditions in the logical puzzle.

Our two-phase generation strategy, which be-
gins with the creation of the story background and
variable mapping, followed by the transformation
of clauses into narrative conditions, improves the
tractability and reliability of the process. This struc-
tured approach facilitates easier debugging and hu-
man validation. Additional examples of generated
puzzles are provided in Appendix A.

3.3 Consistency Validation

LLM-based Validation We utilize a large lan-
guage model (GPT-40) to ensure that each con-
dition in the generated logical puzzle precisely

33824

o000 Sample CNF Formula
z(2,1) A -z(0,0) A (—=z(1,0)Vz(0,0) A (—z(2,1)Vz(1,0))
Story Background

In a small town, there are three musicians who are preparing for performances in two genres: jazz and
rock. Each musician can independently choose whether to perform in one or both genres, or not at all.

Variable Mapping ZE(i,])

i=@ i=1 i=2 j=0 j=1
Alice Bob Carol | jazz rock

=349 Consistency Validation

Conditions
1. Carol decides to perform in rock.
2. Alice does not perform in jazz.
3. Either Bob does not perform in jazz, or Alice performs in jazz.
4. Either Carol does not perform in rock, or Bob performs in jazz.

Clause
Translation

</> Question: Is there a way for all these performance choices to work?

Figure 2: Benchmark curation pipeline. The process starts with sampling SAT formulas, followed by using an
LLM to generate variable mappings and a story background. Clauses in the formula are then translated into narrative
conditions. Consistency between the original formula and the generated puzzle is ensured through both LLM-based

and solver-based validation.

matches the original SAT formula, given the speci-
fied variable mapping. This process checks that no
extra conditions are introduced and none are miss-
ing. If the check fails, the puzzle is removed from
our dataset. The validation prompt is provided in
B.1.

Solver-based Validation In addition to LLM-
based checks, we adopt solver-based validation that
enforces formula-level equivalence between the re-
constructed formula and the original CNF. Using
the variable mappings, an LLM first converts the
narrative conditions back into a SAT formula. The
original formula formula A and the reconstructed
formula B are checked for equivalence using bidi-
rectional entailment:
A=B iff AEB AN BE A

This condition is encoded into a SAT query and
checked by the solver. Any reconstructed formula
that fails equivalence is discarded, ensuring that the
generated puzzles faithfully preserve the original
logical structure.

Human Validation To ensure the quality of our
dataset, we conduct human validation at two crucial
stages involving LLMs, as detailed in Section 3.2.
The first stage involves the generation of the puz-
zle’s background and variable mapping, where hu-
mans assess the logical coherence and confirm that
the story background accurately reflects the inde-
pendence of boolean variables. The second stage
focuses on the translation of clauses into narrative

conditions, where humans ensure that no additional
constraints or misinterpretations are introduced.

3.4 Reasoning Trace Evaluation

After generating the logical puzzles, we evaluate
an LLM’s performance using this dataset. Our
evaluation emphasizes both the binary prediction
result (SAT or UNSAT) and the validity of the
model’s reasoning trace. We adopt an LL.M-as-a-
judge methodology, where the model is instructed
to produce a reasoning trace to justify its predic-
tion. Below, we detail the approach for assessing
the reasoning trace in SAT and UNSAT scenarios.

SAT Problems When a problem is identified as
SAT, it indicates that there is at least one assign-
ment of True or False values to the variables that
satisfies the CNF formula. Multiple solutions may
exist. For example, consider the CNF formula
(x(0,0) V =z(1,0)) A (2(1,0) V x(2,1)). One
possible satisfying assignment is x(0,0) = True,
x(1,0) = False, and x(2,1) = True. After the
model predicts a problem as SAT, it is required to
generate a reasoning trace to support its prediction.
We then instruct the judging LLLM to translate this
reasoning into a specific variable assignment using
the given variable mapping. The judging LLM is
further used to verify that each clause in the SAT
formula evaluates to True, thereby confirming the
satisfiability of the entire SAT formula.

UNSAT Problems Unlike SAT problems, UN-
SAT problems have no variable assignment that
satisfies all clauses. A SAT solver can identify an

33825

UNSAT-Core, which is a minimal subset of unsat-
isfiable clauses. When the model predicts UNSAT,
it must provide a reasoning trace.

Consider the formula: (z(2,1)) A (-z(1,0) V
z(0,0)) A (—=z(0,0)) A (—2(2,1) V 2(1,0)). We
can demonstrate its unsatisfiability through a step-
by-step analysis:

1. From the first clause, x(2,1), we must set
x(2,1) to true.

2. From the third clause, =z (0, 0), we must set
2(0,0) to false.

3. Given that (0, 0) is false, the second clause,
—z(1,0) V x(0,0), can only be satisfied if
—z(1,0) is true, suggesting x(1, 0) is false.

