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Abstract

Unsupervised neural grammar induction aims
to learn interpretable hierarchical structures
from language data. However, existing models
face an expressiveness bottleneck, often result-
ing in unnecessarily large yet underperforming
grammars. We identify a core issue, probability
distribution collapse, as the underlying cause
of this limitation. We analyze when and how
the collapse emerges across key components
of neural parameterization and introduce a tar-
geted solution, collapse-relaxing neural param-
eterization, to mitigate it. Our approach sub-
stantially improves parsing performance while
enabling the use of significantly more compact
grammars across a wide range of languages,
as demonstrated through extensive empirical
analysis.

1 Introduction

Formal grammars, such as context-free grammars,
represent the structure of languages by formaliz-
ing the hierarchical organization of components
of natural languages into human-understandable
rules. These rules enable logical interpretation of
top-down or inclusion relationships within lan-
guages and support the control and use of hier-
archical structures based on them. This property
has a potential to enable neural models to under-
stand the structures, and there have been steady
efforts to utilize grammars in natural language
processing and computer vision area (Zhao and
Titov, 2020; Hong et al., 2021; Williams, 2023)
via inducing high-quality grammars (Shen et al.,
2019; Dyer et al., 2016; Kim et al., 2019b; Wang
et al., 2019; Shen et al., 2021; Drozdov et al., 2019,
2020; Kim et al., 2019a). In particular, Neural
PCFGs (N-PCFGs) (Kim et al., 2019a) have suc-
cessfully learned probabilistic context-free gram-
mars (PCFGs) in an unsupervised setting by lever-
aging neural parameterization to estimate rule prob-
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ability distributions from vector representations of
symbols.

Among various studies based on N-
PCFGs (Yang et al., 2021b, 2022), some
have achieved higher performance by enhancing
the expressive power of N-PCFGs. This improve-
ment is grounded in the findings of conventional
studies that did not utilize neural networks (Petrov
et al., 2006), which demonstrated high parsing
performance through an increased number of sym-
bols, as well as in experimental results indicating
that a greater number of grammar parameters can
improve model performance (Buhai et al., 2019).

However, before increasing grammar capacity
for enhancing performance, can we be certain that
current neural network architectures are truly de-
signed to fully utilize the given capacity? This ques-
tion is critical for interpretability, which requires
both compact and accurate grammars. Yet, to date,
the literature lacks analytical studies that directly
address this important issue.

We introduce Probability Distribution Collapse
(PDC) as a key bottleneck in constructing compact
grammars. PDC implies indistinguishable proba-
bility distributions across many symbols, limiting
grammar expressiveness even with a large num-
ber of symbols. We analyze this phenomenon in
the neural parameterization process that maps sym-
bol embeddings to rule probabilities, along with
its training dynamics, and identify three underly-
ing causes: 1) small dimension of embeddings and
shallow neural network layers, 2) entangled scales
of children embeddings in generating the proba-
bility, and 3) gradient explosion and dying ReLU
collapsing symbol representations and correspond-
ing probability projection. To this end, we propose
collapse-relaxing neural parameterization (CRNP)
equipped to a recent work, N-PCFGs with parse-
focusing (Park and Kim, 2024), to address the
causes via simple and comprehensive solutions. In
empirical validation on constituent parsing, our ap-
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proach improves the upper bound of accuracy while
maintaining the same grammar size under struc-
tural supervision, demonstrating its effectiveness
without interference from the implicit behaviors of
unsupervised neural grammar induction (UNGI).
Furthermore, in UNGI comparisons, our approach
achieves strong performance even with highly com-
pact grammars across multilingual benchmarks, in-
cluding Penn TreeBank (PTB, English), Chinese
TreeBank (CTB, Chinese), and SPMRL (Basque,
French, German, Hebrew, Hungarian, Korean, Pol-
ish, Swedish). Our code is publicly available at
https://github.com/GIST-IRR/CRNP.

Our contributions are summarized as follows:

• We introduce probability distribution collapse
as a bottleneck to inducing more compact
grammars in an unsupervised setting.

• We investigate its causes within neural param-
eterization and propose a simple, yet effective
solution, termed collapse-relaxing neural pa-
rameterization.

• We provide extensive validation of our ap-
proach, demonstrating improvements in both
upper bound and practical accuracy, as well
as grammar compactness, on constituent pars-
ing tasks for English and multilingual bench-
marks.

2 Background

Notations of Probabilistic Context-Free Gram-
mar In this paper, we use the following notation
for a PCFG G = (S,N, P,Σ, R,Π): the root sym-
bol S, finite sets of nonterminals N , preterminals
P , terminal words Σ, production rules R, and pro-
duction rule probabilities Π. R consists of three
types of rules:

S → A where A ∈ N

A → B C where B,C ∈ (N ∪ P )

T → ω where T ∈ P and ω ∈ Σ

Note that the left-hand side of the rules is dis-
tinguished between nonterminal and preterminal
categories. In this paper, we refer to the symbol
on left-hand side as the parent and the symbols on
right-hand side as the children.

Neural Parameterization Neural parameteriza-
tion is the process of using a neural network to
parameterize the probabilities of production rules

from symbol embeddings (Kim et al., 2019a). N-
PCFGs parametrize root, nonterminal, and preter-
minal symbols with independent different neural
networks. In more detail, the symbol embeddings
used in parameterizations are not shared. For ex-
ample, preterminal symbol embeddings in binary
rule parameterizer and unary rule parameterizer are
independent.

