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Abstract

Multimodal large language models (MLLMs),
built on large-scale pre-trained vision towers
and language models, have shown great capa-
bilities in multimodal understanding. However,
most existing MLLMs are trained on single-
turn vision question-answering tasks, which do
not accurately reflect real-world human conver-
sations. In this paper, we introduce MMDiag, a
new large-scale multi-turn multimodal dialogue
dataset. This dataset is collaboratively gener-
ated through deliberately designed rules and
GPT assistance, featuring complex dialogues
with contextual dependencies that force mod-
els to track, ground, and recall information
across multiple turns and disparate visual re-
gions. MMDiag serves as a strong benchmark
for multi-turn multimodal dialogue learning
and brings more challenges to the grounding
and reasoning capabilities of MLLMs. Fur-
ther, inspired by human vision processing we
present DiagNote, equipped with multimodal
grounding and reasoning capabilities. Diag-
Note adopts a novel dual-module architecture
that explicitly separates reasoning from ground-
ing: a reasoning module (Deliberate) performs
step-by-step Chain-of-Thought, while a ground-
ing module (Gaze) provides precise visual fo-
cus by predicting bounding box annotations.
These modules interact iteratively, enabling Di-
agNote to dynamically refine its understanding.
We empirically demonstrate the advantages of
DiagNote in both grounding and jointly pro-
cessing and reasoning with vision and language
information over existing MLLMs.

1 Introduction

The remarkable success of large language mod-
els (LLMs) across diverse applications (Bai et al.,
2023a; Achiam et al., 2023; Reid et al., 2024;
Cursor, 2024; DeepL, 2024) has spurred the de-
velopment of multimodal large language models
(MLLMs) (Liu et al., 2024b; Zheng et al., 2025).
However, most existing MLLMs are trained as sin-

gle black-box systems to handle multimodal in-
structions, often struggling with inaccuracies and
hallucinations, especially in complex multi-turn
dialogues (Tan et al., 2024; Zheng et al., 2024).
We hypothesize such challenges arise from the
MLLM’s difficulty in maintaining focus on salient
visual regions throughout the conversation. This is
especially true for high-resolution images, where
preserving fine-grained details results in what we
term “overly long visual tokens” — a sequence
length that poses a significant computational and
attentional burden on the model. In this paper,
we seek to address these issues by moving be-
yond a black-box approach to an explicit target-
grounding solution. Here, we summarize two key
goals for multi-turn multimodal dialogue learn-
ing: ❶ “saliency tracking”, where models must
keep tracking different relevant regions over the
course of the dialogue, and ❷ “saliency recall”,
where models need to consistently retain focus
on the same critical information across multiple
question-answering (QA) rounds. For example,
in the dialogue illustrated in Figure 1, completing
the Minigrid (Chevalier-Boisvert et al., 2023) task
requires the MLLM to accurately locate both the
agent (i.e.“red triangle”) and the target (i.e.“purple
key”) to answer the initial question. The following
question then builds upon this information, requir-
ing the MLLM to reason about the agent’s starting
position based on the previously identified location
of the key. This example illustrates the need for sus-
tained and explicit grounding to multiple specific
visual details in multi-turn multimodal dialogue.

To achieve these two goals, we draw inspiration
from how humans maintain focus while studying.
For instance, when working through documents,
people may lose concentration, but can quickly re-
focus by using simple techniques such as jotting
down notes or highlighting key points. Even basic
marks, such as circling or underlining, can signifi-
cantly enhance focus without requiring elaborate
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(b)

(a) Human Input: 
What should the red triangle agent do if it 
wants to pick up the purple key?

MLLM Reasoning I

MLLM Output: 
The agent should first turn back, go forward
four times, turn back and move one step 
forward to pick up the purple key.

To achieve this goal, we should first locate 
the red triangle agent.
Then, we need to find the purple key. 
Finally, we should plan the path for the agent.

Human Input: 
After that, What should the agent do next if 
it wants to reach the red ball below the 
purple key?

MLLM Reasoning II

MLLM Output: 
To reach the red ball below the purple key, 
the agent should go straight down to reach 
that  red ball.

To achieve this goal, we should first locate 
the red triangle agent.
Since the agent is located at the place it 
reached the last step, we should focus on the
same region at the last step.
Then, we need to find the red ball below the 
purple key. 
Finally, we should plan the path for the agent.

Figure 1: Multi-turn multimodal dialogue: (a) Saliency
tracking. The MLLM needs to focus on both the red
triangle agent and the purple key, scattered across the
image, to answer the question correctly. (b) Saliency
recall. The MLLM must recall the agent’s previous
location to reason about its next move.

explanations. These visual cues guide attention,
making it easier to track, recall, and revisit im-
portant information. In contrast, existing MLLMs
lack such tracking capabilities, prompting us to
ask: “Can an MLLM be designed to equip similar
attention-guiding abilities? If so, what would that
model design entail?”

To answer this question, we first review existing
tuning methods for MLLMs and identify a critical
gap: the lack of quality multi-turn multimodal QA
datasets that adequately reason over both visual
and text information. Existing datasets, such as
MMDU (Liu et al., 2024c) and SciGraphQA (Li
and Tajbakhsh, 2023), primarily consist of single-
turn QA pairs, where most questions can be an-
swered independently without relying on prior con-
text. To bridge this gap, we introduce a novel
dataset, MMDiag, designed as a foundational
benchmark for challenging multi-turn multimodal
dialogue. Generated via a hybrid methodology that
combines rule-based graph traversal with LLM-
based refinement, this dataset offers visually de-
tailed dialogues with strong contextual dependen-
cies across a range of scenarios.

While recent methods attempt to maintain fo-
cus by either “zooming in” with external tools (Qi
et al., 2024) or identifying a single region of in-
terest per turn (Shao et al., 2024), they face key
limitations. The former risks losing a broader con-

text, while the latter fails to handle dialogues that
reference multiple disparate visual details simulta-
neously. To address these limitations, we propose
DiagNote, a model designed to enhance focus and
reasoning in multi-turn multimodal dialogue. Di-
agNote comprises two main modules: Deliberate
and Gaze. The Deliberate module guides the Gaze
module in dynamically adjusting regions of visual
focus, while the Gaze module highlights crucial
areas for subsequent processing by the Deliberate
module. Emulating the human process of “taking
notes”, these two modules interact iteratively in
multiple reasoning rounds within a single dialogue
turn to produce an answer accompanied by optional
reasoning and grounding steps. Through this in-
teractive mechanism, DiagNote can achieve more
effective reasoning with multimodal information,
resulting in accurate and context-aware responses
throughout dialogues.

Our main contributions are summarized as fol-
lows: ❶ To address the need for robust multi-
modal grounding and reasoning, we build a new
large-scale multi-turn multimodal dialogue dataset
– MMDiag – across several QA scenarios (e.g.daily
life and tabular data), using rule-based searching
and GPT-4o-mini (OpenAI) capabilities. ❷ In-
spired by human cognitive strategy of taking notes
to maintain focus, we propose DiagNote and its two
key modules – Deliberate and Gaze – to enhance
the model’s capacity for multimodal information in-
tegration and reasoning. ❸ We evaluate DiagNote’s
reasoning and grounding abilities on MMDiag and
other benchmarks and the results demonstrate that
the introduction of MMDiag and DiagNote signif-
icantly improves performance in multimodal con-
versations, while the MMDiag itself can also serve
as a more challenging benchmark for this area.

2 Related Work

2.1 Multimodal Large Language Models

The introduction of Transformers (Vaswani et al.,
2017; Liu et al., 2021) and large-scale training has
significantly advanced model capabilities, enabling
powerful vision encoders (Radford et al., 2021a)
and large language models (LLMs)(Chiang et al.,
2023; Touvron et al., 2023). Building on these
foundations, multimodal large language models
(MLLMs)(Liu et al., 2024b; Zheng et al., 2024)
have achieved strong performance across diverse
tasks, with promising applications in VR/AR and
game agents (Xu et al., 2024; Feng et al., 2024).
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MLLMs typically comprise three core compo-
nents: modality encoders, modality interfaces, and
LLMs (Yin et al., 2023). The encoders and LLMs
handle visual and linguistic inputs separately, while
interfaces align non-language modalities with the
language space. Some models further incorporate
generators to produce other modalities, such as ac-
tions (Driess et al., 2023) or images (Zheng et al.,
2024). Training MLLMs usually involves two
stages. The first aligns vision and language via pre-
training on large-scale image-caption datasets (Liu
et al., 2024b; Schuhmann et al., 2022; Changpinyo
et al., 2021). The second fine-tunes models on tasks
like visual question answering (VQA)(Liu et al.,
2024b; Singh et al., 2019) to enhance instruction-
following abilities. This two-stage pipeline under-
pins many state-of-the-art models, including PALI-
X(Chen et al., 2023), Qwen-VL (Bai et al., 2023b),
and LLaVA (Liu et al., 2024b), serving as a foun-
dation for recent MLLM advances.

