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Abstract

Aligning Large Language Models (LLMs) with
human preferences is crucial in ensuring desir-
able and controllable model behaviors. Cur-
rent methods, such as Reinforcement Learn-
ing from Human Feedback (RLHF) and Di-
rect Preference Optimization (DPO), rely on
the Bradley-Terry (B-T) model to maximize
the likelihood of pairwise choices. However,
when multiple responses are available, the B-T
model fails to guarantee an accurate list rank-
ing of the responses. To address this issue,
we propose Permutative Preference Alignment
(PPA), a novel offline listwise approach that
incorporates the Normalized Discounted Cu-
mulative Gain (NDCG)—a widely-used rank-
ing metric—as an alternative training objective
for LLM alignment. We develop an end-to-end
alignment algorithm by approximating NDCG
with a differentiable surrogate loss. Experi-
ments demonstrate that PPA outperforms exist-
ing pairwise and listwise methods on evaluation
sets and general benchmarks such as AlpacaE-
val. Furthermore, we show that NDCG-based
approaches improve ranking accuracy more ef-
fectively than B-T-based methods and provide
a theoretical explanation for this improvement.

1 Introduction

Large Language Models (LLMs) trained on mas-
sive datasets have demonstrated impressive capabil-
ities in natural language processing (Achiam et al.,
2023; Dubey et al., 2024). Aligning these models
with human preferences is essential for reliable and
controllable model behaviors. Pairwise methods,
such as Reinforcement Learning from Human Feed-
back (RLHF) and Direct Preference Optimization
(DPO) (Rafailov et al., 2023), employ the Bradley-
Terry (B-T) model (Bradley and Terry, 1952) to
maximize the likelihood of pairwise preferences,
demonstrating strong performances (Christiano
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et al., 2017; Ouyang et al., 2022). Various pairwise-
based offline preference optimization methods have
been developed, such as RRHF (Yuan et al., 2023),
SLiC (Zhao et al., 2023), RPO (Yin et al., 2024),
SimPO (Meng et al., 2024), and LiPO-A (Liu et al.,
2024), which depend on the human preferences
elicited from pairwise comparisons. These con-
trastive methods essentially classify preferred and
non-preferred responses as positive and negative
samples, naturally suited for the binary responses in
the data sets like Reddit TL;DR and AnthropicHH
(Stiennon et al., 2020; Bai et al., 2022).

However, multi-response data are often avail-
able, where a single prompt corresponds to several
responses with assigned rewards (Ouyang et al.,
2022; Yuan et al., 2023; Dong et al., 2023; Kopf
et al., 2024). For such data, DPO cannot ensure the
correct ranking of individual pairs, as it infers rela-
tive quality rankings of responses by maximizing
the pairwise choice probability, potentially leading
to an inaccurate overall list ranking. Among LTR
metrics, NDCG emerges as the ideal training objec-
tive because it handles graded relevance and incor-
porates position-based discounting. Unlike MAP,
MRR, Precision, and Recall which suffer from bi-
nary relevance limitations and non-differentiability.
NDCG (Vargas and Castells, 2011) can be effec-
tively approximated with differentiable surrogates.
This property makes it uniquely suited for gradient-
based alignment optimization.

In this work, we propose Permutative Prefer-
ence Alignment (PPA), a new listwise alignment ap-
proach to align human preferences by maximizing
NDCG. Models can be viewed as score functions
that assign reward scores to responses. The align-
ment is learning to rank these responses to match
the permutation derived from ground truth labels.
We employ the smooth surrogate loss NeuraINDCG
(Pobrotyn and Biatobrzeski, 2021) to approximate
NDCG to overcome its non-differentiable nature.

In real-world generation tasks, we find that the
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prompt:
Tell me something to cheer me up.
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Figure 1: An illustration of Permutative Preference Alignment (PPA) workflow. Each response is assigned a ground
truth label by the reward model and pre-sorted in descending order. Reward scores are then derived from the policy
and re-sorted to a new permutation. PPA calculates NDCG @K from the difference between two permutations and

then optimizes the policy model.

proposed PPA achieves higher ranking accuracy
than B-T model-based methods, a crucial metric in
evaluating policy performance. Existing literature
shows that B-T-based RLHF and DPO struggle
to improve ranking accuracy because they max-
imize the reward margin between preferred and
non-preferred responses (Chen et al., 2024). In
contrast, maximizing NDCG only requires the pre-
ferred responses to have higher reward scores than
the non-preferred ones. Based on this distinction,
we provide a theoretical explanation for the im-
provement of PPA in ranking accuracy.

In empirical studies, we comprehensively evalu-
ate model performance with various pairwise and
listwise baselines. In addition, we construct a mul-
tiple response dataset assigned with rewards based
on UltraFeedback (Cui et al., 2023) and SimPO.
The proposed PPA consistently achieves the best
performance on both evaluation datasets and gen-
eral benchmarks like AlpacaEval (Li et al., 2023).

Our contributions are summarized as follows:

* We identify potential limitations of DPO in
list ranking and introduce NDCG as a training
objective to improve ranking performance.

* We propose PPA as a new listwise alignment
method that leverages multiple responses,
which demonstrates superior performance
over existing pairwise and listwise approaches
across various model scales.

* We illustrate that NDCG-based method is
more effective than Bradley-Terry-based
methods in improving ranking accuracy and
propose a theoretical explanation.

2 Related Work

Recent approaches for aligning language models
with human preferences typically fall into three cat-

egories. Pairwise preference methods like DPO
(Rafailov et al., 2023) use the Bradley-Terry model
to optimize binary preferences without explicit re-
ward models. But in multiple-response scenarios,
they focus on average contrastive probability rather
than ensuring all individual pairs align with ground
truth labels. Multiple response alignment meth-
ods like RRHF, LiPO-A, DPO-PL, PRO, and LIRE
(Yuan et al., 2023; Liu et al., 2024; Rafailov et al.,
2023; Song et al., 2024; Zhu et al., 2024) expand
candidate responses from various LLMs and opti-
mize the model with Bradley-Terry-based or list-
wise algorithms. Pairwise methods encounter sim-
ilar limitations as in binary-response conditions,
while listwise methods fail to optimize the estab-
lished evaluation metrics prevalent in the LTR lit-
erature, like NDCG. Learning to Rank (LTR)
techniques offer promising directions, particularly
listwise approaches (Xia et al., 2008a) that consider
entire ranking lists as training instances, better cap-
turing response relationships compared to point-
wise and pairwise methods. Despite their poten-
tial, current listwise techniques have not achieved
state-of-the-art performance in LTR, highlighting
opportunities for improvement. The further related
work details are provided in Appendix A.

3 Preliminaries

Our approach adopts the Learning to Rank (LTR)
framework and the list permutations.

3.1 Problem Setting

Following the setup in LiPO (Liu et al., 2024),
we assume access to an offline static dataset D =
{20, YO ®OIN where Y = (y1,..., yx) is a
list of responses from various generative models
of size K given the prompt x. Each response is
associated with a label from ¥ = (¢1,...,¢¥k),
also known as the ground truth labels in the LTR
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literature. The label ¥ measures the quality of
responses, which can be generated from human
feedback or a pre-trained reward model. We obtain
the score W from a reward model:

Y = RM (x, yx), (1)

where 15, € [0, 1]. The label is fixed for a response,
representing the degree of human preference.

For each prompt-response pair, we also compute
a reward score representing the likelihood of the
generating probability of the response:

mo(y|z)
71'ref(y‘w) .

so(z,y) = Blog 2)
Here, mf is a reference model which we set as
the SFT model. 7y(y|x) and mef(y|x) means the
probability of the response y given the prompt x
under the policy model and the reference model.
Similar to DPO (Rafailov et al., 2023), the par-
tition function is omitted due to the symmetry
in the choice model of multiple responses. Un-
like the fixed labels 1, the reward scores s =
{so(z,y1), ..., so(x,yx )} depend on the model 7y
and are updated during the model training.

3.2 NDCG Metric

NDCG is widely used for evaluating the rank-
ing model performance (Jirvelin and Kekildinen,
2002), which directly assesses the quality of a
permutation from the listwise data. Assume the
list of responses Y = (y1, ..., yx ) have been pre-
ranked in the descending order based on labels
U = (¢1,..., k) from Eq 1, where ¢; > 1; if
t > j. The Discounted Cumulative Gain at k-th
position (k < K) is defined as:

k
DCG@k =Y G(y;)D(r(j)), (3

Jj=1

where 1; denotes the ground truth labels of the
response y;, and 7(j) is the descending rank po-
sition of y; based on the reward scores s com-
puted by the current model 7y. Typically, the
discount function and the gain function are set as
D(r(3)) :.m.and G(v) = 2% — 1. An
illustration is provided in Appendix D.2.
The NDCG at k is defined as

NDCG@k = DCG@k, (4)

maxDCG@k

where maxDCG@FE is the maximum value of
DCG@Fk, computed by ordering the responses Y

by their ground truth labels ¥. The normalization
ensures that NDCG is within the range (0, 1).