πS→A =
exp(uT

Af1(wS))∑
A′∈N exp(uT

A′f1(wS))
, (1)

πA→BC =
exp(uT

BCwA)∑
B′C′∈M exp(uT

B′C′wA)
, (2)

πT→ω =
exp(uT

ωf2(wT ))∑
ω′∈Σ exp(uT

ω′f2(wT ))
(3)

Where, wS ,wA,wT represent root, nonterminal,
preterminal symbol embeddings each, f1, f2 repre-
sent multi-layer perceptron composed by residual
blocks, uT

A,u
T
BC ,u

T
ω represent weight matrix of

each linear layer. The training objective of neural
grammar induction is the maximization of sentence
probabilities, and sentence probability is the sum of
whole probabilities of derivable parse tree for given
sentence. The parse tree probabilities are calculated
by inside algorithm using probability distribution
obtained by neural parameterization.

3 Probability Distribution Collapse

Implicit Bottleneck of Expressiveness Proba-
bilistic grammars have been central in computa-
tional linguistics, offering tractable analyses of
capacity utilization. In contrast, neural parame-
terizations lack such clarity due to the flexible
and opaque mappings from symbol embeddings
to probabilities. As a result, it is challenging to
validate that the neural probabilistic grammars uti-
lize its full representational capacity. Therefore, re-
cent neural grammar induction methods frequently
adopt overparameterized grammars to improve per-
formance (Yang et al., 2021b, 2022; Liu et al.,
2023), despite to the empirical availability of more
compact grammars demonstrated in probabilistic
learning frameworks (Stolcke and Omohundro,
1994). This discrepancy suggests that neural param-
eterization imposes implicit constraints on gram-
matical expressiveness, limiting the effective use
of available capacity.

Probability Distribution Collapse We propose
Probability Distribution Collapse (PDC) as the rea-
son of the bottleneck. PDC refers to a phenomenon
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where embeddings for distinct symbols are mapped
to similar probability distributions, resulting in a
large portion of dominating rules being shared. We
formalize PDC by using Jensen-Shannon Diver-
gence (JSD) that measure the similarity between
two probability distributions, where higher values
indicate greater dissimilarity (See Appendix A.2).
Therefore, we define PDC as:

Definition 1. Let G be a neural grammar. Let zi,G
and zj,G be distinct symbol embeddings in G such
that zi,G ̸= zj,G. Let f be a function that maps each
symbol embedding to a probability distribution,
yielding pi = f(zi,G) and pj = f(zj,G). We say
that probability distribution collapse occurs when
the Jensen-Shannon Divergence between these dis-
tributions converges to zero, i.e., JSD(pi∥pj) → 0.
where the JSD is defined as

JSD(P∥Q) =
KL(P∥P+Q

2 ) + KL(Q∥P+Q
2 )

2

If a neural parameterization has an implicit bias
that causes such PDC, a portion of symbols is in-
evitably wasted, and the grammar cannot represent
the more diverse distributions available within its
full capacity. This can degrade performance when
structural diversity is required and limit even scal-
ability in extending to more complex, real-world
problems.

Empirical Evidence in N-PCFG Figure 1 il-
lustrates evidence for PDC in N-PCFGs. In Fig-
ure 1(a), N-PCFGs reveal that while some rule
distributions are distinct from each other, a large
portion remains highly similar. In contrast, our pro-
posed approach yields a distribution more concen-
trated around 0.7, indicating that most rule distri-
butions are more distinct. Figure 1(b)–(d) show the
sorted log probabilities for rules of two nontermi-
nal symbols for each scale of JSD in N-PCFGs. To
quantify the diversity of rule usage, we compute
the ratio of overlapping rules within the top 90% of
cumulative probability mass to the total number of
rules contributing to that mass. The figure for low
JSD (e.g., 0.2) shows a high overlap ratio of 0.71,
indicating limited distributional variation. As JSD
increases, this overlap ratio steadily declines, ap-
proaching zero near a JSD of 0.7, where rule prob-
abilities differ substantially. Therefore, N-PCFGs
with fewer distinct distributions suffer from PDC,
which limits their ability to fully utilize model ca-
pacity, suggesting potential for further utilization
gain.
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Figure 1: Histogram that divided based on Jensen-
Shannon Divergence in (a). The histogram shows how
many pairs of rule probability distributions fall into each
bin. Blue and orange represent N-PCFG and ours. (b)-
(e) provide examples from each bin of the histogram on
N-PCFGs, showing the overlap of their utilized rules.
Each blue line represents a different symbol.

4 Collapse-Relaxing Neural
Parameterization

In this section, we investigate the causes of PDC
throughout all stages of neural parameterization.
We discuss 1) symbol embeddings and their map-
ping to latent representations with limited expres-
siveness as a neural network in Section 4.1, 2)
mapping latent representations to rule probability
distributions entangled by embedding scale fac-
tors across symbols in Section 4.2, and 3) training
dynamics causing representation collapse in Sec-
tion 4.3. Then, we discuss the strategies to solve
each issue, and propose an implementation on N-
PCFG.

