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Figure 1: We align GUI grounding models from prior works to novel environments. Our proposed

includes first exploring the specific novel environment with the GUI-Bee agent to generate
the exploration graph and then fine-tuning the model with the data from the exploration graph. In the inference
example at the bottom, the models encounter a query requiring knowledge of an environment-specific action
outcome, which highlights the importance of the proposed alignment process.

Abstract

Graphical User Interface (GUI) action ground-
ing, mapping language instructions to action-
able elements on GUI screens, is important
for assisting users in interactive tutorials, task
automation, accessibility support, etc. Most
recent works of GUI action grounding use
large GUI datasets to fine-tune Multimodal
Large Language Models (MLLMs). How-
ever, the fine-tuning data is inherently lim-
ited to specific GUI environments, leading to
significant performance degradation in novel
environments due to the generalization chal-
lenges in the GUI domain. Therefore, we ar-
gue that GUI action grounding models should
be further aligned with novel environments
before deployment to optimize their perfor-
mance. To address this, we first propose GUI-
Bee, an MLLM-based autonomous agent, to
collect high-quality, environment-specific data
through exploration and then continuously fine-
tune GUI grounding models with the collected
data. To ensure the GUI action grounding
models generalize to various screens within
the target novel environment after the contin-
uous fine-tuning, we equip GUI-Bee with a
novel Q-value-Incentive In-Context Reinforce-

* Co-advising. This work was partly performed when the first
author interned at Adobe Research.

ment Learning (Q-ICRL) algorithm that opti-
mizes exploration efficiency and exploration
data quality. In the experiment, we introduce
NovelScreenSpot to test how well the data
can help align GUI action grounding models
to novel environments. Furthermore, we con-
duct an ablation study to validate the Q-ICRL
method in enhancing the efficiency of GUI-Bee.
Project page: https://gui-bee.github.io.

1 Introduction

GUI action grounding maps natural language in-
structions to specific executable elements or loca-
tions on a GUI screen. It is valuable in helping
either users or GUI automation agents to locate
the target GUI elements to act upon (Agashe et al.,
2024; Zheng et al., 2024b; Koh et al., 2024a). As a
result, GUI action grounding has become a focus of
recent specialized model development efforts (Gou
et al., 2024; Cheng et al., 2024; Liu et al., 2024;
Chen et al., 2024).

Recent advanced GUI models are mostly fine-
tuned from pre-trained MLLMs on data sourced
from various GUI domains. However, when fac-
ing a novel environment, i.e., one that is not in-
volved during the fine-tuning, these models of-
ten face difficulty as the grounding tasks in the
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novel GUI environment often require environment-
specific knowledge that is not generalizable across
environments. As illustrated in the inference exam-
ple at the bottom of Figure 1, a model unfamiliar
with the specific GUI environment may fail to infer
that a triple-dot icon reveals layer shadow options.
Despite the large amount of existing GUI training
data, certain environments are inevitably left un-
covered. Therefore, we argue that when deployed
in novel environments, GUI action grounding mod-
els need to be aligned to the novel environments
for robust performance.

In this work, we tackle the problem of aligning
GUI action grounding models to novel GUI envi-
ronments that were not included in the previous
model training. As a result, our alignment process
allows GUI developers to strengthen existing GUI
action grounding models for their specific novel
use cases. As shown in the top right of Figure
1, the process mainly includes data collection and
then model alignment. To realize efficient data
collection in any GUI environment, we introduce
the GUI-Bee agent. This MLLM-based agent can
autonomously explore GUI environments, where it
predicts GUI actions and gathers GUI screens after
each action is executed. Then, GUI-Bee further
autonomously annotates these data from the explo-
ration and further uses them to align GUI action
grounding models to the environments explored via
fine-tuning.

GUI-Bee adopts an in-context action selection
policy that aims to realize a comprehensive ex-
ploration of the environment, covering as many
novel screens as possible. It leverages a Multi-
modal Large Language Model (MLLM) with the
in-context learning method and a Q-value table and
effectively handles the challenge of noisy action
space—the environment provided action candidates
might be invalid, and unknown action outcome—
the execution of a new action could lead to a pre-
viously explored screens. A newly proposed Q-
value-incentive In-context Reinforcement Learning
(Q-ICRL) algorithm is used to optimize the pol-
icy dynamically throughout the exploration. The
Q-ICRL mainly adjusts the Q-value table based
on the exploration history, ensuring the policy pri-
oritizes actions that are less explored and lead to
unexplored screens while avoiding repetitive or in-
valid actions.

To evaluate how GUI-Bee could help align GUI
action grounding models to novel environments,
we propose the NovelScreenSpot benchmark to

evaluate the performance improvements of GUI
action grounding models on five novel GUI en-
vironments that they are not previously trained
on. NovelScreenSpot features human-collected
queries requiring rich environment-specific knowl-
edge. In the experiments, we first align models
to the five GUI environments by leveraging the
GUI-Bee agent to explore the environments and
fine-tune the models with the collected data. The
results show that models after the alignment signif-
icantly outperform their pre-aligned counterparts,
confirming the effectiveness of the collected data.
Additionally, we perform an ablation study to eval-
uate the GUI-Bee agent with newly proposed met-
rics for screen diversity coverage and environment
knowledge coverage. Our findings reveal that the
Q-ICRL method boosts the efficiency of the explo-
ration for collecting high-quality data.

The overall contributions of this paper are:

* We propose to align GUI action grounding
models to novel GUI environments, equipping
them with environment-specific knowledge.

* We introduce the GUI-Bee agent with the Q-
ICRL algorithm, designed to explore GUI en-
vironments and generate high-quality data au-
tonomously.

* We align existing GUI action grounding mod-
els to five novel environments using data col-
lected by GUI-Bee and evaluate their perfor-
mance with the NovelScreenSpot benchmark.

