
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 3461–3478
November 4-9, 2025 ©2025 Association for Computational Linguistics

Large Language Models Have Intrinsic Meta-Cognition,
but Need a Good Lens

Ziyang Ma1*, Qingyue Yuan2*, Zhenglin Wang1, Deyu Zhou1†

1 School of Computer Science and Engineering, Key Laboratory of Computer Network
and Information Integration, Ministry of Education, Southeast University, China

2 Department of Neurosurgery, Shanghai Tenth People’s Hospital, School of
Clinical Medicine of Nanjing Medical University, China

{mazy, zhenglin, d.zhou}@seu.edu.cn yuanqy007@stu.njmu.edu.cn

Abstract

Previous research has primarily focused on the
cognitive error detection capabilities of Large
Language Models (LLMs), often prompting
them to analyze mistakes in reasoning chains.
However, few studies have examined the meta-
cognitive abilities of LLMs (e.g., their self-
awareness of step errors), which are crucial
for their reliability. While studies on LLM
self-evaluation present some measures, such
as perplexity, which can reflect the answer cor-
rectness and be viewed as the lens of meta-
cognition, they lack step-level analysis and
adaptation. This paper studies the evaluation of
LLM meta-cognition using the current lenses
and how to improve these lenses. Specifically,
we propose AutoMeco, an Automated Meta-
cognition Evaluation framework for bench-
marking the existing lenses. Furthermore, a
training-free Markovian Intrinsic Reward Ad-
justment strategy, MIRA, is proposed to boost
current meta-cognition lenses. Experimental re-
sults on three mathematical reasoning datasets
and three LLMs show the reasonableness of
AutoMeco by comparing it with Best-of-N ver-
ification. Moreover, the meta-cognition ability
of LLMs can be better evaluated using MIRA.1

1 Introduction

The reasoning ability of Large Language Models
(LLMs) has improved tremendously with the emer-
gence of Large Reasoning Models (LRMs) such
as OpenAI-o1 (Jaech et al., 2024) and DeepSeek-
R1 (Guo et al., 2025). While evaluation on the
cognitive capability of LLMs, such as reasoning
outcome accuracy (Lightman et al., 2023; Zeng
et al., 2025), presents the strength of LLMs, meta-
cognition of these models that points to their con-
sciousness of behavioral correctness is also impor-

*These authors contributed equally to this work.
†Corresponding Author.
1The code can be accessed via https://github.com/

Yann-Ma/AutoMeco.
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Figure 1: In reasoning tasks, error detection (a) focuses
on LLMs’ cognitive ability to analyze errors in reason-
ing steps. Self-evaluation (b) utilizes measures such
as entropy as lenses to reflect self-awareness of answer
rightness. Our work (c) studies the evaluation and im-
provement of the current lenses in reflecting LLM meta-
cognition. Bold “correct” and “wrong” within boxes
are ground truths of the answer or step correctness.

tant, especially for their reliability (Zhou et al.,
2024; Griot et al., 2025; Yan et al., 2025).

In cognitive science, meta-cognition is the cog-
nition beyond cognition, with subjective confi-
dence of cognitive behaviors being the main indi-
cator (Matthews et al., 2018; Shea and Frith, 2019).
Feeling of Rightness (Thompson et al., 2011) and
Feeling of Error (FoE) (Gangemi et al., 2015) are
two principal types of meta-cognition in reasoning
tasks of human beings. As shown in Figure 1(a),
previous research studies whether LLMs can de-
tect error steps in responses generated by other
models (e.g., Zeng et al., 2024; Tyen et al., 2024),
focusing on the cognitive error detection ability
of LLMs. Besides, research on self-evaluation in
Figure 1(b) proves that internal states of LLMs can
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reflect the answer correctness through a trained lin-
ear classifier (Zhang et al., 2025a) or training-free
measures such as perplexity (Wang et al., 2025a),
which can be viewed as the meta-cognition lenses.
However, few of them concentrate on whether
LLMs intrinsically have meta-cognition such as
FoE during the reasoning process, which under-
lies the trustworthiness and self-improvement fea-
sibility of LLMs. Therefore, this paper studies the
following two problems of LLM meta-cognition:
(i) To what extent can LLM meta-cognition be ob-
served through their internal states? (ii) How to ob-
serve LLM meta-cognition based on their internal
states without external sources more accurately?

Evaluating and enhancing meta-cognition lenses
for LLMs confronts two challenges rooted in the
dataset and methodology. (1) Data incomplete-
ness regarding the internal states of LLMs. To
the best of our knowledge, existing error detection
benchmarks contain no internal states of LLMs
such as hidden states and probabilities (Zeng et al.,
2025, 2024; Xia et al., 2025). This absence makes
existing benchmarks unusable for the evaluation of
meta-cognition lenses. (2) Insufficient granular-
ity of existing lenses. While existing approaches
mainly assess answer correctness (Si et al., 2022;
Huang et al., 2023; Wang et al., 2025a), they ig-
nore the sequential dependencies between steps
and probably fail to provide stepwise signals.

To address these challenges, as depicted in Fig-
ure 1(c): (1) We propose an Automated Meta-
cognition Evaluation framework (AutoMeco) that
realizes human-annotation-free benchmarking of
LLM meta-cognition lenses. Our framework uti-
lizes the Process Reward Model (PRM) as an an-
notator of step correctness. Furthermore, with
the automatically annotated labels, the framework
tests the lenses, such as perplexity, towards their
step-rightness classification ability. (2) We pro-
pose a training-free Markovian Intrinsic Reward
Adjustment strategy (MIRA) that modifies the step
rightness scores of the lenses based on Markov
Decision Process (MDP) modeling and Q-value
estimation. We model the step-level scoring as a
Markov decision process, with dependencies be-
tween the reasoning steps. In the MDP, our adjust-
ment strategy utilizes Q-value estimation to trans-
mit the influences in reverse from the end.

The contributions of this paper are as follows:

• We propose a human-annotation-free Auto-
mated Meta-cognition Evaluation framework,

AutoMeco, benchmarking the meta-cognition
lenses towards step rightness prediction.

• We propose a training-free Markovian In-
trinsic Reward Adjustment strategy, MIRA,
which enhances the LLM meta-cognition
lenses by introducing stepwise dependencies.

• We conduct experiments on mathematical
reasoning datasets with different difficulties
(GSM8K, MATH500, and MinervaMATH),
presenting the reasonableness of AutoMeco
and the effectiveness of MIRA.

2 Related Work

Reasoning Step Error Detection Benchmarks
PRM800K (Lightman et al., 2023) classifies the in-
termediate reasoning step as positive, negative, or
neutral, and underscores the importance of the rea-
soning step supervision to solve MATH problems.
This urges the improvement of Process Reward
Models, which are trained on datasets with anno-
tations on step rightness, such as PRM800K, to
output the step correctness probability.

Afterwards, MR-GSM8K (Zeng et al., 2025) and
MR-Math (Xia et al., 2025) extend the step error
detection beyond the classification task by man-
ually annotating the reason behind the first error
step based on subsets of GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al.) datasets, re-
spectively. They propose the cruciality of the error
reason interpretation ability of LLMs. Furthermore,
BIG-Bench Mistake (BBM) (Tyen et al., 2024) and
MR-Ben (Zeng et al., 2024) extend the task to other
domains instead of math problems only. BBM
contains 2,186 instances from symbolic reasoning
tasks (Tyen et al., 2024). MR-Ben consists of 5,975
instances covering natural sciences, coding, and
logic (Zeng et al., 2024). However, these bench-
marks focus on the error detection ability of LLMs,
which is a cognitive task. Instead, this paper aims
to conduct meta-cognition evaluation on LLMs,
delving into their intrinsic awareness of making
mistakes during reasoning.