4.1 Symbol Embedding to Latent
Representation

Less Expressive Embedding and Layers Ex-
isting models typically employ small embedding
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sizes and shallow networks for neural parameteri-
zation. In particular, the parameterization of binary
rules often relies on a single linear layer, which is
a linear transformation of parent symbol embed-
dings to logits for rule probabilities, notated as:
T : Remb → Rrules. When emb < rules where
rules = ∥N ∪ P∥2, the mapping is surjective
onto a subspace of the rule probability distribution
space. As a result, certain rule probability distri-
butions become unrepresentable given the limited
dimensionality of the parent embeddings. When an
optimal grammar requires those unrepresentable
distributions, the trained grammar confined to the
subspace becomes a projection of the optimum,
exposed to losing distinction of the projected distri-
butions, which is PDC effect.

Solution The solution to this problem is rela-
tively straightforward: increasing the dimension-
ality of symbol embeddings and the number of
network layers. While this can be achieved through
simple hyperparameter tuning, the following two is-
sues may hinder performance gains, which requires
a method that addresses them simultaneously.

4.2 Latent Representation to Probability
Distribution

Entangled Children Scale Across Rules The
next step of neural parameterization also causes
PDC due to the shared latent representations of chil-
dren across different rules. This step involves com-
puting the inner product between the parent and
child latent representations, which is then passed
to the penultimate layer to generate logits for the
softmax function representing the rule probability
distribution. The inner product is given by uT

BCwA,
where wA and uBC denote the latent representa-
tions of the parent and children, respectively, as
shown in equation (2). The resulting rule probabil-
ity can be rewritten in terms of the inner product
as:

πA→BC = softmax(∥wA∥∥uBC∥ cos θwA,uBC)
(4)

A notable point is that the scale of the children rep-
resentation is shared across many parent rules. For
instance, the penultimate representations of rules
A → BC and A′ → BC, involving different par-
ent symbols, both include the shared children scale
∥uBC∥. This shared scale entangles the distribu-
tions of different rules, so a substantial increase
in the children scale during training for one rule
induces a corresponding increase for other rules

involving the same children. More critically, this
scale entanglement manifests across all parent sym-
bols that share the same children, occurring consis-
tently for each children in the grammar. As a result,
a greater reliance on the children scale leads to
convergence toward more similar rule distributions,
thus causing PDC.

Solution To mitigate PDC caused by entangled
children scales, a simple yet effective solution is to
normalize the scale. By fixing the magnitude as a
constant, the rule probability distribution becomes
invariant to scale, preventing unintended influence
from unrelated rules while preserving the learnabil-
ity of child representations. In contrast, normaliz-
ing parent representations is generally discouraged,
as each parent defines a distinct probability distri-
bution. Normalization may unnecessarily reduce
variance, limiting expressiveness.

4.3 Training Dynamics

Bias to Specific Distributions During training
with neural parameterization, two phenomena fre-
quently occur: 1) gradient explosion that training
is disrupted by excessively large gradients and 2)
dying ReLU that activations passing through the
ReLU function are mapped to zero. These effects
push the probability distribution toward specific
forms, causing PDC that limit the expressiveness
for more diverse distributions. First, gradient ex-
plosion (GE) rapidly increases the scale of parent
representations, resulting in an extremely sharp,
one-hot-like distribution. This shift from a more
diverse distribution to a near-deterministic one is a
form of PDC. GE also easily increases the scale of
children representations, which amplifies the previ-
ously discussed PDC, further concentrating proba-
bility mass on a few specific rules. To mitigate this,
N-PCFGs often apply residual connections and gra-
dient clipping. However, residual blocks still suffer
from GE, and gradient clipping only partially alle-
viates the problem while potentially hindering the
learning of other weights (Zhang et al., 2019). Thus,
these methods offer limited effectiveness in resolv-
ing the core issue. Second, dying ReLU causes
most dimensions of the parent representation to
become zero. In this case, as shown in equation (4),
the norm |wA| approaches zero, causing the proba-
bilities for all children representations to converge
to equal values. Consequently, the grammar con-
verges to a uniform probability distribution.
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Solution There are various strategies to mitigate
gradient exploding and the dying ReLU problem.
In this work, we adopt two simple yet effective
methods to demonstrate that resolving these issues
alleviates PDC: 1) We replace the ReLU activa-
tion with GELU (Hendrycks and Gimpel, 2016),
which offers two advantages. First, GELU allows
activation in the negative domain, helping prevent
the dying ReLU issue. Second, in the mean-field
perspective, GELU exhibits a wider edge-of-chaos
regime than ReLU, which helps stabilize gradients
and mitigate explosion. 2) We remove residual con-
nections for two reasons. First, residual networks
without normalization still suffer from gradient ex-
plosion (Zhang et al., 2019). Second, even with
normalization, residual blocks often suffer from
scale imbalance between the main and residual
paths (Hayou et al., 2020).

4.4 Implementation of Rule Parameterization

To use the proposed strategies, we present our re-
design of the neural parameterization in N-PCFGs.
As described, the neural parameterization consists
of three independent neural networks, each model-
ing one of subsets of the rule probability distribu-
tions: root rules (S → A), binary rules (A → BC),
and unary rules (T → ω). We apply distinguished
strategies to each network according to the charac-
teristics of the corresponding distribution set.

Root Rules The root rule probability distribu-
tion consists of a single distribution with a pseudo-
root symbol as the parent. In other words, it does
not conflict with any other probability distribu-
tion. Therefore, it does not require high expressive
power, and we use a single fully connected layer to
reduce computational cost.

