
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 33455–33483
November 4-9, 2025 ©2025 Association for Computational Linguistics

CompassVerifier: A Unified and Robust Verifier for LLMs
Evaluation and Outcome Reward

Shudong Liu1,2,* , Hongwei Liu1,∗, Junnan Liu1, Linchen Xiao1,
Songyang Gao1, Chengqi Lyu1, Yuzhe Gu1, Wenwei Zhang1,

Derek F. Wong2,†, Songyang Zhang1,†,ℵ, Kai Chen1,†
1Shanghai AI Laboratory 2NLP2CT Lab, University of Macau

nlp2ct.shudong@gmail.com; {liuhongwei,zhangsongyang}@pjlab.org.cn

Abstract

Answer verification is crucial not only for
evaluating large language models (LLMs) by
matching their unstructured outputs against
standard answers, but also serves as the reward
model to guide LLM optimization. Most eval-
uation frameworks rely on regularized match-
ing or employ general LLMs for answer ver-
ification, which demands extensive, repeti-
tive customization for regex rules or evalua-
tion prompts. Two fundamental limitations
persist in current methodologies: 1) the ab-
sence of comprehensive benchmarks that sys-
tematically evaluate verification capabilities
across different LLMs; and 2) the nascent stage
of verifier development, where existing ap-
proaches lack both the robustness to handle
complex edge cases and the generalizability
across different domains. In this work, we de-
velop CompassVerifier, an accurate and robust
lightweight verifier model for evaluation and
outcome reward. It demonstrates multi-domain
competency spanning math, knowledge, and
diverse reasoning tasks, with the capability to
process various answer types, including multi-
subproblems, formulas, and sequence answers,
while effectively identifying abnormal/invalid
responses. We introduce VerifierBench bench-
mark comprising model outputs collected from
multiple data sources, augmented through man-
ual analysis of meta error patterns to enhance
CompassVerifier. We anticipate that Com-
passVerifier and VerifierBench will facilitate
answer verification, evaluation protocols, and
reinforcement learning research. Code and
dataset are available at https://github.com/
open-compass/CompassVerifier.

1 Introduction

Answer verification plays a critical role in the
evaluation and training of large language models

*Equal contribution. ℵProject lead. †Corresponding au-
thors. Work done during Shudong’s internship at Shanghai AI
Laboratory.

(LLMs), particularly for objective questions with
verifiable answers (Achiam et al., 2023; Yang et al.,
2024; Liu et al., 2024a,b). At the evaluation level,
it enables precise measurement of performance dif-
ferences across models (Chang et al., 2024); at the
training level, it serves as a quality check for self-
improvement (Hosseini et al., 2024; Song et al.,
2025). With the rapid development of large rea-
soning models (LRMs) and reinforcement learning
(RL), answer verification has further become a key
component in constructing rule-based rewards, pro-
viding feedback signals to guide model optimiza-
tion and iteration (Guo et al., 2025; OpenAI, 2024c;
Luong et al., 2024; Wang et al., 2025a; Ma et al.,
2025b; Liu et al., 2025a; Zhong et al., 2025).

Existing answer verification methods can be
broadly categorized into two types. The first type
relies on regularized string matching, such as ex-
tracting content following “The answer is” to
compare with reference answers, or using tools
like math-verify (huggingface, 2024) to check for-
mula equivalence in mathematical tasks. The sec-
ond type employs general LLMs for consistency
judgment, where a specific prompt is designed to in-
struct the model to evaluate the alignment between
candidate and reference answers. However, both
approaches suffer from significant limitations: the
former requires repetitive customization of match-
ing rules for different tasks and is prone to verifi-
cation failures due to extraction errors; the latter
demands frequent prompt adjustments to accom-
modate diverse tasks, domains, and answer types,
while also facing the risk of misjudgment caused by
model hallucination. Meanwhile, there is still no
challenging benchmark available to evaluate and
distinguish the verification capabilities of different
models, nor to guide the development and iteration
of verifiers.

In this paper, we establish a systematic frame-
work for evaluating and training answer verifica-
tion systems. We first introduce VerifierBench, a

33455

https://github.com/open-compass/CompassVerifier
https://github.com/open-compass/CompassVerifier

challenging benchmark for answer verification that
aggregates numerous samples where rule-based
methods frequently err or LLMs tend to produce
incorrect judgments or hallucinations. We in-
tegrated over one million data samples through
the OpenCompass (OC-Contributors, 2023) eval-
uation framework, encompassing responses from
more than 50 models across 15 carefully selected
datasets. Following large-scale data collection,
each sample underwent a multi-stage filtering
pipeline culminating in rigorous domain expert
review and calibration. VerifierBench facilitates
precise measurement of verification capabilities
across diverse models, addressing complex scenar-
ios where both rule-based matching and general
models often fail, and offering manually analyzed
summaries of prevalent error patterns.

We further present CompassVerifier, a series
of lightweight yet robust and accurate verification
models. The training data originates from three
key sources: 1) The original training set from
VerifierBench, which undergoes multi-model val-
idation with simple, easily verifiable samples re-
moved; 2) Formula-enhanced data, where we lever-
age the powerful DeepSeek-V3 model to generate
numerous equivalent complex formulas with cor-
responding reasoning processes to improve formu-
laic answer evaluation; 3) Hallucination-specific
data, where we systematically analyze failure pat-
terns from human validation cases and synthesize
targeted training samples to address common hal-
lucination errors.

Our contributions are threefold:
• We propose VerifierBench, a novel and chal-

lenging benchmark meticulously designed for
fine-grained evaluation of verification abilities.

• We develop CompassVerifier, a series of ro-
bust and efficient verification models enhanced
through our three proposed techniques, achiev-
ing state-of-the-art performance across diverse
domains and tasks. CompassVerifier can also ef-
fectively serve as a reward model in RL training,
delivering more precise and reliable feedback
signals for policy optimization.

• Through a systematic analysis of prevalent fail-
ure modes in LLM-based verification, including
characteristic hallucination phenomena and error
propagation, we derive actionable insights aimed
at advancing the design and robustness of future
verification systems.

2 Related Work

2.1 Answer Verification

Unlike traditional discriminative models with well-
defined classification labels, the unstructured out-
puts of generative LLMs pose unique verifica-
tion challenges (Cobbe et al., 2021). Current ap-
proaches to verifying LLM-generated answers can
be broadly categorized into outcome verification
and process verification (Kawabata and Sugawara,
2024; Zhang et al., 2025).

Outcome verification focuses on assessing the
correctness of final answers, typically through
string-based pattern matching (OC-Contributors,
2023; Gao et al., 2024; OpenAI, 2023). Com-
mon practice instructs LLMs to output answers
in predefined formats for character-level compar-
ison with ground truth. For formulaic answers,
specialized tools like Math-Verify (huggingface,
2024) have been developed to handle equivalence
checking. However, due to the inherent unpre-
dictability of LLM outputs, such methods often suf-
fer from matching failures or inaccuracies. Many
studies thus employ general LLMs as verifiers via
tailored prompts. While effective, both methods
demand task-specific customization through either
regex patterns or verified prompts, creating labor-
intensive workflows. Process verification, requir-
ing detection of reasoning errors in intermediate
steps, has seen recent advances in both LLM-based
verifiers and evaluation benchmarks (Lu et al.,
2024; o1 Team, 2024; Lightman et al., 2023; Zheng
et al., 2024; Zhou et al., 2024). However, process
verifiers remain less frequently adopted in evalu-
ations due to instability and high resource costs,
and have not demonstrated substantially superior
performance compared to outcome verifiers in RL.

We focus on scalable and robust outcome verifi-
cation by developing a unified verifier that serves
dual purposes: 1) as an evaluation model for bench-
marking model performance, and 2) as a real-time
reward model for RL training. By addressing the
limitations of existing methods, such as ad-hoc
prompt engineering and brittleness to output varia-
tions, CompassVerifier prioritizes efficiency, gener-
alizability, and reliability across diverse tasks.

2.2 LLM-as-a-Judge

The comprehensive capabilities of LLMs enable
them to serve as cost-effective alternatives to hu-
man experts in evaluation tasks, a concept known as
“LLM-as-a-Judge” (Gu et al., 2024; Li et al., 2024a),

33456

Stage 3
Annotation and Analysis

Questions

Knowledge

Math

Science

Reasoning

Ground Truth

Sequence

Formula

Multi Choice

Short Answer

Models

Response Generation

Question

LLM Response

Ground Truth

Easy Data

Stage 1
Multi-expert Voting

Stage 2
Multi-prompt Voting

A (Correct)
B (Incorrect)
C (Invalid)

A (Correct)
B (Incorrect)

Inconsist

Consist

A (Correct)
B (Incorrect)
C (Invalid)

Consist

Training Data Pool

Inconsist

A (Correct)
B (Incorrect)
C (Invalid)
Judgment Reason

VerifierBench Test

Deduplication and filtering

Manual

Error Patterns

A (Correct)
- Complex formulas

equivalence
- …

B (Incorrect)
- Wrong option content
- …

C (Invalid)
- Repeat
- …

Question

LLM Response

Ground Truth

Figure 1: Overview of VerifierBench pipeline. Using OpenCompass (OC-Contributors, 2023), we collected more
than 1 million LLM responses, applying multi-stage, multi-model verification with tool-assisted cleaning and
filtering to create VerifierBench’s test/base training sets and catalog common verification error patterns.

which can be categorized into two approaches: sub-
jective judgment and objective judgment.

Subjective judgment typically operates in sce-
narios without ground-truth answers, where LLMs
score individual responses (Pointwise) (Zhu et al.,
2025) or express preferences between paired re-
sponses (Pairwise) (Wang et al., 2024a). This re-
quires the LLM to evaluate various aspects of re-
sponses, including usefulness, harmlessness, and
creativity, and even identify reasoning stepwise er-
rors in the responses (Cao et al., 2024; Li et al.,
2024c, 2023). Recent studies also employ RL
and inference-time scaling like generative critiques,
long-CoT, and multi-sampling voting for judgment,
albeit with high computational costs (Liu et al.,
2025b; Shi and Jin, 2025). objective judgment is a
more straightforward approach, requiring only the
evaluation of response correctness against ground-
truth. Beyond simple string matching, the prevalent
method employs large-scale LLMs with carefully
designed evaluation prompts for judgment. Re-
cently, to enable smaller models to achieve compa-
rable verification capabilities to large LLMs, Chen
et al. (2025) proposes xVerify and its accompany-
ing benchmark, which trains smaller verifier mod-
els by distilling GPT-4o’s capabilities. Other con-
current studies have also focused on distilling veri-
fication capabilities from large models to smaller
ones to achieve better cost-effectiveness (Ma et al.,
2025a; Su et al., 2025; Huang et al., 2025).

We claim that objective judgment with ground-
truth has yet to reach maturity, lacking both chal-
lenging benchmarks to discriminate model abilities

and robust unified models. To address these gaps,
we are committed to developing VerifierBench to
rigorously test different models’ verification capa-
bilities and CompassVerifier to provide the research
community with an accurate evaluation tool.

3 VerifierBench

The primary challenge in verifier development lies
in the lack of comprehensive benchmarks and rig-
orous evaluation methodologies. Large-scale com-
mercial models are often preferred for answer-
matching tasks due to the prevailing assumption of
scaling laws. However, critical questions remain
unanswered: 1) To what extent do answer match-
ing and objective judgment tasks adhere to scaling
laws? 2) How should we balance model perfor-
mance against computational costs in verification?