2.2 Grounding and Reasoning Benefit
MLLMs

MLLMs benefit from language models’ in-context
learning (Brown, 2020) and Chain-of-Thought
(CoT) (Wei et al., 2022) for generalization and rea-
soning. However, MLLMs sometimes rely exces-
sively on LLM components, leading to overlooking
visual details and hallucinations. To address these
limitations, Qi et al. (2024) introduce “Chain of
Manipulations”, allowing MLLMs to perform rea-
soning with external grounding and OCR models,
which enable incremental task-solving. Although
this approach improves performance, it is limited to
zooming in on specific areas and may miss key scat-
tered details. Similarly, Shao et al. (2024) enhance
performance by focusing on a single region of in-
terest per question. However, a single grounding
and reasoning round is often insufficient for com-
plex problems. To overcome these challenges, our
model, DiagNote, introduces a novel architecture
that explicitly separates these two concerns. We
propose two modules: Deliberate for step-by-step
reasoning and Gaze for precise visual grounding.
By enabling these modules to interact iteratively
within a single turn, our approach allows for a dy-
namic refinement of both focus and logic, making
it more effective in handling complex tasks, like
multi-turn multimodal QAs.

2.3 Multi-Turn Multimodal Dialogue

Multi-turn dialogue involves sustained interaction
between a human and an MLLM-based agent, in-
cluding conversational interactions, such as gener-
ating engaging, casual exchanges (Shuster et al.,
2018) or providing task-oriented assistance in do-
mains like shopping (Kottur et al., 2021), feedback-
driven refinement (Chen et al., 2024c), cooperative
tasks (Chen et al., 2024a), and structured QA sce-
narios (Lin et al., 2014; Singh et al., 2019), which is
our focus. In language-only dialogues, a key chal-
lenge lies in handling question interdependence,
where earlier answers serve as context for later
queries. Introducing visual input adds complex-
ity: the model must ❶ integrate language context,
❷ align it with visual input, and ❸ cope with di-
minishing visual focus in extended dialogues. Dia-
logues with independent questions reduce the task
to single-turn QA. Existing multi-turn datasets (Das
et al., 2017; Liu et al., 2024c; Li and Tajbakhsh,
2023) often feature weakly connected QA pairs.
Seo et al. (2017) include spatial reasoning but with
simple tasks, while Tian et al. (2024) address refer-
ential challenges by rule-based word substitution
(e.g., it), which harms coherence and introduces
ambiguity. Our method overcomes these issues
by first generating correlated QA drafts with rules,
then refining them using GPT-4o-mini (OpenAI),
resulting in a more realistic and complex multi-
modal, multi-turn dialogue dataset.

3 MMDiag: A New Benchmark for
Multi-Turn Multimodal Dialogue

MMDiag is a new benchmark designed to address
the critical lack of strong turn-to-turn dependencies
in existing multi-turn dialogue datasets. In the fol-
lowing section, we first motivate the choice of three
scenarios: everyday, tabular, and Minigrid. Next,
we illustrate how to construct the QA pairs for our
MMDiag dataset. We then explain the evaluation
process in Section 3.3. Finally, we compare MM-
Diag with existing multimodal dialogue datasets
in Section 3.5. Examples of QA pairs are given in
Appendix A.2. Both MMDiag and its generation
code will be publicly released.

3.1 Chosen Scenarios

The three selected scenarios — Everyday, Tabular,
and Minigrid — are chosen to evaluate distinct yet
complementary challenges in multimodal reason-
ing. Everyday scenes test common-sense under-
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Dataset QA Scale GND Scale Generation Process Average Turns Multi-Turn Multi-Region Dialogue Correlation

CB-300k (Tian et al., 2024) 463k 254k GPT-4/Rule-based 5.49 ✓ ✗ ⃝
Visual CoT (Shao et al., 2024) 438k 438k GPT-4/OCR 1 ✗ ✗ ✗

CoM (Qi et al., 2024) 76k - GPT-4/Tree-Search/Human 1 ✗ ⃝ ✗

MMDU (Liu et al., 2024c) 410k - LLM-filtered/GPT-4o 9 ✓ ✗ ✗

MMDiag 639k 1139k Graph-search/OCR/GPT-4o-mini 2.19 ✓ ✓ ✓

MMDiag-E 1M 1139k Graph-search/OCR/MLLM 3.5 ✓ ✓ ✓

Table 1: Comparison between MMDiag and other multimodal dialogue datasets. ⃝: Features are considered, but
implemented weakly.

standing and multi-turn interactions, reflecting real-
world AI applications. Tabular scenarios require
structured data comprehension and numerical rea-
soning, which many MLLMs struggle with. And
Minigrid focuses on spatial reasoning and planning,
essential for navigation and decision-making. This
diverse selection ensures a comprehensive assess-
ment of multimodal understanding. Empirically,
all three settings pose significant challenges even
for state-of-the-art models like GPT-4o (Figure 3),
with notable failures, such as Visual CoT’s inabil-
ity to generate positive grounding predictions in
Tabular tasks (Table 2).

3.2 Dataset Curation

Everyday Scene Subset. The source dataset (Kr-
ishna et al., 2017) includes 108K images with de-
tailed annotations, allowing us to construct a di-
rected graph G = (V, E) for each image, where
V are objects and E are their relationships. Each
QA pair is represented as a subgraph Gqa =
(Vqa, Eqa), containing nodes and edges involved in
either question or answer. If a QA pair shares no
nodes or edges with others, it is considered inde-
pendent, as it doesn’t add to dialogue complexity
or rely on cross-QA information. We extend QA
pairs into multi-turn QAs by building a subgraph
pattern M =

⋃n
i=1 Gqai, ensuring each Gqai over-

laps with at least one other (i.e., ∃j ̸= i such that
Vqai ∩Vqaj ̸= ∅), so answering any pair depends
on others. Subgraph matching is then used to iden-
tify instances of M in G, enabling the generation of
diverse multi-turn QAs. We use GPT-4o-mini (Ope-
nAI) to produce natural questions, answers, and
reasoning steps, along with ground-truth object lo-
cations. The prompt is detailed in Appendix A.1.
Tabular Scene Subset. This subset is sourced from
ChartQA (Masry et al., 2022), which contains 18K
real-world charts and 23.1K human-authored QA
pairs. As ChartQA consists only of single-turn QA,
it does not meet our multi-turn dialogue require-
ments. To generate multi-turn question answering,

we use GPT-4o-mini, primarily relying on chart
images due to the questionable reliability of table-
type metadata. To ensure interrelated dialogues,
where certain regions are referenced as pronouns to
increase complexity, we explicitly emphasize this
requirement in the prompt. However, GPT-4o-mini
struggles with maintaining this structure, requir-
ing supplementary prompts to guide generation
more effectively. Details on the prompt design are
provided in Appendix A.1. Finally, we use Easy-
OCR (JaidedAI, 2024) to match keywords with
corresponding chart regions, enabling generation
of bounding boxes for relevant areas.
Minigrid Scene Subset. Minigrid (Chevalier-
Boisvert et al., 2023) is a Gymnasium-based (Tow-
ers et al., 2024) collection of 2D grid-world en-
vironments with goal-oriented tasks. The agent,
represented as a triangular figure with a discrete ac-
tion space, navigates maze-like maps and interacts
with objects such as doors, keys, and boxes. These
tasks test the model’s ability to focus on image de-
tails, spatial reasoning, and action planning, with
some requiring numerous steps to complete, mak-
ing them particularly challenging. To construct this
subset, we use Minigrid and BabyAI (Chevalier-
Boisvert et al., 2019) to generate grid worlds, tasks,
and step-by-step action plans, which are formatted
as prompts for GPT-4o-mini. Further details on
environment generation and prompt design are in
Appendix A.1.
Common Visual-Text Subset. To enable MLLMs
with robust capabilities to answer the question, we
also add additional visual-text pairs with high qual-
ity from previous works (Liu et al., 2024b) to en-
hance their instruction-following ability.

3.3 Multi-Turn Multimodal Dialogue
Evaluation

Each entry in MMDiag provides three core com-
ponents for comprehensive evaluation: a natural
language reasoning process, grounded key regions,
and a final answer. We evaluate each component
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on the shelf.

Could you describe 
them in detail?
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Figure 2: Model architecture of DiagNote. Regions with blue backgrounds represent a deliberation step and the
interaction between the Deliberate and Gaze modules. At each turn, the Deliberate module processes the original
image, dialogue context, and buffers from both modules. It produces two outputs: (1) a Deliberate step, stored in
the Deliberate buffer, and (2) a Gaze query, which is processed by the Gaze module. The resulting bounding boxes
are then stored in the Gaze buffer.

separately. For the reasoning and answers, we fol-
low standard practice by inputting the image, di-
alogue history, and both ground-truth and gener-
ated text into a powerful MLLM for scoring. To
mitigate evaluation bias, our primary evaluator is
Gemini-1.5-Pro, as GPT-4o-mini was part of our
data generation pipeline. To further ensure the ro-
bustness of our findings, we also performed the
evaluation using GPT-4o, and the results showed
high consistency with those from Gemini-1.5-Pro.
Furthermore, to directly assess the quality and natu-
ralness of our generated dialogues, we conducted a
manual evaluation. We randomly sampled 150 dia-
logues (50 from each scenario) and evaluated them
on fluency, coherence, correctness, and complexity.
The results, detailed in Appendix B, confirm the
high quality of MMDiag, with average scores for
fluency, coherence, and correctness all exceeding
4.3 on a 5-point scale. This manual validation con-
firms that our semi-automated generation process
produces dialogues that are not only complex and
interrelated, but also fluent and logically sound. For
final scoring, following prior work (Lee et al., 2024;
Stureborg et al., 2024; Chen et al., 2024b), we
adopt “ad-hoc” reasoning-based scoring across five
categories on a 0–10 scale. Full prompts are avail-
able in Appendix B.1. We also evaluate grounding
using key queries and bounding boxes, forming
a GND subset. As these queries often describe
objects or regions with detailed attributes and rela-
tions, the subset effectively assesses grounding for
complex cases. Grounding accuracy is measured
via Intersection over Union (IoU).