πS→A =
exp(uT

AwS)∑
A′∈N exp(uT

A′wS)
(5)

Binary and Unary Rules Parameterizing binary
and unary rule probability distributions is more
complex than the root rule (S → NT ). Binary
rules require |N | distinct probability distributions
over |N ∪ U |2 possible child combinations, and
unary rules require |P | distinct distributions over
|Σ| terminals. To learn distinct distributions for
each parent symbol, the neural parameterization
must have sufficient expressive power. Accordingly,
we compute the binary and unary rule distributions

using the following equations:

πA→BC =
exp(∥vA∥ cos θuBC ,vA)∑

B′C′∈M exp(∥vA∥ cos θuB′C′ ,vA)
,

(6)

πT→ω =
exp(∥vT ∥ cos θuω ,vT )∑

ω′∈Σ exp(∥vT ∥ cos θuω′ ,vT )
(7)

where vA, vT indicates the representations for par-
ent symbols calculated with the equation:

vA = GELU(RMSNorm(wTwA)) (8)

5 Experiments

5.1 Settings
Datasets We evaluate the performance of mod-
els for constituency parsing task using the Penn
TreeBank (PTB) (Marcus et al., 1994) dataset for
English, the Penn Chinese TreeBank (CTB) (Xue
et al., 2005) and the SPMRL dataset (Seddah et al.,
2014) for the other eight languages. We use the
same preprocessing as Yang et al. (2022) and Park
and Kim (2024). We use the same train / develop-
ment / test split as Yang et al. (2022) for PTB, CTB
and SPMRL dataset.

Hyperparameters We train for 30 epochs with a
batch size of 4 and use the same hyperparameters
as N-PCFGs (Kim et al., 2019a), except that we do
not apply curriculum learning and gradient clipping.
For curriculum learning, TN-PCFGs (Yang et al.,
2021b) reported no performance benefit, and our
own preliminary tests similarly showed no impact.
It is also not used in TN-PCFGs, Rank PCFGs, or
SimplePCFGs. As for gradient clipping, we do not
apply it because it hinders the learning of weights,
as previously discussed in Section 4.3. Addition-
ally, we use RMS Normalization (Zhang and Sen-
nrich, 2019) after the activation function in CRNP
to stabilize the forward path. We run only four runs
for each model. We follow the ratio of 1:2 between
nonterminals and preterminals. The details for the
dataset and training are in Appendix A.1 We pri-
marily evaluate parsing performance of grammars
with MBR decoding (Yang et al., 2021b).

Parse-Focusing N-PCFGs already suffer from
known potential issues, namely Structural Opti-
mization Ambiguity (SOA) and Structural Sim-
plicity Bias (SSB) (Park and Kim, 2024), which
may overshadow the effects of mitigating PDC.
To clearly analyze these effects, we apply Parse-
Focusing (PF) (Park and Kim, 2024) to N-PCFGs
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Type Model |N |
S-F1

Mean Max

N-PCFG* 30 52.3±2.3 55.8

C-PCFG* 30 56.3±2.1 60.1

TN-PCFG* 30 51.4±4.0 55.6

TN-PCFG* 250 57.7±4.2 61.4

Original Rank PCFG† 30 51.2±3.1 -

Rank PCFG† 4500 64.1 -

SN-PCFG‡ 128 51.1±4.1 -

SN-PCFG‡ 4096 65.1±2.1 -

CRNP (Ours) 30 46.2±5.2 52.7

Upper- N-PCFG+PFg 30 72.6±0.7 73.4

bound CRNP+PFg 30 73.7±0.3 74.2

PF N-PCFG+PF 30 68.3±0.2 68.7

(fixed- Rank PCFG+PF 30 67.4±0.9 68.4

NT size) CRNP+PF 30 69.4±0.3 69.7

PF (no- Rank PCFG+PF 4500 69.6±0.6 70.3

limit) CRNP+PF 90 70.2±0.5 70.9

Table 1: Performance measured by unlabeled sentence-
F1 (S-F1) in English constituent parsing on PTB. |N |
represents the number of nonterminals. *, †, and ‡ in-
dicate reported results from Yang et al. (2021b), Yang
et al. (2022), and Liu et al. (2023), respectively. Parse-
focusing PFg uses gold parse trees, while PF uses parse
trees induced from pretrained models in an unsuper-
vised setting without extra data.

and CRNP. The Parse-Focusing method was origi-
nally proposed to utilize the parse trees induced by
pretrained unsupervised models (TN-PCFG (Yang
et al., 2021b), NBL-PCFG (Yang et al., 2021a),
and Structformer (Shen et al., 2021)) in the unsu-
pervised setting, and we follow this setup. Addi-
tionally, we use the gold parse trees to reveal the
experimental upper bound achievable in UNGI. In
this setting, we assume that the gold parse trees pro-
vide the ideal focusing bias and thus yield the best
performance. This corresponds to the supervised
setting.