To answer these questions, in this work, we
present VerifierBench, a systematic benchmark for
evaluating diverse models’ judgment and verifica-
tion capabilities. VerifierBench addresses this gap
through: 1) Large-scale data collection for answer
matching (3.1); 2) Multi-round validation involv-
ing multiple LLMs and human annotators (3.2); 3)
Case analysis of typical error patterns to identify
failure modes (3.3).

3.1 Data Collection

The crux of the answer verification task hinges on
its capacity to encompass a comprehensive range of
verifiable answer types and heterogeneous model
responses. To comprehensively gather such data,
we employed the OpenCompass framework (OC-

33457

Contributors, 2023) to conduct large-scale evalu-
ations across multiple models and datasets. Our
systematic approach yielded more than 1,325,293
samples covering four key domains: knowledge,
mathematics, science, and general reasoning. The
collected data features:
• Answer Type Diversity: Multiple response for-

mats including multiple-choice question options,
mathematical formulations, short texts, multi-
subproblem items, and long-sequence responses,
etc.

• Prompt Variability: Input prompts covering
few-shot, zero-shot, and dataset-specific format-
ting requirements.

• Response Characteristics: Model outputs rang-
ing from short and long chain-of-thought (CoT)
answers to direct responses and anomalous out-
puts (e.g., repetitions, truncations).

• Diverse Model Coverage: Comprehensive rep-
resentation across commercial LLMs, open-
source LLMs, and emerging LRMs, spanning
diverse model scales.
Formally, our collected data consists of triplets:

D = {(qi, a∗i , rmi)}Ni=1, where qi ∈ Q represents
the i-th question, a∗i ∈ A denotes the correspond-
ing reference answer, rmi ∈ R is the response gen-
erated by model m ∈ M. The primary objective
of VerifierBench construction is to augment these
triplets with verification labels, resulting in verified
quadruples:

DVerifierBench = {(qi, a∗i , rmi , vi)}Ni=1, (1)

where vi ∈ {Correct, Incorrect, Invalid} is the
verification label indicating the correctness of rmi
with respect to a∗i . Notably, during data collection
and curation, we identified numerous responses ex-
hibiting abnormal or exceptional behaviors. These
include abruptly truncated outputs, excessive repe-
tition, and cases where models refused to answer
due to ethical considerations or other constraints.
We therefore categorize such instances as invalid
responses to enable a more fine-grained evaluation.

3.2 Data Construction Pipeline

Our multi-stage verification pipeline, integrating
LLMs, human annotators, and rule-based tools, ef-
ficiently identifies high-value training and testing
samples from a large collected dataset.

Multi-Expert Voting. Initially, samples undergo
direct verification (no CoT reasoning) by Qwen2.5-
Instruct models (7B, 14B, 32B). Samples with con-
sensus are deemed trivial cases reliably handled by
weaker models and are removed, offering minimal
value. For mathematical domains (Math, GSM8K,
and AIME datasets), we also incorporated Math-
Verify (huggingface, 2024) as an additional expert
verifier.

Multi-prompt Voting. Disputed samples ad-
vance to a second verification stage, where
DeepSeek-V3 is employed with multiple prompts
to generate diverse CoT reasoning paths. Consen-
sus samples from this stage, representing moder-
ately challenging instances, constitute our training
pool. Our experiments revealed significant chal-
lenges in developing a universal verification prompt
applicable across all datasets, evidenced by substan-
tial residual disagreements after the second verifi-
cation round. To address this, we implemented an
additional verification phase for selected datasets,
featuring domain-optimized prompts. For instance,
the Chinese SimpleQA dataset required specially
crafted Chinese-language prompts to achieve reli-
able verification outcomes.

Human Annotation and Analysis. The remain-
ing disputed samples are human-annotated, with
high-value cases primarily allocated to the test set.
For the VerifierBench test set, we systematically
excluded proof-based questions, open-ended prob-
lems, and numerical answers with ambiguous ac-
ceptability thresholds. These non-binary judgment
cases, requiring specialized verification tools or
domain expertise, are deferred to future work, en-
suring VerifierBench focuses on clearly verifiable
samples. Finally, we get the VerifierBench dataset,
and we also make sure there is no overlap between
VerifierBench test set and the train set for training
CompassVerifier model.

Identification of Flawed Samples. Human an-
notation also identified a distinct category: “flawed
samples”. Errors in these samples stem not from
model deficiencies in problem-solving but from
issues inherent to the questions (e.g., ambiguity, in-
correct standard answers) or external factors (e.g.,
improper output truncation, generation of mean-
ingless repetitive text, model refusal to answer).
Such flawed samples, if not distinguished, can
skew model capability assessment and hinder ef-
fective model iteration. These issues are often over-
looked in traditional evaluation paradigms. Conse-

33458

quently, we explicitly label these samples as “In-
valid” and integrate them into the VerifierBench test
set. This approach enables a more granular, multi-
dimensional, and realistic perspective for model
performance verification.

3.3 Statistics and Analysis

Statistics. We present the statistical characteristics
of the VerifierBench test set across three dimen-
sions: label categories (Table 4), problem domains
(Table 5), and answer types (Table 6). After filter-
ing and balancing, the dataset composition shows
an approximate 4:6 ratio between Category A and
B samples, with Category C representing about 7%
of the total. Regarding problem domains, general
reasoning, and mathematical reasoning constitute
the majority, aligning with the current needs of RL
training on LLMs. Classified by DeepSeek-V3, the
answer types comprise seven categories: multiple-
choice, numerical values, short answers, formulas,
multi-subproblem, sequences, and binary answers.
The detailed dataset sources are provided in Table
3, with concrete examples illustrated in Section
A.6.
Error Analysis and Patterns. VerifierBench is
designed not merely as a benchmark dataset for
model evaluation, but as a comprehensive frame-
work incorporating extensive human analysis and
case studies. During annotation, we required an-
notators to provide detailed judgment rationales in
addition to final labels. Through systematic collec-
tion and analysis of these rationales, we identified
and categorized over 30 meta error patterns (Ap-
pendix A.5), which represent fundamental causes
of mistakes and hallucinations in LLM-based an-
swer verification. For example, while mathemat-
ically equivalent formulas are conventionally ac-
cepted as correct answers by LLMs or tools, they
should be rejected for expression simplification
problems. Similarly, for questions admitting mul-
tiple valid answers listed in the reference answer,
a model response matching any one option should
be considered correct, rather than complete cover-
age. We have found these meta patterns invaluable
for both diagnostic analysis and targeted model im-
provement, and have incorporated them into our
training framework.

4 CompassVerifier

CompassVerifier is designed to deliver efficient,
high-performance, and robust answer verification.

The system leverages filtered (question, reference
answer, model response) triples from VerifierBench
with golden judgments as training supervision. We
also propose three key techniques to drive its per-
formance: Complex Formula Augmentation en-
hances formula variants verification, Error-Driven
Adversarial Augmentation fortifies against failures,
and Generalizability Augmentation ensures cross-
domain and cross-prompt applicability. Figure 2
shows the whole pipeline of training CompassVeri-
fier. Details of the composition of the training Data
in Appendix A.8.

4.1 Error-Driven Adversarial Augmentation

To address potential annotation inaccuracies in our
filtered data (see Section 3.2), we employ a three-
phase adversarial augmentation strategy.

Human-in-the-Loop Analysis. Domain experts
manually verify 5,000 annotated samples, identify
and document failure rationales such as LLM mis-
understandings of task constraints, misinterpreta-
tion of critical information in questions, and diver-
gent penalty thresholds among judge models.

Pattern Clustering. We apply analysis and clus-
tering to these rationales, revealing over 40 high-
impact error categories, particularly vulnerabilities
in perspective-taking and format adherence. Anal-
ysis and details are shown in Appendix A.5.

Meta-Judge Template Generation. For each er-
ror cluster, we develop structured templates that en-
code: 1) Question Characteristics (domain-specific
requirements, content/format constraints) and 2)
Response Error Patterns (failure types, localiza-
tion, severity).

This aligns model judgments with human val-
ues and improves robustness against: (1) over-
strict format-based rejection, (2) underpenalization
of conceptual errors in fluent responses, and (3)
context-sensitive scoring variations.

4.2 Complex Formula Augmentation

Verifying answers in domains such as the natural
sciences is challenging due to the prevalence of
complex expressions. These expressions often ex-
hibit diverse notational conventions (e.g., symbolic,
algebraic, floating-point, integer). Consequently,
automated verifiers lacking robust mathematical
equivalence understanding may erroneously reject
semantically correct responses that differ superfi-
cially from reference solutions.

33459

Meta Error Patterns
• Reference answer lists multiple options, LLM only

gave one → Incorrectly marked as wrong
• LLM appears to select the right option, but the chosen

content is wrong → Incorrectly marked as correct
• In simplification problem, LLM give unsimplified but

equivalent formula → Incorrectly marked as correct

Template-guided
Data Synthesis

Judgment and
Filtering

[Question, Response, GT] Synthetic data

Prompt A

Prompt B

Prompt C

COT A + Judgment

COT B + Judgment

COT C + Judgment

Prompt D Direct Judgment

Shuffle
Mixing
Perturbation

Ground
Truth

GT A

GT B

GT C

Equivalent
transformation

CompassVerifier

Training

Response Generation

Error-Driven Adversarial Augmentation

Complex Formula Augmentation

GT A

GT B

All Training
Data Pool

Generalizability Augmentation

Judgment and
Filtering

[Question, Response, GT] Augmented data

Judgment and
Filtering

Base

Synthetic

Augmented

Figure 2: Overview of CompassVerifier training pipeline.

To address this issue, we introduce a Complex
Formula Augmentation strategy that systematically
generates multiple, notation-variant answers for
each problem instance. Our procedure is as fol-
lows:
Reference Normalization. For each original
question–answer pair in our dataset, we first con-
vert the reference answer into a canonical represen-
tation, normalizing numeric precision and symbolic
structure.
Variant Generation. We leverage the DeepSeek-
v3 (Ma et al., 2025a) to produce between one
and three alternative formulations of the canon-
ical answer. These variants include: 1) Sym-
bolic rearrangements (e.g., rationalizing denom-
inators, applying algebraic identities). 2) Precision-
preserving floating-point expansions. 3) Equiva-
lent integer or fraction representations. We enforce
strict constraints to avoid precision loss and ensure
each variant remains mathematically equivalent to
the original answer within the problem context.
Quality Control. All generated variants are auto-
matically checked for equivalence using a symbolic
algebra engine, and a subset is manually reviewed
by subject-matter experts to confirm correctness
and naturalness of presentation.

By exposing the verifier to diverse but equiva-
lent formulae, we markedly improve its ability to
recognize correct answers regardless of notational
differences, thereby reducing false negative rates
in formula-intensive tasks.

4.3 Generalizability Augmentation
Existing verifier models often rely on task-specific
prompts, limiting their generalizability across dif-
ferent problems and subtle answer variations (e.g.,
numerical precision in TheoremQA (Chen et al.,
2023)). To address this, we propose a General-
izability Augmentation strategy to enhance adapt-
ability by systematically expanding prompt and re-
sponse diversity in training data. We collect diverse

prompts from public datasets (e.g., TheoremQA,
GPQA (Rein et al., 2024), GAOKAOBench (Zhang
et al., 2023)) and real-world scenarios, covering
over 20 task types. For each prompt type, we de-
sign multiple variants, varying questioning styles,
context lengths, linguistic registers, and instruction
granularity. Our augmentation employs two key
techniques:

Prompt Rewriting and Perturbation. We use
LLMs (e.g., DeepSeek-v3) to automatically gen-
erate paraphrases, structural modifications, and
detail-enriched prompt variants, while maintaining
consistency with the final judgment. Furthermore,
during training, we introduce prompt random sam-
pling, dynamic mixing, and a prompt-invariance
mechanism to prevent overfitting and encourage
consistent judgments across different prompt for-
mulations, thereby enhancing generalization.