3.4 MMDiag-E: An Extended Benchmark for
Deeper Dialogue

In response to valuable feedback on dialogue depth,
we have developed MMDiag-E, an extended ver-

sion of our benchmark designed to further probe
the long-context reasoning capabilities of MLLMs.
This new version specifically addresses the limita-
tions of dialogue length. For the Everyday Scene,
we utilized larger sub-graph patterns during the
search process, increasing the average dialogue
length to 4 turns and introducing a significant num-
ber of dialogues with 5+ turns. For the Tabular
Scene, we refined our generation templates and
prompts to create more complex, multi-step queries
that require deeper analysis of the chart data. The
Minigrid scene remains unchanged, as its inher-
ent complexity already provides a significant chal-
lenge. This extension results in a more challenging
benchmark that better reflects the intricacies of real-
world, long-form conversations.

3.5 Multimodal Dialogue Datasets
Comparison

We compare MMDiag with prior datasets designed
for vision-language understanding and reasoning.
As shown in Table 1, MMDiag is the first to feature
multi-turn, multi-region dialogues with strong QA
dependencies, reinforced by a thorough generation
process. In contrast, datasets like CB-300k (Tian
et al., 2024) and MMDU (Liu et al., 2024c) lack
mechanisms to enforce such dependencies, reduc-
ing multi-turn dialogues to mere concatenations
of independent QA pairs. Although MMDiag has
relatively short dialogues, the inherent dependence
between turns presents significant challenges for
MLLMs, including GPT-4o, as demonstrated in
Figure 3. The grounding and QA test splits include
1,000 unseen images and QA pairs, respectively.

4 DiagNote

In this section, we introduce DiagNote, a novel
architecture designed to mimic the human cognitive
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process of alternating between internal reasoning
and external observation. DiagNote, trained on
the train split of MMDiag, employs two distinct
modules, a Deliberate for reasoning and a Gaze
for visual grounding, which interact iteratively to
perform complex multi-turn, multimodal dialogue
tasks. We first detail the model architecture and
then describe its multi-stage training process.

4.1 Model Architecture
The overall framework of our model is illustrated in
Figure 2. We adopt the same architecture, LLaVA-
1.5 (Liu et al., 2024b,a), for both the Deliberate
and Gaze modules, with no shared parameters. To
leverage the generalization capability of MLLMs,
we avoid using dedicated grounding models such
as Grounding DINO (Liu et al., 2023) for the Gaze.
Each module consists of an LLM backbone, a pre-
trained ViT (Radford et al., 2021b) as vision en-
coder, and an MLP projection for vision-language
alignment, with distinct parameters for the two
modules. Given an image Iv and a dialogue of
T turns

(
I1q, I

1
a, · · · , ITq , ITa

)
, where Itq and Ita de-

note the t-th question and answer, the model per-
forms multi-step interactions between Deliberate
and Gaze at each turn to generate the answer Ita.

At turn t, given question Iqt, the Deliberate mod-
ule D takes the image Iv and dialogue context
Ct =

(
I1q, I

1
a, · · · , It−1

q , It−1
a , Itq

)
to produce a De-

liberate step St
1 and a Gaze query Qt

1, stored in
buffers Bt

d and Bt
g respectively. The GazeG then

outputs bounding box ot1 based on Qt
1, also stored

in Bt
g. In each subsequent round i, the Deliber-

ate receives Iv, context Ct, Gaze buffer Bt
g, and

Deliberate buffer Bt
d to generate new St

i and Qt
i,

while Gaze returns oti. The process repeats until
the Deliberate outputs ‘END’ as query QFin− 1t,
indicating that the Deliberate and Gaze back-and-
forth process is complete.

To be precise, we define a dialogue turn t as a
single user question Itq and the model’s final an-
swer Ita. Within each turn, the model can perform
multiple internal reasoning rounds i between the
Deliberate and Gaze modules. While the number of
rounds is dynamically determined by the model’s
generation of the ‘END‘ token, we impose a prac-
tical upper limit of 10 rounds during inference to
prevent infinite loops.

Finally, the image, the dialogue context, and
all the buffers are fed into the Deliberate mod-
ule D to produce the final answer St

Fin (i.e., Ita)
and the Gaze query Qt

Fin. The Gaze module G

then provides the bounding box of the salient area
otFin for the t-th dialogue turn. The final output
is St

Fin, along with the optional key region bound-
ing box otFin, as well as the Deliberate process(
St
1, · · · ,St

Fin−1

)
, if required. The final answer Ita

is then appended to the dialogue context for the
next dialogue turn.

4.2 Model Training
The training process of both Deliberate and Gaze
modules follows that of LLaVA, and DiagNote pro-
vides two prompt templates pd and pg for Delib-
erate and Gaze respectively. At the i-th round of
Deliberate and Gaze for Question Itq, the instruc-
tion Rindi for the Deliberate module is:

Rindi =





pd
(
Iv,C

t
)
, i = 1

pd
(
Iv,C

t,Bt
g,B

t
d

)
, 1 < i < Fin

pd
(
Iv,C

t,Bt
g,B

t
d,Fin

)
, i = Fin,

(1)
where Bt

d =
(
St
1, · · · ,St

i−1

)
and Bt

g =(
Qt

1, · · · ,Qt
i−1

)
. The instruction Ringi for the

Gaze module is:

Ringi = pg
(
Iv,Q

t
i

)
, i ≤ Fin, i ̸= Fin− 1.

(2)
We fine-tune the LLM on the prediction tokens,
utilizing the auto-regressive training objective to
optimize. We compute the probability of the target
output Routxi with length L at i-th round by:

p (Routxi | Rinxi ) =
L∏

l=1

pθx

(
rl | Rinxi ,Routx,<l

)
,

where x ∈ {d, g}.
(3)

θx is the trainable parameters of Deliberate and
Gaze modules respectively, with x ∈ {d, g}. Rinxi
are input tokens of i-th round of the Deliberate
and Gaze interaction process. Routx,<l are answer
tokens before the current prediction token rl.

Our training strategy for DiagNote proceeds in
two stages to ensure both specialized grounding
capability and overall dialogue proficiency.
Stage 1: Grounding Pre-training. The Gaze mod-
ule requires a strong ability to associate complex
textual descriptions with specific image regions. To
cultivate this, we first pre-train the Gaze module
on a specialized grounding dataset. This dataset
is a composite of the grounding-focused split of
our MMDiag and the full visual instruction tuning
dataset from LLaVA-1.5 (Liu et al., 2024a). This
stage equips the Gaze with robust, general-purpose
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Model Train Data
MMDiag GND Testset GND Dataset

Average
Everyday Tabular Minigrid MSCOCO RefCOCO

Grounding DINO (Liu et al., 2023) - 0.384 0.001 0.209 0.715 0.469 0.356
LLaVA (Liu et al., 2024b) LCS558K+Mixed665K 0.237 0.006 0.142 0.365 0.414 0.233
Visual CoT (Shao et al., 2024) VisCoT 0.220 0.003 0.160 0.321 0.362 0.213

DiagNote COCO 0.307 0.008 0.199 0.662 0.765 0.388
DiagNote MMDiag 0.369 0.466 1.0 0.259 0.257 0.471
DiagNote MMDiag + COCO 0.399 0.487 0.988 0.624 0.742 0.648
DiagNote MMDiag + COCO + VisCoT 0.433 0.281 0.910 0.662 0.837 0.625

Table 2: Comparison results with existing MLLMs on Grounding benchmarks (GND) to demonstrate the challenging
characteristics of our dataset MMDiag. We use Intersection over Union (IoU) as the evaluation metric.

grounding capabilities before it is integrated into
the full dialogue system.
Stage 2: End-to-End Dialogue Fine-tuning. Af-
ter the Gaze is pre-trained, we fine-tune both the
Deliberate and the Gaze modules jointly. The train-
ing data for this stage is the main training split of
MMDiag, which contains the full multi-turn dia-
logue annotations. To preserve the model’s general
instruction-following abilities, we also mix in the
LLaVA-1.5 dataset. For data points originating
from LLaVA, we bypass the specialized Deliber-
ate prompt structure, which teaches the Deliberate
module to generate standard, direct answers for
non-dialogue tasks, thus preventing it from over-
specializing on the DiagNote’s interactive format.

5 Experiments

5.1 Implementation Details

We use LLaVA-1.5-7B (Liu et al., 2024a) as the
foundation model for both Deliberate and Gaze
modules, with CLIP-ViT-Large-Patch14-336 (Rad-
ford et al., 2021b) as vision tower. Training is con-
ducted on 8 × A800 GPUs with a learning rate of
2e-5. Deliberate and Gaze are optimized separately
via supervised learning with ground-truth outputs
per round. During inference, the Gaze module sig-
nals reasoning completion by outputting “END”.
To prevent infinite loops or overly long reasoning
chains, the internal Deliberate-Gaze interaction is
capped at a maximum of 10 rounds, a limit that is
rarely reached in practice ( 0.5% of test cases). The
number of rounds is otherwise dynamically deter-
mined by DiagNote. Additional training details are
provided in the Appendix C,D.