5.2 Performance Results

Performance in English Table 1 presents the un-
labeled sentence-level F1 (S-F1) scores on the PTB
dataset for various baselines and our model with the
proposed parameterization (CRNP). CRNP with-
out PF shows a lower mean and higher variance in
S-F1 scores compared to conventional neural pa-
rameterization, due to the presence of SOA and

SSB. When PF is applied using parse trees in-
duced from pretrained models on the same dataset,
CRNP+PF consistently outperforms N-PCFG+PF.
CRNP+PF with 90 nonterminals demonstrates sig-
nificant performance improvements across most
baselines, achieving slightly higher performance
than Rank PCFG+PF with 4500 nonterminals, a
grammar that is 50 times larger. Notably, when both
models use 30 nonterminals, CRNP+PF shows a
substantial performance gain over Rank PCFG+PF.
Furthermore, when gold parse trees are used for PF,
CRNP+PF with just 30 nonterminals surpasses N-
PCFG+PF, demonstrating a stronger upper bound.

Performance in Multilingual Table 2 presents
the S-F1 scores for parsing performance on PTB,
CTB, and SPMRL datasets. Overall, the proposed
method, CRNP+PF, achieves substantial improve-
ments across most languages, including Basque,
Chinese, English, French, Hebrew, and Korean, and
ranks second for German, Hungarian, and Swedish,
resulting in the best average rank (1.7) among all
models. These results highlight the effectiveness of
CRNP across diverse language datasets. Under a
fixed grammar size of 30 nonterminals, CRNP+PF
consistently outperforms other models. Even un-
der the unrestricted setting, it achieves the highest
scores in most cases, while still using a highly com-
pact grammar with only 90 nonterminals.

Grammar Compactness Table 3 compares per-
formance across grammar sizes for N-PCFG, Rank
PCFG, and CRNP. The results show that CRNP ex-
hibits a steeper improvement and more accurate per-
formance in S-F1 scores as grammar size increases,
compared to the baseline models. This demon-
strates that CRNP effectively leverages larger gram-
mars by mitigating the bottleneck limitations of
neural parameterization.

Ablation Studies For the ablation study, we ex-
amine the individual contributions of GELU activa-
tion and children embedding scale normalization,
which are two core components of CRNP, to the
upper bound without interference from unsuper-
vised learning environments. Table 4 presents S-F1
scores under different configurations. The removal
of either component consistently degrades perfor-
mance, indicating that both are essential to the ef-
fectiveness of the proposed method. The ablation
study on varying embedding dimensions, another
core component, requires a more in-depth analysis.
Therefore, we discuss it separately in Section 5.3.
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Model |N | Basque Chinese English French German Hebrew Hungarian Korean Polish Swedish Mean rank

N-PCFG* 30 35.1±2.0 26.3±2.5 52.3±2.3 45.0±2.0 42.3±1.6 45.7±2.2 43.5±1.2 28.4±6.5 43.2±0.8 17.0±9.9 6.2
C-PCFG* 30 36.0±1.2 38.7±6.6 56.3±2.1 45.0±1.1 43.5±1.2 45.2±0.5 44.9±1.5 30.5±4.2 43.8±1.3 33.0±15.4 5.0
CRNP+PF (Ours) 30 46.1±0.2 45.8±1.7 69.4±0.3 50.4±0.1 47.9±0.2 49.5±0.3 43.9±0.1 41.9±0.8 45.8±0.9 34.0±0.9 2.9

TN-PCFG* 250 36.0±3.0 39.2±5.0 57.7±4.2 39.1±4.1 47.1±1.7 39.2±10.7 43.1±1.1 35.4±2.8 48.6±3.1 40.0±4.8 4.5

Rank PCFG† 4500 38.4±7.3 31.0±8.4 59.6±7.7 43.9±3.1 48.0±1.4 46.2±4.1 42.2±0.7 31.5±4.0 41.6±4.3 40.0±0.6 4.7

Rank PCFG+PF† 4500 45.9±0.3 46.1±0.9 69.7±0.9 50.5±0.5 49.1±0.3 49.5±0.2 43.7±0.2 42.1±0.3 47.9±0.3 33.4±1.2 2.4

CRNP+PF (Ours) 90 46.3±0.6 46.6±1.0 70.2±0.5 51.4±0.3 48.7±0.2 49.5±0.5 44.1±0.2 42.3±0.3 45.7±0.4 34.4±0.6 1.7

Table 2: Performance (S-F1 score and mean rank) in multilingual parsing on PTB, CTB, and SPMRL datasets. (*,†
:reported results in Yang et al. (2021b), Park and Kim (2024), respectively, |N |: number of nonterminals). The
bold represent the best performance and the underline represent the second performance. Mean rank represents the
average rank of each model across all languages. Blue text indicates the best result in each division, either with NT
fixed to 30 or with NT unrestricted.

|N |
S-F1

Rank PCFG Rank PCFG+PF CRNP+PF

1 39.7±0.0 44.3±0.1 45.0±0.1

5 41.6±9.6 60.4±1.9 59.4±3.0

15 43.2±0.8 65.5±0.7 67.5±0.7

30 51.2±3.1 67.4±0.9 69.4±0.3

60 - - 70.0±0.2

90 - - 70.2±0.5

250 54.3±3.9 69.7±0.9 -
4500 57.4±6.0 69.6±0.7 -

Table 3: Performance (S-F1) by grammar size to show
grammar compactness.