4. However, since z(2,1) is true, the fourth
clause, —x(2,1) V x(1,0), can only be sat-
isfied if (1, 0) is true.

This leads to an irreconcilable contradiction:
x(1,0) is required to be both true and false simulta-
neously to satisfy all clauses, rendering the formula
unsatisfiable. The example above illustrates a valid
reasoning trace for an UNSAT problem in formula
format. However, since the model being evalu-
ated lacks access to the variable mapping during
its reasoning trace generation, the judging LLM
must first translate the reasoning trace back into the
variable format. It then compares this translated
reasoning with the provided UNSAT-Core to assess
the accuracy of the reasoning trace.

Human Validation Given our use of an LLM-
as-a-judge methodology for evaluating reasoning
traces, we incorporate a human validation process
to check the correctness of the LLM’s judgments.

4 Experimental Setup

Dataset The SATBench dataset consists of 2100
logical puzzle instances. Table 2 provides statis-
tics on the average number of boolean variables
and clauses in the sampled SAT formulas, as well
as the average number of words and sentences in
the generated logical puzzles. The dataset gener-
ation process is fully automated, allowing for the
creation of additional instances as required.

Prompts We use 0-shot prompting to evaluate
various LLMs on each logical puzzle in our dataset.
Each puzzle’s prompt includes a story background,

Metric Value
Number of Instances 2100
Average Number of Variables 36.0
Average Number of Clauses 20.6
Average Number of Words 546.2
Average Number of Sentences ~ 55.2

Table 2: Dataset statistics for SATBench.

a set of conditions that must be satisfiable simulta-
neously, and a query about their satisfiability. Mod-
els are required to generate a reasoning trace: if
they determine the instance is satisfiable, they must
provide a satisfying assignment for the variables;
if they find it unsatisfiable, they must explain why
the conditions cannot all be true at once. The final
output must clearly state either SAT or UNSAT. De-
tailed prompts for the main evaluation and reason-
ing trace evaluation can be found in Appendix B.2
and Appendix B.3, respectively.

Metrics In our evaluation, satisfiability is treated
as a binary classification task, where random guess-
ing results in a baseline accuracy of 50%. The
primary metric we use is the accuracy of the pre-
dicted satisfiability label. Besides, we also evaluate
the correctness of the model’s reasoning trace, but
only if the satisfiability label is correct. We employ
GPT-40 to determine whether the provided expla-
nation logically supports the predicted outcome, as
detailed in Section 3.4.

Models We evaluate both proprietary and open-
source language models. The proprietary models
include GPT-40 (Achiam et al., 2023), GPT-4o0-
mini, 04-mini, and Claude 3.7 Sonnet. The open-
source models cover a range of recent ones from the
Qwen (Yang et al., 2025), Llama (Touvron et al.,
2023), and DeepSeek families (Liu et al., 2024;
Guo et al., 2025). For reasoning trace evaluation,
we focus on the 5 top-performing models, and use
GPT-40 as the judge.

5 Results

5.1 Main Results

Table 3 presents the accuracy on SATBench using
zero-shot prompting for satisfiability prediction.
Our findings are as follows.

Reasoning models excel in performance. The
04-mini model stands out with a remarkable accu-
racy of 89.3%. Close behind are the open-source

33826

SAT

UNSAT

Overall

Model Easy Medium Hard | Easy Medium Hard | Easy Medium Hard Avg.
Random Baseline 50.0 50.0 50.0 | 50.0 50.0 50.0 | 50.0 50.0 50.0 | 50.0
LLaMA3.1-8B 579 60.0 489 | 304 14.8 17.5 | 44.1 37.4 332 | 382
DeepSeek-Distill-7B 63.9 27.6 16.8 | 69.1 43.8 42.1 | 66.5 35.7 295 | 439
Qwen3-1.7B 717.1 65.7 532 | 534 30.5 425 | 653 48.1 479 | 537
gpt-4o-mini 82.1 824 90.7 | 423 12.9 132 | 622 47.6 520 | 53.9
LLaMA4-Scout 843 76.7 664 | 52.0 243 37.5 | 68.1 50.5 52.0 | 569
LLaMA3.1-70B 82.0 55.7 454 | 552 59.0 48.9 | 68.6 574 47.1 | 577
gpt-4o 85.5 83.3 78.6 | 543 27.1 189 | 69.9 55.2 48.8 | 58.0
LLaMA3.3-70B 90.7 89.0 75.7 | 39.5 27.1 30.0 | 65.1 58.1 529 | 58.7
DeepSeek-Distill-14B | 82.9 51.4 41.1 | 857 59.0 51.8 | 843 55.2 464 | 62.0
LLaMA4-Maverick 80.2 86.2 86.1 | 76.8 25.7 17.9 | 785 56.0 52.0 | 62.1
Qwen3-4B 84.1 78.1 78.6 | 80.7 31.9 22.1 | 824 55.0 504 | 62.6
Qwen3-8B 82.7 76.7 67.5 | 81.6 34.8 32.1 | 821 55.7 49.8 | 62.6
DeepSeek-Distill-32B | 84.5 53.8 42.1 | 90.0 68.1 58.6 | 87.2 61.0 504 | 66.2
Qwen3-14B 87.1 72.9 80.0 | 88.9 47.6 22.1 | 88.0 60.2 51.1 | 66.4
Qwen3-235B-Int8 90.0 83.3 832 | 86.1 46.2 19.6 | 88.0 64.8 514 | 68.1
Qwen-QwQ-32B 92.5 75.7 59.3 | 84.1 51.9 464 | 883 63.8 529 | 683
Claude-3.7-Sonnet 88.4 77.6 83.6 | 93.8 63.3 42.1 | 91.1 70.5 629 | 74.8
DeepSeek-V3 93.6 83.8 714 | 975 83.3 743 | 955 83.6 729 | 84.0
DeepSeek-R1 94.8 87.1 73.6 | 98.2 89.5 83.6 | 96.5 88.3 78.6 | 87.8
04-mini 97.0 96.7 91.1 | 98.2 88.1 65.0 | 97.6 924 78.0 | 89.3
Average | 84.1 73.2 66.7 | 72.9 46.4 39.3 | 785 59.8 53.0 | 63.8