5.2 Results on MMDiag

5.2.1 Visual Grounding
This section focuses on how the MMDiag dataset
enhances grounding performance in MLLMs.

Grounding is essential for enabling MLLMs to
attend to salient regions and reveal the reason-
ing process, rather than acting as black boxes.
We evaluate DiagNote on standard grounding
(GND) benchmarks (Lin et al., 2014; Kazemzadeh
et al., 2014; Tian et al., 2024) and the MMDiag
GND benchmark, using average IoU scores, as
shown in Table 2. Compared to benchmarks
like MSCOCO, DiagNote shows a notable per-
formance drop on MMDiag, indicating its higher
difficulty. Existing models like Visual CoT, de-
spite incorporating region-based attention, perform
poorly on GND tasks—e.g., scoring -0.394 vs.
Grounding DINO on MSCOCO and underperform-
ing LLaVA—revealing their limited robustness in
grounding relevant image areas. In contrast, Diag-
Note—trained on limited GND annotations from
MMDiag and MSCOCO—achieves clear improve-
ments on MSCOCO and RefCOCO, and outper-
forms others across all MMDiag subsets. Impor-
tantly, MSCOCO is used solely to enhance ground-
ing, and we deliberately restrict GND data size
to avoid scale bias. As shown in Row 4, training
solely on MSCOCO leads to the weakest perfor-
mance, underscoring the necessity and advantages
of MMDiag.

5.2.2 Multi-Turn Reasoning

We evaluate our model’s multi-turn reasoning ca-
pabilities using the MMDiag benchmark. Beyond
final answer correctness, the evaluator also assesses
the coherence and logic of the reasoning process
within the Deliberate module, with detailed results
in Table 3. “GT” denotes settings where the De-
liberate receives ground-truth inputs during reason-
ing, serving as an upper bound. Other settings use
Gaze queries generated by DiagNote, preventing
information leakage. As expected, the GT setting
significantly outperforms others, highlighting room
for improvement. Crucially, paired t-tests confirm

33298



Model Gaze Train Data
MMDiag

AverageEveryday Tabular Minigrid

reasoning answer reasoning answer reasoning answer

LLaVA (Liu et al., 2024b) ✗ LCS558K+Mixed665K 2.55 4.85 1.00 1.28 2.29 0.42 2.21
CogCoM (Qi et al., 2024) ✗ - 3.05 5.45 0.50 1.25 0.53 0.96 2.20
Visual CoT (Shao et al., 2024) ✗ VisCoT 4.15 4.90 1.23 1.95 1.09 2.50 2.81

DiagNote ✗ MMDiag 4.25 4.95 3.61 4.20 4.95 4.27 4.32
DiagNote ✓ MMDiag 5.82 6.15 3.95 4.05 5.10 4.15 4.92
DiagNote ✓ MMDiag+COCO 6.35 5.97 3.95 4.30 5.75 4.93 5.18
DiagNote ✓ GT 6.85 5.80 6.32 7.76 7.37 9.15 7.00

Table 3: Comparison of the evaluation score with baselines to validate the Gaze module, we use Gemini-1.5-Pro
to evaluate the performance of the reasoning process and the final answer. The evaluation process is detailed
in Section 3.3.

Question': 'How can the agent go to the yellow box?

The provided image depicts a grid world, with gray squares representing 
impassable walls, black squares as the background color, and the agent repre-
sented as a red triangle, with its pointed tip indicating the initial direction it is 
facing. Various squares may contain different objects such as colored balls, 
keys, boxes, and doors.

To help the agent (the red triangle) reach the yellow 
box, you can follow these steps:

1. Identify the Agent's Position: The agent starts in the 
bottom left corner of the grid.

2. Determine the Position of the Yellow Box: The 
yellow box is located in the middle column, second 
row from the top. 

3. Plan the Path:
▪ Move up to the square directly above the agent.
▪ Move up again to the next row.
▪ Move right to the middle column.
▪ Finally, move up to reach the yellow box.

This path avoids impassable walls and allows the 
agent to reach the yellow box efficiently.

CoT: 

1. To start, we need to identify the agent's current 
position.

2.  Next, we need to locate the yellow box, which is 
the target. 

3. To reach the yellow box, the agent should move 
right. 

4. Then, the agent should move forward toward the 
yellow box. 

5. Finally, the agent needs to move forward one more 
time to reach the yellow box.

Final_Ans: The agent should move right, then forward 
twice to reach the yellow box.

1

2

3

4
5

1

2

3
4

5

6

Figure 3: Comparison for an example of the Minigrid scenario, one of the subsets in MMDiag. We give DiagNote
and GPT-4o the same environmental description and question. DiagNote focuses on the key regions and gives the
correct reasoning process and the final answer. In contrast, GPT-4o fails to locate the object and thus gives the wrong
answer. Examples for the MMDiag subsets of everyday scenarios and tabular scenes can be found in Appendix H.

Model
Tabular

Reasoning Answer

Delib&Gaze turns T1 T2 T3 T4 T1 T2 T3 T4

CogCoM 0.55 0.91 1.15 0.67 1.75 0.73 0.85 0.35
Visual CoT 1.50 1.05 1.33 1.02 1.86 1.24 1.03 0.88
LLaVA 2.34 0.35 1.00 0.58 1.42 0.50 0.97 0.50

w/o Gaze 4.01 3.05 2.15 1.66 3.47 2.03 1.65 1.63
with Gaze 3.86 3.34 2.31 2.53 3.25 2.65 2.17 1.98

Table 4: The Gemimi-1.5-Pro evaluation of the reason-
ing process and the final answer, scaling to 0-10, at turns
1 to 4 under the tabular scenario, where T∗ denotes the
∗-th turn in the dialogue.

that the improvements of DiagNote (with Gaze)
over all baselines in Table 3 are statistically sig-
nificant (p < 0.05), validating the effectiveness of
our approach. To validate the effectiveness of our
proposed module, we observe that Gaze improves
performance on specific reasoning tasks. For ex-
ample, in everyday scenarios, models with Gaze
achieve higher accuracy, showing enhanced focus
and reasoning accuracy. When similar objects dif-
fer in location or attributes, the model may fail to
identify the referenced one. Annotating the target

in the image helps the model maintain focus and
avoid such errors as reasoning progresses.

We further compare DiagNote with CogCoM (Qi
et al., 2024) and Visual CoT (Shao et al., 2024),
which also handle region-focused multimodal di-
alogue. DiagNote shows notable advantages, es-
pecially in tabular and Minigrid scenarios, reflect-
ing the dataset’s complexity and strengths of two
modules. Table 4 shows a breakdown of tabular
results across dialogue turns. This analysis reveals
how performance scales with dialogue length: Di-
agNote consistently outperforms others in later
turns (T2-T4), underscoring its strength in long-
context reasoning. Gaze brings more noticeable
gains in longer dialogues (e.g.T3,4), further vali-
dating its benefit for extended multimodal under-
standing. Note that Table 3 includes QA pairs of
lengths 2–4, while Table 4 focuses only on 4-turn
dialogues.

5.3 Qualitative Results.
In this section, we provide additional grounding
and reasoning examples of DiagNote. More visual-
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(a) DiagNote (b) Grounding DINO

Figure 4: A grounding comparison between Grounding
DINO and DiagNote’s Gaze module , with the Gaze
query “pink and white sign”. In (a), the red bounding
box represents the ground-truth answer, while the blue
one indicates the output generated by the Gaze module
in DiagNote. In (b), the red bounding boxes show the
outputs produced by Grounding DINO.

ization results can be found in Appendix E,H.
Visual Grounding. The Gaze module offers both
grounding and OCR capabilities across diverse
scenarios. As illustrated in Figure 4b, Ground-
ing DINO (Liu et al., 2023) struggles in complex
scenes where multiple objects of the same cate-
gory exist with different attributes or relationships,
therefore often failing to locate the target object
precisely. In contrast, DiagNote’s Gaze module
effectively manages such situations, as shown in
Figure 4a. Additionally, when faced with tasks re-
quiring text recognition, the Gaze module exhibits
more robust OCR capabilities, accurately identify-
ing and localizing specific keywords.
Multi-Turn Reasoning. With the incorporation
of the Gaze module, our model can also more ef-
fectively focus on fine-grained details distributed
across the image, offering a clear advantage in tasks
that demand cohesive reasoning across both visual
and linguistic information. As shown in Figure 3,
a comparison between our DiagNote and GPT-4o
within a simple Minigrid environment highlights
this benefit. Despite detailed descriptions provided
in the prompt, GPT-4o struggles with completing a
short-range, single-subgoal task, underscoring the
strengths of our dataset and methodology.

5.4 Ablation Study

In our main results, we observed that the gains from
the Gaze module, while significant, were some-
times more limited than expected. This section
investigates this phenomenon. Our primary hypoth-
esis is that the performance is constrained by the
resolution of the input image, which particularly
affects the model’s ability to ground very small
objects. To test this, we analyzed failure cases
and found a strong correlation between incorrect
grounding and the size of the target region. When

dialogues reference tiny key regions (e.g.those oc-
cupying less than 0.2% of the total image area), the
Gaze module often produces inaccurate bounding
boxes. These noisy annotations can subsequently
confuse the Deliberate module, leading to errors
in the final reasoning process. This issue is exac-
erbated by the inherent resolution limitations of
the CLIP-ViT-Large-Patch14-336 vision encoder
used in our model. On standard multimodal bench-
marks, DiagNote performs comparably or slightly
lower, as it targets complex multi-region dialogues
without in-domain training data. This highlights a
trade-off: our model is specialized for the complex
reasoning and grounding in MMDiag, and its per-
formance on general benchmarks reflects this focus.
To more rigorously assess these specialized capabil-
ities and mitigate potential evaluator bias, we also
developed an enhanced evaluation framework fea-
turing more objective protocols. This new frame-
work is detailed in Appendix G. Further details
on these ablations and additional experiments, in-
cluding initial explorations with higher-resolution
vision backbones, are provided in Appendix F.