Model S-F1
CRNP+PF−GELU−NormalizedEmb 72.4±0.4

CRNP+PF−GELU+ReLU 72.9±0.2

CRNP+PF−NormalizedEmb 73.5±0.2

CRNP+PF 73.7±0.3

Table 4: Ablation studies on upper bound perfor-
mance (−GELU+ReLU: using ReLU instead of GELU,
-NormaliedEmb: no normalization)

5.3 In-Depth Analysis

Rule Type Model
GPJ with varying |N |

30 60 90

Binary
N-PCFG 0.661 0.661 0.657
N-PCFG+PF 0.647 0.645 0.634
CRNP+PF 0.647 0.657 0.662

Unary

N-PCFG 0.561 0.591 0.590
TN-PCFG 0.481 - -
Rank PCFG 0.587 - -
N-PCFG+PF 0.615 0.634 0.636
CRNP+PF 0.633 0.646 0.649

Table 5: Probability distribution collapse (measured by
geometric mean of pairwise JSD (GPJ)) by the grammar
size (nonterminal and preterminal size).

Mitigation of Probability Distribution Collapse
Beyond performance and compactness improve-
ment, we validate that PDC is effectively reduced
by our approach. To evaluate the impact, we uti-
lize the Jensen-Shannon Divergence (JSD), a sym-
metric and finite metric that measures the similar-
ity between probability distributions. The range of
JSD is (0, ln 2) ≈ (0.00, 0.69). A high JSD indi-
cates a greater difference between two probability
distributions, while a value of zero indicates iden-
tical distributions. To verify the overall tendency
of PDC in grammars, we employ the geometric
mean of pairwise JSD (GPJ) for rule probability
distributions. The GPJ reflects the diversity of the
distributions, thereby implying the degree of ca-
pacity utilization. We address the detailed defini-
tion of GPJ in Appendix A.2. In Table 5, CRNP
exhibits high GPJ, indicating that the probability
distributions in the grammar are distinct from one
another. In contrast, N-PCFGs show low GPJ for
unary probability distributions while maintaining
a comparable GPJ for binary distributions. Simi-
larly, TN-PCFGs and Rank PCFGs exhibit low GPJ
for unary rules, which means they also suffer from
PDC. These results demonstrate the effectiveness
of our approach in mitigating PDC and improving
capacity utilization.

Embedding
Size

S-F1
N-PCFG Rank PCFG+PF CRNP+PF

64 54.3 65.9 68.6
128 54.8 67.2 68.8
256 52.8 68.4 69.4
512 51.8 66.5 69.2
1024 50.6 66.5 69.2
2048 45.4 67.3 69.3

Table 6: Impact (S-F1) of the size of input embeddings
and hidden states.
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Embedding Size We investigate the impact of
model expressiveness by evaluating performance
across varying symbol embedding and hidden state
sizes, as shown in Table 6. For N-PCFGs, S-F1
scores increase with embedding size up to 128 but
decline beyond that, likely due to training dynamics
that exacerbate PDC in larger networks. In contrast,
CRNP performance continues to improve with
larger embeddings until saturation, which occurs
once the expressive power matches the complexity
of the target grammar. Beyond this point, further
improvement would require increasing grammar
size.

Layers 1 2 3 4
S-F1 68.3±0.6 69.2±0.4 69.4±0.3 69.2±0.3

Table 7: Impact of (S-F1) the number of layers by the
depth of neural parameterization layers.

The Number of Layers Another important fac-
tor in controlling network capacity is the number
of layers. Table 7 reports performance changes as
network depth increases in the neural parameteri-
zation. Unlike N-PCFGs, our approach enhances
model capacity by increasing the number of layers,
thereby improving nonlinearity. Consistent with
the previous results from varying embedding size,
performance saturates once sufficient expressive-
ness is achieved at two layers, with no further gains
observed from additional depth.

Model cosine similarity

binary unary

N-PCFG 0.85 0.71
N-PCFG+PF 0.91 0.78
CRNP+PF 0.75 0.30

Table 8: Average of cosine similarity among children
representations used as inputs of the penultimate layer

Children Scale To examine the effect of nor-
malizing the scale of children representations, we
evaluate their cosine similarity, as shown in Ta-
ble 8. Normalization in CRNP significantly reduces
similarity for both binary and unary rules, indi-
cating more diverse distributions. This outcome
is expected, as removing scale from the learnable
parameters places greater emphasis on cosine sim-
ilarity to capture distributional differences. These
results suggest normalizing the children scale en-
hances representational diversity and encourages
more varied rule probability distributions.

30 60 90
Nonterminals

0

500

1000

1500

2000

2500

3000

3500

N
or

m
 (p

=2
)

N-PCFG
CRNP+PF
Min/Max range

Figure 2: Gradient explosion evaluation reflected by
embedding scales by nonterminals.

Gradient Explosion We evaluate the scale of
children representations to demonstrate the pres-
ence of gradient explosion and the effectiveness of
our proposed method. Figure 2 shows the scale val-
ues before and after applying our approach. When
the number of non-terminals is 30, both models
exhibit comparable scales. However, as the number
of non-terminals increases, the N-PCFG exhibits
an exponential increase in scale values by the large
maximum, indicating the onset of severe gradient
explosion. In contrast, our method maintains con-
sistently low scales and a narrow range, even with
larger grammars. These results confirm that our
approach effectively stabilizes the representation
scale and mitigates critical PDC caused by sharing
the scale factor in children representations.