The value k of NDCG@FK (k < K) indicates
that we focus on the ranking of the top k£ elements
while ignoring those beyond k. For example, when
k = 2, we only need to correctly order the first 2
elements, regardless of the order of the remaining
K — 2 elements in the list.

4 Permutative Preference Alignment

In LLM alignment, the reward scores s in Equa-
tion (2) are key to connecting the loss to the model
parameters . However, there is a gap between
using NDCG as an evaluation metric and as a train-
ing objective. Since NDCG is non-differentiable
with respect to reward scores s, gradient descent
cannot be directly applied for optimization.

To overcome this limitation, surrogate losses
(Valizadegan et al., 2009) have been developed.
These losses approximate the NDCG value by con-
verting its discrete and non-differentiable charac-
teristics into a continuous and score-differentiable
form, suitable for backpropagation. The original
NDCG is computed by iterating over each list el-
ement’s gain value and multiplying it by its corre-
sponding position discount, a process known as the
pairing between gains and discounts. Thus, sur-
rogate losses can be interpreted in two parts: pair-
ing gains and discounts to approximate the NDCG
value, and ensuring these functions are differen-
tiable to enable gradient descent optimization. We
will leverage NeuraNDCG (Pobrotyn and Biato-
brzeski, 2021) as such a surrogate loss.

4.1 PPA Objective

Our PPA incorporates a score-differentiable sorting
algorithm-NeuralSort (Grover et al., 2019)-to align
gain values G(-) with position discounts D(-). This
sorting operation is achieved by left-multiplying a
permutation matrix FPyo(s) in Eq 19 with the score
vector s to obtain a list of scores sorted in descend-
ing order. The element Py i, j] denotes the
probability that response y; is ranked in the i-th
position after re-sorting based on s. Applying this
matrix to the gains G(-) results in the sorted gains
vector é(\-), which is aligned with discounts. De-
tails about NeuralSort are shown in the Appendix
D. For simplicity, we denote ]Bsort(s) as P.

Similar to the original N/D\CG, but with the gain
function G(-) replaced by G(-) = P-G(-) to ensure
proper alignment between gains and discounts. The
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Figure 2: Comparisions among PPA, DPO, and LiPO on rank flips. (a) PPA demonstrates a higher efficiency in
successful rank flips. The dashed line refers to the steps in which the loss objective is converged for all three
methods. (b) PPA demonstrates more successful rank flips in loss-converged steps compared to DPO and LiPO. (c)
The successful flip (Incorrect to Correct) distribution is highly constrained to reference ranking accuracy ¥,, and y;.

estimated gain at rank j can be interpreted as a
weighted sum of all gains, where the weights are
given by the entries in the j-th row of P. Since P
is a row-stochastic matrix, each row sums to one,
though the columns may not. This can cause G
to disproportionately influence the NDCG value at
certain positions. To address this issue, we use the
Sinkhorn scaling (Sinkhorn, 1964) on P to ensure
each column sums to one. Then we get:

NeuraINDCG@Fk (738, W) =

. - G
Nt Y (scale(P) - G(®)), - D(j)

where N, ! represents the maxDCG@Fk (for k <
K) as defined in Eq 4. The function scale(-) de-
notes Sinkhorn scaling, and G(-) and D(-) are the
gain and discount functions, respectively, as in Eq
3. The proposed PPA is illustrated in Figure 1. Intu-
itively, the gain function should be proportional to
the label, effectively capturing the relative ranking
of different responses. The discount function penal-
izes responses appearing later in the sequence, as
in many generation or recommendation tasks, the
focus is on the top-ranked elements. Thus, higher-
ranked responses have a more significant impact
on the overall loss in NeuraNDCG. Further illus-
trations are provided in Appendix D.2.

Finally, we derive the PPA objective:

Lppa (79, k3 Tref) =

~E(v,w)~p[ X)_ (scale(P) - G(¥)), - D(j)/Nk]é)
(

4.2 Other Approximation of NDCG

In addition to aligning gains and discounts, we can
modify the discount function to be differentiable.

ApproxNDCG (Qin et al., 2010) is proposed as an
approximation to the rank position in the NDCG
equation (Eq 3) using the sigmoid function:
— _ exp (—a(s; — si))
D=1 2 T e ats; - )
” @)

As observed, if s; > s;, the descending rank posi-
tion of y; will increase by 1. Note that the hyper-
parameter « controls the precision of the > approx-
imation. We then obtain the estimated 7(j) and
subsequently the ApproxNDCG objective:

£ApproxNDCG@K(7T€§ Tlref ) =
i — (8)
—Eyw)~n| Y G;) - D(r(5))/Ni).

J=1

5 Theoretical Analysis

5.1 Optimal Property

Property 5.1. (Optimal property) When Equa-
tion (6) reaches the optimal value, the policy
7r;‘7 NpcG 18 aligned with the reward model in terms
of the response ranking permutations.

The proof is shown in Appendix B.1. NDCG
achieves its maximum value if and only if the list
permutation matches the ground-truth permutation.
The distance between NDCG and its maximum
value of 1 reflects the current alignment gap be-
tween the policy and the reward model.

Proposition 5.1. For DPO, in pairwise setting, cor-
rect ranking s,, > s; is achieved if and only if
Lppo < log2. But in listwise scenarios where
list size > 2, this condition on Lppo no longer

guarantees the correct overall ranking.
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Figure 3: PPA outperforms other approaches on direct comparisons with Mistral-7B. The win rates are derived
from comparisons between PPA and other methods on their optimal settings. We employ the Pair-Preference Proxy
model on evaluation sets and GPT-4 on AlpacaEval as the judge models.

The proof is provided in Appendix B.2. This
proposition indicates the limitations of DPO in
handling multi-response scenarios. However, the
NDCG-based method monitors the current align-
ment state and guarantees the correct list ranking.

5.2 Ranking Accuracy

Definition 5.1. (Ranking Accuracy (Chen et al.,
2024)) The ranking accuracy R of a model my on
a pairwise preference datapoint (x, Y, y;) is

1 mo(yw | ) 27 x),
R(x,yw,yz;m)={0 Of}fjrwl_se) o(ui | )

Definition 5.2. (Successful rank flip) A successful
rank flip is referred to as the model’s ranking of
responses shifts to favor the preferred over the non-
preferred option:

7Tref(yw‘x) < 7Tref(yl|55) = To(Ywl®) > mo(Y1|7)

Proposition 5.2. Assume log-likelihood ratio on

reference model X = log % ~ N(0,02)

and after alignment training Y = log molywlz)

mo(yilz)
N(uy, 012/), we can get that the probability of suc-

cessful rank flip of NDCG-based method is greater
than DPO, which is Pypcg(Y > 0|X < 0) >
PDPO(Y > 0|X < O)

The proof is provided in Appendix B.3, which is
also illustrated in Figure 2. In alignment training,
the objective is to increase the probability of the
preferred response over the non-preferred one. A
higher successful rank flip ratio indicates greater
efficiency in achieving alignment.

6 Experiments

Baselines. We employ various pairwise and list-
wise alignment baselines to explore the connection

between LLM alignment and ranking tasks. Their
optimization objectives are detailed in Table 5
of the appendix. We introduce three paradigms
of positive-negative pairs for DPO on multiple
responses. LiPO-A (Liu et al., 2024) incorporates
LambdaRank from the LTR literature, acting as
a weighted version of DPO. SLiC and RRHF
employ a similar hinge contrastive loss. ListMLE
utilizes the Plackett-Luce Model (Plackett, 1975)
to represent the likelihood of list permutations. For
further information, please see Appendix C.

Datasets. We construct a multi-response dataset
named ListUltraFeedback”. This dataset com-
bines four responses from UltraFeedback and
five generated responses from the fine-tuned
Llama3-8B model’ in SimPO (Cui et al., 2023;
Meng et al., 2024), all based on the same prompts.
All responses are assigned ground truth labels
using the Reward Model ArmoRM (Wang et al.,
2024). This model is the leading open-source
reward model, outperforming both GPT-4 Turbo
and GPT-4o0 in RewardBench (Lambert et al.,
2024) at the time of our experiments. To ensure
clear distinction between positive and negative
samples, while maintaining diversity, we select
two responses with the highest scores and two
with the lowest. Additionally, we randomly draw
four responses from the remaining pool. Details of
the dataset are presented in Table 7 of the appendix.