* We propose novel metrics for evaluating the
exploration efficiency of the GUI-Bee agent,
demonstrating the effectiveness of the Q-
ICRL method against baselines.

2 Related Works

2.1 GUI Grounding with MLLMs

As Multimodal Large Language Models advance,
recent GUI works have emphasized the visual
modality of screen (Deng et al., 2023; Koh et al.,
2024a; Xie et al., 2024). GUI action ground-
ing—Ilinking natural language queries to GUI ele-
ments—has become a key challenge. Early works
(Zheng et al., 2024a; Koh et al., 2024b) used zero-
shot MLLMs with SoM methods (Yang et al.,
2023), while recent studies focus on generaliza-
tion. SeeClick (Cheng et al., 2024) introduced
visual-only grounding for cross-platform flexibility,
and GUICourse (Chen et al., 2024) expanded be-
yond executable elements. Further advancements
address high-resolution, interleaved Ul content
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through improved model designs (Gou et al., 2024;
Lin et al., 2024; You et al., 2024) and large-scale in-
domain training (Wu et al., 2024; Liu et al., 2024).
However, while prior works attempt to generalize
GUI grounding models to any GUI environment,
they overlook the existence of environment-specific
knowledge in GUI action grounding that is hard to
generalize. In our work, we instead propose that,
given any novel environment, aligning GUI action
grounding models to the environment to boost the
model performance. Our method can be applied on
top of all other GUI grounding models and signif-
icantly improve their performance for the deploy-
ment need.

2.2 In-Context Learning

In-context learning (ICL) refers to the method of
adapting models to new tasks by providing con-
text (Brown, 2020; Chan et al., 2022; Wang et al.,
2023). By including examples directly in prompts,
ICL allows large language models (LLMs) to gener-
alize to unseen tasks (Garg et al., 2022; Pan, 2023;
Wei et al., 2023). Prior works have explored ap-
plying ICL to reinforcement learning (RL) either
with model training involved (Laskin et al., 2022;
Lee et al., 2024; Xu et al., 2022) or by directly
leveraging pre-trained LLMs (Krishnamurthy et al.,
2024; Monea et al., 2024). We propose the Q-value-
incentive In-context Reinforcement Learning (Q-
ICRL), which also utilizes pre-trained LLMs but
distinguishes itself by using ICL to predict state-
action values. Our approach combines the adapt-
ability of LLMs with RL’s optimization-driven
structure, enabling efficient action selection in the
GUI environment exploration.

3 Aligning GUI Action Grounding
Models to Novel Environments with
GUI-Bee

In this work, we focus on aligning GUI ac-
tion grounding models to novel GUI environ-
ments and ensuring the generalization of mod-
els to various screens within the novel environ-
ment. To realize this, we propose a GUI-Bee
agent, which autonomously collects data enriched
with environment-specific knowledge through ex-
ploration and data annotation process. Using this
data, we continuously fine-tune the GUI action
grounding models to boost their performance. The
processes of exploration, data annotation, and fine-
tuning are detailed in the following sub-sections.

Exploration Graph Zoomed-in Exploration Graph
Explored action
Unexplored action
D Executed element ¢’

It

Figure 2: Left: an example of the exploration graph
showing screens connected by actions. Right: a zoomed-
in view of the graph with examples of I* and I**! and
some explored and unexplored actions (ever/never se-
lected during the exploration).

3.1 Autonomous Exploration via GUI-Bee

3.1.1 Exploration Goal

The goal of the exploration process is to construct
an exploration graph GG, where GUI screens [ are
represented as unique nodes and GUI actions a
form the edges connecting these nodes, correspond-
ing to screen transitions. During exploration, GUI-
Bee predicts actions to interact with the GUI and
captures the screens before and after each action
to populate the graph. The process begins from
a predefined initial GUI screen I' at exploration
step 1. At each subsequent step ¢,t € [1, tymazls
where t,,,4, 1s the maximum number of exploration
steps, the agent observes the current screen I and
leverages an MLLM to predict the action af. After
executing a?, if I**! does not exist in the explo-
ration graph G, it will be added to the graph as a
new node, and similarly, a? will be added as a new
edge if there is no existing edge in the graph be-
tween I' and I**!. We detail our method to check
if I'Tlis the same as another screen in G in Ap-
pendix B. An example of the exploration graph is
shown in Figure 2.

3.1.2 Challenges in the Exploration

Exploration faces two key challenges: identify-
ing valid actions in a noisy action space and han-
dling uncertain screen transitions. The set of ac-
tion candidates Aeyy (I?), obtained from the en-
vironment such as a Document Object Model
(DOM) tree or preprocessing methods such as
OmniParser (Lu et al., 2024), is defined as
at € Ae(I') = {a},d},...,al,}. However,
Aeny(I') often includes invalid actions targeting
non-executable elements, requiring the agent to
discern optimal actions that are both valid for ex-
ploration. Additionally, screen transitions are un-
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predictable and often irreversible, complicating
decision-making. Effective exploration requires
balancing new state discovery with leveraging
known actions. This balance necessitates accurate
action prediction and robust reasoning, making it
critical for the agent to effectively navigate the ac-
tion space and handle the inherent complexities of
GUI environments.