Process Reward Models In the multi-step math-
ematical reasoning task, existing research mainly
defines process reward models as classifiers that
provide step correctness probability as fine-grained
process supervision (Uesato et al., 2022; Lightman
et al., 2023; Wang et al., 2024; Zhang et al., 2025b;
Shao et al., 2024). Lightman et al. (2023) con-
structs PRM800k, a large-scale manually annotated
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process reward dataset, to train the PRM. To miti-
gate the dependence on costly human annotation,
researchers propose automatic process supervision
by annotating the step correctness using Monte
Carlo Tree Search and training the process reward
model on the automatically labeled datasets (Wang
et al., 2024; Luo et al., 2024; Li et al., 2025). Be-
sides, Li and Li (2025) proposes the Process Q-
Value Model (PQM) that considers the sequential
dependencies between steps during the training of
PRMs. Benefiting from the development of PRM,
this paper utilizes it as a judge to annotate step
correctness. Meanwhile, motivated by PQM, we
propose a training-free reward adjustment strategy
to enhance meta-cognition lenses.

LLM Self-Evaluation Self-evaluation in LLMs
covers uncertainty estimation of LLMs. We focus
on training-free measures of self-evaluation in this
paper. Traditional methods include token probabil-
ity (Jiang et al., 2021), perplexity (Si et al., 2022),
and entropy (Huang et al., 2023). Furthermore,
Wang et al. (2025a) proposes Chain-of-Embedding
(CoE), which models the layer-by-layer changes of
hidden states to reflect the answer correctness of
LLMs and outperforms existing methods. However,
existing self-evaluation measures mainly predict
the answer correctness, and most methods ignore
the connections among sentences or steps. There-
fore, this paper concentrates on step correctness,
regarding self-evaluation measures as the lenses of
LLM meta-cognition, and endows their calculated
intrinsic rewards with sequential dependencies.

Besides, sampling consistency is also proven
effective in uncertainty quantification. Manakul
et al. (2023) calculates the similarity of multiple
responses towards one question as the uncertainty
score. Tonolini et al. (2024) considers the response
consistency towards multiple semantically equiva-
lent queries. However, we focus on methods based
on LLM internal states in a single sample to study
the intrinsic meta-cognition of LLMs.

3 Methodology

In this section, we first formally define the LLM
meta-cognition observation task in §3.1. Next, we
present the Automated Meta-cognition Evaluation
framework in §3.2, which evaluates LLM meta-
cognition lenses with the Process Reward Model
as a judge. Finally, we introduce the Markovian
Intrinsic Reward Adjustment strategy in §3.3 to
enhance existing meta-cognition lenses.

3.1 Task Definition
The LLM meta-cognition observation task is de-
fined as scoring the correctness of reasoning steps
based on the internal states of LLMs. Given a ques-
tion Q, an LLM generates a sequence containing
a chain of reasoning steps {Ri}Ni=1 and an answer
A, where N is the number of reasoning steps. The
LLM internal states of the reasoning step Ri in-
clude hidden states H i, logits Zi, and probabilities
P i of the output tokens. The hidden states repre-
sent all-layer hidden states of each generated token,
as shown in Equation 1.

H i = {ht}Ti
t=1, ht = [h0

t , ...,h
L
t ], (1)

where Ti and L denote the sequence length of Ri

and the number of LLM hidden layers, and h0
t

represents the embedding layer output of the t-th
token. With the hidden states, the logits are the
unnormalized output scores generated by the final
hidden layer of the LLM in Equation 2.

Zi = {zt}Ti
t=1, zt = hL

t ·W⊤
vocab, (2)

where W vocab ∈ RV×d is the vocabulary projec-
tion matrix, V is the vocabulary size, and d is the
hidden dimension of the final layer. The probabili-
ties of the output tokens are obtained by applying
the softmax function to the logits:

P i = {pt}Ti
t=1, pt = softmax(zt),

where the probability vector pt ∈ RV represents a
normalized distribution over the vocabulary, guid-
ing the final token prediction.

We formulate a self-evaluation method as a func-
tion F of the internal states, which calculates the
confidence score si of the reasoning steps Ri.

si = F(H i,Zi,P i) (3)

3.2 AutoMated Meta-Cognition Evaluation
Our framework AutoMeco operates through four
coordinated phases, as formalized in Algorithm 1.
The process initiates with structured response gen-
eration, followed by intrinsic rewarding with meta-
cognition lenses, automated step correctness anno-
tation using PRM, and metrics calculation.

Structured Response Generation Given an in-
put question Q, the language model generates a
response containing N logically discrete reasoning
steps {Ri}Ni=1. Each step Ri consists of consecu-
tive tokens [r1, r2, ..., rTi ] representing a coherent

3463



Algorithm 1: Automated Meta-cognition
Evaluation (AutoMeco)
Input: Dataset D, Language modelM,

Threshold θ
Output: Evaluation metrics

1 for each question Q ∈ D do
/* Structured Response Generation */

2 R←M(Q)
3 {Ri}Ni=1 ← Segment R via boundary

detection
/* Stepwise State Aggregation */

4 for each step Ri ∈ {R1, ..., RN} do
5 Extract hidden states

H i = {{hk
t }Lk=1}Ti

t=1

6 Collect logits Zi and probabilities
P i

/* Intrinsic Rewarding */

7 Compute confidence scores:
s

pred
i = F(H i,Zi,P i)

/* Step Correctness Annotation */

8 {strue
i }Ni=1 ← PRM(Q,R1:N )

9 for i = 1 to N do
10 if strue

i < θ then
11 ytrue

i ← 0

12 else
13 ytrue

i ← 1

/* Metric Calculation */

14 metrics← AUROC, AUPR, FPR95
15 return metrics

reasoning unit. We employ boundary detection
based on transitional phrases (e.g., “Step 1:”, “Step
2:”, and “Answer:”) to segment the token sequence
into interpretable steps.

Stepwise State Aggregation For each identified
step Ri, we aggregate the internal states across its
constituent tokens. The hidden states of all the
layers and every token are recorded:

H i = {{hk
t }Lk=1}Ti

t=1,

where hk
t denotes the k-th layer’s hidden state at

token position t in Ri. The step-level logits zt

and probabilities pt are extracted from every token
position within Ri, resulting in Zi and P i.

Intrinsic Rewarding The intrinsic reward s
pred
i

for each step is computed according to the specific
meta-cognition lens F :

s
pred
i = F(H i,Zi,P i)

Automated Step Correctness Annotation The
PRM receives the original question Q and gen-
erated steps {Ri}Ni=1 as input, calculating quality
scores {strue

i }Ni=1 ∈ [0, 1]N , as depicted in Equa-
tion 4. These quality scores further produce binary
labels based on a threshold θ.

{strue
i }Ni=1 = PRM(Q,R1:N ) (4)

ytrue
i =

{
0, if strue

i < θ,

1, else,
∀ i ∈ {1, ..., N} (5)

Metric Formalization Following Wang et al.
(2025a), we choose area under the precision-recall
curve (AUPR) (Manning and Schutze, 1999), area
under the receiver operating characteristic curve
(AUROC) (Boyd et al., 2013), and the false positive
rate at 95% true positive rate (FPR95) (Wang et al.,
2025a) to evaluate the alignment between intrinsic
confidence scores and process quality labels. These
metrics provide complementary views: AUROC
measures global ranking consistency, FPR95 quan-
tifies false alarm rates under high recall constraints,
and AUPR evaluates precision-recall tradeoffs.