Long-context Generalization. To improve ro-
bustness in long-context scenarios, we apply var-
ious perturbations to responses collected from
LRMs (e.g., DeepSeek-R1 and its distilled variants)
in the training set, including truncating different
portions (e.g., first 20%, 40%, 60%) of the think-
ing process, replacing thinking tags (e.g., <think>
or </think>) with alternative labels, or removing
them entirely, while ensuring the final judgment
remained consistent with the original response.

5 Experiments

Baselines and Setup. We conduct comprehen-
sive evaluations on VerifierBench across various
model scales of CompassVerifier, ranging from 3B
to 32B parameters. Baseline models include: (1)
general LLMs such as Qwen2.5 (Yang et al., 2024),
Qwen3 (Yang et al., 2024), DeepSeek-V3 (Guo
et al., 2025), and GPT-4o (OpenAI, 2024a); and (2)
two recently proposed specialized verifier models:
xVerify (Chen et al., 2025) and Tencent-Qwen2.5-
7B-Instruct-RLVR (Su et al., 2025). We ask the

33460

Table 1: Main results on the VerifierBench benchmark. For fair comparison, we treat the “Invalid” instances in
VerifierBench as incorrect labels, presenting results in a binary classification framework. We report Accuracy and
F1 scores (%) across four categories and their average.

Model
Math General Reasoning Knowledge Science Average

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Qwen2.5-7B-Instruct 53.0 30.0 58.9 51.1 55.8 50.7 64.0 36.6 57.9 42.1
Qwen2.5-14B-Instruct 51.6 37.4 57.3 44.9 50.9 37.8 70.0 47.9 57.4 42.0
Qwen2.5-32B-Instruct 53.1 31.6 64.6 42.2 60.0 46.4 77.4 48.8 63.8 42.2
Qwen2.5-72B-Instruct 57.0 37.5 61.4 49.0 70.0 68.5 77.9 60.5 66.6 53.9

Qwen3-8B 53.0 51.6 61.6 61.8 63.8 69.4 57.9 42.9 59.1 56.4
Qwen3-14B 65.1 44.1 76.8 66.7 69.8 66.7 81.6 56.8 73.3 58.6
Qwen3-30B-A3B 59.7 62.4 63.4 63.2 61.5 64.4 59.5 48.7 61.0 59.7
Qwen3-32B 64.4 54.6 74.9 70.3 68.7 69.5 74.7 52.8 70.7 61.8
Qwen3-235B-A22B 64.2 53.9 78.5 73.7 67.4 73.1 74.0 50.0 71.0 62.7

GPT-4.1-2025-04-14 66.6 42.0 85.4 79.5 84.0 82.9 88.4 75.0 81.1 69.8
GPT-4o-2024-08-06 63.9 34.9 78.7 68.2 79.8 78.3 83.2 54.9 76.4 59.1
DeepSeek-V3-0324 69.4 54.7 81.5 76.6 80.6 81.2 84.7 68.5 79.1 70.3

xVerify-0.5B-I 61.7 42.6 84.0 78.5 87.1 86.2 86.3 72.6 79.8 70.0
xVerify-8B-I 64.3 42.6 84.3 78.9 86.1 85.1 88.7 74.9 80.8 70.4
xVerify-9B-C 64.3 48.0 82.8 77.0 82.7 81.7 86.3 69.8 79.0 69.1
Tencent-Qwen2.5-7B-RLVR 71.2 55.3 80.9 73.8 78.0 76.8 84.0 62.6 78.5 67.1

CompassVerifier-3B 76.3 71.0 88.9 85.9 87.9 87.7 86.8 77.1 85.0 80.4
CompassVerifier-7B 79.4 74.8 89.9 87.7 92.8 92.6 87.9 78.5 87.5 83.4
CompassVerifier-32B 84.1 80.8 92.1 90.3 95.1 94.8 91.8 84.7 90.8 87.7

General LLMs

Verifier Models

CompassVerifiers

100 101 102

Model Size (Billions of parameters) - Log Scale

40

50

60

70

80

90

F1
 S

co
re

Qwen2.5-7B
Qwen2.5-14B

Qwen2.5-32B

Qwen2.5-72B
Qwen3-8B

Qwen3-14B Qwen3-30B
Qwen3-32B

Qwen3-235B

DeepSeek-671B
xVerify-0.5B

xVerify-8B
xVerify-9BTencent-Qwen2.5-7B

CompassVerifier-3B
CompassVerifier-7B

CompassVerifier-32B

Figure 3: Model performances with size on Verifier-
Bench. We show the F1 score in main results.

model directly generate the final judgment of the
given response and report F1 and Accuracy as met-
rics. More evaluation and training details are shown
in Appendix A.3.

5.1 Main Results

From the Perspective of the Domain. We show
the main results of VerifierBench in Table 1. Our
CompassVerifier establishes new state-of-the-art
performance across all VerifierBench categories,
achieving 84.1–95.1% accuracy and 80.8–94.8%

F1-score in the 32B configuration. Three find-
ings emerge: 1) As shown in Figure 3, verification
capability exhibits progressive improvement with
increasing scale, demonstrating accuracy gains
from 85.0% to 90.8% and F1-score improvements
from 80.4% to 87.7% as parameters scale from
3B to 32B. 2) Verification-specific architectures
yield substantial gains: CompassVerifier-7B sur-
passes the similarly-sized original Qwen2.5-7B-
Instruct by an absolute F1-score improvement of
41.3%. 3) Despite progress, mathematical verifi-
cation remains challenging (80.8% best F1-score
vs. 94.8% for knowledge), highlighting persistent
gaps in stepwise logical validation. Our small-
est 3B variant outperforms GPT-4.1 by an abso-
lute F1-score improvement of 10.6%, demonstrat-
ing parameter efficiency. Consistent performance
across domains further underscores the model’s ro-
bustness. For instance, our CompassVerifier-32B
model achieves high F1-scores across all evalu-
ated categories. Such consistency indicates a well-
generalized verification capability, effectively han-
dling diverse types of information and reasoning
processes.
From the Perspective of the Answer Type. Fig-
ure 4a demonstrates the performance compari-
son of similarly-sized models across different an-

33461

Average

Boolean

Multi-subQ

Numerical

Short Text

Formula

Multi-choice

Sequence

0

40

80

Qwen2.5-7B
Qwen3-8B
xVerify-8B-I

Tencent-Qwen2.5-7B-RLVR
CompassVerifier-7B

(a) Seven answer types.

Average

A (Correct)

B (Incorrect)

C (Invalid)0

25

50

75

Qwen3-8B
Qwen3-32B
DeepSeek-V3

GPT-4o
CompassVerifier-7B
CompassVerifier-32B

(b) Ternary class labels.

Figure 4: Results (F1) on VerifierBench across 7 answer types
and 3 correctness labels.

Accuracy F1

75

80

85

90

Pe
rfo

rm
an

ce

 2.7%

 3.0%

 2.4%

 2.2%

 3.5%

 3.6%

CompassVerifier-7B-Base
+ Complex Formula Augmentation
+ Error-Driven Adversarial Augmentation
+ Both Augmentations

Figure 5: Ablation study on CompassVerifier-7B
with different training technologies.

swer/question types. Notably, CompassVerifier-
7B achieves consistent improvements across all
categories. As evident from the results, multiple-
choice questions emerge as the easiest category,
with most models attaining strong performance,
a finding attributable to their prevalence in eval-
uation benchmarks. However, baseline models
show marked deficiencies in handling formula-
based answers, multi-subquestions, and sequential
answers, particularly struggling with sequential an-
swers where none exceed 40 F1-score. This likely
stems from the inherent complexity of sequential
answers, which often require element-by-element
matching of multiple components, significantly in-
creasing verification difficulty. These challenging
cases represent precisely the focus of CompassVer-
ifier and constitute critical directions for future
research. The complete results are presented in
Table 7.

5.2 Analysis of CompassVerifier

Beyond Binary Verification: Identifying Invalid
Responses. Figure 4b presents the three-class
classification performance of six top-performing
models. Notably, even advanced general LLMs
like GPT-4o and DeepSeek-V3 without task-
specific training exhibit significant performance
bias, demonstrating substantially better results on
categories A and B compared to C. Our manual
analysis reveals that general models show particu-
lar insensitivity to duplicated patterns or truncated
responses. To address this, we implemented a du-
plicate string detection script during data filtering
(Section 3.2). Crucially, we argue that Category
C requires distinct treatment as they are particu-
larly susceptible to reward hacking in RL training
scenarios. Full results of the ternary classification
performance are shown in Table 8.

Impact of Data Augmentation Components.
Figure 5 details the impact of our data augmen-
tation strategies on CompassVerifier-7B. The base-
line model (CompassVerifier-7B-Base) achieves
84.0% accuracy and 79.8% F1. Introducing Com-
plex Formula Augmentation alone improves accu-
racy to 86.7% (+2.7) and F1 to 82.8% (+3.0). This
demonstrates the strategy’s effectiveness in enhanc-
ing the model’s capability to handle diverse formu-
laic expressions. Similarly, Error-Driven Adversar-
ial Augmentation alone boosts accuracy to 86.4%
(+2.4) and F1 to 82.0% (+2.2), underscoring its
utility in fortifying the model against previously
identified failure modes. Combining both strate-
gies yields the best performance, with accuracy
reaching 87.5% (+3.5) and F1 at 83.4% (+3.6),
demonstrating their complementary and synergis-
tic contributions to overall verification capabilities.
Details are shown in Table 9.

Generalization of CompassVerifier. To evaluate
the generalization capability of CompassVerifier,
we also conduct tests on the hard subset of Verify-
Bench (Yan et al., 2025), a recent concurrent work
for benchmarking verification abilities. This subset
primarily contains standard answers that involve
long reasoning COT, making it particularly chal-
lenging to verify. Table 2 presents the performance
comparison across different models. Here, “Model-
specific Prompt” indicates that xVerify/Tencent-
RLVR employs their respective training prompts
while other models use ours, whereas “VerifyBench
Prompt” denotes that all models utilize the same
prompt provided with the VerifyBench dataset. Our
analysis leads to the following findings: 1) Com-
passVerifier still outperforms both general LLMs
of similar size, specialized verifier models, and
even DeepSeek-V3; 2) Due to our Generalizability

33462

AIME 2024
0

5

10

15

20

25

Pe
rfo

rm
an

ce
 (a

vg
@

32
)

+6.2

+14.7

+17.1 +16.9

+18.5+18.5

AIME 2025
0

5

10

15

20

25

+5.4

+14.4 +14.8
+13.6

+15.5+15.4

MATH500

30

40

50

60

70

80

+29.0

+46.4 +47.1 +47.5 +48.1+49.2

Before RL (Qwen3-4B-Base) Math-Verify Tencent-RLVR Qwen3-14B Qwen2.5-32B-InstructBefore RL (Qwen3-4B-Base) Math-Verify Tencent-RLVR Qwen3-14B Qwen2.5-32B-Instruct
CompassVerifier-7B CompassVerifier-32B

Figure 6: Experimental results of CompassVerifier as a reward model. We employ Math-Verify along with various
general LLMs and verifier models as reward models for RL training, reporting the avg@32 performance on AIME24,
AIME25, and MATH500.

Table 2: Performance on VerifyBench using different
prompt strategies. We report Accuracy and F1 scores
(%) for both model-specific prompts and the standard
VerifyBench prompts.