Table 3: Model accuracy on SATBench using zero-shot prompting for satisfiability prediction. Difficulty levels are
categorized as follows: Easy (4-19 clauses), Medium (20-30 clauses), and Hard (31-50 clauses). All open-source

models are instruction-tuned.

models DeepSeek-R1 and DeepSeek-V3, with ac-
curacies of 87.8% and 84.0%, respectively. Overall,
reasoning models excel in our benchmark.

Model performance decreases with increasing
problem difficulty. We categorize difficulty lev-
els as Easy (4-19 clauses), Medium (20-30 clauses),
and Hard (31-50 clauses). Notably, even the top-
performing model, 04-mini, sees its accuracy fall to
78.0% on hard instances. Across all models, the av-
erage accuracy for hard problems is 53.0%, which
is nearly equivalent to the random baseline. More
analysis of difficulty is provided in Section 5.2.

SATBench is a challenging benchmark. For the
hard instances, even the state-of-the-art model o4-
mini only achieves 78.0% accuracy, only a moder-
ate improvement over the 50% random baseline.
For the UNSAT instances, its accuracy is only
65.0%, leaving significant room for improvement.

Scaling Trends. Figure 3 shows that across
model families such as Qwen3, Llama3.1, Mix-
tral, Llama4, and DeepSeek-Distill-Qwen, larger
models generally achieve higher accuracy. Yet
this trend does not hold uniformly across difficulty
levels. On the hard instances, accuracy plateaus
around 50-53% even for the largest models in these
families. Thus, the observed scaling gains are

Model Scale & Average Accuracy

70
. e
@ o & m
360) -
© '3
250
g ;
®
40 i

20 21 22 23 24 25 26 27 28 29
Model Parameters (Billion)
Model Families
Llama-3.1
€@ DeepSeek-Distill-Qwen

@® Qwen3
B Llama-4

Figure 3: Scaling trend on SATBench.

largely limited to easier problems. For the hardest
cases, simply increasing model size yields little to
no gain. These findings reinforce that SATBench
remains a difficult and discriminative benchmark.

5.2 Analysis of Difficulty

SAT versus UNSAT The “average” row in Ta-
ble 3 highlights a notable disparity in model accu-
racy between SAT and UNSAT subsets. Models
perform better on SAT problems, achieving an ac-
curacy of 66.7% on the hard instances, while only
reaching 39.3% on hard UNSAT problems. This
suggests that SAT instances are generally easier

33827

Difficulty Analysis

1004

=~ gpt-40

o4-mini
=&~ DeepSeek-R1
=—&— Claude-3.7-Sonnet

90

80

70

Accuracy (%)

60 1

50

10 20 30 40 50
Number of Clauses

Figure 4: Impact of clause quantity on accuracy.

Model SAT UNSAT Overall
Pred. Trace | Pred. Trace Trace
QwQ 75.5 52.3 60.7 52.4 52.4
Claude-3.7 | 83.2 47.4 66.4 61.1 54.2
DS-V3 82.9 65.7 85.0 71.1 68.4
04-mini 94.7 74.6 83.6 74.1 74.4
DS-R1 85.2 73.8 90.3 82.1 78.0

Table 4: Accuracy in prediction and reasoning trace
evaluation.

for models to guess. Intuitively, the primary rea-
son for this difference is that SAT is an existential
property (there exists at least one satisfying assign-
ment) while UNSAT is a universal property (all
assignments fail to satisfy the formula).

Impact of Clause Quantity We examine the ef-
fect of the number of clauses on model accuracy.
As shown in Figure 4, there is a noticeable in-
verse relationship: model accuracy decreases as
the clause count increases. For example, the GPT-
40 model experiences a significant drop in perfor-
mance, nearing random guess accuracy of 50% as it
approaches 30 clauses. This pattern suggests that a
higher number of clauses adds complexity, demon-
strating that our dataset generation methodology
can effectively control difficulty levels.