3.3 Markovian Intrinsic Reward Adjustment

The stepwise Markovian Intrinsic Reward Adjust-
ment method models the reasoning as a Markov
decision process and tunes the self-contained con-
fidence scores by considering the sequential rela-
tions among the reasoning steps. We formalize the
stepwise adjustment method in Algorithm 2 and
introduce it as follows.

Given a reasoning trajectory τ defined as Equa-
tion 6 and 7, our training-free adjustment strategy
formalizes the reasoning process as a deterministic
MDP to adjust the step-level rewards by consider-
ing the interdependencies between steps.

τ = {(S1, R1), ..., (SN , RN ), (SN+1, A)} (6)

Si =
{
Q, if i = 1,

concat(Q,R1, ..., Ri−1), else.
(7)

State Transition Modeling The concatenation
operation propagates state representations as shown
in Equation 8, where Si denotes the i-th reasoning
state and Ri+1 represents the corresponding rea-
soning action (i.e., the next reasoning step).

Si+1 = concat(Si, Ri), ∀ i ∈ {1, ..., N} (8)
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Algorithm 2: Markovian Intrinsic Reward
Adjustment (MIRA)

Input: Reasoning trajectory τ =
{(S1, R1), ..., (SN , RN ), (SN+1, A)},
confidence scores {spred

i }Ni=1,
discount factor γ

Output: Adjusted scores {ŝpred
i }Ni=1

/* State Transition Modeling */

1 for i← 1 to N do
2 Si+1 ← concat(Si, Ri)

/* Q-Value Backward Propagation */

3 Initialize V (SN+1)← 0
4 for i← N to 1 do
5 Q(Si, Ri)← s

pred
i + γ · V (Si+1)

6 V (Si)← maxRi Q(Si, Ri)

/* Score Normalization */

7 for i← 1 to N do
8 ŝ

pred
i ← exp(Q(Si,Ri))∑N

j=1 exp(Q(Sj ,Rj))

9 return {ŝpred
i }Ni=1

Q-Value Estimation and Backward Propagation
The expected future reward Q(Si, Ri) integrates
immediate confidence and discounted future value
in Equation 9, with value function V (Si+1) =
maxRi+1 Q(Si+1, Ri+1) and γ ∈ (0, 1] as the
discount factor. In this equation, we recursively
update Q-values from terminal state SN+1 with
V (SN+1) = 0. This simplifies under a determinis-
tic MDP to direct value assignment in Equation 10.

Q(Si, Ri) = s
pred
i + γ · ESi+1 [V (Si+1)] (9)

Q(Si, Ri) = s
pred
i + γ · V (Si+1) (10)

Score Normalization Final adjusted scores are
computed via softmax scaling:

ŝ
pred
i =

exp(Q(Si, Ri))∑N
j=1 exp(Q(Si, Ri))

4 Experiment

This section will answer four logically connected
questions to present our experiments. §4.2 ex-
plores whether it is statistically feasible to predict
step correctness based on internal states. Further-
more, §4.3 answers two questions: (1) How do
existing meta-cognition lenses perform towards the
meta-cognition observation? (2) Is our proposed

stepwise adjustment method effective in improv-
ing these meta-cognition lenses? Afterwards, §4.4
validates whether PRM-as-a-Judge is a reasonable
method towards the meta-cognition evaluation.

4.1 Experiments Setup

Datasets We focus on mathematical reasoning
task with different difficulties. We evaluate the ex-
isting meta-cognition lenses on three datasets: the
grade school math problems from GSM8K (Cobbe
et al., 2021), competition mathematics prob-
lems from MATH500 (Hendrycks et al.), and
undergraduate- or Olympiad-level mathematical
problems from MinervaMATH (Lewkowycz et al.,
2022). We choose the first 250 problems of
GSM8K due to its relatively low difficulty, which is
also the English split of the multilingual math word
problems from MGSM (Shi et al.). MATH500 con-
tains 500 pieces selected by Lightman et al. (2023)
from the MATH dataset. MinervaMATH includes
272 problems that require quantitative reasoning.

Backbone Models For PRM, we use Qwen2.5-
Math-PRM-7B (Zhang et al., 2025b) in our exper-
iments, as it is one of the best mathematical pro-
cess reward models according to recent research by
Zheng et al. (2024). For LLMs, we consider three
open-sourced models, Qwen2.5-7B (Yang et al.,
2024), Llama-3-8B-Instruct (AI@Meta, 2024), and
Mistral-7B-Instruct (Jiang et al., 2023b), to conduct
reasoning on the three datasets above.

Baselines We conduct six meta-cognition lenses
to predict the step correctness, which results in
the intrinsic rewards of each step in the reasoning
chains. These baselines are: (1) CoE-C (Wang
et al., 2025a); (2) CoE-R (Wang et al., 2025a);
(3) ∆Entropy (Yin et al., 2024); (4) Max Probabil-
ity (Maxprob); (5) Perplexity (PPL) (Huang et al.,
2023); (6) Entropy (Si et al., 2022). Among them,
(1) and (2) require access to hidden states of LLMs,
and (3)-(6) only require probability distributions.
More details are in Appendix A.

Implementation Details We set the maximal
number of new tokens for Qwen2.5-7B as 768
and those for the other two models as 2048 be-
cause of their extra instruction-tuning. In the Au-
toMeco evaluation, we set temperature = 1.0 and
num_sequences = 1 to evaluate the model under
the condition of greedy generation. In the Best-of-
N (BoN) evaluation, we set temperature = 0.8
and N = 6. We select the best response from the
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N samples by choosing the one with the highest
intrinsic reward averaged over steps. For Mistral-
7B-Instruct, we use Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023a). Appendix C shows the prompt tem-
plates for the three datasets. All the experiments
are conducted on four 24G 3090 GPUs or one A100
80G GPU. For clear visualization, we use the kde-
plot function from the seaborn libary (Waskom,
2021) with contour levels of 7, density thresholds
of 0.15 for correct and 0.1 for incorrect samples,
and bw_adjust = 1.5.

4.2 Statistical Feasibility

We prompt Qwen2.5-7B to reason on GSM8K,
MATH500, and MinervaMATH. We conduct the
self-evaluation measures to predict the step cor-
rectness, which results in the intrinsic rewards of
each step in the reasoning chains. Subsequently,
with the step rewards annotated by PRM, we cal-
culate the correlation of the intrinsic and PRM
rewards on the data split conditioned on PRM
reward∈ (0, 1] ∪ [0.9, 1). PRM denotes Qwen2.5-
PRM-Math-7B in the following, if without reclar-
ification. Besides, we show the distinguishability
of step correctness by visualizing the kernel den-
sity estimation of Magnitude and Angle, two in-
ternal features proposed by Wang et al. (2025a).
Appendix A presents details of the two features.

Table 1 presents that the intrinsic and PRM re-
wards have a significant positive correlation on the
GSM8K dataset, which proves the feasibility of
LLM meta-cognition observation. However, the
premise is that the LLM can handle the task to some
extent, as the correlation drops significantly with
the rise of task difficulty. Furthermore, entropy is
statistically the most promising method to capture
the inherent presentation of step correctness, which
consistently has the highest correlation coefficients
on the three datasets. Besides, Figure 2 illustrates
the feature distributions of the correct and wrong
steps. It shows the decline of the step correctness
predictability when the dataset gets harder, which
is consistent with the statistics above.

4.3 Comparison and Ablation Study

We evaluate the meta-cognition lenses in a more
challenging and valuable setting with the three lan-
guage models. In this setting, we test the ability
of these methods to distinguish the correct and in-
correct steps, including wrong and unsure ones,
instead of merely the wrong steps.