3.1.3 Q-value-Incentive In-Context

Reinforcement Learning (Q-ICRL)

Preliminary We consider the exploration pro-
cess as a Markov Decision Problem, which is de-
fined by a tuple (S,.A, P,r), where S denotes
the state space, A represents the action space,
P :SxAxS — {0,1} is the state transition prob-
ability function, and r : S x A — R denotes the
reward function. At each exploration step £ € N,
the GUI-Bee agent is at s € S, and leveraging
an in-context action selection policy Fy, GUI-Bee
takes an action a® € A on the current observed
screen I* which transitions to a new state s'™! € S
with probability P(s*!|s!, a?), receiving a reward
r(st, a'). The action a consists of the mouse or key-
board movement, e.g., "left click”, and the visual of
the target element e. The reward r is binary, where
it is positive when the a' leads to a new screen not
existing in the exploration graph at the beginning
of the current exploration step, i.e., I'*1 ¢ Gt=1.
Accordingly, to satisfy the Markov property, the
state is defined as the exploration graph before the
execution of a?, st = G*~!, where s! contains
only the initial screen. For simplicity, s’ is approx-
imated by a set of natural language descriptions
st ~ D' = {d* | d* = Describe(a*,G'71),a* €
G*~1}, where a” represents the edges in the ex-
ploration graph and Describe(-) uses an MLLM to
generate descriptions for the actions and screens
before and after the action. Further details on this
process are provided in Appendix F.

In-Context Action Selection Policy To select an
action a' at state s', GUI-Bee adopts an in-context
action selection policy a' = Fy(I;), which takes
as input the current screen I’ and outputs an an
action a’ € Aeny(I?) to be executed. Fy lever-
ages a Q-values table Q(.5, a), quantifying the re-
wards of executing any given actions a at given
state S, and a MLLM. To output al, Fy first uses
{Q(s!, al)|al € Aeny(I')} as weights to sample a
subset AL (1) C Aeny(I?) with length H from

env
the action space Aeny(IY). Then, the MLLM is

Image input for the MLLM:
B = vweo v &

ICL predicting Q(s*,a’)

Prediction
target: I

© &

Descriptions of
the previous
exploration: pt

P Os@ N & 230N & % @

Q(Shat) =25

Figure 3: Example of predicting the Q(s*, a’,) with the
MLLM through in-context learning (ICL). Two example
actions (Geg1, Geg2) marked by bounding boxes 2 and 3
are provided as the context along with their Q values.
The full prompts are detailed in Appendix C

employed to identify the most promising action a'

from AL (I*) by

a! = argMaz, c.ay, (10(Q(s', b)),

where Q(s*,a’) is an MLLM-prediction of the
Q(s',al) with the in-contxt learning method.
Specifically, to generate Q, we provide the
MLLM with two example actions (Gegl,deg2)
along with their corresponding Q-values
(Q(s", aeg1), Q(s", aegr)) and natural language
description of the current state st. As the example
shown in Figure 3, we mark (aegi, aeg2) and a’,
on the screenshot of I as the visual input to the
MLLM with the Set-of-Mark method (Yang et al.,
2023), and the example is selected to be elements
on I* that are most visually similar to the e!, while
having more reliable Q-values. We detail the
procedure to select example action in Appendix C.
Instead of only relying on the Q(s, af) to select a,
in this way, the internal knowledge of the MLLM
helps to offset the potential error in the Q-value
table.

Policy Update via Q-ICRL  As more screens are
included in the exploration graph, the action selec-
tion policy Fy needs to be dynamically updated for
optimal efficiency. Intuitively, Fy will prioritize
actions that leads to screens not yet in the explo-
ration graph. We achieve this by using a newly pro-
posed Q-value-Incentive In-Context Reinforcement
Learning (Q-ICRL) method, outlined in Algorithm
1, which adjusts the Fy based on the reward calcu-
lated after each exploration step. Inspired by the
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Algorithm 1: Q-value-incentive In-context
Reinforcement Learning (Q-ICRL)

Input: Environment Env, Initial screen 1 L
Maximum exploration steps T’
Output: Exploration graph G
Initialize G = {I'}
for each exploration step ¢ € [1,7] do
st=G
a' < Fp(I') // Fp is an in-context
action selection policy
I'+! « Env.execute(a’)
if I'T ¢ G then
G.add_node(I*+1)
G.add_edge(It,at, I'T1)
end if
0 <~ UPDATE(0, a®, I, Ay (I'+1), ItH1)
G+ G {ad, 't}
end for

Q-learning algorithm (Watkins and Dayan, 1992),
the update target is the Q-value table () that used
by F' while the MLLM is left frozen. At¢ = 1, the
Q-value table is initialed as empty. Then, after the
a' is selected and executed, we first examine the
elements on the new screen I'*! and determine the
elements exist in the previous explored screens

X = {z]al™ € Aen(I7),z € [1,1]}).

Then, the values in the Q-value table are updated
via

if X't £ o

otherwise

Q(St+1 aHl) — Q(Sxa a§+1)v
Y 100,

for Vaﬁ“ € Aenv(ItH),

where x = ma:c(XfH). This mainly propa-
gates any existing non-default value Q(s*,a‘ ™)
to the Q values of the new state s‘*! and a same
action a?“. Further, the Q value for the executed
action at current state s; is updated to reflect the

desirability of the action’s result by

Q(s',a") =
v-Mean({Q(s"™, al™) | a*! € Ay (I'™)})
MRS
Y =4 Ymed, if I € stand I £ 1T,
Yiow, if [P =TT,

where Ymax, Ymed and Yiow are hyper parameters
that we set to be 0.85, 0.75 and 0.4 respectively.
This update mechanism ensures that Q-values will

decrease for an action after each time it is exe-
cuted, and when the action leads to new screens
with more unseen candidate actions, the decrease
is slower than the case if it leads to redundant or
ineffective transitions. We further compare our Q-
ICRL method with ICRL (Monea et al., 2024) in
Appendix G.

3.2 Autonomous Data Annotation with
GUI-Bee

After the exploration, for each edge a' in the G, the
connected nodes (It, I**1) is sent to the MLLM
to generate u', a list of queries serving as action
grounding queries for the target element e’ in I?.
We carefully design the prompt, detailed in Ap-
pendix E, to guide the MLLM in generating these
queries. The queries involve both "what is cur-
rently visible" on the screen and "what will appear”
after interacting with GUI elements. Building on
the multi-lens prompting method (Fan et al., 2024),
we create separate visual prompts, or lenses: two
capture the full screens of I* and I**! while one
isolates e’ to ensure high-quality outputs. The cen-
ter of e! is then sampled as the target point p’, and
the resulting data (u’, I, p') is used to fine-tune
GUI action grounding models.