5.3 Reasoning Traces and Error Analysis

Trace Evaluation We evaluate the reasoning
trace validity of various models with GPT-40, and
the results are shown in Table 4. A notable obser-
vation is the disparity in trace accuracy between
the SAT and UNSAT subsets. Models generally
exhibit a more pronounced drop in trace accuracy
on SAT problems compared to UNSAT ones. This
suggests that higher prediction accuracy on SAT
problems does not necessarily imply a valid vari-
able assignment. Instead, models often show a bias
toward predicting SAT outcomes without a valid

Error Type o4-mini (%) DS-R1 (%)
Satisfiability Bias 68.7 40.5
Context Inconsistency 17.0 44.7
Condition Omission 14.3 12.6
Spurious Priors 0.0 2.1

Table 5: Error type distribution in o04-mini and

DeepSeek-R1.

assignment as evidence.

Error Analysis To provide a deeper understand-
ing of model failures, we conducted a qualitative
error classification of incorrect predictions, defin-
ing four major error types:

* Satisfiability Bias: Models answer SAT but
give an invalid assignment.

* Context Inconsistency: Models contradict
their earlier reasoning, such as assigning con-
flicting values across steps.

* Condition Omission: Models ignore one or
more conditions in the reasoning trace.

* Spurious Priors: Models introduce common-
sense assumptions that are absent from the
given constraints.

We used GPT-40 to automatically classify errors
into these categories, and the distribution for two
representative models is shown in Table 5. The ob-
served patterns highlight core challenges in search-
based logical reasoning, including failures in back-
tracking, difficulty in maintaining context, and re-
liance on prior knowledge rather than provided
constraints. See examples in Appendix C.

5.4 Human Validation

We conducted human validation on a uniformly
random sample of 100 puzzles from our generated
dataset to verify the correctness of LLM-involved
steps and the reliability of our evaluation protocol.
Each puzzle contains a CNF formula, its satisfi-
ability label (SAT or UNSAT) from a symbolic
solver, a narrative scenario with variable mappings,
natural language conditions corresponding to each
clause, a reasoning trace generated by an LLM, and
an LLM judgment of whether the reasoning trace
is logically valid. Three co-authors independently
annotated the sample and resolved disagreements
by majority vote.
Annotators performed three validation tasks:

33828

1. Scenario and Mapping Consistency: Ensur-
ing that all entities in the scenario are covered
in the variable mapping, and that every logical
variable is correctly grounded. We observed
no errors (100% accuracy).

2. Clause Translation Faithfulness: Verifying
that each clause in the CNF formula is faith-
fully translated into its natural language condi-
tion without omissions, additions, or misinter-
pretations. We found minor translation errors
in three cases, yielding a 97% accuracy rate.

3. LLM Judgment Correctness: Checking
whether the LLM’s judgment of the reasoning
trace is logically correct and aligned with the
ground-truth formula and satisfiability label.
Here, accuracy was 93%, with occasional er-
rors due to incomplete assignment extraction
or overly strict interpretations of valid traces.

Overall, these results confirm the robustness of
our dataset and evaluation pipeline, with errors
being rare and not significantly affecting reliability.

A few failure cases were observed. In story gen-
eration, one error involved the clause (—z(2,0) V
x(2, 1)) being translated as “if Dr. Brown is not as-
signed project 0, then Dr. Brown is assigned project
1.” This misuses the if-then structure. The correct
phrasing is “if Dr. Brown is assigned project 0,
then Dr. Brown is also assigned project 1.”

For the LL.M-as-judge setting, the main error
mode involved incomplete extraction of the assign-
ment within the trace. In some cases, the model
judged that the trace was invalid, even though the
trace was logically sound. These minor errors, how-
ever, were rare and did not affect the overall robust-
ness of our pipeline.

6 Discussion

6.1 SAT in Natural Language

SATBench frames SAT problems as natural lan-
guage puzzles rather than evaluating LLMs directly
on SAT formulas. Testing only on symbolic inputs
overlooks how reasoning arises in practice, since
real-world tasks are almost always expressed in nat-
ural language. Because LLMs are trained mainly
on text, narrative puzzles provide a more faithful
and revealing evaluation of their reasoning ability.
Additionally, our goal is not to replace SAT solvers,
but to examine whether LLMs can reason about
SAT structures when expressed in natural language,
something classical solvers cannot address.

Model Puzzle Acc. (%) Formula Acc. (%)
GPT-40-mini 53.6 54.8
GPT-40 58.2 59.2
DeepSeek-V3 84.0 87.3
04-mini 89.4 94.3

Table 6: Comparison of model accuracy on narrative
puzzles versus direct SAT Formula inputs. Natural lan-
guage framing consistently increases task difficulty.

To test this distinction, we also evaluated models
directly on CNF formulas. As shown in Table 6, ac-
curacy was consistently higher on raw SAT inputs
than on narrative puzzles, showing that natural lan-
guage introduces additional complexity and makes
the benchmark more challenging.

6.2 Improving Performance on SATBench

Prompting Building on our error analysis in Sec-
tion 5.3, we designed error-aware prompts that ex-
plicitly remind models to avoid common pitfalls.
Re-evaluating the previously misclassified cases
under this setting led to substantial gains: for 04-
mini, 60.4% of failing cases were corrected, and
for DeepSeek-R1, the rate is 73.2%. These results
show that making failure patterns explicit can sig-
nificantly improve model performance.