Table 1: Spearman coefficient (Spearman, 1961) and
Kendall’s Tau (Kendall, 1938) between the intrinsic
and PRM rewards of Qwen-2.5-7B on three datasets.
All values are formatted as coefficient (p-value)
with p-values being in scientific notation, retaining two
significant figures (e.g., 1.7e-29 denotes 1.7× 10−29).
S and K stands for Spearman and Kendall, respectively.
Bold and underlined denote the best and second-best.

Methods
GSM8K MATH500 MinervaMATH

S K S K S K

CoE-C
0.040
(0.174)

0.035
(0.074)

0.068
(0.0001)

0.046
(0.0001)

0.010
(0.710)

0.007
(0.685)

CoE-R
0.325

(1.7e-29)

0.225
(4.1e-30)

0.212
(1.4e-33)

0.145
(2.2e-34)

0.255
(3.7e-21)

0.175
(1.7e-21)

Maxprob
0.498

(1.3e-72)

0.354
(7.3e-72)

0.241
(2.1e-43)

0.164
(8.1e-44)

0.265
(9.6e-23)

0.182
(3.1e-23)

PPL
0.499

(6.1e-73)

0.355
(4.9e-72)

0.243
(4.3e-44)

0.165
(2.6e-44)

0.263
(2.2e-22)

0.180
(9.1e-23)

Entropy
0.521

(1.6e-80)

0.370
(3.1e-78)

0.246
(3.0e-45)

0.168
(1.1e-45)

0.270
(1.7e-23)

0.185
(6.8e-24)

∆Entropy
-0.060
(0.041)

-0.039
(0.052)

0.147
(7.5e-17)

0.097
(1.7e-16)

0.066
(0.017)

0.044
(0.016)
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Figure 2: Intrinsic feature distributions of correct and
incorrect steps of Qwen2.5-7B on GSM8K, MATH500,
and MinervaMATH. Green and red contours represent
features of correct and wrong steps.
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Table 2: AutoMeco and Best-of-N evaluation results of meta-cognition lenses with and without our proposed reward
adjustment strategy, MIRA, across three mathematics reasoning datasets and three LLMs. Green and red denote
whether MIRA improves the meta-cognition lenses. “Acc” denotes accuracy. “Majority” represents majority voting.
“PRM” denotes voting based on the step-averaged rewards calculated by the PRM.

Methods

Qwen2.5-7B Llama-3-8B-Instruct Mistral-7B-Instruct

Best-of-N Acc↑ AUROC↑ FPR95↓ AUPR↑ Best-of-N Acc↑ AUROC↑ FPR95↓ AUPR↑ Best-of-N Acc↑ AUROC↑ FPR95↓ AUPR↑

GSM8K

Maxprob 53.60 61.25 90.74 96.82 73.20 65.53 90.29 94.67 42.80 68.46 86.17 51.79

+ MIRA (ours) 58.80 (+5.20) 67.50 (+6.25) 81.48 (-9.26) 96.88 (+0.06) 73.60 (+0.40) 58.21 (-7.32) 85.44 (-4.85) 92.60 (-2.07) 45.20 (+2.40) 58.88 (-9.58) 79.86 (-6.31) 39.94 (-11.85)

PPL 57.20 61.19 90.74 96.81 80.40 65.67 90.29 94.70 46.40 68.93 83.79 51.68

+ MIRA (ours) 66.40 (+9.20) 70.92 (+9.73) 79.63 (-11.11) 97.65 (+0.84) 78.80 (-1.60) 59.32 (-6.35) 84.47 (-5.82) 94.60 (-0.10) 47.60 (+1.20) 61.74 (-7.19) 79.02 (-4.77) 64.54 (+12.86)

Entropy 56.40 60.62 92.59 96.84 80.00 66.99 85.44 94.86 44.80 71.68 78.43 54.57

+ MIRA (ours) 63.20 (+6.80) 71.90 (+11.28) 75.93 (-16.66) 97.56 (+0.72) 79.20 (-0.80) 60.87 (-6.12) 86.41 (+0.97) 93.67 (-1.19) 47.20 (+2.40) 64.14 (-7.54) 77.00 (-1.43) 54.58 (+0.01)

∆Entropy 60.00 64.02 94.44 96.82 77.20 50.45 97.09 90.18 43.60 56.86 83.67 38.15

+ MIRA (ours) 61.60 (+1.60) 56.65 (-7.57) 94.44 (-0.00) 95.69 (-1.13) 74.40 (-2.80) 45.66 (-4.79) 98.28 (+1.19) 90.19 (+0.01) 49.60 (+6.00) 55.77 (-1.09) 86.77 (+3.10) 40.23 (+2.08)

CoE-R 54.80 64.78 88.89 97.14 77.60 63.84 91.26 94.32 44.80 39.24 96.78 32.47

+ MIRA (ours) 75.60 (+20.80) 65.23 (+0.45) 88.89 (-0.00) 96.90 (-0.24) 77.60 (+0.00) 63.52 (-0.32) 84.47 (-6.79) 94.40 (+0.08) 39.60 (-5.20) 53.58 (+14.34) 93.86 (-2.92) 37.08 (+4.61)

CoE-C 58.80 69.53 90.74 97.65 70.80 72.29 79.61 95.91 44.00 52.33 93.56 39.99

+ MIRA (ours) 57.60 (-1.20) 68.87 (-0.66) 70.37 (-20.37) 97.05 (-0.60) 72.80 (+2.00) 58.24 (-14.05) 88.35 (+8.74) 92.71 (-3.20) 44.40 (+0.40) 58.56 (+6.23) 80.33 (-13.23) 39.82 (-0.17)

Majority / PRM 86.80 / 75.20 - - - 86.80 / 89.20 - - - 60.40 / 70.80 - - -

MATH500

Maxprob 35.00 58.12 95.92 91.43 18.60 63.76 88.72 72.51 6.20 56.00 94.72 12.40

+ MIRA (ours) 37.60 (+2.60) 64.66 (+6.54) 86.52 (-9.40) 92.52 (+1.09) 18.00 (-0.60) 62.03 (-1.73) 87.26 (-1.46) 68.04 (-4.47) 5.60 (-0.60) 56.89 (+0.89) 91.86 (-2.86) 12.71 (+0.31)

PPL 40.00 57.83 95.61 91.43 23.20 63.84 88.04 72.71 6.00 56.35 94.07 12.60

+ MIRA (ours) 44.20 (+4.20) 64.40 (+6.57) 86.52 (-9.09) 93.88 (+2.45) 21.00 (-2.20) 62.77 (-1.07) 86.48 (-1.56) 75.74 (+3.03) 6.20 (+0.20) 54.51 (-1.84) 91.70 (-2.37) 41.29 (+28.69)

Entropy 40.20 57.53 96.65 91.38 22.40 64.04 87.71 72.63 6.20 55.43 92.97 12.41

+ MIRA (ours) 43.00 (+2.80) 66.23 (+8.70) 85.58 (-11.07) 93.19 (+1.81) 19.60 (-2.80) 65.87 (+1.83) 86.48 (-1.23) 74.98 (+2.35) 5.60 (-0.60) 53.20 (-2.23) 92.88 (-0.09) 23.52 (+11.11)

∆Entropy 41.40 54.21 97.81 90.91 17.80 53.77 96.42 62.51 4.80 49.63 95.54 12.60

+ MIRA (ours) 37.20 (-4.20) 64.62 (+10.41) 89.03 (-8.78) 92.69 (+1.78) 18.00 (+0.20) 62.70 (+8.93) 90.61 (-5.81) 68.37 (+5.86) 7.20 (+2.40) 61.45 (+11.82) 90.76 (-4.78) 17.51 (+4.91)