3.3 Fine-tuning Models with
Environment-specific Data

We leverage the data generated by the GUI-Bee
agent’s exploration and annotation processes to
fine-tune GUI grounding models to align them with
specific novel GUI environments. The data con-
sists of pairs of inputs, including the GUI screen 1
(comprising a screenshot and an accessibility tree,
detailed in Appendix H) and grounding query u,
along with corresponding outputs, the target loca-
tion p. Benefiting from the flexibility of the rep-
resentation of [ in the generated exploration data,
we are able to fine-tune models in two input con-
figurations: vision-only and Vision+A11y. In the
vision-only configuration, the input consists solely
of GUI screenshots. In the Vision+A11ly configura-
tion, the input includes both GUI screenshots and
the accessibility tree (A1ly tree), embedded as part
of the text prompt. The fine-tuning process aims to
adapt the models to leverage environment-specific
knowledge efficiently, improving their grounding
performance in the target environments.
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Shopping Classifieds Reddit Eventbrite Photoshop-web

NovelScreenSpot # Unique Action Grounding Targets 58 42 44 47 44
Benchmark POty Unique Grounding Queries 105 98 96 107 106
Ratio of Queries about Action Outcomes 30.5% 32.7% 39.6% 42.1% 34.0%
Exploration # Unique Action Grounding Targets 555 530 590 526 692
Generated Data |# Unique Grounding Queries 6,080 5,719 6,480 5,740 6,876

Table 1: Statistics of the NovelScreenSpot benchmark and the exploration data generated by GUI-Bee.

4 NovelScreenSpot Benchmark

Overview We introduce NovelScreenSpot, a
benchmark with real user grounding queries in five
diverse and novel web GUI environments. It sim-
ulates real-world GUI model deployment, where
GUI action grounding models need to be deployed
in environments that are not presented in train-
ing data. Therefore, unlike existing benchmarks
that emphasize diversity across many environments,
such as the ScreenSpot (Cheng et al., 2024), Nov-
elScreenSpot instead includes environments that
rarely exist in the training data of the GUI model
and provides a greater data variation within each
environment.

It consists of triplets: grounding queries, screens
(screenshots and accessibility trees), and ground-
truth bounding boxes for grounding targets. Ta-
ble 1 shows benchmark statistics, with examples
in Appendix J. Notably, the NovelScreenSpot in-
cludes a large number of queries, around one-third
of the total benchmark, focusing on interaction out-
comes. These queries require environment-specific
knowledge and hardly exist in the existing bench-
marks. The five GUI environments in the Nov-
elScreenSpot are three offline websites from the
VisualWebArena (Koh et al., 2024a)—Shopping,
Classifieds (a second-hand marketplace), and Red-
dit (an online forum)—and two online websites,
Photoshop-web and Eventbrite. These environ-
ments vary greatly in style, with Photoshop-web
dominated by professional icons, Shopping and
Classifieds emphasizing images, and Reddit and
Eventbrite focusing more on textual content.

Task and Metrics The models are required to
predict points within the target GUI elements
corresponding to the language queries in Nov-
elScreenSpot, simulating how users indicate a GUI
element with a cursor. We evaluate models on Nov-
elScreenSpot before and after continual fine-tuning,
quantifying improvements per environment. We
define two testing scenarios: vision+AlIly, where

models receive screenshots, queries, and accessi-
bility tree text, and vision-only, where inputs are
limited to screenshots and queries. A prediction is
correct if it falls within the ground-truth bounding
box, with accuracy as the evaluation metric.

Annotation NovelScreenSpot is manually con-
structed through a multi-step annotation process.
First, we ask annotators to interact with the web
environments and record their actions, including
the screens before and after the action and the cor-
responding target elements. Next, different anno-
tators write queries based on three perspectives:
direct element name/label, element appearance,
and interaction outcome. Finally, we manually
validate data by eliminating ambiguous queries,
removing duplicates, and discarding misaligned
annotations. The resulting dataset provides clear
triplets of queries, screens, and target elements. An
example annotation interface is in Appendix L.

S Experiments

5.1 Alignment Effectiveness

We evaluate the effectiveness of GUI-Bee data in
aligning GUI action grounding models to novel en-
vironments. We fine-tune four models—SeeClick
(Cheng et al., 2024), Qwen-GUI (Chen et al., 2024),
UIX-7B (Liu et al., 2024), and Qwen2.5-VL 3B
(Yang et al., 2024b)—to adapt to previously un-
seen GUI environments in the NovelScreenSpot
benchmark.