Rule Type Model |N | Entropy Ratio of zeros

Binary

N-PCFG
30 5.168 0.990
60 4.996 0.994
90 4.506 0.993

CRNP+PF
30 0.808 0.000
60 0.873 0.000
90 0.720 0.000

Unary

N-PCFG
30 2.596 0.000
60 5.148 0.000
90 4.718 0.000

CRNP+PF
30 0.743 0.000
60 0.886 0.000
90 0.794 0.000

Table 9: Evaluation of the dying ReLU phenomenon.
Entropy is computed from each nonterminal’s rule prob-
ability distribution, and the ratio from ReLU-generated
representations. Both are averaged over all rules. Higher
entropy indicates greater uniformity; the zero ratio re-
flects dying elements in the representations.

Dying ReLU In Table 9, N-PCFG consistently
exhibits higher entropy, indicating that its rule prob-
ability distributions are, on average, more uniform.
However, high entropy does not necessarily imply
the absence of inactive (dying) components in the
representations. To assess this, we also measure
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(b) Parse tree induced by N-PCFG+PF.
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(c) Parse tree induced by CRNP+PF.

Figure 3: Comparison between the gold parse tree and the parse trees induced by the models (N-PCFG+PF and
CRNP+PF) on the example sentence "People were even hoarding bags he says".

the ratio of zero values. While N-PCFG shows a
near-one ratio in binary rules, CRNP+PF maintains
the zero rate. This suggests that N-PCFG suffers
from the dying ReLU problem, whereas the pro-
posed method effectively mitigates it. There is no
dying ReLU phenomenon for binary rules, because
N-PCFGs do not use an activation function to pa-
rameterize binary rules.

The Difference in Tree Structure For qualita-
tive analysis, we provide example parse trees in
Figure 3 to examine the influence of CRNP on
parse structures. N-PCFG+PF generates a right-
binarized parse tree that differs from the gold by
relying heavily on a few nonterminal symbols such
as NT-22 and NT-24, whereas CRNP+PF repro-
duces the same structure as the gold by utilizing a
wider variety of symbols. From the perspective of
symbol roles, CRNP+PF utilizes a broader range
of symbols for S and VP than N-PCFG+PF, indicat-
ing a more diverse representation of intermediate
sentence structures. We further present additional
examples in Appendix A.3.

6 Related Works

Overparameterization of UNGI Yang et al.
(2021b) proposed the neural parameterization
based on tensor decomposition, and demonstrated
that overparameterization leads to better gram-
mars with many symbols. Moreover, Yang et al.
(2022) improved it based on factor graph grammars
(FGGs). Recently, Liu et al. (2023) introduced the
SimplePCFG formalism. These show the perfor-
mance improvements based on a large grammar
size. Conversely, we highlight the inefficiency in
learning UNGIs caused by an implicit bottleneck,

and demonstrate resolving this issue leads to com-
pact and accurate grammars.

Collapse Problem In self-supervised learning
(SSL), the collapse problem refers to representa-
tions with different semantics being mapped to very
close positions. Hua et al. (2021) verified complete
collapse that representations converge into a triv-
ial solution, and identified dimensional collapse
that representations concentrate into sparse dimen-
sions. In another line of work, Papyan et al. (2020)
proposed neural collapse in which representations
within the same class converge to their class means
in classification tasks. These studies focus on rep-
resentations themselves. Whereas we focus on the
collapse of probability distributions generated from
representations and their negative effect, which di-
rectly limits capacity utilization of grammars.

7 Conclusion

In this paper, we address the issue of probability
distribution collapse, which creates a bottleneck
in neural parameterization and limits the effective
utilization of model capacity in unsupervised neu-
ral grammar induction. We analyze the underlying
causes of this collapse, tracing training dynamics
from symbol embeddings to the probability dis-
tributions, and propose a collapse-relaxing neu-
ral parameterization to mitigate it. Our method
improves the upper bound and overall accuracy
of constituency parsing across English and multi-
ple languages, while achieving significantly more
compact grammars. This work underscores the of-
ten overlooked limitations of neural parameteriza-
tion and reveals that large-capacity models are not
strictly necessary for effective grammar learning.
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Limitations

Unsupervised neural grammar induction using N-
PCFGs is still constrained by expensive compu-
tational cost. Therefore, extending our idea to a
decomposed tensor-based method is important to
scale up. However, applying our method to mod-
els such as TN-PCFGs or Rank PCFGs is con-
strained by tensor decomposition. While PDC may
affect these models as well, further analysis is re-
quired to assess its impact and applicability. In
addition, we observed that CRNP+PF with 90 non-
terminals performs slightly less effectively in a
few languages (e.g., German and Polish). However,
language-specific differences in resolving PDC are
out of the main scope of this work. Therefore, such
issues should be further investigated in future work.
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A Appendices

A.1 Experiment Details
Dataset Detail We adopt the standard setup and
preprocessing for PTB,1 using sections 02–21 for
training, section 22 for validation, and section 23
for testing, with punctuation and trivial constituents
removed. The vocabulary consists of the 10,000
most frequent words, while all other words are re-
placed with <unk>. For data processing, we follow
the pipeline employed by prior models that utilize
base models and parsers, as described in (Kim et al.,
2019a; Yang et al., 2022; Shen et al., 2021; Yang
et al., 2021a; Drozdov et al., 2019). We also uti-
lize the CTB2 and the Basque, French, German,
Hebrew, Hungarian, Korean, Polish, and Swedish
datasets from SPMRL,3 following the standard
setup used in prior work.