Training Details. We use Qwen2-0.5B, Mistral-
7B, and Llama3.1-8B (qwe, 2024; Jiang et al.,
2023; Dubey et al., 2024) as our foundation

“https://huggingface.co/datasets/
NDCG-alignment/ListUltraFeedback

Tht‘cps ://huggingface.co/datasets/
princeton-nlp/llama3-ultrafeedback-armorm
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Proxy Model

General Benchmark

Method Type Avg.
Pair-Preference Scoring AlpacaEval MT-Bench
Single Pair Pairwise 60.75 56.86 57.95 52.81 57.09
BPR Pairwise 60.32 58.33 58.74 55.00 58.10
All Pairs Pairwise 63.82 60.54 57.23 53.13 58.68
RankNet Pairwise 62.27 59.04 58.94 54.26 58.63
SLiC Pairwise 63.31 60.70 61.00 53.75 59.69
LambdaRank Listwise 62.30 59.04 58.72 55.31 58.84
ListMLE Listwise 63.03 59.76 57.05 53.13 58.24
ApproxXNDCG  Listwise 61.46 58.59 58.16 55.94 59.33
PPA Listwise 64.25 61.36 61.64 53.44 60.17

Table 1: The proposed PPA and ApproxNDCG outperform existing baselines across various evaluation benchmarks.
The win rates are derived from comparisons between the preference-aligned Qwen2-0.5B and its SFT model. We
set 5 = 0.1 in Eq 2 for all methods except S = 0.05 for SLiC to achieve the optimal performance.

models, representing different parameter scales.
Following the training pipeline in DPO, Zephyr,
and SimPO, we start with supervised fine-tuning
(SFT) on UltraChat-200k (Ding et al., 2023).
We then apply various pairwise and listwise
approaches to align preferences on our multiple
response dataset, ListUltraFeedback. Adhering to
the settings in HuggingFace Alignment Handbook
(Tunstall et al., 2023), we use a learning rate of
5 x 1077 and a total batch size of 128 for all
training processes. The models are trained using
the AdamW optimizer (Kingma and Ba, 2014)
on 4 Nvidia V100-32G GPUs for Qwen2-0.5B
models and 16 Nvidia V100-32G GPUs for
Mistral-7B. Unless noted otherwise, we fix o« = 25
for ApproxXNDCG and 7 = 1 for PPA to achieve
optimal performance, as determined by ablation
studies presented in Section 6.2. Both models
and datasets are open-sourced, ensuring high
transparency and ease of reproduction. Further
training details can be found in Appendix E.

Evaluation. The KL-divergence in the original
RLHF pipeline is designed to prevent the Policy
model from diverging excessively from the SFT
model, thus avoiding potential manipulation of the
Reward Model. As we employ ArmoRM in the
construction of the training dataset, we incorporate
various judging models and evaluation benchmarks,
such as different Reward models and AlpacaEval
(Liet al., 2023) with GPT-4, to reduce the impact of
overfitting on ArmoRM. We design 2 pipelines to
thoroughly analyze the performance of PPA, using
the Win Rate of policy models against SFT mod-
els as our primary metric. Details of evaluation
datasets are presented in Table 7 of the appendix.

In the Proxy Model pipeline, we deploy the Scor-

ing Reward Model ArmoRM* (Wang et al., 2024)
and the Pair-Preference Reward Model® (Dong
et al., 2024) as Proxy Models to calculate the win
rate on ListUltraFeedback. Both Proxy models
surpass GPT-4 Turbo and GPT-40 in rewarding
tasks on RewardBench (Lambert et al., 2024). The
Scoring model provides a score in the range (0, 1)
for a given prompt and response, while the Pair-
Preference model outputs the winner when given a
prompt and two responses, offering a more intuitive
approach for pairwise comparisons.

In the General Benchmark pipeline, we evaluate
our models using two widely recognized bench-
marks: AlpacaEval (Li et al., 2023) and MT-Bench
(Zheng et al., 2023), which assess the model’s com-
prehensive conversational abilities across various
questions. Consistent with the original setup, we
employ GPT-4 Turbo (Achiam et al., 2023) as the
standard judge model to determine which of the
two responses exhibits higher quality.

6.1 Main Results

PPA significantly outperforms existing prefer-
ence optimization baselines. We list win rates
of various alignment approaches across diverse
evaluation benchmarks in Figure 3, Table 1, and
Table 3. Many approaches achieve their best
performance with a list size of 8. As shown in
Figure 4, PPA consistently outperforms other
approaches when K > 4, with performance
improving as the list size increases. This trend is
also evident across different values of 5 in Table 10
of the appendix. PPA’s advantage over pairwise

j"https://huggingface.co/RLHFlow/
ArmoRM-L1lama3-8B-v@.1

§https://huggingface.co/RLHFlow/
pair-preference-model-LLaMA3-8B
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and ListMLE methods lies in its efficiency in
improving permutation performance. Traditional
contrastive pairwise approaches maximize the
likelihood of y,, over y;, which adversely affects
the generation quality of LLMs when high-quality
responses are treated as negative samples. In
contrast, PPA provides a more holistic approach to
handling the relationships between responses.

PPA achieves higher ranking accuracy than
DPO and LiPO. As illustrated in Figure 2, PPA
demonstrates a higher efficiency on successful
rank flips. The difference in model performance
is attributed to the distinction between the opti-
mization objectives of the Bradley-Terry-based
methods and NDCG-based methods. Furthermore,
Figure 2c reveals a significant correlation between
the type of rank flip and the log-likelihood ratio
of the reference model. Based on this observation,
we hypothesize that the log-likelihood ratio of the
policy model encodes the conditional probability
of the log-likelihood ratio of the reference model.
Proposition 5.2 provides a potential theoretical
explanation for this improvement.

List Size matters more than the number of
pairwise comparisons. To assess the effect
of varying response quantities and comparison
methods, we conduct empirical studies across
different list sizes (i.e., the number of responses
the model can access) and comparison methods.
Specifically, we test four pairwise comparison
methods: Single Pair, BPR, OvW (i.e., Others vs
Worst), and All Pairs in Table 5 of the appendix,
which differ in the number of comparisons (1
comparison for Single Pair, K — 1 for BPR and
OvW, and ([2( ) for All Pairs). Table 1 illustrates
that both BPR and All Pairs methods outperform
Single Pair, with no significant difference observed
when List Size = 8. This trend is particularly
pronounced with the Mistral-7B model in Table 11
of the appendix. These findings suggest that the
list size plays a more critical role than the specific
number of pairwise comparisons.

6.2 Ablation Study

Score Function Scale. The parameter 5 controls
the scaling of the score function (Eq 2) and the
deviation from the base reference policy s,
which significantly influences model performance.
Following the existing work setting (Rafailov et al.,

2023; Meng et al., 2024; Liu et al., 2024), we
search 5 among [0.01,0.05,0.1,0.5] and conduct
sensitivity analysis. Figure 4 shows that all
methods achieve their best performance at 5 = 0.1
except SLiC. PPA consistently achieves the best
performance on both 3 = 0.05 and § = 0.1.
Detailed results are in Table 9 of the appendix.

Approximation Tradeoff. The temperature pa-
rameter 7 controls the approximation accuracy and
gradient variance of NeuraNDCG (Pobrotyn and
Biatobrzeski, 2021). We visualize the values of
NDCG and NeuraNDCG on specific data and as-
sess model performance with various 7. The re-
sults in Figure 5 reveal that as NeuraNDCG more
closely approximates true NDCG, model perfor-
mance tends to decline. This may occur because
training involves multiple high-quality responses
with similar ground truth labels. Enforcing re-
sponses to conform to NDCG’s step-wise structure
can reduce the likelihood of good responses.

Additionally, as the approximation accuracy of
NeuralNDCG increases, more plateaus appear due
to NDCG’s inherent step-wise nature. On these
plateaus, gradients become zero, preventing model
optimization. We visualize the loss landscape in
Figure 6 in the Appendix and find that with low 7,
the gradients become highly spiky and discontin-
uous, making optimization challenging and poten-
tially unstable. In contrast, higher 7 values yield
smoother and more navigable gradients. Further
discussion is provided in Appendix D.3. A similar
observation is confirmed on ApproxNDCG in Ap-
pendix G.

PPA Setup. We perform an ablation study on
key components of PPA. As shown in Table 2,
we find that (i) when evaluating NDCG@4 for
multiple responses with a list size of 8, the
performance is comparable to PPA with a list size
of 4. This suggests that PPA’s effectiveness is
more influenced by the list size rather than the
k value in NDCG@E. (ii) The choice of gain
function: G; = 2% — 1 or G; = 1, does not
significantly impact model performance. The
critical factor is that the gain provides the correct
order of responses. (iii) Omitting Sinkhorn scaling
(Sinkhorn, 1964) on P significantly degrades
performance. Without scaling, ﬁsort may not be
column-stochastic, meaning each column may not
sum to one. Then the weighted sum of G(-) could
disproportionately contribute to the estimated gain
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Figure 4: PPA outperforms other methods across different /3 and list sizes. The Proxy win rates are calculated by
Pair-Preference Proxy model by comparing preference-aligned Qwen2-0.5B against its SFT model.
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Figure 5: Higher NDCG approximation accuracy does
not always lead to better performance. Given ground
truth label ¢ = [1.0,0.8,0.6,0.4,0.2] and scores s =
[,0.8,0.6,0.4,0.2], an illustration of NeuraINDCG
Approximation Accuracy with different 7 and Pair-
Preference Proxy win rates against SFT.

function C?(\) and adversely affect performance.

Method Pair-Preference  Scoring
All Pairs 63.82 60.54
PPA 64.25 61.36
Top-4 61.92 59.35
w/o Power 63.49 61.28
w/o Scale 57.32 56.20
1/7 62.78 59.76
1/\/T 63.16 60.19
1/72 62.47 60.19

Table 2: Ablation results for PPA Setup on Qwen2-0.5B:
(Top) original setup; (Middle) ablation study on key
components: k-value, gain function, and the Sinkorn
Scale function; (Bottom) different discount settings.