6 Conclusion

In this paper, we focus on a key challenging task
scenario for MLLMs—multi-turn multimodal dia-
logue. To address it, we first introduce a specially
designed dataset, MMDiag, where accomplishing
tasks requires properly integrating visual informa-
tion across different regions of an image and con-
necting multimodal information across various QA
pairs. This setting closely resembles natural conver-
sations and poses significant challenges to current
MLLMs. To solve this, we construct MMDiag
and expanded MMDiag-E across three distinct sce-
narios—everyday, tabular, and Minigrid—using a
combination of rule-based methods and MLLMs to
ensure robustness and diversity. Experiment results
highlight challenges posed by MMDiag. There-
fore, we propose DiagNote, an MLLM inspired by
human visual processing, composed of two mod-
ules: Gaze and Deliberate. Deliberate performs
reasoning step by step, with the assistance of Gaze,
which provides annotations of salient regions to fo-
cus on. Experiments show that DiagNote enhances
both grounding and reasoning capabilities, effec-
tively addressing MMDiag challenges. We hope
our work helps foster the development of more
context-aware and capable MLLMs.
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Limitations

While our work makes significant strides, particu-
larly with the introduction of the deeper MMDiag-
E benchmark and our enhanced, more objective
evaluation protocols, we identify the following ar-
eas for future work.

• Ultra-Long Dialogue Generation: Although
we have successfully increased the dialogue
depth in MMDiag-E, generating coherent and
complex dialogues that extend beyond 10
turns remains a challenging research problem.
Future work could explore more advanced nar-
rative structures or planning-based methods
to construct these ultra-long conversations.

• Fine-grained Vision and Reasoning: As noted,
the performance of our Gaze module is still
constrained by the vision encoder’s resolu-
tion, especially for tiny objects. Future
work should systematically investigate mit-
igation strategies, such as integrating higher-
resolution vision backbones or adopting dy-
namic patching techniques.

• Scalability of Evaluation: While our new pro-
tocols add objectivity, scaling human-like, nu-
anced evaluation for open-ended reasoning
remains an open challenge. Exploring hybrid
evaluation systems that combine objective
metrics with more sophisticated, calibrated
LLM-judges is a promising direction.
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A Dataset

We use GPT-4o-mini (OpenAI) to generate our
MMDiag dataset. Our dataset mainly consists of
three parts: everyday scenes, tabular scenes, and
Minigrid settings. We adopt different prompts for
the generation of datasets under different scenes.

A.1 Dataset Collection
We design prompts for different scenarios, and the
same devising ideas can be used in other scenarios
for data collection.
Everyday Scenes. For everyday scenes, we gener-
ate our dataset from the Visual Genome dataset (Kr-
ishna et al., 2017). Since the original dataset has
human-annotated attributes and relationship data,
we extract the subsets that represent the QA pairs
and feed them to GPT-4o-mini to generate corre-
sponding dialogues. Figure 5,6,7 show several ex-
ample prompts.

Please generate a new list based on a dictionary (`dict`) structured as follows:
[Image_Dict]

The resulting list should be structured as follows:
[Result_Dict]

### Explanation:

There are two dictionaries in the generated list. 

- The first dictionary's question is based on the relation to the first object in the `an-
swer`. The first two items in the `CoT` (Chain of Thought) list correspond to the first list 
in `gnd`, breaking the question down into two steps of grounding reasoning. The final 
`CoT` item provides a complete and concise answer to the question.
- The second dictionary’s question refers to the attributes of the object from the first 
question's answer and is presented using a pronoun. The first `CoT` item deduces the 
referent, the second extracts the attribute information, and the last item provides a 
complete and concise answer to the question. The `Question` and `CoT` answers 
should be diverse and natural. The `Query` contains a concise, detailed description of 
the object in that step, and `Bbox` includes the object's coordinates from `obj_info`.

Only output the dict in JSON format.

**IMPORTANT**: The order of objects in the CoT reasoning should follow the order of 
objects in the `gnd` list.

Human:{Current_Image_Dict}

Figure 5: The first example prompt for generating data
samples in everyday scenes.

Tabular Scenes. For tabular scenes, we generate
our dataset from the ChartQA dataset (Masry et al.,
2022). In general, we use different types of graphs
to capture various visualization intuitions, provid-
ing corresponding chart examples in the prompts.
Figure 8 illustrates the main structure of the prompt,
while Figure 9,10,11 show examples for line, pie,
and bar charts, respectively.
Minigrid Settings. For Minigrid settings,
we generate our dataset from the Minigrid
database (Chevalier-Boisvert et al., 2023). Since
we observe that GPT-4o-mini struggles to solve the
mission without ground-truth planning, we first use
BabyAI (Chevalier-Boisvert et al., 2019) to collect
the plan needed to complete the mission for each
environment generated by the Minigrid database.

Please generate a new `dict` based on the provided one. The provided `dict` is struc-
tured as follows:
[Image_Dict]

The generated `dict` should look like this:
[Result_Dict]

### Explanation:

- The `Question` should be generated based on the `relation` predicates and the `attri-
butes` of the last object in the `gnd`.
- The `CoT` (Chain of Thought) list's first three entries MUST correspond to the `gnd` 
objects list, which break the problem into three steps of grounding reasoning. The 
`Query` MUST correspond to the `gnd` objects list.
- The fourth item in the `CoT` list refers to the attributes of the target object.
- The last `CoT` entry provides a concise final answer to the question.
- The `Question` and `CoT.Ans` should be varied and natural. `Query` is a brief, specif-
ic description of the object, while `Bbox` corresponds to the object’s `coordinates` in 
`obj_info`.

Only output the dict in JSON format.

**IMPORTANT**: The order of objects in the CoT reasoning should follow the order of 
objects in the `gnd` list.

Human:{Current_Image_Dict}

Figure 6: The second example prompt for generating
data samples in everyday scenes.

Please generate a new `dict` based on the given one. The provided `dict` is structured 
as follows:
[Image_Dict]

The new `dict` should follow this structure:
[Result_Dict]

### Explanation:

- The first `dict` asks a question based on the first object in the `relation[0]` and uses 
the first object from the `answer`. The `CoT` list contains step-by-step reasoning, 
aligning with the first item in `gnd`, breaking the problem into two steps of grounding 
reasoning. The final item in the `CoT` list provides a simple and concise answer to the 
question.
- The second `dict` asks about the attributes of the object answered in the first ques-
tion, referring to it with a pronoun. The first `CoT` item infers the referred object, the 
second item extracts the attributes, and the final item provides a full, concise answer.
- The third `dict` asks a question about the related object from `relation[1]`, again refer-
ring to it with a pronoun. The `CoT` steps involve reasoning to identify the referred 
object and then the related object, ending with a complete, concise answer.

**IMPORTANT**: The order of objects in the CoT reasoning must match the order of 
objects in the `gnd` list.

Human:{Current_Image_Dict}

Figure 7: The third example prompt for generating data
samples in everyday scenes.

We then combine the positions of all objects with
the mission and plan, as shown in Figure 12, and
feed them to GPT-4o-mini. For details, Minigrid
creates environments based on specific constraints,
saving grid world data as both rendered images
and lists of special objects with bounding boxes.
BabyAI then identifies feasible solutions by ana-
lyzing the agent’s field of view and determining
subgoal-aligned actions. To simplify QA genera-
tion, we make the entire grid world visible, allow-
ing MLLMs to guide the agent from a top-down
perspective. GPT-4o-mini then generates natural
questions, reasoning steps, key region queries, and
concise final answers. The prompt structure is il-
lustrated in Figure 13.

A.2 Dataset Format

Examples of the final MMDiag dataset are shown
in Figure 14,15,16. Figure 14a,15a,16a display
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Please generate a new list based on the provided chart and table data. The main 
reference should be the chart content, as the table content might contain errors. The 
format of the new list should be similar to the following example:
[QA_and_CoT]

This list consists of two dictionaries corresponding to two rounds of Q&A. Each ques-
tion is based on the chart, providing a reasoning process and an answer. The CoT 
(Chain of Thought) consists of multiple steps with "Ans" representing the answer 
broken down into steps, and "Query" indicating the key terms in the chart relevant to 
that step. The final step of CoT provides a complete and concise answer to the ques-
tion, and the "Query" highlights the key terms in the chart that are relevant to the ques-
tion.

The Question and CoT answers should be diverse and natural.

**Important**: The second question should refer back to the answer from the first 
question, meaning that you can’t answer the second question unless you know the 
answer of the first question. The answer of the first question is presented using a pro-
noun in the second question, and shouldn’t appear in the second question.
You only need to output the list in JSON format.

Human:{Current_QA_and_CoT}

Figure 8: The prompt structure to generate samples in
tabular scenes.

[
    {
        "Question": "In which year did the highest percentage of voters care about the 
election outcome, and what was the percentage?",
        "CoT": [
            {
                "Ans": "To solve this, we should first find the highest point of the brown line, 
which is 83.",
                "Query": "83"
            },
            {
                "Ans": "Next, we can identify that this occurred in 2020.",
                "Query": "2020"
            },
            {
                "Ans": "In 2020, 83% of voters cared the most about the election result.",
                "Query": "83"
            }
        ]
    },
    {
        "Question": "What percentage of voters didn't care about the election result four 
years before that year?",
        "CoT": [
            {
                "Ans": "The referenced year is 2020 from the previous question, and four 
years earlier would be 2016.",
                "Query": "2016"
            },
            {
                "Ans": "The yellow line in 2016 indicates a value of 22.",
                "Query": "22"
            },
            {
                "Ans": "In 2016, 22% of voters did not care about the election outcome.",
                "Query": "22"
            }
        ]
    }
]

Figure 9: The question-answer (QA) and Chain-of-
Thought (CoT) examples for line charts.

the original images from the source datasets and
environments, while Figure 14b,15b,16b show the
data format of MMDiag generated by GPT-4o-mini
and standardized according to specific rules.