Model
Model-specific Prompt VerifyBench Prompt

Acc F1 Acc F1

Qwen2.5-7B-Instruct 65.4 39.8 60.9 45.0
Qwen2.5-32B-Instruct 78.8 58.9 72.0 55.8
Qwen2.5-72B-Instruct 78.5 61.7 63.0 50.0
DeepSeek-V3 81.8 62.2 78.6 60.9

xVerify-0.5B-I 77.9 66.2 - -
xVerify-8B-I 83.2 70.7 - -
xVerify-9B-C 83.2 71.0 - -
Tencent-Qwen2.5-7B-RLVR 82.4 68.9 - -

CompassVerifier-3B 87.4 77.4 86.2 75.0
CompassVerifier-7B 88.1 79.0 86.0 73.3
CompassVerifier-32B 89.7 81.1 86.8 74.3

General LLMs

Verifier Models

CompassVerifiers

Augmentation, even under VerifyBench’s prompt
(deeper OOD setting), CompassVerifier maintains
robust performance (score >86), while xVerify and
Tencent-Qwen2.5-7B-RLVR completely fail to fol-
low instructions.

5.3 CompassVerifier as Reward Model

To validate the efficacy of CompassVerifier as a
reward model in RL training, we examine its in-
fluence on enhancing the reasoning performance
of models trained using RL. Specifically, we uti-
lize GRPO (Shao et al., 2024) to train base LLMs
with rule-based verifier Math-Verify (huggingface,
2024) and CompassVerifier and rigorously evalu-
ate the reasoning capabilities of the trained mod-
els. We use the challenging Open-S1 (Dang and
Ngo, 2025) as the RL training corpus, which can
also be considered an out-of-distribution dataset
for CompassVerifiers. More experimental settings
are provided in Appendix A.9.

Comparative results are shown in Figure 6 (De-
tails in Table 10). Experimental results demonstrate
that models trained with CompassVerifier outper-
form the base model, surpass those trained with the
rule-based verifier (Math-Verify), and exceed mod-
els using general LLMs or alternative verifiers as
reward models. This highlights CompassVerifier’s
superior potential as a reward model, providing
more precise evaluation for rollout trajectories gen-
erated in RL training. Additionally, CompassVeri-
fier’s enhanced capacity to provide more effective
signals (i.e., rewards) during training substantially
improves the convergence efficiency of RL train-
ing. The results also reveal a noticeable perfor-
mance gap between rule-based and model-based
verifiers. As the data types and disciplines cov-
ered by Reinforcement Learning from Verifiable
Rewards (RLVR) (Wang et al., 2025b) training con-
tinue to expand, rule-matching tools have become
increasingly inadequate, which precisely motivated
the development of CompassVerifier.

6 Conclusion

To address the critical gap in large-scale answer ver-
ification evaluation, we present VerifierBench, fea-
turing a meticulously designed pipeline for large-
scale data collection, filtering, and annotation. We
also introduce CompassVerifier, a novel verifica-
tion model specifically engineered to handle multi-
domain scenarios, diverse answer types, varied
prompt formats, and irregular responses. Com-
passVerifier achieves superior accuracy and robust-
ness compared to larger general LLMs and base-
line verifier models. We anticipate that Verifier-
Bench and CompassVerifier would significantly ad-
vance research in answer verification for evaluation
frameworks and reward modeling for RLVR.

33463

Limitations

While VerifierBench provides a comprehensive
benchmark and CompassVerifier demonstrates
strong capabilities in both evaluation and reward
modeling for reinforcement learning, our work still
has several limitations:

Limited Out-of-Distribution (OOD) Evaluation:
Although VerifierBench facilitates thorough test-
ing of verifier models like CompassVerifier, and its
utility is shown in practical reinforcement learning
scenarios, our OOD evaluation is constrained by
the current scarcity of diverse, publicly available
datasets specifically designed for verifier assess-
ment. While we believe VerifierBench is a valuable
contribution towards addressing this gap, further
research is needed to establish broader OOD gen-
eralization capabilities for verifier models across a
wider array of unseen domains and task formula-
tions. We encourage the community to contribute
to the development of more extensive OOD bench-
marks for verifiers.

Emphasis on Outcome-Based rather than
Process-Based Verification: CompassVerifier is
primarily trained to assess the correctness of the
final answer generated by an LLM, with less em-
phasis on evaluating the intermediate reasoning
steps or the entire generation process. This de-
sign choice was influenced by the inherent com-
plexity of LLM responses and considerations for
verifier model scale and training efficiency. Con-
sequently, our current model may not fully distin-
guish between correct answers derived from sound
reasoning versus those resulting from flawed or in-
complete derivations. Future work could explore
methods for incorporating process-based supervi-
sion signals, potentially enhancing the verifier’s
ability to assess the faithfulness and interpretabil-
ity of the reasoning process, which is crucial for
complex, multi-step tasks.

Ethical Considerations

For our benchmark and models, we relied on refer-
ence materials and closed-source models that are
accessible to the public, thereby avoiding any po-
tential harm to individuals or groups. The data
produced by the LLMs underwent a meticulous
human selection and processing phase to ensure
the protection of privacy and confidentiality. We
did not use any personally identifiable information,

and all data were anonymized prior to analysis. Ad-
ditionally, we employed ChatGPT and Grammarly
to refine our manuscript’s language.

Acknowledgment

This work was supported by Shanghai Artificial
Intelligence Laboratory, Shanghai Oriental
Talents Project BJZH2024070, the Science and
Technology Development Fund of Macau SAR
(Grant No. FDCT/0007/2024/AKP), the Science
and Technology Development Fund of Macau
SAR (Grant No. FDCT/0070/2022/AMJ, China
Strategic Scientific and Technological Innovation
Cooperation Project Grant No. 2022YFE0204900),
the Science and Technology Development Fund of
Macau SAR (Grant No. FDCT/060/2022/AFJ, Na-
tional Natural Science Foundation of China Grant
No. 62261160648), the UM and UMDF (Grant
Nos. MYRG-GRG2023-00006-FST-UMDF,
MYRG-GRG2024-00165-FST-UMDF, EF2024-
00185-FST), and the National Natural Science
Foundation of China (Grant No. 62266013).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

AI-MO. 2024. Aime 2024.

Anthropic. 2024. Claude 3.5 sonnet.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi
Chen, Pei Chu, and 1 others. 2024. Internlm2 techni-
cal report. arXiv preprint arXiv:2403.17297.

Maosong Cao, Alexander Lam, Haodong Duan, Hong-
wei Liu, Songyang Zhang, and Kai Chen. 2024.
Compassjudger-1: All-in-one judge model helps
model evaluation and evolution. arXiv preprint
arXiv:2410.16256.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, and 1 others. 2024.
A survey on evaluation of large language models.
ACM transactions on intelligent systems and technol-
ogy, 15(3):1–45.

Ding Chen, Qingchen Yu, Pengyuan Wang, Wentao
Zhang, Bo Tang, Feiyu Xiong, Xinchi Li, Minchuan
Yang, and Zhiyu Li. 2025. xverify: Efficient an-
swer verifier for reasoning model evaluations. arXiv
preprint arXiv:2504.10481.

33464

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://www.anthropic.com/news/claude-3-5-sonnet

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony
Xia. 2023. TheoremQA: A theorem-driven question
answering dataset. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7889–7901, Singapore. Associa-
tion for Computational Linguistics.

Francois Chollet, Mike Knoop, Gregory Kamradt, and
Bryan Landers. 2024. Arc prize 2024: Technical
report. arXiv preprint arXiv:2412.04604.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

XTuner Contributors. 2023. Xtuner: A toolkit for
efficiently fine-tuning llm. https://github.com/
InternLM/xtuner.

Quy-Anh Dang and Chris Ngo. 2025. Reinforcement
learning for reasoning in small llms: What works and
what doesn’t. Preprint, arXiv:2503.16219.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proc. of
NAACL.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, and 1 others.
2024. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han, Yujie
Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024a. OlympiadBench:
A challenging benchmark for promoting AGI with

olympiad-level bilingual multimodal scientific prob-
lems. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 3828–3850, Bangkok,
Thailand. Association for Computational Linguistics.

Yancheng He, Shilong Li, Jiaheng Liu, Yingshui Tan,
Weixun Wang, Hui Huang, Xingyuan Bu, Hangyu
Guo, Chengwei Hu, Boren Zheng, and 1 others.
2024b. Chinese simpleqa: A chinese factuality eval-
uation for large language models. arXiv preprint
arXiv:2411.07140.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron
Courville, Alessandro Sordoni, and Rishabh Agar-
wal. 2024. V-star: Training verifiers for self-taught
reasoners. arXiv preprint arXiv:2402.06457.

Yuzhen Huang, Weihao Zeng, Xingshan Zeng, Qi Zhu,
and Junxian He. 2025. Pitfalls of rule-and model-
based verifiers–a case study on mathematical reason-
ing. arXiv preprint arXiv:2505.22203.

huggingface. 2024. Math-verify: A robust mathemat-
ical expression evaluation system designed for as-
sessing large language model outputs in mathemat-
ical tasks. https://github.com/huggingface/
Math-Verify.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, and 1 oth-
ers. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088.

Akira Kawabata and Saku Sugawara. 2024. Rationale-
aware answer verification by pairwise self-evaluation.
arXiv preprint arXiv:2410.04838.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In SIGOPS.

Dawei Li, Bohan Jiang, Liangjie Huang, Alimoham-
mad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tian-
hao Wu, and 1 others. 2024a. From generation to
judgment: Opportunities and challenges of llm-as-a-
judge. arXiv preprint arXiv:2411.16594.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin,
Roman Soletskyi, Shengyi Costa Huang, Kashif
Rasul, Longhui Yu, Albert Jiang, Ziju Shen,
Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau,
Guillaume Lample, and Stanislas Polu. 2024b.
Numinamath tir. Hugging Face repository. Dataset
documentation available at https://github.com/

33465

https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://github.com/InternLM/xtuner
https://github.com/InternLM/xtuner
https://arxiv.org/abs/2503.16219
https://arxiv.org/abs/2503.16219
https://arxiv.org/abs/2503.16219
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://doi.org/10.18653/v1/2024.acl-long.211
https://github.com/huggingface/Math-Verify
https://github.com/huggingface/Math-Verify
https://huggingface.co/AI-MO/NuminaMath-TIR
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf

project-numina/aimo-progress-prize/blob/
main/report/numina_dataset.pdf.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, hai
zhao, and Pengfei Liu. 2024c. Generative judge for
evaluating alignment. In The Twelfth International
Conference on Learning Representations.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024a. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Junnan Liu, Hongwei Liu, Linchen Xiao, Ziyi
Wang, Kuikun Liu, Songyang Gao, Wenwei Zhang,
Songyang Zhang, and Kai Chen. 2024b. Are
your llms capable of stable reasoning? CoRR,
abs/2412.13147.

Wei Liu, Ruochen Zhou, Yiyun Deng, Yuzhen Huang,
Junteng Liu, Yuntian Deng, Yizhe Zhang, and Junx-
ian He. 2025a. Learn to reason efficiently with adap-
tive length-based reward shaping. arXiv preprint
arXiv:2505.15612.

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong
Ruan, Peng Li, Yang Liu, and Yu Wu. 2025b.
Inference-time scaling for generalist reward model-
ing. arXiv preprint arXiv:2504.02495.