Model Scale Up To thoroughly assess the per-
formance of PPA, we employ the Llama3.1-8B
and Mistral-7B model as the LLM. Following the
SimPO pipeline, we use their Instruct version as the
SFT model. They are then aligned with multiple

preferences on ListUltraFeedback, and the perfor-
mance is validated across several benchmarks, as
shown in Table 3, Table 11, and Table 13 of the
appendix. Hyperparameter details and additional
results are provided in Appendix E and F.2.

PPA demonstrates competitive performance
on win rates against the SFT model. To clearly
illustrate PPA’s advantages over other methods,
we compare their generated responses and present
PPA’s win rates in Figures 3 and 8 of the appendix.

Method Pair-Preference Scoring AlpacaEval
All Pairs 72.96 74.39 59.64
SLiC 72.84 75.04 60.20
ListMLE 72.46 74.77 59.83
LambdaRank 71.80 72.74 60.38
PPA 74.34 75.58 61.32

Table 3: Model Scale Up: Our method PPA outperforms
other approaches on Llama3.1-8B.

Human Evaluation Human assessments provide
crucial validation beyond proxy metrics. To ad-
dress it, we conducted a comprehensive human
evaluation involving 20 raters on the Prolific plat-
form. Each rater compared 15 pairs of model out-
puts, with a total of 300 pairs evaluated across
three matchups (PPA vs SFT, PPA vs DPO, PPA vs
LiPO). The pairs were randomly selected to ensure
an unbiased assessment.

The results in Table 4 demonstrate that PPA
achieves consistent improvements over baselines
like SFT, DPO, and LiPO, as confirmed by both
human raters and automatic metrics. They also val-
idate the consistency between the reward models
and human judgments.
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Comparison PPA vs SFT PPA vs DPO PPA vs LiPO
Pair-Preference 70.5 55.4 54.5
Scoring 68.9 55.2 57.0
AlpacaEval 72.4 59.6 51.7
HumanEval 68.0 55.0 54.0

Table 4: Human Evaluation result for comparisons. It
shows PPA outperforms other baselines, which aligns
with other automatic metrics.

7 Conclusion

We propose Permutative Preference Alignment
(PPA) to align listwise human judgments by op-
timizing the ranking metric NDCG. Empirical stud-
ies show that PPA consistently outperforms ex-
isting pairwise and listwise baselines across var-
ious setups. We identify the potential limitation
of Bradley-Terry-based methods like DPO. PPA
also demonstrates a higher efficiency in improv-
ing ranking accuracy and we propose a theoretical
explanation for this improvement.

Limitations

Our study has several limitations and suggests
promising directions for future research. In con-
structing multiple responses, a pre-trained Reward
Model serves as the judge model, which might not
fully align with real-world human preferences. Fu-
ture studies can develop more robust data construc-
tion methods to ensure responses remain harmless.
Additionally, the extensive LTR literature remains
underexplored, indicating potential for further re-
search and applications in alignment fields.
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A Related Work

Pairwise Preference Optimization Direct
Preference Optimization (DPO) (Rafailov et al.,
2023) removes the necessity for an explicit reward
model within the RLHF framework by introducing
a novel algorithm to compute reward scores for
each response. Similar to RLHF, DPO uses the
Bradley-Terry (BT) model (Bradley and Terry,
1952) to align binary human preferences in a con-
trastive manner. Subsequent research, including
methods like IPO, KTO, RPO, SimPO, and others
(Liu et al., 2023; Xu et al., 2023; Azar et al., 2024;
Yin et al., 2024; Ethayarajh et al., 2024; Hong et al.,
2024; Park et al., 2024; Meng et al., 2024), focus
on refining the reward function and the BT model
to enhance performance and simplify the process.
Additionally, iterative methods are developed
to align pairwise preferences with a dynamic
reference model (Rosset et al., 2024; Pang et al.,
2024; Kim et al., 2024; Yuan et al., 2024). They
classify preferred responses y,, as positive samples
and non-preferred responses y; as negative samples.
They infer relative quality rankings of responses
by maximizing the pairwise choice probability of
r(x,yw) over r(x,y;). However, under multiple
response scenarios, they focus on maximizing the
average value of pairwise contrastive probability.
It fails to guarantee a hard constraint that every
individual pair is correctly aligned with ground
truth labels. FocalPO (Liu et al., 2025) assigns
greater weights to more informative ranking pairs,
which shares similar insights with the NDCG
metric.

Multiple Responses Alignment Recent research
has introduced simple and efficient methods
to align human preferences across multiple
responses. These approaches expand candidate
responses from various LLMs such as ChatGPT,
Alpaca, and GPT-4, assigning rewards via reward
models or human feedback. RRHF(Yuan et al.,
2023) employs the same hinge objective as
SLiC (Zhao et al., 2023) on multiple responses
through pairwise comparisons. LiPO-A (Liu et al.,
2024) incorporates LambdaRank (Donmez et al.,
2009) where higher-quality responses against
lower-quality ones receive greater weights, acting
as a weighted version of DPO. However, when
handling high-quality response pairs, incorrectly
classifying one of them as the negative sample
and minimizing its likelihood can adversely affect

LLM generation quality. Listwise methods offer a
more nuanced approach to handling relationships
between responses. DPO-PL (Rafailov et al.,
2023) and PRO (Song et al., 2024) employ the
same PL framework (Plackett, 1975) but differ in
their reward functions. LIRE (Zhu et al., 2024)
calculates softmax probabilities with a consistent
denominator and multiplies them by corresponding
rewards, functioning as a pointwise algorithm
since permutations do not alter loss values. Despite
their potential, current listwise techniques are not
yet state-of-the-art in the learning-to-rank (LTR)
literature, indicating a need for further research.

Learning to Rank (LTR) LTR involves a set of
machine learning techniques widely applied in in-
formation retrieval, web search, and recommender
systems (Liu et al., 2009; Karatzoglou et al., 2013;
Hidasi et al., 2016; Li et al., 2024). The goal is to
train a ranking model by learning a scoring func-
tion s = f(x,y) that assigns scores to elements for
ranking purposes. The loss is computed by compar-
ing the current permutation with the ground truth,
which updates the model parameters 6. Loss func-
tions in LTR are generally categorized into three
types: pointwise, pairwise, and listwise. Point-
wise and pairwise methods convert the ranking task
into classification problems, often overlooking the
inherent structure of ordered data. Conversely, list-
wise approaches (Xia et al., 2008a) directly tackle
the ranking problem by considering entire rank-
ing lists as training instances. This approach fully
exploits the relative proximities within multiple re-
sponses, enhancing the understanding of the rank-
ing relationships.

B Proof of Theoretical Analysis
B.1 Proof of Property 5.1

Assume access to a list of ground truth labels in
descending order ¥ = {11, ...,k }, where v; >
w; if i < j. Now we have a score vector s =
{s1, ..., sk}, the descending rank position of s; is
denoted by

k
T(i) =14 Ty,
j=1

According to the definition of NDCG Eq 4, the
maximum NDCG value is achieved when 7(i) = i,
which is equivalent to s7 > s7 if ¢« < j. The
permutation of s* is the same as the permutation
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of ground truth labels ¥ = {91, ..., 19k}, where
Y; > 1 if i < j. Then we can say the current
policy model mypcg is aligned with the reward
model RM in terms of response permutations.

B.2 Proof of Proposition 5.1

Under pairwise (z, y,, y;) scenario,
»CDPO = —log O'(Sw — Sl).

When s, = s;, Lppo = log2. As o(x) is an
increasing function, it is easy to derive that Lppo <
log2 < sy > 5.

But when list size > 2, the condition of Lppg <
log 2 no longer guarantees the correct overall rank-
ing. Here we take a triplet datapoint (x, y1, Y2, y3)
where 1 > g > 13 for example:

ﬁDPO(% Y1,Y2, 93‘7@)

1
=-3 X [log o(s1 — s2) + logo(s1 — s3) + loga(sa — s3)]

s1 s1 EP)

_ ! x [lo ¢ +lo +lo = |
-3 & es1 + es2 & & es2 + es3

e
es1 + es3

We assume (s1, S2,53) = (0.7,0.5,0.6) and we
can calculate the DPO loss:

Lppro = —% X [logc(0.2) +logo(0.1) 4+ log o(—0.1)]
= 0.662 < log 2

But obviously s; > s3 > s2 is not a correct list
ranking. In this case, even if the DPO loss falls
below a certain threshold, it does not guarantee an
accurate list ranking. This limitation arises because
the optimization process focuses on adjusting the
scores s; and s; to increase the overall expected
value but does not enforce hard constraints like
s; > s; for each individual pair. The DPO objec-
tive adjusts s; — s; in a soft, overall sense but may
not result in all differences being positive.

B.3 Proof of Proposition 5.2

We assume the log-likelihood ratios of all mod-
els follow normal distributions. Before alignment
training, it is rational to hypothesize that the refer-
ence model cannot always distinguish and priori-
tize the preferred response y,,, so we set 0 to its
mean:

7rref(yw |SU)

X=1lo
& 77ref(?/l|$)

~ N(0,0%)
Then after training, the distribution of log-
likelihood ratio shifts on the policy model:

o (Yuw!)