CoE-R 39.00 47.82 97.81 88.17 19.80 52.37 92.07 60.95 6.00 45.37 94.99 12.99

+ MIRA (ours) 44.00 (+5.00) 60.43 (+12.61) 85.89 (-11.92) 91.64 (+2.47) 17.60 (-2.20) 57.96 (+5.59) 92.07 (-0.00) 64.62 (+3.67) 4.40 (-1.60) 50.72 (+5.35) 93.15 (-1.84) 11.27 (-1.72)

CoE-C 37.40 59.71 94.36 91.35 16.80 59.27 93.52 68.83 6.60 59.80 86.22 13.43

+ MIRA (ours) 37.40 (+0.00) 65.03 (+5.32) 84.64 (-9.28) 92.69 (+1.34) 17.80 (+1.00) 61.32 (+2.05) 89.39 (-4.13) 67.65 (-1.18) 6.00 (-0.60) 57.75 (-2.05) 90.76 (+4.54) 13.03 (-0.40)

Majority / PRM 51.80 / 49.60 - - - 24.60 / 31.20 - - - 9.20 / 11.80 - - -

MinervaMATH

Maxprob 8.46 52.75 97.01 88.23 6.62 56.13 92.51 72.04 1.47 53.33 91.91 17.24

+ MIRA (ours) 9.56 (+1.10) 63.37 (+10.62) 94.61 (-2.40) 90.57 (+2.34) 6.25 (-0.37) 60.18 (+4.05) 92.90 (+0.39) 71.33 (-0.71) 1.47 (+0.00) 60.20 (+6.87) 88.14 (-3.77) 18.82 (+1.58)

PPL 9.93 52.96 97.60 88.37 7.35 57.54 91.75 72.65 1.47 53.95 91.99 17.49

+ MIRA (ours) 11.03 (+1.10) 64.50 (+11.54) 92.81 (-4.79) 92.72 (+4.35) 5.15 (-2.20) 60.81 (+3.27) 93.09 (+1.34) 79.74 (+6.91) 1.47 (+0.00) 58.44 (+4.49) 88.88 (-3.11) 46.94 (+29.45)

Entropy 10.66 52.53 98.80 88.35 8.82 57.41 90.60 72.63 1.47 53.73 91.33 17.28

+ MIRA (ours) 10.66 (+0.00) 64.60 (+12.07) 94.61 (-4.19) 91.52 (+3.17) 6.25 (-2.57) 61.11 (+3.70) 92.51 (+1.91) 74.04 (+1.41) 1.47 (+0.00) 57.50 (+3.77) 92.64 (+1.31) 26.02 (+8.74)

∆Entropy 10.29 49.84 98.80 88.42 8.09 48.15 96.74 65.71 1.47 48.20 93.54 14.61

+ MIRA (ours) 10.66 (+0.37) 60.86 (+11.02) 92.22 (-6.58) 90.20 (+1.78) 5.51 (-2.58) 58.18 (+10.03) 93.86 (-2.88) 70.89 (+5.18) 2.21 (+0.74) 60.48 (+12.28) 89.70 (-3.84) 19.78 (+5.17)

CoE-R 5.51 51.80 98.20 88.01 5.51 54.07 89.25 69.37 3.31 46.99 97.47 17.99

+ MIRA (ours) 12.13 (+6.62) 59.47 (+7.67) 93.41 (-4.79) 90.02 (+2.01) 5.51 (+0.00) 59.84 (+5.77) 90.60 (+1.35) 73.21 (+3.84) 0.74 (-2.57) 51.49 (+4.50) 96.30 (-1.17) 16.32 (-1.67)

CoE-C 9.93 54.99 97.60 88.29 6.25 59.65 91.55 75.17 1.84 59.94 90.27 20.31

+ MIRA (ours) 9.19 (-0.74) 63.63 (+8.62) 89.22 (-8.38) 90.64 (+2.35) 6.62 (+0.37) 60.47 (+0.82) 92.51 (+0.96) 71.76 (-3.41) 1.84 (+0.00) 60.68 (+0.74) 89.21 (-1.06) 19.09 (-1.22)

Majority / PRM 10.66 / 13.97 - - - 6.99 / 9.93 - - - 3.31 / 6.99 - - -

Performance Trends Across Difficulty Levels
As illustrated in Table 2, model performance ex-
hibits an overall correlation with problem difficulty.
The aggregate metrics of BoN accuracy, AUROC,
and AUPR demonstrate monotonic degradation as
task complexity increases. Concurrently, FPR95
shows a statistically significant upward trajectory.
Therefore, the performance of the meta-cognition
lenses in reflecting reasoning step correctness di-
minishes substantially on more difficult tasks.

Effectiveness and Efficiency of MIRA The pro-
posed reward adjust strategy demonstrates robust
generalization across model architectures and task
difficulties. As detailed in Table 2, MIRA achieves
performance improvements in 61.1% (BoN) and
68.5% (AUROC) of experimental configurations
(N=54). Figure 3 illustrates the particular effi-
cacy of MIRA in enhancing the meta-cognition

lenses for Qwen2.5-7B. Although MIRA works
on less than half of the settings for Llama-3-8B-
Instruct, Table 4.3 presents that it enhances more
meta-cognition lenses on the difficult task, Miner-
vaMATH, than the simple one, GSM8K. Besides,
MIRA also performs well on a wide range of meta-
cognition lenses for Mistral-7B-Instruct. The gains
brought by MIRA across different architectures
prove its cross-model compatibility. These experi-
mental results confirm our hypothesis that stepwise
adjustment of intrinsic rewards can effectively com-
pensate for inherent calibration weaknesses in the
existing lenses of LLM meta-cognition. Although
we primarily focus on open-source models, these
results are still insightful for closed-source black-
box LLMs due to the potential of probability-based
meta-cognition lenses such as Maxprob and PPL.
Additionally, Table 3 demonstrates that MIRA adds
only a negligible amount of latency per instance.
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Figure 3: Frequency of MIRA leading to improved,
unchanged, and degraded performance for meta-
cognition lenses on three LLMs (Qwen2.5-7B, Llama-
3-8B-Instruct, Mistral-7B-Instruct) and three datasets
(GSM8K, MATH500, MinervaMATH).

The increase does not exceed 0.03 milliseconds,
which validates the efficiency of MIRA.

Table 3: Latency measurements (unit: millisecond) for
the meta-cognition lenses with (w/) and without (w/o)
MIRA on Qwen2.5-7B (GSM8K subset). “Per Step”
and “Per Instance” denote the latency averaged across
all steps and all instances, respectively.

Methods Per Step Per Instance

w/o MIRA w/ MIRA

Maxprob 0.12 0.64 0.65

PPL 0.04 0.20 0.21

Entropy 512.94 2669.63 2669.64

∆Entropy 508.54 2646.73 2646.74

CoE-R 0.51 2.64 2.66

CoE-C 0.64 3.31 3.34

Validation on Difficult Math Tasks Practical
validation on the MinervaMATH dataset reveals
compelling advantages of meta-cognition lenses
over conventional ensemble approaches. For in-
stance, Qwen2.5-7B with adjusted CoE-R config-
uration outperforms majority voting baselines by
1.47% in BoN accuracy (12.13% vs 10.66%), while
Llama-3-8B-Instruct achieves better performance
through self-evaluation-based selection than ma-
jority voting (PPL: +0.36%, Entropy: +1.83%,
∆entropy: +1.10%). This performance gap sug-
gests that properly calibrated self-evaluation met-
rics enable more effective identification of high-
quality reasoning paths than static aggregation

methods. The findings align with our hypothe-
sis that LLMs contain latent self-diagnostic ca-
pabilities that can be operationalized through ap-
propriate metric design. Meanwhile, these results
also indicate the potential of meta-cognition eval-
uation as a mechanism for autonomous LLM self-
improvement through intrinsic process supervision.