Jianqiao Lu, Zhiyang Dou, Hongru Wang, Zeyu Cao,
Jianbo Dai, Yunlong Feng, and Zhijiang Guo. 2024.
Autopsv: Automated process-supervised verifier. Ad-
vances in Neural Information Processing Systems,
37:79935–79962.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng
Sun, Xiaoran Jin, and Hang Li. 2024. Reft: Rea-
soning with reinforced fine-tuning. arXiv preprint
arXiv:2401.08967, 3.

Kaijing Ma, Xinrun Du, Yunran Wang, Haoran Zhang,
Zhoufutu Wen, Xingwei Qu, Jian Yang, Jiaheng
Liu, Minghao Liu, Xiang Yue, and 1 others.
2024. Kor-bench: Benchmarking language mod-
els on knowledge-orthogonal reasoning tasks. arXiv
preprint arXiv:2410.06526.

Xueguang Ma, Qian Liu, Dongfu Jiang, Zejun Ma, and
Wenhu Chen. 2025a. General-reasoner: Advancing
llm reasoning across all domains. https://github.
com/TIGER-AI-Lab/General-Reasoner.

Zihan Ma, Taolin Zhang, Maosong Cao, Junnan Liu,
Wenwei Zhang, Minnan Luo, Songyang Zhang, and
Kai Chen. 2025b. Rethinking verification for llm
code generation: From generation to testing. arXiv
preprint arXiv:2507.06920.

Skywork o1 Team. 2024. Skywork-o1 open series.
https://huggingface.co/Skywork.

OC-Contributors. 2023. Opencompass: A universal
evaluation platform for foundation models. https:
//github.com/open-compass/opencompass.

OpenAI. 2023. Openai evals: Evals is a framework
for evaluating llms and llm systems, and an open-
source registry of benchmarks. https://github.
com/openai/evals.

OpenAI. 2024a. Gpt-4o.

OpenAI. 2024b. Gpt-4o mini.

OpenAI. 2024c. O1-preview.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li,
Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang,
Mohamed Shaaban, John Ling, Sean Shi, and 1 oth-
ers. 2025. Humanity’s last exam. arXiv preprint
arXiv:2501.14249.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2024. Gpqa:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

ByteDance Seed. 2025. Doubao-1.5-pro.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
Lin, and Chuan Wu. 2025. Hybridflow: A flexible
and efficient RLHF framework. In EuroSys, pages
1279–1297. ACM.

Wenlei Shi and Xing Jin. 2025. Heimdall: test-time
scaling on the generative verification. arXiv preprint
arXiv:2504.10337.

Yuda Song, Hanlin Zhang, Carson Eisenach, Sham M.
Kakade, Dean Foster, and Udaya Ghai. 2025. Mind
the gap: Examining the self-improvement capabil-
ities of large language models. In The Thirteenth
International Conference on Learning Representa-
tions.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi,
Zhaopeng Tu, Min Zhang, and Dong Yu. 2025. Ex-
panding rl with verifiable rewards across diverse do-
mains. arXiv preprint arXiv:2503.23829.

33466

https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://openreview.net/forum?id=gtkFw6sZGS
https://openreview.net/forum?id=gtkFw6sZGS
https://github.com/tatsu-lab/alpaca_eval
https://github.com/TIGER-AI-Lab/General-Reasoner
https://github.com/TIGER-AI-Lab/General-Reasoner
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/openai/evals
https://github.com/openai/evals
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/introducing-openai-o1-preview
https://seed.bytedance.com/en/special/doubao_1_5_pro
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=mtJSMcF3ek
https://openreview.net/forum?id=mtJSMcF3ek
https://openreview.net/forum?id=mtJSMcF3ek

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, and 1 others. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, and 1 others. 2023. Gemini:
a family of highly capable multimodal models.
arXiv:2312.11805.

Rui Wang, Hongru Wang, Boyang Xue, Jianhui Pang,
Shudong Liu, Yi Chen, Jiahao Qiu, Derek Fai Wong,
Heng Ji, and Kam-Fai Wong. 2025a. Harnessing
the reasoning economy: A survey of efficient rea-
soning for large language models. arXiv preprint
arXiv:2503.24377.

Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran
Zeng, Linyi Yang, Cunxiang Wang, Hao Chen,
Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie,
Wei Ye, Shikun Zhang, and Yue Zhang. 2024a. Pan-
daLM: An automatic evaluation benchmark for LLM
instruction tuning optimization. In The Twelfth Inter-
national Conference on Learning Representations.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren,
Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai He,
Kuan Wang, Jianfeng Gao, and 1 others. 2025b. Re-
inforcement learning for reasoning in large language
models with one training example. arXiv preprint
arXiv:2504.20571.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, and 1 others.
2024b. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. In
The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Jason Wei, Nguyen Karina, Hyung Won Chung,
Yunxin Joy Jiao, Spencer Papay, Amelia Glaese, John
Schulman, and William Fedus. 2024. Measuring
short-form factuality in large language models. arXiv
preprint arXiv:2411.04368.

Yuchen Yan, Jin Jiang, Zhenbang Ren, Yijun Li,
Xudong Cai, Yang Liu, Xin Xu, Mengdi Zhang, Jian
Shao, Yongliang Shen, and 1 others. 2025. Verify-
bench: Benchmarking reference-based reward sys-
tems for large language models. arXiv preprint
arXiv:2505.15801.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, and 1 others.
2025. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying,
Liang He, and Xipeng Qiu. 2023. Evaluating the
performance of large language models on gaokao
benchmark. arXiv preprint arXiv:2305.12474.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025. The lessons of
developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao,
Hua Lu, Yicheng Chen, Yang Zhang, Wei Zhou, Jin-
jie Gu, and Lei Zou. 2025. A comprehensive sur-
vey of reward models: Taxonomy, applications, chal-
lenges, and future. arXiv preprint arXiv:2504.12328.

Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu,
Jindong Wang, Derek F Wong, Xiaowei Huang, Qi-
ufeng Wang, and Kaizhu Huang. 2024. Is your
model really a good math reasoner? evaluating math-
ematical reasoning with checklist. arXiv preprint
arXiv:2407.08733.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang.
2025. JudgeLM: Fine-tuned large language models
are scalable judges. In The Thirteenth International
Conference on Learning Representations.

33467

https://openreview.net/forum?id=5Nn2BLV7SB
https://openreview.net/forum?id=5Nn2BLV7SB
https://openreview.net/forum?id=5Nn2BLV7SB
https://openreview.net/forum?id=xsELpEPn4A
https://openreview.net/forum?id=xsELpEPn4A

A Appendix

A.1 Details of VerifierBench Statistics

Table 3: Dataset source distribution.

Source Count Percentage (%)

BBH 639 22.68
GaokaoBench 201 7.14
Math 182 6.46
MMLU Pro 172 6.11
GPQA Diamond 51 1.81
GSM8K 14 0.50
AIME2024 3 0.11
SimpleQA 97 3.44
Numina Train 106 3.76
HLE 355 12.60
KorBench 395 14.02
OlympiadBench 345 12.25
ARC Prize Public Evaluation 175 6.21
TheoremQA 82 2.91

Table 4: Category distribution.

Category Count Percentage (%)

A 1092 38.76
B 1526 54.17
C 199 7.06

Table 5: Domain distribution.

Domain Count Percentage (%)

General Reasoning 1151 40.86
Mathematical Reasoning 900 31.95
Knowledge 387 13.74
Scientific Reasoning 379 13.45

Table 6: Answer type distribution.

Answer Type Count Percentage (%)

Multiple Choice 891 31.63
Short Text 354 12.57
Numerical 434 15.41
Formula 343 12.18
Multi-subproblem 281 9.98
Sequence 468 16.61
Boolean Answer 46 1.63

33468

A.2 Details of VerifierBench Construction
Data Collection. Our experimental evaluation encompasses a comprehensive collection of 53 LLMs,
including representative examples such as Qwen-2.5 (Yang et al., 2024), LLaMA3 (Grattafiori et al.,
2024), DeepSeek-V3 (Liu et al., 2024a), DeepSeek-R1 (Guo et al., 2025), GPT-4o (OpenAI, 2024a),
GPT-4o-mini (OpenAI, 2024b), Gemini (Team et al., 2023), claude3-5 (Anthropic, 2024), Doubao-1.5-
Pro (Seed, 2025), InternLM (Cai et al., 2024) and Mixtral (Jiang et al., 2024). All specific models are
listed in Table 12. These models are evaluated across sixteen diverse benchmarks: GSM8K (Hosseini
et al., 2024), Math (Hendrycks et al., 2021), AIME2024 (AI-MO, 2024), BBH (Suzgun et al., 2022),
GaokaoBench (Zhang et al., 2023), HLE (Phan et al., 2025), KorBench (Ma et al., 2024), GPQA (Rein
et al., 2024), SimpleQA (Wei et al., 2024), ChineseSimpleQA (He et al., 2024b), MMLU-Pro (Wang et al.,
2024b), ARC (Chollet et al., 2024), OlympiadBench (He et al., 2024a), TheoremQA (Chen et al., 2023),
NuminaMath (Li et al., 2024b), and Drop (Dua et al., 2019). Through the OpenCompass (OC-Contributors,
2023) framework, we collected more than 1.32 million response models, creating the most comprehensive
response datasets to date.
VerifierBench Construction Details. For samples with inconsistent verification results across multiple
models and prompts, we identified numerous cases that were either redundant or unworthy of human
annotation. We employed a string-matching script to detect and remove duplicate responses, which
predominantly belonged to category C (invalid responses). Additionally, we utilized DeepSeek-V3 to
identify problematic cases, including: (1) questions with obvious open-ended nature, (2) incomplete
reference answers, and (3) proof-based problems - all of which cannot be objectively evaluated solely
based on reference answers and may introduce ambiguity in test set evaluation. After deduplication,
approximately 5,000 samples underwent human annotation, where annotators further flagged the afore-
mentioned problematic types. Annotation results revealed that most of the inconsistent samples were
ultimately labeled as category B (incorrect responses), suggesting a potential tendency of LLM judges
toward false positives. To maintain better label balance, we further applied similarity-based filtering to
remove redundant samples within the category B subset. This rigorous filtering process yielded a final
high-quality dataset of 2,817 samples.

A.3 Details of CompassVerifier Experiments
Evaluation Setup. We use OpenCompass (OC-Contributors, 2023) and employ both F1 score and Accu-
racy as evaluation metrics, with particular emphasis on the F1 score, as it provides a more comprehensive
assessment considering the precision, recall, and balance of the class distribution simultaneously. For all
open-source models, we use vllm (Kwon et al., 2023) for the acceleration of inference. For all models,
we employ temperature=1.0 for data synthesis and temperature=0.0 for evaluation/verification, with both
max_gen_len and max_model_len set to their maximum values. We use the official prompt for Xverify
and Tencent-Qwen2.5-7B-Instruct-RLVR, and a general non-cot prompt for CompassVerifier and general
LLMs, which can be found in the first prompt in Appendix A.7.
Training Setup. We use XTuner (Contributors, 2023) for training our CompassVerifier model on
Qwen2.5 (Yang et al., 2024) series models, largely adhering to the original hyperparameters. Fine-tuning
is conducted using a learning rate of 2 × 10−5 with a max sequence length 32768. A multiplicative
learning rate decay is applied after each epoch, with a gamma value of 0.85. The batch sizes are set to 32.
All models are trained for one epoch on the training set and fully fine-tuned on 8×A100 80GB GPUs.

33469

Table 7: Detailed results on VerifierBench across different question types. We report Accuracy (Acc.) and F1 scores
(%) for various problem categories and their average. Bold numbers indicate the best performance in each column.