Y =1
%8 o (uilz)

~ N(MYa 052/)’

As X and Y both follow normal distributions,
we can use an independent variable ¢ from normal
distributions to represent the training effect. Since
the parameters of independent normal distributions
are additive, it is easier to write as follows

Y =X +¢ ¢~ N(pe, 72),
where 1. = py, 72 :a%—ag(.

As s, = Blog %, we have

c=Y-—-X= log M _ w
7o (Y1) Tret (1] )
~log 70 (Yw|x) —log mo(y1|x) _ Sw— S
Wref(yw‘ﬂj) ﬂref(y”x) B

Under pairwise scenarios, DPO-PL is equivalent
to DPO-BT. The training objectives of DPO and
NDCG are as follows:

DPO :
max E, y yp(sw — ) = max E(c)
NDCG :

max E, y yop(Ls,>s,) = max E(P(c > 0))
®

Based on the different training objectives of
DPO and NDCG, we make the following assump-
tions. For NDCG method, the training objective is
maximizing the number of cases where s,, > sy,
we assume a small mean unpcg that is just enough
to make s,, likely to be greater than s;. The vari-
ance TﬁDCG is also small, leading to a distribution
concentrated around its mean. The assumptions
above can result in a high probability of P(c > 0),
which is aligned with NDCG’s objective. Dur-
ing training, the algorithm adjust s,, and s; to re-
duce the variability TI%DCG of ¢, keeping differences
small but positive.

Regarding DPO (same for LiPO and other pair-
wise contrastive methods), we assume a larger pos-
itive mean puppo which increases the overall score
margin. ¢ of DPO has a large variance 3 as
well, allowing for more variability in the differ-
ences. During training, the distributions of s,, and
s; are more spread out, leading to larger differences
in s,, — s;. The algorithm accepts higher variability
and occasional negative differences to achieve a
higher overall sum of s,, — s;.

Figure 2c indicates that log-likelihood ratio of
the policy model is conditional on that of the refer-
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ence model then we have

71'ref(yw |=7;)

mo(yulr) |\ velr
Trref\Y1| T

o (yi| )

- N<10g 7"'ref(yw ’x)
Tret(Y1|2)
o (Yw|z)
o (yi| )

Tref (Yuw|T)

~ N(log ———= + DPO702+72
( gmef(y”x) H bPO)

NDCG : log

2, 2
+ UNDCG, 07 + TNpCG)

71'ref(yw |$)
Tref (Y1])

DPO : log | log

<

2 2
where punpce < ppro, TNDCG T™DPO>»

P(CNDCG > 0) > P(CDPO > 0).

As ¢~ N(pe, 72), we have z = (¢ — ie) /Te ~
N(0,1), then we can derive

He He

Ple>0)=P(z> -1 = Pz < oy = g (M),

Te Te Te

where ®(-) is the standard normal cumulative dis-
tribution function (CDF), which is an increasing
function. Under assumptions above P(cnpeg >
0) > P(CDPO > 0), we have

HUNDCG > HUDPO

> (10)
TNDCG  TDPO

By definition, we refer to turning an incorrect pair

Wref(yw|-73) .

’ 71'ref(yllm) < 1) nto a
correct pair in the policy model (i.e., % > 1)
as a successful rank flip. Then we can represent the

probability of it via the annotations above:

from the reference model (i.e.

P(log L(wa) > 0] log Lef(yw‘x) <0):=
770(1/l|$) 7Tref(3/l|x)
P(Y >0,X <0)
P(Y X =
(¥'>0[X <0) P(X <0)

Since X ~ N(0,0%), P(X < 0) = 0.5, so:
P(Y >0/X <0)=2P(Y >0,X <0)

0
_ 2/ PV > 0|X = 2) fx(z) da.

Given X =x,Y =x + ¢,

P(Y >0|X =z) = P(c> —x)

= P(z > M) _ @(M
Te Tc

).

As X ~ N(0,0?), we replace  with parameter
s =ux/o ~ N(0,1), then we have:

0 oS + e

)¢(s) ds,
11

P(Y>O]X<O):2/ O(

S§=—00 TC

where ¢(s) is the PDF of the standard nor-
mal distribution and ®(-) is the standard normal’s
CDE. Since ®(-) is an increasing function and in

Eq 10 we have unpcG/™pcG > pppo/Topo and
TNDCG < TpPO, We have

0S8 + [INDCG
TNDCG

0S4 UDpPO
TDPO

o ) = ®(

Finally we can derive:
PNch(Y > O‘X < O) > PDP()(Y > 0|X < 0)

C Details of Baselines

Table 5 shows the types and objectives of the base-
lines we consider in the empirical study.

To ensure variable consistency and compa-
rability of experiments, we choose the original
DPO algorithm as our reward score function
Eq 2 and pairwise baseline method and assess
its performance in both binary-response and
multi-response scenarios.

DPO-BT In detail, we implement four variants
of the original sigmoid-based pairwise DPO based
on the Bradley-Terry (BT) methods while aligning
multiple responses. The first one is Single Pair
paradigm, where we compare only the highest-
scoring and lowest-scoring responses, which is
equivalent to the original DPO in the pairwise
dataset scenario.

LSingle Pair(779§ Tref ) =

(12)
—E v, w)~pllogo (s1 — sk)],

Then we introduce the Bayesian Personalized
Ranking (BPR) (Rendle et al., 2012) algorithm
that computes the response with the highest score
against all other negative responses based on Bayes’
theorem, which is widely used in recommender
system (Hidasi et al., 2016).

Lppr(T0; Tret) =

K
1
- E(:v,Y,‘II)N’D x_1 ; logo (s1—s5)|,
(13)

IThe BPR variant Eq 13 can be viewed as the expected
loss function in the following scenario: we have a multiple
responses dataset, but we only retain the highest-scoring re-
sponse and randomly select one from the remaining. Finally,
we construct a binary responses dataset for pairwise prefer-
ence optimization, which is a widely used method for building
pairwise datasets (Tunstall et al., 2023; Meng et al., 2024).

324



Method Type Objective

DPO - Single Pair (12) Pairwise —logo (s1 — sk)

DPO - BPR (13) Pairwise — 2+ ZJ# logo (s1 — s5)

DPO - Others vs Worst (14) ~ Pairwise = — Z#K logo (s; — sk)

DPO - All Pairs (15) Pairwise — (I;) - prwj log o (s; — s5)

SLiC (17) Pairwise  — (%) 30, ., max(0,1— (si — s5;))

LambdaRank (16) Listwise —— (12{) - 2w S, A; jlogo (si — sj)
where A; ; = |G; — G;| - |D(7(2)) — D((5))|

ListMLE (18) Listwise — log [T/ 1§£%%%%;

ApproxNDCG (8) Listwise —N; ' 3% G(v;) - D(7(5))

PPA (6) Listwise —N, ' S2F_ (scale(P) - G(®)); - D(j)

Table 5: Pairwise and listwise baselines given multiple-response data D =

The third one is Others vs Worst, which calculates
other responses against the worst one:

£OVW(7T9; 7Tref) =

_SK) 5

Z logo (s

J#K

—Eev,9)~p

(14)
In the last BT variant, we consider all pairs that
can be formed from K responses, which is similar
to PRO (Song et al., 2024). This approach allows
the model to gain more comprehensive information
than the aforementioned methods, including pref-
erence differences among intermediate responses,
which is referred to as All Pairs:

LA Pairs (T3 Tref) =

- E(IvYV‘Il)ND - 8]) )

Z logo (s

¢u>w3
15)

where ([2( ) denotes the number of combinations
choosing 2 out of K elements.

LiPO-)\ Deriving from the LambdaRank (Don-
mez et al., 2009), the objective of LiPO-A (Liu
et al., 2024) can be written as follows:

L1 ambdaRank (795 Tref, 5) =

wz>wj
(16)
hete Aoy = [Gi— Gl -| 5t —
where 1,5 = |91 J D(T(Z)) D(T(]))

(z,Y, D).

A; ; is referred to as the Lambda weight. G is
known as a gain function, with G; = 2% — 1
being a commonly used example. The func-
tion D serves as a discount function, with
D(7(i)) = logy(1 4 7(i)), where 7(7) is the same
as in Eq 3.

SLiC Following the analogous objectives pro-
posed in RRHF (Yuan et al., 2023) and SLiC (Zhao
et al., 2023), we integrate the pairwise ReLU-based
loss as one of our baselines:

Lstic(7o; Tret) =

1
E(ac,Y,\I!)ND W

Z max(0,1— (s; —s5)) |, {an

P>

DPO-PL The DPO objective can also be derived
under the Plackett-Luce Model (Plackett, 1975; ?)
in a listwise manner, which is equivalent to the
ListMLE (Xia et al., 2008b) method:

LiisMLE(T0; Tref) =

exp(s
—E(y.w)D !10g H A
k=1 Jj= kepr( )

(18)

)

D NeuralSort Details

D.1 NeuralSort relaxation

To approximate the sorting operator, we need to
approximate this permutation matrix. In Neural-
Sort (Grover et al., 2019), the permutation matrix
is approximated using a unimodal row stochastic
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matrix ﬁsort(s) (7), defined as:

((n+1—2i)s — Ag1)

ﬁsort(s) [i,:](T) = softmax

-

19)
Here, As is the matrix of absolute pairwise differ-
ences of elements in s, where Ag[i, j| = |s; — s,

and 1 is a column vector of ones. The row of
Piori(s) always sums to one. The temperature pa-
rameter 7 > O controls the accuracy of the approx-
imation. Lower values of 7 yield better approxima-
tions but increase gradient variance:
lim Psort(s) (T) = Psort(s)' (20)
7—0
A specific simulation is shown in Table 6 of the
appendix. For simplicity, we denote Fyo(s) as P.