Setups We employ the GUI-Bee agent to explore
the five environments in NovelScreenSpot, con-
ducting up to 400 exploration steps per environ-
ment with three candidate actions sampled at each
step. To ensure diverse screen data, the exploration
is repeated three times per environment at vary-
ing screen resolutions. GPT-40 (OpenAl, 2024) is
adopted as the multimodal large language model
(MLLM) in the experiments, though other MLLMs
can also be integrated into the framework. Table
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NovelScreenSpot Multimodal-M2W
Shopping  Classifieds Reddit Eventbrite Photoshop-web Avg. | Eventbrite
Vision-only GUI Action Grounding
SeeClick 36.2 36.7 354 35.5 13.2 - 23.1
SeeClickmindoweb 39.0 (+2.8) 30.6 (-6.1) 36.5(+1.1) 43.0(+75) 9.4 (-39 (+0.3) | 38.5(+15.4)
SeeClickgurpee(Ours) 48.6 (+12.4) 449 (+82) 39.6 (+4.2) 53.3(+17.8) 18.9 (+5.7) (+9.7) | 38.5(+15.4)
UIX-7B 314 38.8 44.8 43.0 22.6 - 23.1
UIX-7BMind2web 39.0 (+7.6) 38.8 (+0) 37.5(+73) 439 (+0.9) 16.0 (-6.6) (+1.8) | 23.1(+0)
UIX-7Bgur.Bee(Ours) 78.1 (+46.7) 66.3 (+27.5) 60.4 (+15.6) 70.1 (+27.1) 31.1(+8.5) (+25.1) | 53.8 (+30.7)
Qwen-GUI 19.0 214 26.0 34.6 9.4 - 23.1
Qwen-GUIinaoweb 23.1 (+4.1)  21.6(+0.2)  28.1(+2.1) 36.0(+1.4) 103 (+0.9) (+1.7) | 23.1 (+0)
Qwen-GUIGyp.gee(Ours) 257 (+6.7)  31.6(+102) 28.1(+2.1) 37.4(+28) 123 (+2.9) (+4.9) | 46.2 (+23.1)
Qwen2.5-VL 70.5 57.1 62.5 71.0 434 - 46.2
Qwen2.5-VLyginaoweb 68.8 (-1.7) 43.4 (-13.7)  55.2(-7.3) 75.7 (+4.7)  31.6 (-11.8) (+1.7) | 46.2 (+0)
Qwen2.5-VLguipee(Ours)  75.0 (+4.5)  73.1 (+16.0) 79.5(+17.0) 78.6 (+7.6) 56.3 (+12.9) (+11.6) | 53.8 (+7.6)
Vision+Ally GUI Action Grounding

Qwen-GUI 343 50.0 344 52.3 13.2 - -
Qwen-GUIgyy_pee(Ours) 51.4 (+17.1) 54.1 (+4.1)  55.2(+20.8) 62.6 (+10.3) 41.5(+28.3) (+16.1) | -
UIX-7B 16.2 14.3 11.5 21.5 10.4 - -
UIX-7BGuLBec(Ours) 74.3 (+58.1) 77.6 (+63.3) 80.2 (+68.7) 82.2(+60.7) 70.8 (+60.4) (+62.2) | -
Qwen2.5-VL 67.6 62.3 57.3 65.4 40.6 - -
Qwen2.5-VLgyurpee(Ours) 723 (+4.7)  78.8 (+16.5) 83.3 (+26.0) 74.8(+9.4) 59.8(+19.2) (+15.2) | -

Table 2: Results of benchmarking GUI grounding models. We show the model accuracy and the absolute improve-
ment over the vanilla models after the models are aligned to the environment. The results demonstrate that our
GUI-Bee model significantly improves the performance of GUI action grounding models in novel environments.

1 summarizes the exploration statistics, with costs
under $50 per environment. For Qwen-GUI, UIX-
7B, and Qwen2.5-VL, we further incorporate both
vision-only and Vision+A11y data, consistent with
their pre-fine-tuning formats. Additional details
on exploration settings, data formatting, and fine-
tuning are provided in Appendix H.

Main Results In Table 2, we report perfor-
mance on the NovelScreenSpot benchmark be-
fore and after alignment to each novel GUI en-
vironment. For each environment, we evaluate
two adaptation strategies: (1) fine-tuning with a
broad, general-purpose dataset from Multimodal-
Mind2Web (Zheng et al., 2024b), and (2) fine-
tuning with the environment-specific data collected
by GUI-Bee. This setup simulates a practical de-
veloper choice when deploying to a new applica-
tion: either re-use existing general GUI grounding
data or leverage targeted data gathered via GUI-
Bee. The results show that GUI-Bee-collected data
shows the best effectiveness in improving the per-
formance of all tested models, underscoring the
value of environment-specific knowledge for adap-
tation. Among the models, UIX-7B achieves the
largest relative accuracy gains, while Qwen2.5-VL
reaches the highest absolute accuracy after align-
ment.

Furthermore, models fine-tuned in the vi-

sion+Ally GUI action grounding setting demon-
strate greater performance for some heavy-text or
dense-icon environments such as classifieds, Red-
dit, and Photoshop-web. This underscores the value
of the flexible formats in GUI-Bee’s collected data,
which incorporate contextual information such as
accessibility data to enhance model performance.

Results on Grounding for Offline GUI Agents
We extend our evaluation by following Gou et al.
(2024) to leverage the test data from Multimodal-
Mind2Web (Zheng et al., 2024b) for further assess-
ing the GUI grounding models after the alignment.
This test data simulates GUI grounding tasks from
MLLM-planned instructions in GUI agent applica-
tions, corresponding to high-level, real-world GUI
tasks. The grounding queries consist of element de-
scriptions generated by MLLMs, without explicitly
referencing coordinates. As shown in Table 2, the
result reveals that models continuously fine-tuned
with GUI-Bee data achieve significantly greater
performance improvements in the target environ-
ment. This further validates the effectiveness of
our proposed method.

Model Performance on Action Qutcomes Re-
lated Queries In Figure 4, we present the av-
erage performance improvements of the models
on queries related to action outcomes that require
strong environment-specific knowledge, as well
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I Pl on full NovelScreenSpot

P.I. on Action Outcome
Related Queries

SeeC\lick UIX-7B  Qwen-GUI Qwenz.?-VL UIX—7‘B Qwen-GUI Qwen2.}5-VL

Vision-only Vision+A11y

Figure 4: Model average performance improvements
(P.I.) on the full NovelScreenSpot benchmark v.s. on the
subset with queries related to action outcome. The pro-
posed alignment improves model performance evenly.

as their overall performance improvements after
the proposed alignment process. The results show
consistent gains in both categories across all mod-
els. This demonstrates that the data generated by
our GUI-Bee agent is universally effective in en-
hancing model performance for grounding tasks in
the novel GUI environment, addressing not only
environment-specific challenges but also general
grounding weaknesses faced by models.