B Manual Evaluation of Dialogue Quality

To directly assess the quality and naturalness of our
generated dialogues, we conducted a small-scale
manual evaluation on the MMDiag dataset. We
randomly sampled 150 dialogues (50 from each
scene: Everyday, Tabular, and Minigrid). The au-
thors then annotated each dialogue based on four
key dimensions: Fluency, Coherence, Correctness
& Relevance, and Complexity, using a 5-point Lik-
ert scale (5 being the best).

The average scores, presented in Table 5, are

[
    {
        "Question": "What did most Americans favor when it comes to spending on polic-
ing, and what was the percentage?",
        "CoT": [
            {
                "Ans": "To solve this, we should first locate the largest part of the pie chart, 
which is 42%.",
                "Query": "42"
            },
            {
                "Ans": "Next, we can see that this part represents people who favored main-
taining the same level of spending on policing.",
                "Query": "Stay about the same"
            },
            {
                "Ans": "The largest group, with 42%, favored maintaining current spending 
levels on policing.",
                "Query": "42"
            }
        ]
    },
    {
        "Question": "How does this group compare to those who favored reduced spend-
ing?",
        "CoT": [
            {
                "Ans": "This group refers to the one mentioned in the previous answer, 
which represents 42%.",
                "Query": "42"
            },
            {
                "Ans": "Now, we need to compare it with those who favored reduced spend-
ing, indicated by the label 'Decreased'.",
                "Query": "Decreased"
            },
            {
                "Ans": "The portion of people who favored reduced spending is represented 
by the purple section of the pie chart, at 25%.",
                "Query": "25"
            },
            {
                "Ans": "The difference in percentage is 42 - 25 = 17.",
                "Query": ""
            },
            {
                "Ans": "This group is 17 percentage points larger than those who favored 
reduced spending.",
                "Query": "17"
            }
        ]
    }
]

Figure 10: The question-answer (QA) and Chain-of-
Thought (CoT) examples for pie charts.

highly encouraging. The dialogues demonstrate
near-perfect Fluency (avg. 5.00), which is likely
attributable to the LLM-based polishing step in our
pipeline. The scores for Coherence (avg. >4.3)
and Correctness & Relevance (avg. >4.4) are
also very high, indicating that our rule-based and
ground-truth-aware generation process produces
logically sound and accurate dialogues. The partic-
ularly high Correctness score in the Tabular scene
(4.96) is attributed to the strong grounding on chart
ground-truth data.

The Complexity scores are more modest, which
aligns with some of the reviewers’ comments on
dialogue length. For instance, the modest Complex-
ity score for the Tabular scene (3.66) reflects that
while the questions may seem straightforward to
human annotators, they pose a significant challenge
for MLLMs due to resolution constraints that make
small text in charts difficult to discern. Similarly,
since Minigrid environments were generated ran-
domly, some generated scenarios were relatively
simple.
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[
    {
        "Question": "Which region had the second smallest consumption of Ozone-De-
pleting Substances in tonnes in 1998?",
        "CoT": [
            {
                "Ans": "To solve this, we first need to find the second smallest consumption 
in tonnes, which is 143 tonnes.",
                "Query": "143 tonnes"
            },
            {
                "Ans": "Next, we can determine that this bar refers to Malta.",
                "Query": "Malta"
            },
            {
                "Ans": "In 1998, Malta had the second smallest consumption of Ozone-De-
pleting Substances, with 143 tonnes.",
                "Query": "143 tonnes"
            }
        ]
    },
    {
        "Question": "How many times greater was the highest consumption of Ozone-De-
pleting Substances compared to that region?",
        "CoT": [
            {
                "Ans": "The region in question is Malta, with 143 tonnes.",
                "Query": "143 tonnes"
            },
            {
                "Ans": "The highest consumption to compare it with is 2,262 tonnes.",
                "Query": "2,262 tonnes"
            },
            {
                "Ans": "The ratio is calculated as 2,262 / 143 = 15.8.",
                "Query": ""
            },
            {
                "Ans": "The region with the highest consumption used 15.8 times more 
Ozone-Depleting Substances than Malta.",
                "Query": ""
            }
        ]
    }
]

Figure 11: The question-answer (QA) and Chain-of-
Thought (CoT) examples for bar charts.

Scene Fluency Coherence Correctness & Relevance Complexity

Everyday 5.00 4.54 4.58 4.16
Tabular 5.00 4.38 4.96 3.66
Minigrid 5.00 4.74 4.42 4.02

Table 5: Results of the manual evaluation on 150 ran-
domly sampled dialogues (50 per scene). Scores are on
a 1-5 Likert scale (5=best).

B.1 Evaluation

Since GPT-4o-mini contributes to generating our
datasets, we use Gemini-1.5-Pro (Reid et al., 2024)
for evaluation. There are multiple reasons for
choosing it for this task: answer formatting and
the Chain of Thought (CoT) processes may be di-
verse, making a simple similarity score insufficient
for evaluation. Additionally, recent works (Liu
et al., 2024b; Zheng et al., 2024) commonly ap-
ply LLMs for judgment. We provide the MLLM
with images, ground-truth answers, and generated
responses, and ask it to score the accuracy of the
generated answers across five categories. We notice
that the MLLM provides more reasonable rankings
when asked to explain the ‘ad-hoc’ reason before
their final score. As a result, we include this rea-
soning step in the prompt, as shown in Figure 19.

{
    "mission": "open the grey door, then open the green door",
    "object": {
        "grey door": "[256, 320, 288, 352]",
        "red triangle agent": "[288, 288, 320, 320]",
        "green door": "[320, 288, 352, 320]"
    },
    "plan_list": [
        [
            "Actions.left",
            "(GoNextToSubgoal: grey door None, reason: Open)"
        ],
        [
            "Actions.forward",
            "(GoNextToSubgoal: grey door None, reason: Open)"
        ],
        [
            "Actions.left",
            "(GoNextToSubgoal: grey door None, reason: Open)"
        ],
        [
            "Actions.toggle",
            "(OpenSubgoal)"
        ],
        [
            "Actions.left",
            "(GoNextToSubgoal: green door None, reason: Open)"
        ],
        [
            "Actions.forward",
            "(GoNextToSubgoal: green door None, reason: Open)"
        ],
        [
            "Actions.toggle",
            "(OpenSubgoal)"
        ]
    ]
}

Figure 12: The mission and plan input example of Min-
igrid settings.

Based on the provided image and the given mission and object information, generate 
a new dict. The provided image is a grid world, where gray squares represent impass-
able walls, black squares are the background color, and the agent is a red triangle, 
with the pointed tip indicating the initial direction the agent is facing. Different squares 
may contain various objects such as colored balls, keys, boxes, doors, etc. The mis-
sion provides the task that the agent needs to accomplish, the plan list provides the 
action and subgoal for each step, and the object provides the coordinates of these 
objects. The format of mission and object is as follows:
[Mission_and_Plan]

The format of the new dict should be similar to the following example:
[QA_and_CoT]

Each dict should consist of a Question, a CoT (Chain of Thought) process, and a 
Final_Ans. The Question is generated based on the mission. The CoT consists of 
multiple steps, where each step has "Ans" for the explanation ,"Query" for identifying 
the key elements in the image relevant to that step and "Bbox" for the coordinates of 
the object in "Query". The Final_Ans provides a clear and concise solution to the ques-
tion, with the "Query" highlighting the key terms in the image corresponding to the 
solution.

Ensure the Question, CoT answers, and Final_Ans are diverse and natural.
The Bbox should contains all the bounding boxes of the Query.
Output the dict in JSON format only.

Human:{Current_QA_and_CoT}

Figure 13: The prompt structure to generate data sam-
ples in Minigrid settings.

C DiagNote

Our DiagNote consists of two MLLMs, one for De-
liberate, and one for Gaze. For each input question,
DiagNote appends buffer information and queries
to the respective prompts for Deliberate and Gaze.
For images from Minigrid, a description of the
Minigrid environment, as shown in Figure 20, is
included in both training and testing. The remain-
ing components of the Deliberate prompt and Gaze
prompt are consistent across all three scenes.
Deliberate Prompt. For deliberating, Diag-
Note provides the dialogue context and Chain of
Thought (CoT) history for the current question in
the prompt, as shown in Figure 21. When the
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hyper-parameters value

deepspeed zero3
base model LLaVA-1.5-7B
conversation template Vicuna v1
vision tower CLIP-ViT-Large-

Patch14-336
modality projector type mlp2x_gelu
image aspect ratio pad
training epochs 1
training batch size 16
learning rate 2e-5
weight decay 0
warm-up ratio 0.03
model max length 2048
data loader workers 4

Table 6: The implementation details of the Deliberate
module.

‘END’ token appears in the latest ‘Query’ from
the Deliberate module, signaling the end of the
CoT process, DiagNote provides a new prompt, as
shown in Figure 22, to the Deliberate module for
generating the final answer.
Gaze Prompt. For gazing, DiagNote extracts the
‘Query’ from the output of the Deliberate module
and provides it to the Gaze module along with the
prompt shown in Figure 23. The output from the
Gaze module, which includes the bounding box of
the query, is then saved in the Deliberate buffer to
support the next turn of Deliberating.