D.2 NDCG Approximation

Given the input ground truth labels ¥ =
5,4,3,2]7 and scores s = [9,1,5,2]7, the de-
scending order of ¥ based on the current reward
scores s is 7 = [1,4,2,3]. According to the for-
mula introduced in Eq 3:

k

G(¥;) - D((4)) =

DCG@4 =
G(5) ) G4) G(3) G(2)
log,(14+1)  logy(14+4)  logy(1+2)  logy(l+3)

Building upon the preliminaries defined in (Grover
et al., 2019), consider an n-dimensional permu-
tation z = [21,22,...,2,|", which is a list of
unique indices from the set 1,2, ..., n. Each per-
mutation z has a corresponding permutation matrix
P, € 0,1™*", with entries defined as follows:

L. 1 ifj = Z;
Pli, 5] =
20 ] {0 otherwise.

Let Z,, denote the set containing all n! possible
permutations within the symmetric group. We de-
fine the sort : R® — Z,, operator as a function
that maps n real-valued inputs to a permutation
representing these inputs in descending order.

The sort(s) = [1,3,4,2]7 since the largest ele-
ment is at the first index, the second largest element
is at the third index, and so on. We can obtain the
sorted vector simply via Pyoy(s) - S:

21

Psort(s) S = (22)

SO O =
_ o O O
O O = O
—= N Ot ©

Here we demonstrate the results by conducting
NeuralSort Relaxation Eq 19 with different 7.
When we integrate the NeuraNDCG formula in Eq

Psort(s) S
lim,_q 9 5 2 1
7=0.01 9.0000 5.0000 2.0000 1.0000
7=0.1 9.0000 5.0000 2.0000 1.0000
T=10 89282 49420 1.8604 1.2643
T=10.0 6.6862 4.8452 3.2129 2.2557

Table 6: Illustration of Sorting Operation of ground truth
labels ¥ = [5,4,3,2]7 and scores s = [9, 1,5, 2] via
NeuralSort (Grover et al., 2019) with different 7.

5, ideally, lim; 0 Poon(s)(T) = Pron(s)» yielding
the following result:

a = Psort(s G(‘Il

~—

) . =
1 0 0O G(5) G(5)
001 0|[GH]| _ [GO3)
0 0 0 1 G3) | | G©®
01 0 0/ \GQ2) G(4)
Then,
NeuralDCG@4 =Y (G), - D(j) =
G(5) 21(3) G(2) G(4)
logo(1+1)  logy(1+2)  logy(1+43)  logy(1+4)

which can be easily seen to be the same as DCG@4.

D.3 Approximation Tradeoff Analysis

We visualize the loss landscape of NeuraNDCG
in Figure 6 and ApproxNDCG in Figure 7. We
find that with low 7 and «, the gradients become
highly spiky and discontinuous, making optimiza-
tion challenging and potentially unstable. In con-
trast, higher 7 and « values yield smoother and
more navigable gradients. However, when 7 is too
high (e.g., 7 = 10.0), the gradient curve becomes
overly flat and the approximation error increases
significantly, which can also hinder model perfor-
mance. We observe this phenomenon consistently
in both NDCG-based methods, NeuraNDCG and
ApproxNDCG.

D.4 Pseudo Code of Neural Sort
The code for NeuralSort Eq 19 is provided below.

import torch
import torch.nn.functional as F
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NeuralNDCG Gradients

NeuralNDCG Approximation

1.000 { —— True NDCG 7 — 1=0.01 1
—— T=0.01 / 124 1=0.1 '\
T=0.1 / =1.0 ‘
0.975 1 =10 ! 1=10.0 \
1=10.0 ’ r=i
0.950 4 %
l{ © 0.8 {'\
Q |
o) 0925 J 9 \
[m] 7 o 06 ﬁ
= 0.900 4 | E ; \ ‘ \ [
4 > A\ J
’.” e 0.4 || \ \
0875 é \ , \ ‘ l ‘
0.2 } \ ! \ ; | \
0.850 - | | 1 | ’ )
rf \\ ."‘ \\ /} \ / \\
0.0 4 ~ T e — s e e o S —
0.0 02 0.4 0.6 08 10 0.0 02 04 06 0.8 10
X X

Figure 6: Given ground truth label ¢) = [1.0, 0.8, 0.6, 0.4, 0.2], the scores s = [z, 0.8,0.6,0.4,0.2] and fix 5 = 0.1,
we visualize the PPA Approximation Accuracy with different 7 and its corresponding gradients.

def neuralsort(s, tau=1):
#s.shape = [batch_size, list_size]
s=s.unsqueeze(2)

#A_s[i,j1 = |s[il - s[j]|
A_s = s - s.transpose(1, 2)
A_s = torch.abs(A_s)

#B=A_s*ones

n = s.size(1)

one = torch.ones((n, 1),dtype=
torch.float)

B = torch.matmul(A_s, one @

one.transpose(0, 1))

#C=(n+1-21)*s

K = torch.arange(1, n + 1,dtype=
torch.float)
C = torch.matmul(s, (n + 1 - 2 * K)

.unsqueeze(9))
#P= softmax (((n+1-2i)*s-A_s*ones)/tau)
P = (C - B).transpose(1, 2)
P = F.softmax(P / tau, dim=-1)

return P

Given the score s = [9,1,5,2]7 provided in Ap-
pendix D.2, we have
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0 8 4 7
8 0 4 1
4s = 4 4 0 3}’
7130
19 19 19 19
13 13 13 13
B=4sLok=111 11 11 1
11 11 11 11
27 9 -9 =27
) 31 -1 -3
C=[(n+1-2i)*s| = 15 5 -5 —15
6 2 -2 -6
Based on Eq 19, we can get ]350“(5)
~ - B
Pyort(s) = softmax [C | =
-
0.98 1.5e—8 0.018 2.2e—6
0.017 23e—-3 0.93 0.047
22e -7 0.26 0.035 0.71
6.8 —14  0.73 3.3¢e—5 0.27

Finally, we can get the permutation of the sorted
score vector as shown in Table 6:

Pion(5)-s = (8.9282 4.9420 1.8604 1.2691)

‘We also show the sum of columns and rows:

column sum : (0.9991 0.9928 0.9872 1.0208)



ApproxNDCG Approximation

ApproxNDCG Gradients

4 = True NDCG

—— a=10.0
a=50.0
«=100.0
a=500.0

0.88 4

0.86

0.84 4

- a=10.0
a=50.0
a=100.0
a=500.0

Analytical Gradient

T T T T T
0.0 0.2 0.4 0.6 0.8

T
1.0
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Figure 7: Given ground truth label ¢) = [1.0,0.8,0.6, 0.4, 0.2], the scores s = [x,0.8,0.6,0.4,0.2] and fix 8 = 0.1,
we visualize the ApproxNDCG Approximation Accuracy with different v and its corresponding gradients.

oW sum:(l.OOOO 1.0000 1.0000 1.0000)T

~

As discussed above, Pio(s) is not column-
stochastic, meaning each column may not sum to
one. This can cause some G(7;) to contribute to
the overall loss objective disproportionately and
adversely affect model performance. The ablation
studies are shown in Table 2.

E Training Details

The detailed training hyperparameters of Mistral-
7B are shown in Table 8.

Since Nvidia v100 is incompatible with the bf16
type, we use fp16 for mixed precision in deepspeed
configuration. Notably, as the ListMLE method
doesn’t have normalization, it will encounter loss
scaling errors with mixed precision settings.

F Supplementary Results

F.1 Proxy Models Results

The supplementary results of the Proxy Model Win
Rate are shown in Table 9 and Table 10. For PPA,
we fix 7 = 1.0. For ApproxNDCG, we fix a = 25
because it is the parameter « - 3 that controls the
approximation accuracy of the sigmoid function in
Eq7.

F.2 Supplementary Results for Mistral-7B

We observe that decreasing the hyperparameter 3
may increase the performance when language mod-
els scale up to 7B parameters. All methods achieve

their best performance with 8 = 0.05 except for
Single Pair with 5 = 0.01. Our approach PPA
consistently achieves the best overall performance,
shown in Table 12.

To further explore the distribution shift during
human preference alignment, we demonstrate the
score distribution of all methods of which scores
are assigned by the Reward model ArmoRM (Wang
et al., 2024) in Figure 8. The PPA method causes
the reward score distribution to shift more signifi-
cantly to the right, resulting in fewer instances at
lower scores. Consequently, when compared to the
SFT model, its win rate is not as high as methods
like All Pairs, SLiC, and ListMLE. However, it can
outperform these methods in direct comparisons.