Fine-tuning Using 1100 correct traces from o04-
mini, we applied LoRA fine-tuning on Qwen?2.5-
14B-Instruct, raising accuracy from 51.9% to
53.6%. While modest relative to prompting, this
indicates that supervised fine-tuning can help, with
greater gains expected from larger datasets and re-
inforcement learning.

7 Conclusion

We present SATBench, a benchmark for assessing
LLMs’ logical reasoning via SAT-derived puzzles.
Our dataset features search-based logical reason-
ing tasks, with controls difficulty and correctness
checked by solvers and LLMs. SATBench con-
tains 2100 logical puzzles, and we evaluate both
satisfiability prediction and reasoning trace validity.
Our findings show model performance drops with
increased difficulty, with o4-mini scoring 65.0%
on the hard UNSAT cases, near the 50% random
baseline. We also conduct an error analysis that
identifies systematic patterns such as satisfiability
bias, context inconsistency, and condition omis-
sion. These findings show that SATBench exposes
limitations in current LLMs’ ability to perform
search-based logical reasoning.

33829

Limitations

This paper utilizes LLMs, such as GPT-4o, for the
generation of logical puzzles and consistency val-
idation. While LLMs can enhance the scalability
and diversity of our dataset, they could introduce
potential inaccuracies that we cannot fully elimi-
nate. To address this issue, we incorporate human
validation to ensure a high-quality dataset. How-
ever, despite these efforts, the possibility of errors
remains.

Another limitation of this work is its exclusive
focus on the Boolean satisfiability problem for log-
ical reasoning, which means that other forms of
logical reasoning are not addressed by SATBench.

Acknowledgments

We thank Yuan Liu, Xiaohan Wang, and Gabriel
Poesia for their discussions. This work was par-
tially supported by a Google Research Award.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Guizhen Chen, Weiwen Xu, Hao Zhang, Hou Pong
Chan, Chaoqun Liu, Lidong Bing, Deli Zhao,
Anh Tuan Luu, and Yu Rong. 2025. Finereason:
Evaluating and improving llms’ deliberate reason-
ing through reflective puzzle solving. arXiv preprint
arXiv:2502.20238.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In
Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020,
pages 3882-3890. ijcai.org.

Stephen A. Cook. 1971. The complexity of theorem-
proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing,
STOC 71, page 151-158, New York, NY, USA. As-
sociation for Computing Machinery.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck, Peter
West, Chandra Bhagavatula, Ronan Le Bras, and 1
others. 2023. Faith and fate: Limits of transformers
on compositionality. Advances in Neural Information
Processing Systems, 36:70293-70332.

Panagiotis Giadikiaroglou, Maria Lymperaiou, Giorgos
Filandrianos, and Giorgos Stamou. 2024. Puzzle
solving using reasoning of large language models: A
survey. arXiv preprint arXiv:2402.11291.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent-
ing Qi, Martin Riddell, Wenfei Zhou, James Coady,
David Peng, Yujie Qiao, Luke Benson, Lucy Sun,
Alexander Wardle-Solano, Hannah Szabd, Ekaterina
Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu,
Brian Wong, Malcolm Sailor, and 16 others. 2024a.
FOLIO: natural language reasoning with first-order
logic. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2024, Miami, FL, USA, November 12-16,
2024, pages 22017-22031. Association for Computa-
tional Linguistics.

Simeng Han, Aaron Yu, Rui Shen, Zhenting Qi, Martin
Riddell, Wenfei Zhou, Yujie Qiao, Yilun Zhao, Semih
Yavuz, Ye Liu, Shafiq Joty, Yingbo Zhou, Caiming
Xiong, Dragomir Radev, Rex Ying, and Arman Co-
han. 2024b. P-FOLIO: evaluating and improving
logical reasoning with abundant human-written rea-
soning chains. In Findings of the Association for
Computational Linguistics: EMNLP 2024, Miami,
Florida, USA, November 12-16, 2024, pages 16553—
16565. Association for Computational Linguistics.

Jin Jiang, Yuchen Yan, Yang Liu, Yonggang Jin, Shuai
Peng, Mengdi Zhang, Xunliang Cai, Yixin Cao,
Liangcai Gao, and Zhi Tang. 2024. Logicpro: Im-
proving complex logical reasoning via program-
guided learning. arXiv preprint arXiv:2409.12929.

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung
Kim, Xin Xu, Vaiva Imbrasaite, and Deepak Ra-
machandran. 2023. Boardgameqa: A dataset for
natural language reasoning with contradictory infor-
mation. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurlPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in

neural information processing systems, 35:22199—
22213.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2022. On the
advance of making language models better reasoners.
arXiv preprint arXiv:2206.02336, 2.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson,
Ashish Sabharwal, Radha Poovendran, Peter Clark,

33830

https://doi.org/10.24963/IJCAI.2020/537
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://aclanthology.org/2024.emnlp-main.1229
https://aclanthology.org/2024.emnlp-main.1229
https://aclanthology.org/2024.findings-emnlp.966
https://aclanthology.org/2024.findings-emnlp.966
https://aclanthology.org/2024.findings-emnlp.966
http://papers.nips.cc/paper_files/paper/2023/hash/7adce80e86aa841490e6307109094de5-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/7adce80e86aa841490e6307109094de5-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/7adce80e86aa841490e6307109094de5-Abstract-Datasets_and_Benchmarks.html

and Yejin Choi. 2025. Zebralogic: On the scal-
ing limits of llms for logical reasoning. CoRR,
abs/2502.01100.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiga: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, pages 3622-3628. ijcai.org.