D Implementation

The detailed parameters of implementation are
shown in Table 6,7.

E Qualitative Comparison of Grounding

Figure 17,18 show a comparison of grounding abil-
ity between DiagNote and Grounding DINO (Liu
et al., 2023). As illustrated in Figure 17b, Ground-
ing DINO struggles with grounding tasks involving
Optical Character Recognition (OCR). In contrast,
DiagNote leverages the generalization capability
of LLMs, enabling it to effectively locate the tar-
get words, as shown in Figure 17a. Figure 18b
illustrates that Grounding DINO fails to handle ob-
jects with attributes. Although the grey key has a

hyper-parameters value

deepspeed zero3
base model LLaVA-1.5-7B
conversation template Vicuna v1
vision tower CLIP-ViT-Large-

Patch14-336
modality projector type mlp2x_gelu
layer selected for -2

fine-tuning vision tower
image aspect ratio pad
training epochs 1
training batch size 32
learning rate 2e-5
weight decay 0
warm-up ratio 0.03
model max length 2048
data loader workers 4
fine-tune vision tower True/False

Table 7: The implementation details of the Gaze mod-
ule.

marginally higher confidence, accurately locating
the ‘grey’ key in the image confuses Grounding
DINO. In contrast, DiagNote accurately identifies
the grey key in Figure 18a, which aids the subse-
quent actions of the Deliberate module.

F Ablation Study

We observe a counterintuitive performance trend
in Table 3 in the main paper: Gaze provides only
limited performance gains and, in some cases, even
reduces performance, particularly in tabular and
Minigrid scenarios. As shown in Figure 25, Gaze
incorrectly identifies the bounding box for a critical
but tiny piece of information—the year 2019—mis-
leading Deliberate to focus on the wrong color bar.
This issue accounts for most failure cases.

To further analyze this, we evaluate the propor-
tion of tiny key regions across different scenarios
in MMDiag (Table 10). In tabular and Minigrid
scenes, nearly all key regions occupy less than 3%
of the total image area, making them particularly
challenging for Gaze to detect accurately. To mit-
igate this, we curate an alternative test dataset for
tabular scenes, excluding questions that require
attention to extremely small regions. We then fine-
tune Visual CoT and DiagNote with MMDiag and
evaluate them on this revised tabular split. As
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shown in Table 8, Gaze’s impact becomes more
pronounced. Table 9 demonstrates that DiagNote
performs comparably or slightly lower on stan-
dard multimodal benchmarks, as it targets complex
multi-region dialogues without in-domain training
data.

Model Fine-tuning Data Gaze T1 T2 T3 T4

Visual CoT-13B MMDiag - 2.00 1.43 0.40 0.95
DiagNote-14B MMDiag ✗ 3.15 2.35 1.78 1.23
DiagNote-14B MMDiag ✓ 4.20 3.10 2.55 1.95

Table 8: Tabular scenes results of MLLMs fine-tuned
on MMDiag, using the same evaluation metrics as the
previous evaluation.

Benchmark MMBench MM-Vet RefCOCO+ RefCOCOg

DiagNote-14B 63.7 28.5 0.834 0.775

Table 9: DiagNote performance on general datasets.

Scenario ≤ 0.2% ≤ 1% ≤ 3% ≤ 5% ≤ 10%

Everyday 7.57% 27.62% 47.99% 57.49% 69.91%
Tabular 87.17% 99.24% 99.80% 99.92% 100%

Minigrid 6.98% 66.61% 96.99% 99.41% 100%

Table 10: MMDiag tiny key regions percentage.

G Enhanced Evaluation Protocols

In direct response to insightful reviewer feedback
regarding the potential biases of LLM-based evalu-
ators, we developed and have released an enhanced
evaluation framework to enable a more robust and
objective assessment of multimodal dialogue mod-
els. This framework was developed during the final
revision stage of this work. As such, a full-scale
evaluation of all models on our new MMDiag-E
benchmark using these protocols is a key priority
for our immediate future work. The framework
introduces two new evaluation protocols.

G.1 Objective-Answer Evaluation via
Multiple-Choice

To eliminate the subjectivity inherent in open-
ended answer evaluation, we have augmented a
subset of the MMDiag-E benchmark with a multi-
ple choice format. For a given question, the model
is presented with the image and must choose the
correct answer from a set of options, where only
one is correct. This format allows for evaluation via
exact match, providing a fully objective and repro-

ducible measure of a model’s final answer accuracy
without reliance on a separate LLM-judge.

G.2 Isolated Reasoning Validation

Evaluating the correctness of a model’s reasoning
process is challenging. Inspired by recent work
on evaluating reasoning paths (Huang et al., 2025),
we introduced an “isolated reasoning validation”
protocol. This method is designed to specifically
assess the logical soundness of the model’s gen-
erated chain-of-thought (CoT), independent of its
visual-perception abilities.

In this protocol, we first extract the textual CoT
reasoning of the model for a given question. Then,
we provide only this text-based reasoning path to
a powerful, separate LLM judge (e.g., GPT-4o),
without providing the image. The judge’s task is
to determine whether the reasoning steps alone are
logically sufficient and correct to arrive at the final
answer. A high score in this validation indicates
that the model is generating a coherent and logical
thought process.

H Qualitative Comparison of Multi-Turn
Multimodal Dialogue

We present several cases comparing models in ev-
eryday scenarios and tabular scenes. Figure 26,24
show examples from unseen everyday scenarios. In
Figure 26, CogCoM (Qi et al., 2024) completely
fails to answer the two-turn questions correctly.
Despite the assistance of the counting expert, Cog-
CoM is unable to answer the first counting question.
Although LLaVA-1.5-13B (Liu et al., 2024a) and
Visual CoT (Shao et al., 2024) can answer the first
questions accurately, both encounter hallucinations
when responding to the second question, mistak-
enly identifying white plates as cups and bowls,
respectively. In contrast, our DiagNote performs
well on both questions, demonstrating the effec-
tiveness of the Gaze module in ensuring DiagNote
stays grounded in visual details. In Figure 24, Cog-
CoM fails to provide a clear answer to the first
question, instead offering a confusing single word
‘jean’. Again, LLaVA-1.5-13B and Visual CoT an-
swer the first question correctly, but imagine the
man was holding a frisbee. Both CogCoM and
DiagNote understand the context, with DiagNote
accurately describing the can based on the visual
details. In contrast, CogCoM mistakenly assumes
it is a can of beer, which may not be the case.
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Questions

What percentage of LGBT Americans consider religion 
to be very important in their lives?

In comparison, how much does the percentage change 
of those who consider religion to be less important?

According to the survey, do more LGBT Americans tend 
to be religiously affiliated or not?

Input Image

According to the Pew Research Center, 17% of LGBT 
Americans consider religion to be very important 
in their lives.

In comparison, 34% of LGBT Americans consider 
religion to be less important in their lives.

The survey shows that a majority of LGBT Americans 
are religiously affiliated, with 34% being religiously 
affiliated and 44% being unaffiliated.

LLaVA-1.5-13B

Visual CoT

17%

1%

Not

CogCoM The percentage of those who consider religion to be 
less important has increased from 34% to 50%.

Based on the data provided by Pew Research Center, 
17% of LGBT Americans consider religion to be very 
important in their lives.

The survey shows that more LGBT Americans tend to 
be religiously affiliated than not.

DiagNote
Therefore, the percentage of those who consider 
religion less important is 17 percentage points higher 
than those who consider it very important.

Thus, 17% of LGBT Americans consider religion to be 
very important in their lives.

Thus, more LGBT Americans tend to be religiously 
affiliated than not.

Figure 27: One example of comparison between differ-
ent MLLMs under tabular scenes.

Figure 27 presents examples of unseen tabular
scenes. All models answer the first question cor-
rectly. However, Visual CoT provides a completely
incorrect answer to the second question, while Cog-
CoM introduces an unfounded ‘50%’. LLaVA-1.5-
13B correctly identifies the visual detail ‘34%’, but
overlooks the keyword ‘change’ in the question,
which requires a calculation between two percent-
ages. Only DiagNote answers the question pre-
cisely. The final question requires the models to
understand the entire pie chart. The model should
compare the sum of two parts on the right side of
the pie chart with the left part to obtain the final
answer ‘yes’. Visual CoT fails to provide this cor-
rect answer, and LLaVA-1.5-13B misinterprets the
unaffiliated percentage and derives an incorrect af-
filiated percentage. Both CogCoM and DiagNote
reach the right conclusion. Overall, DiagNote per-
forms well on all questions, demonstrating its abil-
ity to focus on both visual and language details and
to comprehend the full picture the chart conveys.
This strong ability can be attributed to the Gaze
and Deliberate structure, which enables it to zoom
in on specific details while integrating multimodal
information for a holistic understanding.