G ApproxXNDCG Analysis

In ApproxNDCG, we observe similar results to
NeuraNDCG; the model achieves optimal per-
formance only when the approximation accuracy
reaches a certain threshold. First, we prove that the
Accuracy of ApproxNDCG is relevant to the mul-
tiplication of « and S when we employ the score
function in Eq 2.

First, let’s define the term for the probability
ratio as Ij;:

o (Y5]2) Tre r (i)
Wref(yj‘x)ﬂ9<yi|x)

Ji =

Note that from the properties of logarithms, we
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Datasets Examples Judge Model Notes
UltraChat200k 208k - SFT
ListUltraFeedback;.i, 59.9k - Permutative Preference Alignment
ListUltraFeedback.. 1968 RLHFlow Pair-Preference Pa1r—Preferenc:e win rates
ArmoRM Scoring win rates
AlpacaEval 805 GPT-4 Turbo Pair-Preference win rates
MT-Bench 80 GPT-4 Turbo Scoring win rates

Table 7: Details of training datasets and evaluation datasets.

Scoring Proxy Model
1

PPA vs Single Pair

PPA vs BPR

PPA vs All Pairs

PPA vs SLiC

PPA vs LambdaRank
PPA vs ListMLE

PPA vs ApproxNDCG

Score Distribution

SFT
1 SinglePair
AllPairs
LambdaRank
4 = ListMLE
1 PPA

0.2 0.4 0.6 0.8 1.0
Score

Figure 8: PPA demonstrates superior performance compared to other methods in Scoring Proxy model win rates
on Mistral-7B, while also shifting the distribution of response reward scores more significantly to the right (i.e.,

increasing reward scores).

Hyperparameters value

Mini Batch 1

Gradient Accumulation Steps 8

GPUs 16xNvidia V100-32G
Total Batch Size 128
Learning Rate Se-7

Epochs 1

Max Prompt Length 512

Max Total Length 1024
Optimizer AdamW

LR Scheduler Cosine

Warm up Ratio 0.1

Random Seed 42

154 {0.01, 0.05*, 0.1}

7 for PPA 1.0

a for ApproxNDCG 25

Sampling Temperature 0
Pair-Preference Proxy Model =~ RLHFlow Pair-Preference
Scoring Proxy Model ArmoRM

GPT Judge GPT-4-Turbo
AlpacaEval Judge alpaca_eval_gpt4_turbo_fn

Table 8: Training hyperparameters for Mistral-7B and
Llama3.1-8B models.

have:

mo(y;|v)

Lo To(il7)
Tref (Y1)

tog( 1) et (1)

= log

Using this simplification, the derivation becomes
much more compact:

exp (—as; — 5:))
_1+Z 1+ exp (—a(s; — si))

1
=1
+ ; 1+ exp(a(s; — si))

1 (23)
=1
+ ; 1+ exp(aflog R;;)

1
=1 _

Then, we illustrate the Approximation accuracy
and model performance of ApproxNDCG with dif-
ferent hyperparameters « - /3 in Figure 9.

Notice that the approximation accuracy of Ap-
proxNDCG decreases as « increases, which is op-
posite to NeuraNDCG.

H Training Efficiency

The computational complexity of each method de-
pends on evaluating my(y;|x) and mer(y;|z) for
each y; € {Y} to get corresponding scores in Eq
2, which is O(K), where K is the list size of mul-
tiple responses. Subsequently, the pairwise com-
parison of multiple responses can be efficiently
computed using PyTorch’s broadcasting mecha-
nism to perform matrix subtraction.The resulting
matrix P[i, j] represents the value of s; —s;. There-
fore, for pairwise methods, it suffices to consider
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Run Name B Pair-Preference  Scoring B Pair-Preference  Scoring
Sinele Pair 0.05 57.24 54.04 0.01 55.59 51.73
g 0.1 60.75 56.86 0.5 58.97 58.16
BPR 0.05 59.86 56.86 0.01 56.13 55.16
0.1 60.32 58.33 0.5 54.24 55.31
All Pairs 0.05 62.12 58.36 0.01 61.18 56.35
) 0.1 63.82 60.54 0.5 56.12 55.77
SLiC 0.05 63.31 60.70 0.01 59.30 55.61
0.1 62.68 60.34 0.5 55.23 55.44
0.05 60.77 56.07 0.01 54.52 51.35
LambdaRank ) | 6230 5004 05 5772 56.71
. 0.05 61.81 57.60 0.01 57.49 55.16
ListMLE 0.1 63.03 5976 05 56.05 55.77
0.05 58.66 54.34 0.01 55.56 50.76
ApproxNDCG 0.1 61.46 58.59 0.2 60.04 57.27
0.5 58.71 57.39 1.0 56.61 56.00
PPA 0.05 63.92 60.09 0.01 59.58 55.46
0.1 64.25 61.36 0.5 58.41 57.65

Table 9: Supplementary Results across different 8 on Qwen2-0.5B.

ApproxNDCG Approximation

Approximation Error

Proxy Model Win Rate

1.00{ — True NDCG 0=2.5

a=2.5 a=12.5

a=12.5 a=25

=25 0.20 a=50
095 a=50 0=125
=125 'f a=250
=250

0.90 4

NDCG
|Error|

0.80 0.05

0.00

0.64

0.62

0.60

°
@
@

Win Rate

o
Q
L

0.52

0.50

0.48

=25
=125
a=25
a=50
a=125
=250

X

0.8 1.0

X

Figure 9: Given ground truth label ¢) = [1.0,0.8,0.6, 0.4, 0.2], the scores s = [x,0.8,0.6,0.4,0.2] and fix 8 = 0.1,
we visualize the ApproxNDCG Approximation Accuracy with different o and its corresponding absolute value of
error and Pair-Preference proxy model win rate against SFT model.

only the upper triangular matrix, excluding diago-
nal elements. This approach does not significantly
increase training time when performing pairwise
comparisons. The training times and GPU memory
usage of Mistral-7B and Qwen2-0.5B models are
shown in Table 14 and Table 15.

NeuralNDCG (as used in PPA) requires Neu-
ralSort and Sinkhorn scaling for each list. In our
experiments Table 16, we use lists of size n = 8§,
thus operating on an 8 x 8 matrix for each sam-
ple. The computational complexity per sample is
O(n? - iter), where iter is the number of Sinkhorn
scaling iterations (set to 50 in our experiments). In
contrast, DPO operates on all pairs within a list,
with complexity O(n?) per sample.

It is important to note that specific training times

and GPU memory usage can exhibit random fluctu-
ations. This result is intended to demonstrate that
the training times for pairwise and listwise methods
on multiple responses with the same list size do not
show significant differences.

I Response Samples

The average response length on the AlpacaEval
dataset is shown in Table 17. We also provide
response samples in Table 18 from each baseline
and our method PPA demonstrates more details in
generated responses.
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Run Name List Size  Pair-Preference Scoring Pair-Preference Scoring

=01 8 =0.05
2 60.75 56.86 57.04 54.04
All Pairs 4 63.26 60.90 61.59 58.54
i 6 63.03 59.50 62.83 57.93
g 63.82 60.54 62.12 58.36
2 63.44 59.07 61.00 57.39
sLic 4 63.79 61.40 64.04 60.54
6 63.64 61.15 62.01 58.61
8 62.68 60.34 6331 60.70
2 60.85 57.62 59.76 56.02
4 61.10 58.05 59.88 55.51
LambdaRank 6 62.09 57.72 62.02 56.81
8 62.30 59.04 60.77 56.07
2 60.14 57.01 57.14 53.53
_ 4 63.57 61.23 61.94 58.49
ListMLE 6 62.78 60.92 61.18 57.83
8 63.03 59.76 61.81 57.60
2 59.73 57.72 61.56 58.26
4 59.65 56.45 60.11 55.79
ApproxNDCG 6 60.70 5732 59.53 56.35
g 61.46 58.59 58.66 54.34
2 61.94 58.00 58.69 55.89
opA 4 62.91 59.96 62.65 58.56
6 64.02 60.11 61.08 50.43
g 64.25 61.36 63.92 60.09

Table 10: Supplementary Results across different list sizes on Qwen2-0.5B. In practice, we keep the response with
the highest label and the one with the lowest label, then conduct random sampling from the remaining responses.