5.2 Exploration Efficiency

To enable a successful alignment of the GUI action
grounding model to a novel environment, it is criti-
cal to efficiently collect diverse data specific to the
environment rather than repeating data (an ablation
study is shown in Appendix D). To further evaluate
the efficiency of our GUI-Bee agent in exploring
and generating diverse data within GUI environ-
ments, we compare it against two baseline explo-
ration methods on the three offline GUI environ-
ments: Shopping, Classifieds, and Reddit. These
environments are reset to identical initial states at
the beginning of each exploration, ensuring that
all agents start from the same conditions and face
equivalent challenges.

Evaluation and Metrics To evaluate the effi-
ciency of exploring diverse data, we assess the
diversity of actions and screens in the exploration
graph G'ma= generated by each agent under the
same maximum number of exploration steps ¢,4z-
We introduce the Depth-fixed DOM Diversity
Counts (D3C) metric to assess structural variation
in the screens within the exploration graph G* gen-
erated by different agents objectively. D3C is de-
fined as the number of distinct page structures in
the G*. Each page structure is determined by trun-
cating the DOM tree of a screen to a fixed depth,
retaining only the class attributes of elements. By
counting the unique page structures within all the
page structures within G*, we get the D3C value

Reaching 1 hours of exploration

—— ICRL
—— Q-ICRL (Ours)

0 25 50 75 100 125 150 175 200
Exploration Steps

Figure 5: Mean and standard deviation of Depth-fixed
DOM Diversity Counts (D3C) at various exploration
steps across three runs in three environments. GUI-Bee
agent demonstrates a wider exploration coverage with
the same exploration steps and time costs.

at the exploration step . With a fixed number of
exploration steps, D3C provides a quantitative mea-
sure of the agent’s efficiency in uncovering diverse
structural layouts, offering a clear and objective
metric for exploration breadth.

Baselines To evaluate the Q-ICRL method, we
introduce two ablated versions of GUI-Bee: one
explores with the In-Context Reinforcement Learn-
ing (ICRL) method (Monea et al., 2024) and the
other one explores with the random strategy. The
ICRL version of our GUI-Bee ablates the use of the
Q-value table, and it directly leverages the MLLM
with in-context learning to select the next action
on the GUI screen. The in-context example is ran-
domly chosen from the actions that exist in the
exploration graph. The random agent follows a
purely stochastic strategy, selecting actions ran-
domly from the candidate actions of each screen.
All agents are constrained to the same maximum
number of action steps to enable a fair comparison.

Results We calculate the D3C for each explo-
ration conducted by agents in all three environ-
ments and compute the average D3C for each agent
across the three environments. This process is re-
peated three times, and the mean and standard devi-
ation of the averaged D3C across these evaluations
are plotted in Figure 5. As the number of explo-
ration steps increases, the averaged D3C for all
agents grows, but our GUI-Bee agent demonstrates
stronger growth momentum and significantly out-
performs the baselines after 100 exploration steps.
Additionally, we analyze the time costs of the ex-
ploration that we experiment with and pinpoint
the time step that corresponds to a time cost of
one hour after the exploration starts for each explo-
ration method in Figure 5. We find that the Q-ICRL
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achieves a higher D3C within the same amount of
time and the exploration with Q-ICRL gets a D3C
of 35 using only 50% of the exploration steps and
around 72% of the total time compared to random
exploration. More details about the exploration
time costs are in Appendix H. These results collec-
tively demonstrate that the GUI-Bee agent is more
efficient in covering broader areas of the GUI envi-
ronment and uncovering more diverse exploration
data compared to the baseline.

6 Conclusion

This work pioneers the alignment of GUI action
grounding models to novel environments. The
alignment leverages the GUI-Bee agent, a newly
proposed MLLM-based agent with a Q-ICRL al-
gorithm, to first autonomously explore GUI envi-
ronments and collect data. Then, using the data,
GUI action grounding models are continuously
fine-tuned. Our experiments show significant per-
formance gains across all target novel environments
and demonstrate GUI-Bee’s efficiency in generat-
ing diverse environment-specific data. Addition-
ally, there is a strong potential for extending GUI-
Bee toward collecting data for multi-step naviga-
tion tasks. Such an extension could support appli-
cations like workflow automation, complex web
browsing, and creative tool guidance. Realizing
this vision raises important open challenges, such
as designing Q-value update mechanisms that en-
sure semantically consistent trajectories and scal-
ing exploration to longer-horizon tasks, which we
identify as promising directions for future research.

7 Limitations

The GUI-Bee agent excels in tailoring GUI action
grounding models for specific environments but
has limitations. It uses Multimodal Large Lan-
guage Models (MLLMs) like GPT-40, which pro-
vide high-quality data but come with higher com-
putational costs, latency, and privacy issues. Ad-
ditionally, as exploration within a specific envi-
ronment continues and the number of exploration
steps increases, the GUI-Bee agent accumulates an
increasingly long history of exploration data. Pro-
cessing this longer history can introduce additional
overhead, increasing the time required to select ac-
tions for subsequent exploration steps. This may
impact scalability in highly complex environments
or during exploration with excessive number of
exploration steps.
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A GUI Elements Fuzzy Visual Matching

We develop a GUI Elements Fuzzy Visual Match-
ing module F'f,y,, to compare if two GUI elements,
e and €', can be recognized as visually the same.
Challenges arise from the variations in GUI render-
ing; for example, web browsers could render the
sample page with slight element shifts each time.
Such variation can make pixel-perfect matching
overly sensitive, leading to false negatives. Fur-
thermore, dynamic elements on the screen, such
as GIFs, can also cause variability unrelated to the
executed action. We first let F'r,,,, apply a Gaus-
sian filter to e and €’ to smooth rendering defects.
Then we enumerate an offset value o for e and €’ to
overlay e on ¢’ and compute normalized pixel-wise
difference F,, (e, €’), while ensuring a minimum
overlap of 75%, IoU(e, €’) > 0.75. Finally, from
all possible offset values, e and ¢’ are considered
identical if based on the maximum of F'y,,, (e, €’)
is less equal to 0.05:

MAL o(Fy,,, (Shift(e,0),¢')) < 0.05

B Determining the Equality of Two
Screens

We leverage the proposed GUI Elements Fuzzy
Visual Matching module detailed in Appendix
A to verify whether a screen I is the same
as another screen I’'.  Specifically, we com-
pute the MATo(Fy,,, (Shift(e,0).¢')) for all e in [
and €’ cropped at the same location in I’. If
the maa:e(maxo(pfvm(Shiﬁ(&o)’el))) < 005,v€ S
It Ve' € T, we regard the I and I’ are the same.
Additionally, if dynamic content exists in screen
1, we capture the screenshot for the same screen
multiple times over time to identify inconsistent
regions and excludes them when determining the
equality for I and any other screen I’.

C Details of In-Context Action Selection
Policy

As introduced in Section 3.1.3, the in-context
action selection policy uses the MLLM to pre-
dict Q(s*,al) and thus select the action a’ to
execute next at time step t. For a candi-
date action a!, to enable the MLLM to cor-
rectly estimate its Q-value reflecting its desir-
ability at the current state, we provide the
MLLM with example pairs (deg1, Q(s", aeg1)) and
(aeg2, Q(5", Gegn)). The example actions are chosen
from the same candidate set Aeny(I%) as al,, with

(Q(s", aeg1), Q(s", aeg2)) # 100, and their corre-
sponding elements (ecg1, €cg2) being the most visu-
ally similar to e’.. This ensures that the example
actions either correspond to or are closely related to
previously executed actions and are visually close
to the candidate action al,. To identify such visu-
ally similar elements, we develop a GUI Element
Fuzzy Visual Matching module (Appendix A). If
no suitable ae, exists, we skip the example-related
content in the prompt.

To construct the text prompt for predicting
Q(s", at), we include the natural language descrip-
tions D! approximating the current state s, the two
example actions and their Q-values, and the visual
input encoded using the Set-of-Mark method (Yang
et al., 2023). Figure 10 shows an example of the
full prompt input and the corresponding model out-
put.

D Ablation Study on Data Diversity and
Scale

Setup and Metrics. We study how diversity and
scale of environment-specific data affect alignment.
We quantify structural diversity with the Depth-
fixed DOM Diversity Counts (D3C) score (higher
is more diverse), and we report downstream ground-
ing accuracy for multiple backbones under two
settings: (i) Vision-only grounding and (ii) Vi-
sion+A11ly grounding.

Model Alignment with Data of Various Di-
versity. We test the hypothesis that more di-
verse environment-specific data collected by GUI-
Bee leads to stronger alignment. Concretely, we
ask: If the same number of samples is gathered
with a naive random-action explorer—hence much
lower diversity—does the aligned model still im-
prove? On the Photoshop environment of Nov-
elScreenSpot, we fine-tune four GUI grounding
models on equal-sized datasets collected by (a)
uniform-random exploration (low D3C) and (b)
our Q-ICRL explorer (high D3C). As shown in Ta-
ble 3, all models improve more with Q-ICRL data,
confirming that higher screen diversity yields better
alignment.

Model Alignment with Data of Various Scale.
We next investigate how scaling the amount of col-
lected data affects alignment when data diversity
is kept mostly unchanged. This happens when the
exploration within one environment is largely sat-
urated where the newly explored screens become
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Model Before Random Exploration Q-ICRL Model Without FT FT @ 6k FT @ 15k
alignment (low D3C) (high D3C)
Vision-only GUI Action Grounding
Vision-only GUI Action Grounding -
SeeClick 32 146 (+1.4) 189 (+5.7) SeeClick 36.2 48.6 (+12.4) 52.7 (+16.5)
Qwen-GUI 9.4 9.5 (+0.1) 12.3 (+2.9) Qwen-GUI 19.0 25.7 (+6.7)  29.3 (+10.3)
UIX-7B 22.6 29.6 (+7.0) 31.1 (+8.5) UIX-7B 31.4 78.1 (+467) 76.0 (+446)
Qwen2.5-VL 43.4 50.0 (+6.6) 56.3 (+12.9) Qwen2.5-VL 70.5 75.0 (+4.5)  75.7(+5.2)
Vision+Al1ly GUI Action Grounding Vision+Al1ly GUI Action Grounding
Qwen-GUL  13.2 333 (+20.1) 41.5 (+28.3) Qwen-GUI 34.3 51.4 (+17.1) 53.8 (+19.5)
UIX-78 10.4 65.7(+53.3) 708 (+60.4) UIX-7B 162 743 (+58.1) 82.1(+65.9)
Qwen2.5-VL  40.6 51.9 (+11.3) 59.8 (+19.2) Qwen2.5-VL 67.6 72.3 (+4.7) 77.5 (+9.9)

Table 3: Impact of data diversity on alignment (equal
data size). The results show the performance of four
GUI action-grounding models after fine-tuning with
data collected either by our GUI-Bee with Q-ICRL algo-
rithm with a higher D3C, or by uniform-random explo-
ration with low D3C. GUI-Bee with Q-ICRL discovers
more diverse screens (higher D3C) and yields larger
gains than random exploration.

mainly screens that are non-identical to previously
explored ones but structurally the same. To this end,
we repeatedly explore the WebArena—Shopping en-
vironment six additional times (maximum 7'=400
steps each) at different screen resolutions. This
procedure expands the training set from 6,080 to
18,170 samples, while the Depth-fixed DOM Di-
versity Counts (D3C) increases only slightly from
79 to 80, i.e., the added data consists mostly of
structurally similar but non-identical screens. Fine-
tuning with this extended dataset still improves
overall performance (Table 4), but the gains are
smaller than those obtained from diversity-driven
scaling. In some cases, such as UIX-7B under
the Vision-only setting, redundancy even leads to
mild regression. These results highlight that in-
creasing data scale remains beneficial but yields
diminishing returns once diversity has plateaued,
suggesting that effective exploration should prior-
itize discovering structurally novel screens over
merely accumulating more examples.