4.4 PRM-as-a-Judge Analysis

To validate the reasonableness of utilizing PRM as
an annotator, we conduct the following analysis:
(1) Analyze the consistency between the rewards of
two different PRMs, Qwen2.5-Math-PRM-7B and
Skywork-o1-Open-PRM-Qwen-2.5-7B (He et al.,
2024); (2) Compare AutoMeco with BoN by cal-
culating the consistency of their benchmarking re-
sults of six meta-cognition lenses. The consistency
metrics include top-K and last-K match rate, and
consistency rate (CR) (Wang et al., 2025b). Ap-
pendix B presents more details on these metrics.

Agreement between Different PRMs Table 4
shows strong inter-annotator agreement between
the two PRMs, confirming their reliability for eval-
uating step-level errors. Notably, the kappa score
for annotations on Mistral-7B-Instruct’s reasoning
traces reaches 0.7334. However, the PRMs exhibit
lower agreement on step-level annotations than on
instance-level ones. For example, the step-level
Kappa for the reasoning steps of Qwen2.5-7B is
0.3274, compared to 0.5878 at the instance level.
This discrepancy indicates that while the PRMs are
effective judges overall, there is room to improve
their fine-grained annotation accuracy.

Consistency between AutoMeco and BoN
Our analysis demonstrates that PRM-as-a-Judge
achieves reasonable consistency with BoN eval-
uation, validating its utility as a complementary
method for efficient method ranking. While per-
fect alignment is not observed, the results highlight
meaningful agreement trends. As shown in Table 5,
AutoMeco exhibits alignment with BoN rankings
for top-tier methods, particularly at K=3. BoN’s
top methods include its top three in 66.67% set-
tings on average, with Mistral-7B-Instruct achiev-
ing 100% consistency. Furthermore, the average
CR of 48.15% supports the reliability of AutoMeco
to benchmark the meta-cognition lenses. Moreover,
it achieves the highest alignment on Llama-3-8B-
Instruct (CR=53.33%), suggesting model-specific
optimization potential.
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Table 4: Inter-annotator agreement for step- and
instance-level rewards between Qwen2.5-Math-PRM-
7B and Skywork-o1-Open-PRM-Qwen-2.5-7B on the
responses of the three LLMs to the three math datasets.
“Spearman” and “Pearson” are the Spearman (Spearman,
1961) and Pearson’s correlation coefficients (Pearson,
1895). All the correlations in this table are statistically
significant (p < 0.05). “Cohen” represents the inter-
annotator agreement score, Cohen’s Kappa (McHugh,
2012). The reported Kappa score is maximized by find-
ing the optimal binarization thresholds through a grid
search over the range {0.1, 0.2, · · · , 0.8, 0.9}.

Model Spearman↑ Pearson↑ Cohen↑
Step Level

Qwen2.5-7B 0.6309 0.3552 0.3274
Llama-3-8B-Instruct 0.5850 0.3473 0.2657
Mistral-7B-Instruct 0.5758 0.6109 0.5349

Instance Level (Averaged on Steps)
Qwen2.5-7B 0.7630 0.6236 0.5878

Llama-3-8B-Instruct 0.7179 0.6617 0.6108
Mistral-7B-Instruct 0.7250 0.7981 0.7334

Table 5: Consistency metrics of Best-of-N (BoN) and
AutoMeco results across three large language models.
Top-k and Last-K Match evaluate whether the best/worst
method chosen by AutoMeco is in the top/last K meth-
ods ranked by BoN. Top-K Order considers both the
best and the worst. CR stands for consistency rate.

Model
Top-K Match Last-K Match Top-K Order

CR
K=1 K=3 K=1 K=3 K=1 K=3

Qwen2.5 0.00 66.67 0.00 66.67 0.00 16.67 44.44

Llama-3 0.00 33.33 0.00 33.33 0.00 0.00 53.33

Mistral 33.33 100.00 0.00 33.33 0.00 16.67 46.67

Average 11.11 66.67 0.00 44.44 0.00 11.11 48.15

5 Conclusion

We investigate the LLM meta-cognition observa-
tion capability of self-evaluation measures as meta-
cognition lenses for language models, through
an automated benchmarking framework to eval-
uate these lenses and a fine-grained self-evaluation
adjustment strategy to enhance them. These
meta-cognition lenses can capture the LLM meta-
cognition, and the stepwise modification further
improves their observation ability.

Our study points to several directions with a
considerable range of research for future work,
including constructing an LLM meta-cognition
benchmark with manually annotated step correct-
ness and the LLM internal states for errorless step
labels, developing more accurate self-evaluation

measures for meta-cognition observation, apply-
ing meta-cognition signals to realize LLM self-
improvement, and aligning LLM with human pref-
erences more efficiently via meta-cognition loss.
Moreover, utilizing the meta-cognition lenses for
response refinement in other scenarios, such as
agentic tasks, constitutes a crucial direction.

Limitations

Our work focuses on introducing meta-cognition
into language model evaluation by incorporating
internal model states into self-assessment mecha-
nisms. While our approach demonstrates promis-
ing results, several limitations warrant discussion:

Model Accessibility Requirements Our method
incorporates internal model representations such as
hidden states to enable fine-grained self-evaluation.
This design, however, requires access to model
internals and is mainly limited to open-source ar-
chitectures. While logits- and probability-based
self-evaluation methods are compatible with both
open-source and mainstream closed-source LLMs
with access to the last-layer states, more delicate
approaches using hidden states cannot be directly
applied to closed-source models such as GPT-
4 (Achiam et al., 2023). Exploring approximations
or hybrid strategies may help bridge the gap be-
tween white-box and black-box interpretability.

Computational and Memory Overhead Our
Markovian Intrinsic Reward Adjustment (MIRA)
strategy utilizes internal model signals to dynam-
ically refine self-evaluation. As a result, it intro-
duces additional computation during the reasoning
phase and requires extra memory to store interme-
diate hidden states. Though the overhead remains
moderate in scale, these factors may influence effi-
ciency in practical deployment settings.

Extension to Large Reasoning Models Our
framework has been validated across multiple
model families, including Qwen, Llama, and Mis-
tral. However, generalizing it to more sophisticated
Large Reasoning Models (LRMs) involves non-
trivial considerations. The dynamic and complex
nature of their reasoning processes calls for more
adaptive step-wise modeling techniques. Integrat-
ing these with recent advances in cognitive behav-
ior analysis of RL (Yue et al., 2025; Gandhi et al.,
2025) or reasoning boundary analysis (Chen et al.,
2024) may offer a promising path forward.
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A LLM Self-Evaluation Measures

A.1 Chain-of-Embedding (CoE)
For a reasoning step Ri with Ti tokens, Wang et al.
(2025a) quantifies two features, Magnitude and
Angle, to represent the layer-by-layer changes of
query understanding based on hidden states:

Mag(H i) =
1

L

L−1∑

ℓ=0

||hℓ+1 − hℓ||2
||hL − h0||2

Ang(H i) =
1

L

L−1∑

ℓ=0

arccos
(

h⊺
ℓ+1 · hℓ

||hℓ+1||2 · ||hℓ||2

)

arccos
(

h⊺
L · h0

||hL||2 · ||h0||2

)

hℓ =
1

Ti

Ti∑

t=1

hℓ
t, ∀ ℓ ∈ [0, ..., L]

Two basic components in Magnitude and Angle,
magnitude change M(hℓ,hℓ+1) and angle change
A(hℓ,hℓ+1), are defined as follows:

M(hℓ,hℓ+1) = ||hℓ+1 − hℓ||2

A(hℓ,hℓ+1) = arccos

(
h⊺
ℓ+1 · hℓ

||hℓ+1||2 · ||hℓ||2

)

As shown in Equation 11 and 12, CoE-R and
CoE-C capture the correctness by combining the
magnitude and angle changes in the real and com-
plex spaces, respectively (Wang et al., 2025a).