(a) the original image

{
  "QA_pairs": [
    {
      "Question": "What's the woman holding?",
      "CoT": [
        {
          "Ans": "To address this question, we should first identify the woman.",
          "Query": "woman",
          "Bbox": [211, 46, 478, 255]
        },
        {
          "Ans": "Next, we can observe that she is holding a cup.",
          "Query": "END"
        },
        {
          "Final_Ans": "The woman is holding a cup.",
          "Query": "cup",
          "Bbox": [309, 118, 338, 154]
        }
      ]
    },
    {
      "Question": "Could you describe it in detail?",
      "CoT": [
        {
          "Ans": "The 'it' in the question refers to the cup from the previous question, so 
we first need to locate the cup.",
          "Query": "cup",
          "Bbox": [309, 118, 338, 154]
        },
        {
          "Ans": "We can see that the cup is made of paper.",
          "Query": "END"
        },
        {
          "Final_Ans": "The cup is a paper cup.",
          "Query": "cup",
          "Bbox": [309, 118, 338, 154]
        }
      ]
    }
  ],
  "image": "2353699.jpg",
  "question_id": 16
}

(b) the sample format

Figure 14: One example of the original image and the
generated sample from Visual Genome in JSON format.
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(a) the original image

{
  "QA_pairs": [
    {
      "Question": "What was the average advertisement cost during Super Bowl XXXVI 
(2002)?",
      "CoT": [
        {
          "Ans": "To find the average advertisement cost for Super Bowl XXXVI, we look 
at its specific entry.",
          "Query": "Super Bowl XXXVI (2002)"
        },
        {
          "Ans": "The average cost listed is 2.3 million U.S. dollars.",
          "Query": "END"
        },
        {
          "Final_Ans": "Thus, the average advertisement cost during Super Bowl XXXVI 
was 2.3 million U.S. dollars.",
          "Query": "2.3 million U.S. dollars"
        }
      ]
    },
    {
      "Question": "How much more did the average advertisement cost for Super Bowl 
LV (2021) compared to that event?",
      "CoT": [
        {
          "Ans": "The average advertisement cost for Super Bowl LV is 5.6 million U.S. 
dollars.",
          "Query": "5.6 million U.S. dollars"
        },
        {
          "Ans": "The cost difference can be calculated as 5.6 - 2.3.",
          "Query": ""
        },
        {
          "Ans": "This results in a difference of 3.3 million U.S. dollars.",
          "Query": "END"
        },
        {
          "Final_Ans": "Therefore, the average advertisement cost for Super Bowl LV was 
3.3 million U.S. dollars more than that event.",
          "Query": ""
        }
      ]
    }
  ],
  "image": "two_col_383.png"
}

(b) the sample format

Figure 15: One example of the original image and the
generated data point from ChartQA in JSON format.
The bounding boxes of the queries are generated using
EasyOCR (JaidedAI, 2024) and thus are not shown in
the example.

(a) the original image

{
  "id": "BabyAI-OpenDoorsOrderN4-v0_185",
  "QA_pairs": {
    "Question": "How can the agent open the green door first, and then open the grey 
door?",
    "CoT": [
      {
        "Ans": "To solve this, we first need to locate the agent's position.",
        "Query": "red triangle agent",
        "Bbox": [288, 224, 320, 256]
      },
      {
        "Ans": "Next, we need to find the green door.",
        "Query": "green door",
        "Bbox": [256, 160, 288, 192]
      },
      {
        "Ans": "To open the green door, the agent should move forward, then turn right, 
move forward again, and finally toggle to open the door.",
        "Query": "green door",
        "Bbox": [256, 160, 288, 192]
      },
      {
        "Ans": "Now, we need to locate the grey door.",
        "Query": "grey door",
        "Bbox": [288, 320, 320, 352]
      },
      {
        "Ans": "To go to the grey door, the agent should turn right, move forward, turn 
right again, and move forward several times to reach the grey door, then toggle to 
open it.",
        "Query": "END"
      },
      {
        "Final_Ans": "The agent first needs to move forward, turn right, move forward 
again to open the green door. Then, it should turn right, move forward, turn right again, 
move forward several times, and finally open the grey door.",
        "Query": "grey door",
        "Bbox": [288, 320, 320, 352]
      }
    ]
  },
  "image": "BabyAI_frame_0_with_action_full_obs_with_attr/BabyAI-OpenDoor-
sOrderN4-v0/185.jpg"
}

(b) the sample format

Figure 16: One example of the original image and the
generated sample from Minigrid in JSON format.

33310



(a) DiagNote (b) Grounding DINO

Figure 17: The grounding comparison between Grounding DINO and the Gaze module of DiagNote in Tabular
Scene. The grounding query is “Cyprus”. The red bounding box in (a) is the ground-truth answer, while the blue
one is the bounding box generated by our Gaze module. The red bounding box in (b) is the output of Grounding
DINO.

(a) DiagNote (b) Grounding DINO

Figure 18: The grounding comparison between Grounding DINO and the Gaze module of DiagNote in Minigrid
Scene. The grounding query is “grey key”. The blue bounding box in (a) is generated by the Gaze module of
DiagNote, which overlaps the ground-truth red bounding box. Meanwhile, the red bounding box in (b) is the output
of Grounding DINO.
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You are an evaluator. Your task is to assess the given answer based on its accuracy in 
response to the provided picture, related question, and the ground truth answer. Your 
evaluation should be based on ad-hoc reasoning. First, provide a detailed reasoning 
for your judgment, then explicitly state the final category in the format:
Reason: ... Judgment: ...
Use the following five categories for your judgment:
Incorrect: The answer is entirely wrong or unrelated.
Partially Correct: The answer contains some relevant elements but is mostly incorrect.
Medium: The answer captures partial correctness but lacks significant details or has 
notable inaccuracies.
Almost Correct: The answer is mostly accurate but has minor errors or omissions.
Correct: The answer is fully accurate and aligns well with the ground truth.
[Please give a detailed Chain-of-Thought process.]

Question: {Question} 

Ground Truth Answer: {GroundTruthAnswer} 

Given Answer: {GivenAnswer}

Figure 19: The evaluation prompt structure given to
Gemini-1.5-Pro. The content in ‘[]’ is added when the
CoT process is evaluated.

The provided image depicts a grid world, with gray squares representing impassable 
walls, black squares as the background color, and the agent represented as a red 
triangle, with its pointed tip indicating the initial direction it is facing. 

Various squares may contain different objects such as colored balls, keys, boxes, and 
doors.

Figure 20: The description of Minigrid Scene added to
the prompts.

This is the context, which includes the previous questions and answers related to the 
image.
{Context}

Current problem and its reasoning process (CoT) includes reasoning, focused objects, 
and their bounding boxes (bbox):
{Question_and_CoT}

Please provide the detailed reasoning process and focused objects for the question in 
dictionary form, outputting one dictionary in the following format each time: {{'Ans': , 
'Query': }}. Here, Ans represents the current reasoning step, and Query indicates the 
object of focus. If the reasoning is complete, set 'Query' to END.

Figure 21: The prompt structure of the Deliberate mod-
ule when the last Query output of the Deliberate module
is not ‘END’.

This is the context, which includes the previous questions and answers related to the 
image.
{Context}

Current problem and its complete reasoning process (CoT) includes reasoning, 
focused objects, and their bounding boxes (bbox):
{Question_and_CoT}

Please provide a concise answer to the question in dictionary form, outputting a dictio-
nary in the following format: {{'Final_Ans': , 'Query': }}, where Final_Ans is the concise 
answer to the question, and Query is the core object of focus in the image related to 
the question.

Figure 22: The prompt structure of the Deliberate mod-
ule when the last Query output of the Deliberate module
is ‘END’.

Please refer to the image and provide the exact rectangular coordinates of the 
{Query} in the format of a four-dimensional integer array [x1, y1, x2, y2], where x1 and 
y1 represent the coordinates of the top-left corner of the rectangle, and x2 and y2 
represent the coordinates of the bottom-right corner.

Figure 23: The prompt structure of the Gaze module.

Questions
What type are the trousers worn by the man with the headband?

What is he holding in hands?

The man with the headband is wearing jeans.

The man with the headband is holding a beer in one 
hand and a frisbee in the other hand.

LLaVA-1.5-13B

The man with the headband is wearing jeans.

The man with the headband is holding a beer in one 
hand and a frisbee in the other hand.

Visual CoT

jean
CogCoM

The man is holding a can of beer.

DiagNote
The trousers worn by the man with the headband are jeans.

He is holding a green can in his hands.

Input Image

Figure 24: The second example of comparison between
different MLLMs under everyday scenes.

Questions Which country had the highest rate per million 
population in 2019?

To find the highest rate in 2019, 
we look at the values for that year.

Query: 2019 values

Bbox: [337, 969, 373, 985]

Deliberate One

Bounding Box

Figure 25: The second example of comparison between
different MLLMs under everyday scenes.
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Input Image

Questions
How many orange plates are there in front of the girl?

What are placed above them?

There are two orange plates in front of the girl.

There are two cups placed above the orange plates.
LLaVA-1.5-13B

There are two orange plates in front of the girl.

There are two bowls placed above the orange plates.
Visual CoT

DiagNote
There are two orange plates in front of the girl.

The two white plates are placed above the orange plates.

1
CogCoM

The image captures a lively scene in a restaurant. A 
family of four is seated at a table, their attention directed 
towards the young boy who sits between them. He's 
engaged with his food, holding a fork and spoon in his 
hands as he enjoys his meal. \n\nThe table is adorned 
with plates filled with various dishes, each one adding to 
the vibrant color scheme of the room. There are glasses 
on the table, perhaps used for drinking or serving. \n\nIn 
the background, you can see other diners, suggesting 
that this is not just a family outing but also an event 
where others are present. The walls are painted in a 
warm yellow hue, providing a welcoming atmosphere 
to all those who enter.\n\nOverall, the image paints a 
picture of a happy moment shared by a family in a cozy 
setting.

1

Figure 26: The first example of comparison between
different MLLMs under everyday scenes.
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