Model
Boolean Multi-sub Numerical Short Text Formula Multi-choice Sequence Average

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Qwen2.5-7B-Instruct 63.0 41.4 45.9 40.2 49.5 11.3 65.0 38.0 53.5 18.4 62.0 65.0 59.2 23.9 56.9 34.0
Qwen2.5-14B-Instruct 63.0 66.7 54.5 45.0 57.4 39.3 59.9 42.3 53.8 26.9 49.0 45.9 68.8 34.8 58.0 43.0
Qwen2.5-32B-Instruct 58.7 53.7 65.8 37.7 56.7 33.9 61.3 27.7 59.3 19.5 55.8 52.5 80.6 19.5 62.6 34.9
Qwen2.5-72B-Instruct 73.9 71.4 65.8 46.7 62.0 36.8 57.9 47.7 57.0 27.5 61.9 62.4 74.8 40.4 64.8 47.6

Qwen3-8B 73.9 77.8 50.2 48.5 52.5 44.3 52.3 47.4 54.7 47.7 70.4 76.8 53.0 30.4 58.1 53.3
Qwen3-14B 69.6 66.7 69.8 52.0 64.8 39.0 76.6 56.1 66.6 27.7 72.4 73.8 84.6 39.0 72.0 50.6
Qwen3-30B-A3B 71.7 69.8 45.9 44.9 66.1 66.4 53.7 47.4 48.8 51.4 74.9 79.8 55.1 28.1 59.5 55.4
Qwen3-32B 80.4 80.9 63.4 55.9 64.8 51.4 68.6 57.1 64.2 44.3 74.3 77.8 78.4 46.0 70.6 59.1
Qwen3-235B-A22B 67.4 57.1 60.9 52.6 63.8 48.9 67.8 56.1 62.5 43.5 79.0 82.6 83.3 50.4 69.2 55.9

GPT-4.1-2025-04-14 80.4 80.0 68.3 44.7 64.1 31.6 83.1 64.7 68.6 22.9 89.4 91.0 88.3 43.3 77.4 54.0
GPT-4o-2024-08-06 65.2 63.6 63.7 37.0 63.6 29.5 79.7 54.4 67.2 11.0 80.0 81.9 86.8 35.4 72.3 44.7

DeepSeek-V3-0324 63.0 56.4 61.2 52.0 68.2 48.9 81.6 66.3 69.5 39.3 85.4 87.6 85.5 54.1 73.5 57.8

xVerify-0.5B-I 67.4 59.5 66.9 25.6 63.6 37.8 64.7 36.6 60.8 22.0 95.7 96.6 85.5 35.0 72.1 44.7
xVerify-8B-I 71.7 71.1 73.0 51.3 65.2 36.3 65.3 28.1 66.6 24.8 92.6 94.0 88.3 35.3 74.7 48.7
xVerify-9B-C 67.4 70.6 76.9 50.4 65.2 40.8 58.8 34.8 63.4 30.0 92.3 93.6 85.9 29.8 72.8 50.0
Tencent-Qwen2.5-7B-Instruct-RLVR 71.7 71.1 69.0 51.4 74.9 59.2 71.2 28.2 69.8 40.2 84.2 86.5 85.0 27.1 75.1 52.0

CompassVerifier-3B 87.0 86.4 80.8 69.3 75.8 65.1 78.8 59.9 68.8 57.4 95.7 96.6 87.6 52.5 82.1 69.3
CompassVerifier-7B 91.3 91.7 85.1 75.0 77.0 67.5 87.6 79.1 71.1 61.2 95.6 96.6 90.2 67.1 85.4 76.0
CompassVerifier-32B 95.7 95.8 93.6 89.2 80.9 74.7 88.4 79.8 79.9 71.4 96.2 97.0 93.2 74.6 89.2 83.0

General LLMs

Verifier Models

CompassVerifiers

Table 8: Three-label classification performance on VerifierBench. Beyond binary correctness (correct/incorrect),
this evaluation requires models to identify invalid responses. We report Accuracy and macro-F1 scores (in %) across
four distinct categories and their overall average.

Model
Math General Reasoning Knowledge Science Average

Acc. macro-F1 Acc. macro-F1 Acc. macro-F1 Acc. macro-F1 Acc. macro-F1

Qwen2.5-7B-Instruct 39.6 29.2 49.2 37.8 45.2 34.6 50.3 34.2 46.1 34.0
Qwen2.5-14B-Instruct 44.2 37.7 50.9 40.1 42.9 37.6 57.1 44.1 48.8 39.9
Qwen2.5-32B-Instruct 46.0 35.7 59.8 47.8 55.6 45.7 70.8 52.5 58.0 45.4
Qwen2.5-72B-Instruct 51.1 43.0 57.3 48.6 67.4 52.2 72.9 58.8 62.2 50.7

Qwen3-8B 48.2 35.8 54.0 42.3 56.1 41.1 47.9 36.5 51.5 38.9
Qwen3-14B 61.3 57.3 72.3 63.5 65.4 54.7 74.7 61.9 68.4 59.4
Qwen3-30B 53.3 45.6 49.6 42.1 54.8 50.2 45.0 39.0 50.7 44.2
Qwen3-32B 57.2 54.2 61.6 54.4 60.2 51.7 58.7 50.0 59.4 52.6
Qwen3-235B-A22B 58.8 42.8 73.8 55.0 65.4 48.6 67.6 52.4 66.4 49.7

GPT-4.1-2025-04-14 61.7 59.6 78.1 73.6 78.3 69.7 79.5 68.4 74.4 67.8
GPT-4o-2024-08-06 57.9 53.9 68.3 62.9 73.4 66.0 71.1 57.1 67.7 60.0

DeepSeek-V3-0324 63.2 49.1 77.4 66.2 76.5 60.3 80.5 67.8 74.4 60.9

CompassVerifier-3B 73.4 68.8 87.4 85.6 86.3 87.1 87.6 80.8 83.7 80.6
CompassVerifier-7B 77.7 74.3 88.1 87.6 91.5 92.6 86.0 79.1 85.8 83.4
CompassVerifier-32B 82.0 79.6 90.0 90.7 94.3 95.9 91.3 86.8 89.4 88.3

General LLMs

CompassVerifiers

33470

Table 9: Ablation study on CompassVerifier-7B with different augmentation strategies on VerifierBench main results.
Complex Formula Augmentation enhances formula variants verification, Error-Driven Adversarial Augmentation
fortifies against failure cases.

Setting Accuracy (%) ∆ Acc (%) F1 (%) ∆ F1 (%)

CompassVerifier-7B-Base 84.0 - 79.8 -
+ Complex Formula Augmentation 86.7 +2.7 82.8 +3.0
+ Error-Driven Adversarial Augmentation 86.4 +2.4 82.0 +2.2
+ Both Augmentations 87.5 +3.5 83.4 +3.6

Table 10: Experimental results of CompassVerifier as a reward model. We report the avg@32 performance on
AIME24, AIME25, and MATH500.

Model AIME24 AIME25 MATH500

Original Model Performance

Qwen3-4B-Base 2.7 1.8 34.1

RL with Rule-based Verifier

Math-Verify 8.9 7.2 63.1

RL with Model-based Verifier

Tencent-RLVR 17.4 16.2 80.5
Qwen3-14B 19.8 16.6 81.2
Qwen2.5-32B 19.6 15.4 81.6
CompassVerifier-7B 21.2 17.3 82.2
CompassVerifier-32B 21.2 17.2 83.3

A.4 Meta-Judge Template Generation Fields

Table 11: Meta-Judge Template Generation Fields (Academic Disciplines and Subfields)

Category Discipline Subfields

Natural Sciences

Mathematics Differential calculus, Integral calculus, Probability statistics, Operations research,
Mathematical logic, Financial mathematics, Topology, Algebraic geometry

Physics Theoretical physics, Quantum mechanics, Condensed matter physics,
Astrophysics, Nuclear physics, Optics, Acoustics

Chemistry Analytical chemistry, Organic chemistry, Inorganic chemistry, Physical chemistry,
Materials chemistry, Environmental chemistry, Chemical biology

Biology Molecular biology, Genetics, Ecology, Cell biology, Biochemistry, Microbiology
Earth Sciences Geology, Geophysics, Atmospheric sciences, Oceanography, Environmental

science, Paleontology
Statistics Data science, Biostatistics, Economic statistics, Machine learning algorithms,

Bayesian analysis

Engineering

Mechanical Engineering Mechanical design & manufacturing, Automatic control, Robotics, Vehicle
engineering, Thermal & power engineering, MEMS

Computer Science & Technology Artificial intelligence, Computer networks, Software engineering, Computer
vision, Cybersecurity, Big data analytics

Electronic Information Engineering Communication engineering, IC design, Optoelectronic technology, Wireless
sensor networks, Smart grid

Civil Engineering Structural engineering, Bridge & tunnel design, Geotechnical engineering,
Hydraulic engineering, Urban planning

Materials Science & Engineering Nanomaterials, Metallic materials, Polymer materials, Composite materials,
Material processing

Chemical Engineering Chemical process design, Petroleum refining, Biochemical engineering, Catalytic
reaction engineering, Separation technology

Environmental Engineering Pollution control technology, Environmental monitoring, Ecological restoration,
Solid waste treatment, Clean energy development

Aerospace Engineering Aircraft design, Propulsion systems, Aerodynamics, Satellite navigation,
Aerospace materials

Biomedical Engineering Medical imaging technology, Biomaterials, Artificial organs, Biosensors,
Rehabilitation engineering

Energy & Power Engineering Nuclear technology, Wind energy development, Solar energy utilization, Fuel cells,
Thermal system optimization

33471

A.5 Details of Meta Error Patterns

We display the meta error patterns in three categories: A (Correct), B (Incorrect), and C (Invalid) as shown
in the following figures.

Meta Pattern: A (Correct)
• The units in the LLM Response differ from those in the final answer, resulting in different

numerical expressions, but they are consistent upon conversion, should be judged as Correct.
• The reference answer is an extremely complex formula, and the LLM Response appears very

different in form but simplifies to an equivalent expression, with no explicit requirement for
simplification in the question, should be judged as Correct.

• The question requires calculating a numerical decrease, and the LLM Response has the opposite
sign of the reference answer because either uses negative signs to represent decrease, but they
are equivalent, should be judged as Correct.

• The reference answer provides multiple candidate answers without requiring all possibilities.
The LLM Response provides one of them, should be judged as Correct.

• The question doesn’t explicitly specify answer format (numerical or formula). The LLM
Response and reference answer differ in form but are equivalent when calculated, should be
judged as Correct.

• The question requires specific formatting (order, capitalization, etc.). While the LLM Response
appears different from the reference answer in formatting, upon inspection it fully complies,
should be judged as Correct.

• When calculating values with units, the reference answer and LLM Response may differ in unit
representation or numerical values, but are equivalent after unit conversion, should be judged as
Correct.

• For multiple-choice or true/false questions, the LLM Response ultimately gives the correct
answer despite showing significant uncertainty, should be judged as Correct.

• The question requires expressions meeting simple conditions (sum, product, logical relations,
etc.), and the reference answer may include multiple valid forms. The LLM Response differs in
form but meets all requirements, should be judged as Correct.

• The LLM initially provides an incorrect answer but corrects it after reflection, should be judged
as Correct.

• The reference answer consists of multiple sub-questions. The LLM answers all sub-questions
correctly during reasoning, even if not presented together at the end, should be judged as Correct.