Proxy Model General Benchmark
Method Type Avg.
Pair-Preference  Scoring AlpacaEval MT-Bench
Single Pair Pairwise 71.90 70.66 74.75 52.19 67.38
BPR Pairwise 84.43 82.37 86.69 63.44 79.23
Others vs Worst ~ Pairwise 82.95 80.84 84.64 62.78 77.80
All Pairs Pairwise 85.34 83.31 82.79 61.56 78.25
SLiC Pairwise 84.12 83.46 83.27 66.25 79.28
LambdaRank Listwise 85.11 82.52 86.13 69.06 80.71
ListMLE Listwise 83.79 83.61 83.46 66.56 79.35
ApproxNDCG Listwise 82.04 74.64 85.80 67.50 77.50
PPA Listwise 84.98 83.05 87.54 67.81 80.85

Table 11: PPA outperforms other baselines on win rates of aligned Mistral-7B against Zephyr-7B-SFT. We set
B = 0.01 for Single Pair and 8 = 0.05 for other approaches to achieve the best performance. The other settings are
the same as in Table 1.
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Method B Pair-Preference Scoring AlpacaEval

Single Pair 61.26 70.21 64.45
BPR 79.73 77.59 78.39
All Pairs 79.22 78.43 77.65
SLiC 01 76.17 75.36 73.04
LambdaRank ’ 80.82 78.53 81.01
ListMLE 78.58 79.22 75.12
ApproxXNDCG 76.12 69.21 82.50
PPA 83.13 81.66 81.07
Single Pair 66.44 65.50 68.87
BPR 84.43 82.37 86.69
Others vs Worst 82.95 80.84 84.64
All Pairs 85.34 83.31 82.79
RankNet 005 85.61 84.22 86.94
SLiC ’ 84.12 83.46 83.27
LambdaRank 85.11 82.52 86.13
ListMLE 83.79 83.61 83.46
ApproxXNDCG 82.04 74.64 85.80
PPA 84.98 83.05 87.54
Single Pair 71.90 70.66 74.75
BPR 0.01 77.01 78.46 86.71
All Pairs ’ 72.66 74.09 82.44
PPA 73.17 75.00 84.51

Table 12: Model Scale Up results in Mistral-7B.

Method Pair-Preference Scoring AplacaEval Arena-Hard

All Pairs 72.96 74.39 59.64 61.64
SLiC 72.84 75.04 60.20 59.17
ListMLE 72.46 74.77 59.83 55.18
LiPO 71.80 72.74 60.38 59.69
PPA 74.34 75.58 61.32 60.17

Table 13: Model Scale Up: PPA outperforms other approaches on Llama3.1-8B.

Run Name List Size  Training Time GPU Memory Usage

Single Pair 2 3h 28m 92.44%
BPR 8 12h 42m 93.43%
All Pairs 8 12h 38m 93.63%
SLiC 8 11h 42m 93.79%
LambdaRank 8 12h 14m 93.66%
ListMLE 8 12h 26m 93.29%
ApproxXNDCG 8 12h 56m 93.64%
PPA 8 11h 39m 93.73%

Table 14: Training Time and GPU memory usage on 16 xNvidia V100-32G with Mistral-7B.

List Size Approach Training Time List Size Approach Training Time

PPA 3h24m PPA 4h27m

DPO 3h17m DPO 4h10m

2 ListMLE 3h38m 4 ListMLE 4h23m
LiPO 3h32m LiPO 4h47m

SLiC 3h28m SLiC 4h14m

PPA 6h31m PPA 7h23m

DPO 6h12m DPO 7h14m

6 ListMLE 6h56m 8 ListMLE 7h34m
LiPO 6h17m LiPO 7h57m

SLiC 6h24m SLiC 8h04m

Table 15: Training Time and GPU memory usage on Qwen2-0.5B.
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Method Complexity Time Time per sample

DPO O(n?) 7.394s 0.739ms
PPA O(50-n?)  368.5s 36.850ms

Table 16: Wall-clock time of sorting operations for 10,000 samples on DPO and PPA.

Table 17: Average response length on AlpacaEval dataset.

Method SFT Single Pair BPR All Pairs SLiC LambdaRank ListMLE ApproxXNDCG NeuraNDCG
Length 828 877 1096 1054 1023 1140 1041 1284 1120

Table 18: Response samples from AlpacaEval where PPA outperforms other methods in quality judged by GPT-4
Turbo.

Prompt Q: Who is Larry Page?

PPA Larry Page is a co-founder, former CEO, and current
CEO of Alphabet Inc., the parent company of Google. He
was born on March 26, 1973, in East Lansing, Michigan,
and graduated from Stanford University with a degree
in computer science and artificial intelligence.
Page, along with Sergey Brin, developed the PageRank
algorithm, which forms the basis of Google’s search
engine. In 1998, they founded Google, which quickly
became one of the most successful and influential
technology companies in the world. Page served as
Google’s CEO from 1999 to 2001 and again from 2011
to 2015, during which time he oversaw the company’s
expansion into new markets, including mobile devices,
cloud computing, and artificial intelligence. In 2015,
Page stepped down as CEO of Google and became the CEO
of Alphabet, the holding company that was created
to separate Google’s core internet business from its
other ventures. As Alphabet’s CEO, Page has focused
on developing new technologies and expanding into
emerging markets, such as healthcare and autonomous
vehicles. Page is widely regarded as one of the most
innovative and influential entrepreneurs of our time,
and his contributions to the field of computer science
and technology have had a profound impact on the
world.
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SFT

Larry Page is the co-founder and former CEO of Google,
a multinational technology company. He is also the
co-founder of Alphabet Inc., the parent company of
Google. Page is known for his contributions to the
development of the PageRank algorithm, which is used
to determine the importance of websites in search
engine rankings. He is also involved in various
philanthropic efforts, including the creation of the
Google Foundation, which supports projects related to
education, health, and the environment.

Single Pair

Larry Page 1is an American entrepreneur, computer
scientist, and co-founder of Google, along with
Sergey Brin. He was born on March 26, 1973, in
East Lansing, Michigan, and graduated from Stanford
University with a degree in computer science and
artificial intelligence. Page is known for his
innovative ideas and leadership in the technology
industry, particularly in the areas of search engines,
artificial intelligence, and renewable energy. He
currently serves as the CEO of Alphabet Inc., the
parent company of Google, and is considered one of
the most influential figures in the tech world.

BPR

Larry Page is a co-founder of Google, along with
Sergey Brin. He was born on March 26, 1973, in
East Lansing, Michigan, USA. Page and Brin started
Google in 1998 while they were both PhD students
at Stanford University. Page’s primary role in the
company has been as CEO from 2001 to 2019, and he
currently serves as the CEO of Alphabet Inc., the
parent company of Google. Under his leadership,
Google has become one of the most successful and
influential technology companies in the world, with
a market capitalization of over $1 trillion. Page is
also known for his philanthropic efforts, including
funding research on renewable energy and supporting
education initiatives.

All Pairs

Larry Page is a co-founder of Google, along with
Sergey Brin. He was born on March 26, 1973, in
East Lansing, Michigan, USA. Page and Brin started
Google in 1998 while they were both PhD students at
Stanford University. Page is known for his focus on
innovation, simplicity, and user experience, and he
has been instrumental in shaping Google’s vision and
strategy. He served as CEO of Alphabet Inc., the
parent company of Google, from 2015 to 2019, and
currently serves as the CEO of Alphabet’s subsidiary,
Google. Page is also a philanthropist and has been
involved in various charitable initiatives, including
the PageRipples Foundation, which supports education
and environmental causes.
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SLiC

Larry Page is a co-founder of Google, along with Sergey Brin.
He was born on March 26, 1973, in East Lansing, Michigan, USA.
Page and Brin started Google in 1998 while they were both PhD
students at Stanford University. Page is currently the CEO of
Alphabet Inc., the parent company of Google, and is responsible
for overseeing the company’s overall strategy and direction. He
is also a prominent figure in the technology industry, known for
his focus on innovation, sustainability, and philanthropy.

LambdaRank

Larry Page is a co-founder of Google, along with Sergey Brin.
He was born on March 26, 1973, in East Lansing, Michigan, USA.
Page and Brin started Google in 1998 while they were both PhD
students at Stanford University. Page served as the CEO of
Google from 1999 to 2001, and then again from 2011 to 2015.
He currently serves as the CEO of Alphabet Inc., the parent
company of Google. Page is known for his focus on innovation,
sustainability, and philanthropy, and has been recognized as one
of the most influential people in the world.

ListMLE

Larry Page is a co-founder of Google, along with Sergey Brin.
He was born on March 26, 1973, in East Lansing, Michigan, USA.
Page and Brin started Google in 1998 while they were both PhD
students at Stanford University. Page is currently the CEO of
Alphabet Inc., the parent company of Google, and is responsible
for overseeing the company’s overall strategy and direction. He
is also a prominent figure in the technology industry, known for
his focus on innovation, sustainability, and philanthropy.

ApproxNDCG

Larry Page is a co-founder of Google, along with Sergey Brin. He
was born on March 26, 1973, in East Lansing, Michigan, and grew
up in the Detroit area. Page and Brin met at Stanford University,
where they developed the PageRank algorithm, which became the
basis for Google’s search engine.\n\n Page served as the CEO
of Google from 1999 to 2001, and then again from 2011 to 2019.
During his tenure, he oversaw the company’s growth and expansion,
including the development of new products and services, such as
Google Maps, Google Earth, and Google Glass.\n\n Page is known
for his focus on innovation, user experience, and sustainability.
He has also been involved in various philanthropic efforts,
including the creation of the Google.org foundation and the
development of the Google Self-Driving Car Project.\n\n Today,
Page is the CEO of Alphabet, the parent company of Google, and
continues to play a key role in shaping the future of technology
and the internet.
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