A.2 Entropy
Entropy reflects the uncertainty of reasoning steps
based on their token probabilities (Si et al., 2022):

Entropy(P i) =
1

Ti

Ti∑

t=1

(−p⊺
t · log pt) (13)

We utilize its reciprocal as the correctness score.

A.3 ∆Entropy
Yin et al. (2024) proposes that the abnormal uncer-
tainty fluctuation is useful for judging wrong steps
during reasoning, which is formally the uncertainty
change between two adjacent reasoning steps. The
more the LLM’s uncertainty fluctuates, the more
likely the LLM makes mistakes. We choose En-
tropy as the uncertainty metric to formulate the
entropy fluctuation:

∆Entropy(P i) =

{
0, if i = 0,

Entropy(P i)− Entropy(P i−1), else.
(14)

We utilize the opposite number of ∆Entropy as
the step correctness score.

A.4 Max Probability (Maxprob)

Maxprob calculates the average of the maximal
elements in the probability distributions, which
assumes that the top-1 probability reflects the cer-
tainty of LLMs:

Maxprob(P i) =
1

Ti

Ti∑

t=1

max(pt) (15)

A.5 Perplexity (PPL)

PPL reflects the uncertainty of LLMs by consider-
ing the negative logarithm of the maximal proba-
bility:

PPL(P i) = −
1

Ti

Ti∑

t=1

log max(pt) (16)

We utilize its reciprocal as the correctness score.

B Consistency Metrics

For an LLM Θ and a dataset D, AutoMeco and
BoN evaluate M meta-cognition lenses, which re-
sults in two ranks denoted by α = α1, α2, ..., αM

and β = β1, β2, ..., βM . Top-K Match, Last-K
Match, and Top-K Order are measured as follows:

TopMatchΘ,D(K) = I[argmin αm ∈ argsort(β)[: K]]

LastMatchΘ,D(K) = I[argmax αm ∈ argsort(β)[−K :]]

TopOrderΘ,D(K) = TopMatchΘ,D(K) · LastMatchΘ,D(K)

where K ∈ [1, 2, 3], I[·] is the indicator function
and argsort(β) outputs the indices that sort β in
ascending order. Equation 17 calculates the consis-
tency rate of α and β (Wang et al., 2025b).

CRΘ,D =
2

M(M − 1)

∑

1≤m<m′≤M

[I[(αm − αm′)(βm − βm′) > 0]−
I[(αm − αm′)(βm − βm′) < 0]] (17)

Ultimately, we average these metrics on three
datasets to present the consistency of AutoMeco
and BoN for the LLM Θ.
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CoE-R(Hi) = Mag(Hi)− Ang(Hi) =
1

L

L−1∑

ℓ=0

(
M(hℓ,hℓ+1)

M(h0,hL)
− A(hℓ,hℓ+1)

A(h0,hL)

)
(11)

CoE-C(Hi) =
1

L

∣∣∣∣∣
L−1∑

ℓ=0

M(hℓ,hℓ+1) · ei·A(hℓ,hℓ+1)

∣∣∣∣∣

=
1

L

∣∣∣∣∣
L−1∑

ℓ=0

[M(hℓ,hℓ+1) cos(A(hℓ,hℓ+1)) + i ·M(hℓ,hℓ+1) sin(A(hℓ,hℓ+1)]

∣∣∣∣∣

=
1

L

√√√√
(

L−1∑

ℓ=0

M(hℓ,hℓ+1) cos(A(hℓ,hℓ+1))

)2

+

(
L−1∑

ℓ=0

M(hℓ,hℓ+1) sin(A(hℓ,hℓ+1))

)2

(12)

C Prompt Templates

• GSM8K

Solve this math problem step by step. Give the
reasoning steps using ‘Step n:’ before each step
to distinguish between different steps, where n
is a positive integer starting from 1, represent-
ing the current step number. Then give the final
answer on the last line by itself in the format of
"Answer:"

Do not add anything other than the integer an-
swer after “Answer:”

Question: {input_data}

• MATH500 and MinervaMATH

Question: {input_data}

Please reason step by step. Use ‘Step n:’ before
each step to distinguish between different steps,
where n is a positive integer starting from 1,
representing the current step number. Then,
give your final answer on the last line in the
format of “Answer: \boxed{} ”

D Statistical Feasibility on Other LLMs

As shown in Table 6 and 7, meta-cognition lenses
perform weakly in capturing meta-cognition of
Llama-3-8B-Instruct and Mistral-7B-Instruct. In-
terestingly, however, these methods are statisti-
cally better at hard tasks than simple ones. For
instance, CoE-C has a stronger correlation with
PRM rewards on MinervaMATH than GSM8K and
MATH500 for the two LLMs.

E Statistics of Reasoning Steps

Table 8: Statistics on correct, wrong, and uncertain
reasoning steps annotated by Qwen2.5-Math-PRM-7B
in mathematical reasoning tasks.

Model Dataset Step Correctness

Correct Wrong Uncertain

Qwen2.5
GSM8K 1127 17 122
MATH500 3079 106 471
MinervaMATH 1278 47 277

Llama-3
GSM8K 1130 34 229
MATH500 2900 401 1135
MinervaMATH 1328 113 637

Mistral
GSM8K 523 223 828
MATH500 3079 106 471
MinervaMATH 371 1130 2322

F Case Study

Figure 4, 5, and 6 illustrate three cases of Qwen2.5-
7B on GSM8K, MATH500, and MinervaMATH
datasets. In these cases, self-evaluation measures
fail to predict the rightness of the wrong step, while
MIRA successfully calibrates the intrinsic meta-
cognition by conducting stepwise adjustments to
these meta-cognition lenses.
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Table 6: Spearman coefficient (Spearman, 1961) and Kendall’s Tau (Kendall, 1938) between the intrinsic and PRM
rewards of Llama-3-8B-Instruct on three datasets.

Methods
GSM8K MATH500 MinervaMATH

Spearman Kendall Spearman Kendall Spearman Kendall

CoE-C
0.179

(8.0e-10)

0.119
(1.1e-9)

0.095
(4.0e-8)

0.054
(3.1e-6)

0.203
(8.2e-15)

0.135
(2.0e-14)

CoE-R
0.219

(3.8e-14)

0.139
(1.4e-12)

0.123
(1.2e-12)

0.083
(9.2e-13)

0.155
(3.8e-9)

0.103
(4.5e-9)

Maxprob
0.102

(0.0005)

0.081
(3.6e-5)

0.098
(1.5e-8)

0.063
(6.9e-8)

0.022
(0.4058)

0.013
(0.4569)

PPL
0.100

(0.0006)

0.080
(4.2e-5)

0.101
(6.1e-9)

0.064
(3.4e-8)

0.263
(2.2e-22)

0.180
(9.1e-23)

Entropy
0.119
(5.0e-5)

0.092
(2.3e-6)

0.104
(2.0e-9)

0.065
(2.6e-8)

0.044
(0.098)

0.027
(0.127)

∆Entropy
-0.208

(8.0e-13)

-0.136
(3.4e-12)

0.024
(0.167)

0.019
(0.094)

-0.074
(0.0047)

-0.049
( 0.00499)

Table 7: Spearman coefficient (Spearman, 1961) and Kendall’s Tau (Kendall, 1938) between the intrinsic and PRM
rewards of Mistral-7B-Instruct on three datasets.