Man Luo, Shrinidhi Kumbhar, Ming Shen, Mihir Par-
mar, Neeraj Varshney, Pratyay Banerjee, Somak
Aditya, and Chitta Baral. 2023. Towards logiglue: A
brief survey and A benchmark for analyzing logical

reasoning capabilities of language models. CoRR,
abs/2310.00836.

Tharindu Madusanka, Ian Pratt-Hartmann, and
Riza Theresa Batista-Navarro. 2024. Natural lan-
guage satisfiability: Exploring the problem distri-
bution and evaluating transformer-based language
models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 15278-15294.

Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi,
and Yasuhiro Sogawa. 2023. Learning deductive rea-
soning from synthetic corpus based on formal logic.
In International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learn-
ing Research, pages 25254-25274. PMLR.

Leyan Pan, Vijay Ganesh, Jacob Abernethy, Chris Es-
poso, and Wenke Lee. 2024. Can transformers rea-
son logically? a study in sat solving. arXiv preprint
arXiv:2410.07432.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi
Nakamura, Man Luo, Santosh Mashetty, Arindam
Mitra, and Chitta Baral. 2024. Logicbench: To-
wards systematic evaluation of logical reasoning abil-
ity of large language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
13679-13707. Association for Computational Lin-
guistics.

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna
Budhiraja, Mutsumi Nakamura, Neeraj Varshney, and
Chitta Baral. 2024. Multi-logieval: Towards eval-
uating multi-step logical reasoning ability of large
language models. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, Novem-
ber 12-16, 2024, pages 20856-20879. Association
for Computational Linguistics.

Leonardo Ranaldi and Andre Freitas. 2024. Aligning
large and small language models via chain-of-thought
reasoning. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages
1812-1827.

Hyun Ryu, Gyeongman Kim, Hyemin S Lee, and
Eunho Yang. 2024. Divide and translate: Com-
positional first-order logic translation and verifica-
tion for complex logical reasoning. arXiv preprint
arXiv:2410.08047.

Damien Sileo. 2024. Scaling synthetic logical reasoning
datasets with context-sensitive declarative grammars.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning from
text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4506-4515, Hong Kong, China. Association for Com-
putational Linguistics.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adria
Garriga-Alonso, and 1 others. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Jidong Tian, Yitian Li, Wenqing Chen, Ligiang Xiao,
Hao He, and Yaohui Jin. 2021. Diagnosing the first-
order logical reasoning ability through logicnli. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Repub-
lic, 7-11 November, 2021, pages 3738-3747. Associ-
ation for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin
Rrv, Nisarg Patel, Mutsumi Nakamura, Arindam Mi-
tra, and Chitta Baral. 2024. Step-by-step reasoning
to solve grid puzzles: Where do llms falter? arXiv
preprint arXiv:2407.14790.

Yuxuan Wan, Wenxuan Wang, Yiliu Yang, Youliang
Yuan, Jen-tse Huang, Pinjia He, Wenxiang Jiao, and
Michael R Lyu. 2024. Logicasker: Evaluating and
improving the logical reasoning ability of large lan-
guage models.

33831

https://doi.org/10.48550/ARXIV.2502.01100
https://doi.org/10.48550/ARXIV.2502.01100
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.24963/IJCAI.2020/501
https://doi.org/10.48550/ARXIV.2310.00836
https://doi.org/10.48550/ARXIV.2310.00836
https://doi.org/10.48550/ARXIV.2310.00836
https://proceedings.mlr.press/v202/morishita23a.html
https://proceedings.mlr.press/v202/morishita23a.html
https://doi.org/10.18653/V1/2024.ACL-LONG.739
https://doi.org/10.18653/V1/2024.ACL-LONG.739
https://doi.org/10.18653/V1/2024.ACL-LONG.739
https://aclanthology.org/2024.emnlp-main.1160
https://aclanthology.org/2024.emnlp-main.1160
https://aclanthology.org/2024.emnlp-main.1160
https://arxiv.org/abs/2406.11035
https://arxiv.org/abs/2406.11035
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.303
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.303
https://arxiv.org/abs/2401.00757
https://arxiv.org/abs/2401.00757
https://arxiv.org/abs/2401.00757

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, and 1 others.
2025. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809-11822.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.
2023. Satlm: Satisfiability-aided language models
using declarative prompting. Advances in Neural
Information Processing Systems, 36:45548-45580.

Nathan Young, Qiming Bao, Joshua Bensemann, and
Michael Witbrock. 2022. AbductionRules: Train-
ing transformers to explain unexpected inputs. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 218-227, Dublin, Ireland.
Association for Computational Linguistics.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng.
2020. Reclor: A reading comprehension dataset re-
quiring logical reasoning. In 8th International Con-
ference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-

soning. Advances in Neural Information Processing
Systems, 35:15476-15488.