Meta Pattern: B (Inorrect)
• For multiple-choice questions, the LLM Response selects the correct option but follows with

unrelated option content, should be judged as Incorrect.
• The question requires formula simplification. The LLM answer isn’t fully simplified to minimal

form, even if equivalent to the reference answer, should be judged as Incorrect.
• The reference answer is a formula with specified output format. The LLM answer doesn’t comply

with this format, even if equivalent, should be judged as Incorrect.
• The question requires an expression where the sum equals a certain value with each number

used once. The LLM Response repeats numbers while satisfying the sum, should be judged as
Incorrect.

• The reference answer is an un-simplified logical formula after substitution. The LLM Response
is incorrect due to simplification causing format errors, should be judged as Incorrect.

• The LLM Response only provides solution code without final results, should be judged as
Incorrect.

• The LLM Response (formula/numerical) and reference answer aren’t equivalent when calculated,
should be judged as Incorrect.

33472

• When describing numerical intervals, the reference answer and LLM Response differ in endpoint
inclusion (open/closed), should be judged as Incorrect.

• For sequence decryption requiring exact matching, the LLM Response doesn’t match the refer-
ence answer, should be judged as Incorrect.

• The reference answer is a long sequence requiring exact correspondence. The LLM Response
has minor differences with some errors, should be judged as Incorrect.

• The question explicitly requires multiple candidate answers (provided in reference), but the LLM
Response gives only one, should be judged as Incorrect.

• The LLM initially provides a correct answer but changes to incorrect or "unanswerable" after
reflection, should be judged as Incorrect.

• For symbolic sequences, the LLM Response contains garbled characters, should be judged as
Incorrect.

• The reference answer is numerical, and the LLM Response provides more decimal places but
rounds differently, should be judged as Incorrect.

• The reference answer is an extremely large number, and the LLM Response provides a high-order
power expression that doesn’t match after calculation, should be judged as Incorrect.

• After detailed reasoning, the LLM Response fails to provide a clear answer or states the question
is unanswerable, should be judged as Incorrect.

• For multi-part questions, the number of final answers in the LLM Response doesn’t match the
reference answer, should be judged as Incorrect.

Meta Pattern: C (Invalid)
• The question contains multiple sub-questions, but the number of reference answers doesn’t

match, indicating quality issues, should be judged as Invalid.
• The reference answer has serious omissions, truncation, or formatting issues, should be judged

as Invalid.
• The question itself has serious omissions, truncation, or formatting issues, should be judged as

Invalid.
• The LLM doesn’t answer normally, stating it needs more information or internet access, should

be judged as Invalid.
• The LLM Response is clearly truncated and incomplete, should be judged as Invalid.
• The LLM Response is mostly garbled text with no valuable information extractable, should be

judged as Invalid.
• The LLM Response contains extensive meaningless repetition, making correct answers unidenti-

fiable, should be judged as Invalid.

A.6 Cases in VerifierBench
Example I: Verification as Correct (Gold Judgment: A)

Question Let f(x) =
√
x and g(x) = x2. Find f(g(f(g(f(8))))).

Gold Answer 2
√
2

LLM Response To solve the problem f(g(f(g(f(8))))), we need to evaluate the functions step
by step, starting from the innermost function and working our way out.
1. Evaluate f(8):

f(x) =
√
x

f(8) =
√
8

2. Evaluate g(f(8)):
g(x) = x2

g(
√
8) = (

√
8)2 = 8

33473

3. Evaluate f(g(f(8))):
f(8) =

√
8

g(
√
8) = 8

f(8) =
√
8

4. Evaluate g(f(g(f(8)))):
f(8) =

√
8

g(
√
8) = 8

f(8) =
√
8

g(
√
8) = 8

5. Evaluate f(g(f(g(f(8))))):
f(8) =

√
8

g(
√
8) = 8

f(8) =
√
8

g(
√
8) = 8

f(8) =
√
8

After evaluating the functions step by step, we find that:

f(g(f(g(f(8))))) =
√
8

Thus, the final answer is: √
8

Gold Judgment A (Correct)
Meta Data

• Data Source: math

• Domain: Math

• Answer Type: Numerical

Example II: Verification as Incorrect (Gold Judgment: B)
Question Sort the following words alphabetically:
List: marshmallow doge alpenstock ocean accept angus drool jutish resistive chromium vociferous
castigate prize octennial stonewort concision elizabethan
Gold Answer accept alpenstock angus castigate chromium concision doge drool elizabethan jutish
marshmallow ocean octennial prize resistive stonewort vociferous
LLM Response So the answer is accept, alpenstock, angus, castigate, chromium, concision, doge,
drool, elizabethan, jutish, marshmallow, octennial, ocean, prize, resistive, stonewort, vociferous.
Gold Judgment B (Incorrect)
Meta Data

• Data Source: BBH/bbh-word_sorting

• Domain: General Reasoning

33474

• Answer Type: Sequence

Example III: Verification as Invalid (Gold Judgment: C)
Question A droplet of molten lead of average 1/8 inch diameter, at 750°F, falls from a height of 60
ft, and solidifies by the cooling effect of the surrounding air. The surrounding temperature is 70°F.
If the lead solidifies at 621°F, calculate the coefficient of heat transfer.
Given properties for lead:

• Cp = 0.031 Btu/lbm-°F

• ρ = 710 lbm/ft3

• hfusion = 10.6 Btu/lbm

Options:

• A. 59.2 Btu/hr-ft2-°F

• B. 45.7 Btu/hr-ft2-°F

• C. 52.8 Btu/hr-ft2-°F

• D. 63.4 Btu/hr-ft2-°F

Gold Answer A
LLM Response To solve this problem, we need to calculate the coefficient of heat transfer (h)
using the formula:
Q = h * A * ∆T
where: - Q is the heat transferred (in Btu) - A is the surface area of the droplet (in ft2) - ∆T is the
temperature difference (in °F)
First, let’s find the volume (V) of the droplet using the given average diameter (1/8 inch):
V = π * (d/2)3 V = π * (1/16)3 V = π * (1/4096) ft3

Now, let’s find th
Gold Judgment C (Invalid)
Meta Data

• Data Source: mmlu_pro/mmlu_pro_engineering

• Domain: Science

• Answer Type: Multiple Choice

33475

A.7 PromptList� �
Please as a grading expert , judge whether the final answers given by the
candidates below are consistent with the standard answers , that is, whether
the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don 't need to re-generate
the answer to the question because the standard answer has been given. You
only need to judge whether the candidate 's answer is consistent with the
standard answer according to the form of the question. THE STANDARD ANSWER IS
ALWAYS CORRECT AND THE QUESTION IS PERFECTLY VALID. NEVER QUESTION THEM.
2. ONLY compare the FINAL ANSWER - COMPLETELY IGNORE any potential errors in
the REASONING PROCESSES.
3. Some answers may be expressed in different ways , such as some answers may
be a mathematical expression , some answers may be a textual description , as
long as the meaning expressed is the same. Before making a judgment , please
understand the question and the standard answer first , and then judge whether
the candidate 's answer is correct.
4. Some answers may consist of multiple items , such as multiple -choice
questions , multiple -select questions , fill -in-the -blank questions , etc.
Regardless of the question type , the final answer will be considered correct
as long as it matches the standard answer , regardless of whether the reasoning
process is correct. For multiple -select questions and multi -blank fill -in-the

-blank questions , all corresponding options or blanks must be answered
correctly and match the standard answer exactly to be deemed correct.
5. If the prediction is given with \\boxed {{}}, please ignore the \\boxed {{}}
and only judge whether the candidate 's answer is consistent with the standard
answer.
6. If the candidate 's answer is invalid (e.g., incomplete (cut off mid -
response), lots of unnormal repetitive content , or irrelevant to the question ,
saying it can 't answer the question because some irresistible factors , like

ethical issues , no enough information , etc.), select option C (INVALID).Please
judge whether the following answers are consistent with the standard answer

based on the above criteria. Grade the predicted answer of this new question
as one of:
A: CORRECT
B: INCORRECT
C: INVALID
Just return the letters "A", "B", or "C", with no text around it.
Here is your task. Simply reply with either CORRECT , INCORRECT , or INVALID.
Don 't apologize or correct yourself if there was a mistake; we are just trying
to grade the answer.

<Original Question Begin >:
{question}
<Original Question End >
<Standard Answer Begin >:
{gold_answer}
<Standard Answer End >
<Candidate 's Answer Begin >:
{llm_response}
<Candidate 's Answer End >
Judging the correctness of the candidate 's answer:
 	

Prompt 1: Prompt for general LLM evaluation

� �
As a grading expert , your task is to determine whether the candidate 's final
answer matches the provided standard answer. Follow these evaluation
guidelines precisely:

Evaluation Protocol:
1. Reference Standard:

- The standard answer is definitive and always correct
- The question is perfectly valid - never question them
- Do not regenerate answers; only compare with the given standard

2. Comparison Method:
- Carefully analyze the question 's requirements and the standard answer 's
structure

33476

* Determine whether the question expects exact matching of the entire
standard answer or allows partial matching of its components.
* This determination must be made based on the question 's phrasing and
the nature of the standard answer.

- Compare ONLY the candidate 's final answer (ignore all reasoning/
explanation errors)
- Disregard any differences in formatting or presentation style
- For mathematical expressions: calculate step by step whether the two
formulas are equivalent
- For multiple -choice questions: compare only the final choice and
corresponding option content

3. Multi -part Answers:
- For questions requiring multiple responses (e.g., multi -select):
- All parts must match the standard answer exactly.
- Compare each sub -answer step by step. Partial matches are considered
incorrect.

4. Validity Check:
- Reject answers that are:

* Incomplete (cut off mid -sentence in the final sentence , lacking a
complete response) - Label as INCOMPLETE
* Repetitive (repetition of words or phrases in a loop) - Label as
REPETITIVE
* Explicit refusals (e.g., directly return "I cannot answer/provide/
access ...") - Label as REFUSAL

- For invalid answers , specify the type in the judgment (e.g., \boxed{C} -
INCOMPLETE).

Grading Scale:
\boxed{A} - CORRECT:

- Answer matches standard exactly (including equivalent expressions)
- For numerical answers: consider as equivalent if values match when
rounded appropriately
- Semantically equivalent responses

\boxed{B} - INCORRECT:
- Any deviation from standard answer
- Partial matches for multi -part questions

\boxed{C} - INCOMPLETE/REPETITIVE/REFUSAL:
- Fails validity criteria above (must specify: INCOMPLETE/REPETITIVE/
REFUSAL)

Execution Steps and Output Formats:

Analysis step by step: [
Thoroughly evaluate the candidate 's answer including:
(1) First check if the answer is INCOMPLETE (cut off mid -sentence), REPETITIVE
(looping repetition), or a REFUSAL (explicit denial) - if so, immediately

classify as \boxed{C} with the corresponding type.
(2) Analyze the question 's core requirements and the standard answer 's
structure , for example:
- Strict requirements: Identify mandatory constraints (e.g., simplification ,
answer order , multi -part completeness)
- Tolerant allowances: Ignore non -critical deviations (e.g., missing option
labels in MCQs , equivalent but unformatted expressions)
- Required answer type , precision level , etc.
(3) Perform a detailed comparison between the candidate 's final answer and the
standard answer , for example:

- Content equivalence
- Permitted variations in numerical precision
- Allowed expression formats]
Final Judgment: \boxed{A/B/C} - <CORRECT/INCORRECT/INCOMPLETE/REPETITIVE/
REFUSAL >

Here is your task.
<Original Question Begin >
{question}
<Original Question End >

33477

<Standard Answer Begin >
{gold_answer}
<Standard Answer End >

<Candidate 's Answer Begin >
{llm_response}
<Candidate 's Answer End >

Analysis step by step and Final Judgment:
 	
Prompt 2: Prompt A for CoT answer verification� �

As a grading expert , your task is to determine whether the candidate 's final
answer matches the provided standard answer. Follow these evaluation
guidelines precisely:

Evaluation Protocol:
1. Reference Standard:

- The standard answer is definitive and always correct
- The question is perfectly valid. Never question them
- Do not regenerate answers; only compare with the given standard answer

2. Thoroughly evaluate the candidate 's answer follow these steps
- Carefully analyze the question 's content and requirements

* Strict requirements: Identify mandatory constraints (e.g.,
simplification , answer order , multi -part completeness)
* Tolerant requirements: Ignore non -critical deviations (e.g., missing
option labels in MCQs , equivalent but unformatted expressions)

- Carefully analyze the standard answer 's content and structure. Determine
whether the question expects exact matching of the entire standard answer
or allows partial matching of its components
- Validity Check for the candidate 's answer. Reject answers that are:

* Incomplete (cut off mid -sentence in the final sentence , lacking a
complete response) - Label as INCOMPLETE
* Repetitive (repetition of words or phrases in a loop) - Label as
REPETITIVE
* Explicit refusals (e.g., directly return "I cannot answer/provide/
access ...") - Label as REFUSAL

- Perform a detailed comparison between the candidate 's final answer and
the standard answer

* Compare ONLY the candidate 's final answer (ignore all reasoning/
explanation errors)
* Disregard any differences in formatting or presentation style
* For mathematical expressions: calculate step by step whether the two
formulas are equivalent
* For multiple -choice questions: compare only the final choice and the
corresponding option content
* For questions requiring multiple sub -answers (e.g., multi -select): All
parts must match the standard answer exactly. Compare each sub -answer
step by step. Partial matches are considered incorrect.