Implementation Detail To implement our
methodology on top of the base model FGG-
TNPCFGs, we utilized PyTorch version 2.2 (Paszke
et al., 2019). For smooth processing and analysis
of tree structures, we employed NLTK4.

Training Detail The hyperparameter settings fol-
low those reported in Yang et al. (2022). The ra-
tio of nonterminal to preterminal symbols is pri-
marily fixed at 1:2. To analyze the effect of the
number of symbols, we conduct experiments vary-
ing the number of nonterminal symbols from 1 to

1The license of PTB is LDC User Agreement for Non-
Members. https://catalog.ldc.upenn.edu/LDC99T42

2The license of CTB is LDC User Agreement for Non-
Members. https://catalog.ldc.upenn.edu/LDC2005T01

3The license of SPMRL is Creative Commons Attribu-
tion 4.0 International License. https://www.spmrl.org/
spmrl2013-sharedtask.html

4https://www.nltk.org/

33391

https://aclanthology.org/W14-6111
https://aclanthology.org/W14-6111
http://arxiv.org/abs/1810.09536
http://arxiv.org/abs/1810.09536
https://doi.org/10.1007/3-540-58473-0_141
https://doi.org/10.1007/3-540-58473-0_141
https://doi.org/10.1007/3-540-58473-0_141
http://arxiv.org/abs/1909.06639
http://arxiv.org/abs/1909.06639
https://api.semanticscholar.org/CorpusID:256627452
https://api.semanticscholar.org/CorpusID:256627452
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2021.acl-long.209
https://doi.org/10.18653/v1/2021.naacl-main.117
https://doi.org/10.18653/v1/2021.naacl-main.117
https://api.semanticscholar.org/CorpusID:113405151
https://api.semanticscholar.org/CorpusID:113405151
https://api.semanticscholar.org/CorpusID:221971028
https://api.semanticscholar.org/CorpusID:221971028
https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC2005T01
https://www.spmrl.org/spmrl2013-sharedtask.html
https://www.spmrl.org/spmrl2013-sharedtask.html


ROOT

S

S

VP

ADJP-PRD

JJ

busy

RB

all

VBD

were

NP-SBJ

PRP

we

S

VP

ADJP-PRD

JJ

intentional

RB

n’t

VBD

was

NP-SBJ

PRP

It

(a) Gold parse tree.

ROOT

NT-26

NT-22

NT-24

NT-24

NT-14

NT-22

NT-24

T-9

busy

T-28

all

T-37

were

T-44

we

T-46

intentional

T-56

n’t

T-37

was

T-44

It

(b) Parse tree induced by N-PCFG+PF.

ROOT

NT-0

NT-23

NT-19

NT-6

T-45

busy

T-41

all

T-20

were

T-36

we

NT-14

NT-19

NT-6

T-30

intentional

T-41

n’t

T-20

was

T-36

It

(c) Parse tree induced by CRNP+PF.

Figure 4: Comparison between the gold parse tree and the parse trees induced by the models (N-PCFG+PF and
CRNP+PF) on the example sentence "It wasn’t intentional, we were all busy".

4500. Training proceeds for up to 10 epochs, with
early stopping based on validation likelihood. Op-
timization is performed using the Adam optimizer
with a learning rate of 2 × 10−3, β1 = 0.75, and
β2 = 0.999. The model is configured with a rank
size of 1000, a symbol embedding size of 256, and
a word embedding size of 200. These hyperparam-
eters are held constant across all languages without
task-specific tuning. All experiments are run on an
NVIDIA RTX 2080Ti. To measure variance, we
repeat each experiment 32 times for both the orig-
inal FGG-TNPCFGs and our method, as reported
in Table 1, while all other experiments are repeated
four times. Each run takes approximately 3 hours.

A.2 Measures for probability distribution
collapse

Local Perplexity represents the number of valid
rules in single probability distribution. In other
words, local perplexity (PPL) represent sparsity
of single probability distribution. Therefore, proba-
bility distribution that have low local PPL have few
utilized rules in distribution and is sparse.

PPLlocal =

∑
p∈P expH(p)

|P |

Global PPL represent the number of valid cate-
gories of the mean distribution of whole probabil-
ity distributions in grammar, which represent how
many various rules are used without duplication for
parsing. This is related with the expressive power
of grammar. In other words, higher performance,
higher variety of the rules that utilized in grammar.

q(C) =

∑
P ′∈S p(P ′ → C)

|S|
PPLglobal = expH(q)

Geometric Mean of Pairwise Jensen-Shannon
Divergence shows how different the probability
distributions in grammar with each other. In this
paper, we use JSD with base-e logarithm for com-
putational convenience. JSD is represented by fol-
lowing equation:

JSD(P∥Q) =
1

2
KL(P∥M) +

1

2
KL(Q∥M)

where M =
1

2
(P +Q)

We use JSD to compare similarity for several dis-
tributions, then we get the values for N(N−1)

2 pairs
of distributions, where N represent the number of
distributions. We use geometric mean to average
on these values of pairs. The reason why we use
geometric mean is arithmetic mean is not sensi-
tive on outlier, which make that the duplication of
pairs is not appeared in values in arithmetic mean.
Therefore, the GPJ is defined as:

GPJ = |pairs|

√ ∏

P,Q∈S
JSD(P∥Q).

A.3 Additional Examples for parse trees
We provide additional examples of parse trees to
compare the quality by methods, N-PCFG+PF and
CRNP+PF in Figure 4.
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