Methods
GSM8K MATH500 MinervaMATH

Spearman Kendall Spearman Kendall Spearman Kendall

CoE-C
0.194

(9.0e-08)

0.130
(1.1e-07)

0.215
(3.9e-17)

0.139
(5.9e-16)

0.333
(2.5e-18)

0.221
(2.7e-17)

CoE-R
-0.282

(3.9e-15)

-0.190
(9.1e-15)

-0.118
(4.8e-06)

-0.078
(5.8e-06)

-0.101
(0.0099)

-0.064
(0.0148)

Maxprob
0.306

(1.1e-17)

0.203
(1.1e-16)

0.036
(0.158)

0.023
(0.185)

0.011
(0.783)

0.005
(0.848)

PPL
0.320

(3.1e-19)

0.213
(3.7e-18)

0.051
(0.048)

0.032
(0.061)

0.033
(0.396)

0.020
(0.437)

Entropy
0.326

(6.8e-20)

0.217
(7.2e-19)

0.035
(0.181)

0.023
(0.191)

0.012
(0.754)

0.007
(0.794)

∆Entropy
0.154

(2.4e-05)

0.105
(2.1e-05)

0.009
(0.713)

0.006
(0.721)

-0.040
(0.303)

-0.027
(0.301)
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Question:
John drives for 3 hours at a speed of 60 mph and then turns
around because he realizes he forgot something very important
at home.  He tries to get home in 4 hours but spends the first 2
hours in standstill traffic.  He spends the next half-hour driving
at a speed of 30mph, before being able to drive the remaining
time of the 4 hours going at 80 mph.  How far is he from home
at the end of those 4 hours?

Step 1: Calculate the distance John travels in the first 3 hours.
Distance = Speed * Time
Distance = 60 mph * 3 hours = 180 miles

Step 2: Calculate the distance John travels in the next 2 hours
in standstill traffic.
Since he is not moving, the distance traveled is 0 miles.

Step 3: Calculate the distance John travels in the next 0.5
hours at a speed of 30 mph.
Distance = Speed * Time
Distance = 30 mph * 0.5 hours = 15 miles

Step 4: Calculate the remaining time John has to travel after
the first 3.5 hours.
Total time = 4 hours
Time spent in standstill traffic = 2 hours
Time spent driving at 30 mph = 0.5 hours
Remaining time = 4 hours - 2 hours - 0.5 hours = 1.5 hours

Step 5: Calculate the distance John travels in the remaining
1.5 hours at a speed of 80 mph.
Distance = Speed * Time
Distance = 80 mph * 1.5 hours = 120 miles

Step 6: Calculate the total distance John travels in 4 hours.
Total distance = Distance in first 3 hours + Distance in standstill
traffic + Distance at 30 mph + Distance at 80 mph
Total distance = 180 miles + 0 miles + 15 miles + 120 miles =
315 miles

Step 7: Calculate the distance John is from home at the end of
the 4 hours.
Since he traveled 315 miles away from home, he is 315 miles
from home.

Answer: 315 miles

0.99 1 5.43 1 1.00 1

0.99 1 4.49 1 1.00 1

0.99 1 26.85 1 1.00 1

0.99 1 6.19 1 1.00 1

0.99 1 213.45 1 1.00 1

0.99 1 14.04 1 1.00 1

0.34 0 4.22 1 0.985 0

Correct Answer: 45
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Figure 4: A demonstration of MIRA enhancing meta-cognition observation for Qwen2.5-7B on GSM8K. The
thresholds are determined by maximizing the F1 score of step correctness prediction.
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Question:

Step 1: To solve the equation ,
we can start by isolating the exponential terms
on one side of the equation.

Step 3: Now, we can take the natural logarithm 
( ) of both sides of the equation to bring down
the exponents.

Step 4: Applying the natural logarithm, we get
.

Step 5: Step 5: Using the logarithm property
, we can rewrite the

equation as .

Step 6: Now, we can divide both sides of the
equation by  to isolate the  term:

.

 Answer: 

0.98 1 0.84 1 1.000 1 1.24 1 1.00 1

0.99 1 0.95 1 1.000 1 3.88 1 1.00 1

0.99 1 0.83 1 1.000 1 1.37 1 1.00 1

0.99 1 0.92 1 1.000 1 3.15 1 1.00 1

0.99 1 0.93 1 0.99 1 3.85 1 1.00 1

0.99 1 0.90 1 0.97 1 2.42 1 1.00 1

0.99 1 0.94 1 0.93 1 3.53 1 1.00 1

0.99 1 0.83 1 0.83 1 1.26 1 0.90 1

0.31 0 0.75 1 0.67 0 0.99 1 0.73 0

Correct Answer: 

Solve for : 

Step 2: Subtract 19 from both sides of the
equation to get .

Step 7: To solve for , we can divide both
sides of the equation by 2:

.

Step 8: Unfortunately, this equation cannot be
solved algebraically for an exact value of x.
However, we can use numerical methods or
graphing to approximate the solution.

Step 9: Using a numerical solver or graphing
calculator, we find that the approximate
solution for  is 1.113.
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Figure 5: A demonstration of MIRA enhancing meta-cognition observation for Qwen2.5-7B on MATH500. The
thresholds are determined by maximizing the F1 score of step correctness prediction.
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Question:
In Cambridge, shoppers can buy apples from two sources: a local
orchard, and a store that ships apples from out of state. The orchard can
produce up to 50 apples per day at a constant marginal cost of 25 cents
per apple. The store can supply any remaining apples demanded, at a
constant marginal cost of 75 cents per unit. When apples cost 75 cents
per apple, the residents of Cambridge buy 150 apples in a day.
Assume that the city of Cambridge sets the price of apples within its
borders. What price should it set, in cents?

Step 1: Determine the total demand for apples in Cambridge.
The total demand for apples in Cambridge is 150 apples per day.

Step 2: Determine the supply from the local orchard.
The local orchard can produce up to 50 apples per day at a marginal
cost of 25 cents per apple.

Step 3: Determine the remaining demand after the local orchard's supply.
The remaining demand after the local orchard's supply is 150 - 50 = 100
apples per day.

Step 4: Determine the supply from the store for the remaining demand.
The store can supply any remaining apples demanded at a marginal cost
of 75 cents per apple.

Step 5: Calculate the total cost for the local orchard and the store to
supply the apples.
The total cost for the local orchard is 50 apples * 25 cents = 1250 cents.
The total cost for the store to supply the remaining 100 apples is 100
apples * 75 cents = 7500 cents.
The total cost for both the local orchard and the store is 1250 cents +
7500 cents = 8750 cents.

Step 6: Calculate the price per apple that should be set by the city of
Cambridge.
To minimize the total cost, the city should set the price per apple equal
to the marginal cost of the store, which is 75 cents per apple.

0.99 1 0.12 1 0.68 1

0.99 1 0.13 1 0.65 1

0.99 1 0.13 1 0.59 1

0.99 1 0.12 1 0.56 1

0.99 1 0.12 1 1.00 1

0.45 0 0.12 1 0.529 0

Correct Answer: 75
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 Answer: 

Figure 6: A demonstration of MIRA enhancing meta-cognition observation for Qwen2.5-7B on MinervaMATH.
The thresholds are determined by maximizing the F1 score of step correctness prediction.
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