Qin Zhu, Fei Huang, Runyu Peng, Keming Lu, Bowen
Yu, Qinyuan Cheng, Xipeng Qiu, Xuanjing Huang,
and Junyang Lin. 2025. Autologi: Automated genera-
tion of logic puzzles for evaluating reasoning abilities
of large language models. CoRR, abs/2502.16906.

33832

https://doi.org/10.18653/v1/2022.findings-acl.19
https://doi.org/10.18653/v1/2022.findings-acl.19
https://openreview.net/forum?id=HJgJtT4tvB
https://openreview.net/forum?id=HJgJtT4tvB
https://doi.org/10.48550/ARXIV.2502.16906
https://doi.org/10.48550/ARXIV.2502.16906
https://doi.org/10.48550/ARXIV.2502.16906

Appendix
A Example of Generated Puzzles

Please see Figure Al.

B Templates

B.1 LLM Validation Prompt Template
Please see Figure A2.

B.2 SAT/UNSAT Evaluation Prompt
Template

Please see Figure A3.

B.3 Trace Evaluation Prompt Template

Please see Figure A4 and Figure AS.

C Error Analysis Examples

We show one representative example for each of
the four error types, paraphrased for clarity.

Satisfiability Bias The model outputs an assign-
ment such as (1) = 1,2(2) = 1,z(3) = 0 and
prematurely declares the formula satisfiable. In
reality, satisfiability requires that all clauses be sat-
isfied, yet several clauses remain violated. This
suggests that the model often assumes satisfiability
without exhaustively checking all constraints and
fails to engage in search-based logical reasoning
with backtracking.

Context Inconsistency The model produces con-
flicting assignments for the same variable within
one trace. For example, it first sets z(0) = 1
but later assigns z(0) = 0, trying to satisfy
x(0) A —x(0). This is impossible: a variable can
only take a single value. The correct resolution
is either to retain one consistent assignment in a
satisfiable case or to conclude UNSAT when no
such assignment exists.

Condition Omission The model may ignore or
hallucinate conditions in its reasoning trace. For
example, given (z(0) V x(1)) A —x(0), it incor-
rectly reduces the formula to 2:(0) A —z(0), which
is unsatisfiable. In reality, the original formula is
satisfiable with z(0) = 0,2(1) = 1. Such omis-
sions cause the model to misclassify satisfiable
instances as UNSAT.

Spurious Priors The model introduces common-
sense assumptions that are absent from the formula.
For example, with z(0) V z(1), the model assumes
that (0) and 2(1) cannot both be true (as if they

were “mutually exclusive”). It then treats the as-
signment z(0) = 1,z(1) = 1 as a contradiction
and concludes UNSAT. In reality, the formula is sat-
isfiable and permits both variables to be true. This
is because models sometimes introduce common-
sense assumptions that are absent from the given
constraints.

33833

<SAT formula>

(—x(@, @) V x(1, @)) A (x(0, 1)) A (—=x(1, @)) A (—x(0, 1) V x(1, 1))
A (=x(1, 1) V x(0, 0))

</SAT formula>

<satisfiable>
false
</satisfiable>

<UNSAT reason>

Frozen conflict chain: sequential forced assignments leading to contradiction:
(x(2, 1)), (—x(0, 1) V x(1, 1)), (—x(1, 1) V x(0, 0)),

(—x(0, @) V x(1, @)), (—x(1, @))

</UNSAT reason>

<scenario>
Two wildlife researchers, Hannah and Liam, are documenting animal behavior at
a sanctuary. They are independently recording whether they observe two
specific behaviors: feeding (0) and social interaction (1). Each researcher
decides on their own which behavior they have observed, and they may
report multiple behaviors or none at all.
</scenario>

<variable_mapping>

Let x(i, j) mean researcher i observes behavior j.
Here, researcher @ is Hannah, and researcher 1 is Liam.
</variable_mapping>

<conditions>

1. Either Hannah does not observe feeding, or Liam observes feeding.

2. Hannah observes social interaction.

3. Liam does not observe feeding.

4. Either Hannah does not observe social interaction, or Liam observes social
interaction.

5. Either Liam does not observe social interaction, or Hannah observes feeding

</conditions>
<question>

Is there a way to assign observations that make this work?
</question>

Figure Al: Puzzle Example.

33834

You are a logic checker.

You are given a SAT formula, a variable explanation, and a natural language
puzzle based on the formula. Your job is to check whether the natural
language conditions are logically equivalent to the original SAT formula.

Specifically, for each clause in the SAT formula:

- Verify there is a corresponding natural language condition with equivalent
logical meaning.

- Ensure the variable usage matches the explanation format.

- Make sure there are no missing clauses, no added constraints, and no changes
in logic.