3. Grading Scale:
\boxed{A} - CORRECT:

- Answer matches standard exactly (including equivalent expressions)
- For numerical answers: consider as equivalent if values match when
rounded appropriately
- Semantically equivalent responses

\boxed{B} - INCORRECT:
- Any deviation from standard answer
- Partial matches for multi -part questions

\boxed{C} - INCOMPLETE/REPETITIVE/REFUSAL:
- Fails validity criteria above (must specify: INCOMPLETE/REPETITIVE/
REFUSAL)

Output Formats:
Analysis: [Analysis and evaluate step by step here.]
Final Judgment: \boxed{A/B/C} - <CORRECT/INCORRECT/INCOMPLETE/REPETITIVE/
REFUSAL >

33478

Here is your task.
<Original Question Begin >
{question}
<Original Question End >

<Standard Answer Begin >
{gold_answer}
<Standard Answer End >

<Candidate 's Answer Begin >
{llm_response}
<Candidate 's Answer End >

Analysis:
Final Judgment:
 	

Prompt 3: Prompt B for CoT answer verification� �
As a grading expert , your task is to determine whether the candidate 's final
answer matches the provided standard answer. Follow these evaluation
guidelines precisely:

Evaluation Protocol:
1. Reference Standard:

- The standard answer is definitive and always correct
- The question is perfectly valid - never question them
- Do not regenerate answers; only compare with the given standard

2. Comparison Method:
- Extract ONLY the candidate 's final answer (ignore all reasoning/
explanation errors)
- If no complete final answer exists (e.g., response is cut off or contains
only reasoning) - INVALID

- Compare this directly with the standard answer
- Disregard any differences in formatting or presentation style
- For mathematical expressions: compare semantic equivalence , not syntax
- For \boxed{} format: ignore the \boxed notation when comparing

3. Multi -part Answers:
- For questions requiring multiple responses (e.g., multi -select):
- All parts must match the standard answer exactly
- Partial matches are considered incorrect

4. Validity Check:
- Reject answers that are:

* Incomplete (cut off mid -response or missing final answer)
* Purely reasoning without final answer
* Repetitive or uninterpretable
* Irrelevant to the question
* Explicit refusals (e.g., "I cannot answer/provide/access ...")

Grading Scale:
\boxed{A} - CORRECT:

- Answer matches standard exactly (including equivalent expressions)
- For numerical answers: allow 1% tolerance for floating -point variations
- Semantically equivalent responses

\boxed{B} - INCORRECT:
- Any deviation from standard answer
- Partial matches for multi -part questions

\boxed{C} - INVALID:
- Fails validity criteria above

Execution Steps and Output Formats:
Analysis:
1. Completeness and Validity Check: [confirm if candidate 's answer is complete
and include the final answer]

33479

2. Extracted Final Answer: [state what was identified as final answer]
3. Standard Comparison: [describe how it matches/mismatches]
Final Judgment: [\boxed{A/B/C}]

Here is your task.
<Original Question Begin >
{question}
<Original Question End >

<Standard Answer Begin >
{gold_answer}
<Standard Answer End >

<Candidate 's Answer Begin >
{llm_response}
<Candidate 's Answer End >

Analysis and Final Judgment:
 	
Prompt 4: Prompt C for CoT answer verification

33480

Table 12: List of Models Used in the Experiment with Response Counts

Model Family Model Name Response Count

Yi Yi-Lightning 18496
Yi-1.5-9B-Chat 17722

GPT GPT-4o 18495
GPT-4o-mini 44502
GPT-4-1-2025-0414 2673
GPT-4.5-preview-2025-02-27 18381

Doubao Doubao-Pro-32k-241215 6378
Doubao-Pro-1.5-32k-250115 18517
Doubao-Pro-32k-240828 5692

Qwen Qwen-Max-0919 18434
Qwen-Max-2025-01-25 29173
Qwen2.5-Max 18320
Qwen2.5-7B-Instruct 49003
Qwen2.5-14B-Instruct 32116
Qwen2.5-32B-Instruct 37477
Qwen2.5-72B-Instruct 37568
QwQ-32B 20623

Gemini Gemini-2.0-Flash-Exp 17303
Gemini-1.5-Pro 18429
Gemini-2-5-Pro-03-25 669

DeepSeek-R1 DeepSeek-Chat-R1 16556
DeepSeek-R1-distill-Qwen-1.5B 16012
DeepSeek-R1-distill-Qwen-7B 16364
DeepSeek-R1-distill-Llama-8B 15731
DeepSeek-R1-distill-Qwen-14B 16671
DeepSeek-R1-distill-Qwen-32B 16042
DeepSeek-R1-distill-Llama-70B 15772

Llama Llama-3-1-8B-Instruct 44857
Llama-3-1-70B-Instruct 18018
Llama-3-2-3B-Instruct 28618
Llama-3-3-70B-Instruct 28307

Mixtral Mistral-Small-Instruct-2409 18233
Mistral-Small-3.1-24B-Instruct 14331
Ministral-8B-Instruct-2410 17962
Mixtral-Large-Instruct-2411 18381

Claude Claude-3-5-Sonnet-20241022 18521
Claude-3-7-Sonnet-20250219 18474
Claude-3-7-Sonnet-20250219-Thinking 4723

Gemma Gemma-2-9B-It 34541
Gemma-2-27B-It 34704
Gemma3-27B-It 13120

DeepSeek-Chat DeepSeek-V2.5 31896
DeepSeek-Chat-V3 31950

InternLM InternLM2.5-7B-Chat 43336
InternLM2.5-20B-Chat 37594
InternLM3-8B-Instruct 15976

Phi Phi-4 18360

GLM GLM-4-9B-Chat 17537
GLM-4-Plus 18486

MiniMax MiniMax-Text-01 39570

Moonshot Moonshot-V1-32k 18067

Hunyuan Hunyuan-Standard-256K 18082

StepFun Step-2-16k 18405

33481

A.8 Details of CompassVerifier Model Train Data

For the composition of CompassVerifier train dataset, we use 54420 consist samples from the VerifierBench
pipeline as shown in Figure 1 as the base train set, we then use Error-Driven Adversarial Augmentation
and Complex Formula Augmentation to construct extra data comprehensively enhance the capabilities
of the CompassVerifier model. The composition of our train data list in Table 13.

Table 13: Composition of CompassVerifier Training Data

Data Source Number of Samples Percentage (%)

Base Train Set (VerifierBench) 54,420 56.20
Error-Driven Adversarial Augmentation 24,294 25.09
Complex Formula Augmentation 18,118 18.71

Total 96,832 100.00

Error-Driven Adversarial Augmentation Using DeepSeek-v3, we generate 34 Meta-Judge Templates
covering common and extreme error scenarios then generate 224294 synthetic examples that emphasize
decision boundary cases, especially where human judges tolerate minor errors that baseline verifiers
over-penalize.

Complex Formula Augmentation Applying this augmentation pipeline, we have synthesized approxi-
mately 18118 enhanced examples spanning 14 distinct scientific and engineering disciplines.

A.9 Details of CompassVerifier-as-Reward Experimental Settings

Base LLMs. We utilize Qwen3-4B-Base (Yang et al., 2025) as the base LLM for the GRPO training.

Training Template. We utilize the following training template to prompt the base LLM to generate a
response for each question. We only verify the format correctness to ensure the final answer is encapsulated
within ‘\boxed{...final answer...}’.

Training Template of CompassVerifier
A conversation between a User and an Assistant. The User poses a question, and the Assistant
provides a solution. The Assistant’s response follows these structured steps:
1. **Reasoning Process**: The Assistant comprehensively thinks about the problem through a
reasoning process.
2. **Conclusion**: The Assistant reaches a conclusion, which is enclosed within ‘<conclusion>’
and ‘</conclusion>’ tags. The final answer is highlighted within ‘\boxed{...final answer...}’.
3. **Response Format**: The complete response should be formatted as:
...reasoning process...
<conclusion>
...conclusion...
The answer is \boxed{...final answer...}
</conclusion>

Training Data. We utilize the challenging mathematical reasoning dataset Open-S1 (Dang and Ngo,
2025) as the RL training corpus. To increase the difficulty of our validation, we curate the final training
set by specifically excluding problems with integer solutions from the original Open-S1 dataset.

Evaluation. We employ Math-Verify (huggingface, 2024) as our evaluation tool since the answers in
these three benchmarks are readily verifiable, making them particularly well-suited for Math-Verify’s
verification mechanism.

33482

Reward Design. We design a simple reward scheme: 0 for answer errors, and 1 for correct responses.

Training Parameters. We utilize the following loss function, with Table 14 detailing the training
parameters:

L = E(q,a)∼D,{oi}Gi=1∼πθold (·|q)
 1
∑G

i=1 |oi|

G∑

i=1

|oi|∑

t=1

min

(
πθ (oi,t|q, oi,<t)

πθold (oi,t|q, oi,<t)
ai,t, clip

(
πθ (oi,t|q, oi,<t)

πθold (oi,t|q, oi,<t)
, 1− ϵmin,, 1− ϵmax

)
ai,t

)
 ,

(2)
where D denotes the training data, (q, a) represents the question-answer pair, G signifies the group size,
and

ai,t = ri − mean({ri}Gi=1). (3)

In this context, ai,t signifies the advantage of response oi at the t-th position, and ri denotes the reward of
response oi. Essentially, the KL penalty of the original GRPO loss is omitted, and zero mean normalization
is employed to estimate the advantage.

Table 14: Training parameters of CompassVerifier as reward experiments.

Parameters Value

train batch size 256
train epochs 2
learning rate 1e-6
max prompt length 4096
max response length 12288
G 8
ϵmin 0.2
ϵmax 0.28

Hardware. All experiments are conducted on clusters equipped with 8 NVIDIA A800-SXM4-80GB
GPUs and Intel(R) Xeon(R) Platinum 8336C CPUs, implemented with veRL (Sheng et al., 2025).

33483