Pay special attention to logical implications and how they are expressed in
natural language. For example:

The clause (—x(2) V x(1)) is logically equivalent to: ~~If x(2) is true, then
x(1) is also true.” A common mistake is to write this as: “"If =x(2) then
x(1)", which is incorrect. That corresponds to the clause (x(2) V x(1)),

and changes the meaning.
Here is the information:

<scenario>
{scenario}

<variable explanation>
{variable_mapping}

<conditions>
{conditions}

<question>
{question}

<SAT formula>
{formula}

Think step by step about whether the SAT formula and the natural language
conditions match logically, clause by clause. Consider the number of
clauses, the variable usage, and the logical operators involved.

Your job is only to evaluate whether each condition correctly represents its
corresponding clause in the SAT formula. You should not judge whether the
overall formula or the scenario is satisfiable, solvable, or logically
consistent.

Do not attempt to rewrite, fix, or invent any missing conditions. If any
clause is missing, mistranslated, or not clearly represented, you must mark
the result as [INCONSISTENT].

Finally, in the last line, output either [CONSISTENT] or [INCONSISTENT].
Do not include anything after this label.

Figure A2: LLM Validation Prompt Template.

33835

You are a logical reasoning assistant. You are given a logic puzzle.

<scenario>
{scenario}

<conditions>
{conditions}

<question>
{question}

Guidelines:

- All constraints come **only*x from the <conditions> section.

- The <scenario> provides background and intuition, but *xdoes not impose any
additional rules or constraintsx**.

- All variables represent **independent decisions#**; there is no mutual
exclusivity or implicit linkage unless stated explicitly in <conditions>.

- Variables not mentioned in <conditions> are considered unknown and
irrelevant to satisfiability.

Your task:

- If the puzzle is satisfiable, propose one valid assignment that satisfies
all the conditions.

- If the puzzle is unsatisfiable, explain why some of the conditions cannot
all be true at once.

Think step by step. At the end of your answer, output exactly one of the
following labels on a new line:

[SAT] - if a valid assignment exists

[UNSAT] - if the constraints cannot be satisfied

Do not add any text or formatting after the final label.

Figure A3: SAT/UNSAT Evaluation Prompt Template.

33836

You are given a logical puzzle and a reasoning trace from a language model.

The puzzle is also expressed as a SAT formula. Each clause is a disjunction (
OR) of literals formatted like x(i), x(i,j), or x(i,j,k). These variables
follow the meaning:

- x(i) means object or person i has some unnamed property.

- x(i,j) means object i has property or role j.

- x(i,j,k) means object i has property j in context or slot k (e.g., time,
situation, location).

A positive literal like x(@,1) means that the property is present.
A negative literal like —x(0,1) means it is absent.

Below is the full logical puzzle and its corresponding formula:

<scenario>
{scenario}

<conditions>
{conditions}

<final question>
{question}

<variable explanation>
{variable_mapping}

<SAT formula>
{formula}

<trace from model>
{model_trace}

Your task is to extract the truth assignment implied by the model's reasoning
trace, and evaluate whether each clause in the SAT formula is satisfied.

Go through the trace and determine whether each variable appearing in the SAT
formula is marked as True or False.

Then, for each clause, evaluate the truth value of each literal using this
assignment.

For example, if a clause in the SAT formula is (x(@) V = x(1)), and the model
says x(0) is True and x(1) is also True, then this clause becomes [1, 0].

Think step by step. Show the variable assignments and how you evaluate each
clause.

Finally, in the *xlast linex*, output a single line in the format:
Assignment: [[1, @], [e, 1, 11, [11, ...]

For any variable that is not explicitly mentioned in the reasoning trace,
assume its value is @ when constructing the assignment list.

Do not include anything after this label.

Figure A4: Trace Evaluation Prompt Template for SAT Prediction.

33837

You are evaluating whether a model's reasoning trace correctly explains an
UNSAT logical puzzle.

<scenario>
{scenario}

<conditions>
{conditions}

<question>
{question}

<variable explanation>
{variable_mapping}

<reasoning trace from model>
{model_trace}

<ground-truth unsat reason>
{unsat_reason}

We already know this puzzle is UNSAT (unsatisfiable).
Your task is to judge whether the reasoning trace correctly identifies or

meaningfully reflects the cause of unsatisfiability - that is, whether it
aligns with the given ground-truth unsat reason, even if it doesn't name it
explicitly.

Focus on logical precision:

- Does the trace show or imply a variable assignment or chain of reasoning
that leads to contradiction?

- Does it avoid hallucinations or irrelevant claims?

Note: The trace may present a specific variable assignment or reasoning path
that leads to a contradiction. Whether it aligns with the given ground-
truth UNSAT reason means you must judge whether the contradiction is
logically valid and reflective of the actual cause, even if it doesn't
explicitly name the minimal core or unsat pattern.

You are *xnot** evaluating whether the conclusion "UNSAT" is correct - that is
already known to be correct.

You are only evaluating whether the explanation substantively captures why the
instance is unsatisfiable.

Please think step by step. First, explain whether and how the reasoning trace
aligns with the unsat reason.
Then, in the last line, output one of the following labels:

[YES] - the reasoning trace is logically valid and correctly captures the
UNSAT cause

[NO] - the trace is flawed, incomplete, or does not match the correct unsat
reason

Do not include anything after this label.

Figure AS: Trace Evaluation Prompt Template for UNSAT Prediction.

33838