Key Takeaways. (i) Diversity first: For a fixed
budget, collect screens that increase D3C; this
consistently yields larger downstream gains. (ii)
Plateau detection: When D3C growth stalls,
further scale (e.g., resolution variants) provides
smaller benefits and can slightly regress some
models—a signal to stop or switch environments.
(iii) Practical guidance: Track “new screens per
100 actions” and D3C; terminate exploration when
both flatten to avoid redundant data collection.

Table 4: Scaling with near-constant structural diversity
(D3C = constant). Increasing data from 6k to 15k sam-
ples (via multi-resolution re-exploration) yields smaller
gains than diversity-driven scaling; mild regression can
occur due to redundancy.

E GUI Action Grounding Queries
Annotation

Once a new edge (I*,a’, I'*t!) is added during ex-
ploration, we send this information to the MLLM
to generate u’, a list of action grounding queries
for the target element e’ in I*. The generation pro-
cess uses a carefully crafted prompt, designed to
ensure the queries cover both queries focused on
current screen content and queries anticipating in-
teraction outcomes grounding challenges. The full
version of the text prompt for the MLLM is pro-
vided in Figure 6. We also show an example of the
input images in Figure 9 along with the GUI action
grounding queries u! in the corresponding output.

A user clicks the element marked with box 1 on the screen shown
in the first image and then arrives at the screen shown in the second
image. A zoomed-in look of the element clicked is shown in the
third image. Please generate a JSON dictionary format with values
for the following 3 keys:

1. analysis: describing the appearance of the element, including but
not limited to color, shape, etc. Try to make the description uniquely
identify the element.

2. system_1_queries: a list of maximum 6 requests or questions that
will uniquely lead to clicking the element in the page, with maximum
3 of them mentioning something special about the appearance of
the element (can be skipped if the element’s appearance is just plain
text).

3. system_2_queries: a list of maximum 5 simple requests or ques-
tions that uniquely lead to the element. They each should mention
one specific function (consequence) of this click, i.e. a specific thing
that is only shown in the second image, but not in the first image.

Figure 6: Text prompt for generating GUI action ground-
ing queries (u?).

F Approximating State (s') with Natural
Language Descriptions D’

To simplify the representation of the state s’ at the
t-th exploration step, we approximate it with a list
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of natural language descriptions D!, where each
description d* corresponds to an action and its re-
sulting state transition. Figure 7 illustrates the input
prompt used to generate one such natural language
description. The input consists of the current screen
I with the action target a' visually marked (box
1), along with the resulting screen I**!. Using this
input, the MLLM produces a textual description
capturing the key details of the transition, including
the action a!, the visual changes between I and
I+ and any notable observations. These natu-
ral language descriptions serve as a compact and
interpretable representation of the exploration his-
tory, enabling efficient input to the MLLM during
subsequent steps of the Q-ICRL process.

A use clicked an element on the screen shown in the first image, and
then arrived at the screen shown in the second image. Your output
should be a json dictionary format with values for the following 2
keys:

1. consequence: what happens after the click and what is shown
based on the second image.

2. clicked_element: describe what element (marked by the box 1) is
clicked (apperance, layout, etc).

Note: box 1 is the bounding box with label 1. Note: do not mention
box 1 in your output.

Figure 7: Text prompt for generating a natural language
description d* of one exploration step at ¢, where the
input images are I* with box 1 marked and I'*1.

G Distinction Between Q-ICRL and
ICRL

In recent work, Monea et al. (2024) introduced In-
Context Reinforcement Learning (ICRL), demon-
strating that Large Language Models (LLMs) can
exhibit reinforcement learning-like behaviors with-
out parameter updates. In ICRL, the model’s de-
cisions are guided by a context that includes its
past predictions and the rewards they generated.
While powerful, this approach is distinct from clas-
sical reinforcement learning methods that optimize
a value function. Our Q-ICRL method builds di-
rectly upon the foundation of ICRL but integrates
a core principle from Q-learning: learning and op-
timizing an action-value function (the Q-function).
In our framework, the LLM itself serves as the
Q-function. During exploration, we dynamically
update the in-context memory with trajectories of
actions and their observed rewards. This process
effectively updates the "Q-values" accessible to the
model in-context, allowing it to refine its policy
by favoring actions that have led to higher rewards
in the past. This dynamic, value-based adjustment
of the context is the key differentiator from ICRL,

as it enables a more structured and efficient explo-
ration behavior that improves as more interactions
are observed.

H Experiment Details for Exploration
and Fine-tuning

Exploration Details and Configurations We
adopt the WebArena environment (Zhou et al.,
2023) for exploration, which is built on Playwright
and Chromium. At each screen, the environment
directly provides screenshot, DOM tree, and acces-
sibility (A1ly) tree for the visible area. During the
exploration, GUI-Bee agent operates with a max-
imum of 7" = 400 exploration steps, and at each
step, it samples H = 3 candidate actions. The ac-
tions in the exploration are restricted to "click" and
"scroll" categories, as these are the most common
actions for GUI navigation. For "scroll" actions,
the target element ¢’ is simplified to represent the
"full page", ensuring consistent representation of
scroll transitions. To enhance robustness, each en-
vironment is explored three times using different
screen resolutions. This variation ensures the gener-
ated data captures diverse screen setups, improving
the generalization ability of the fine-tuned models.
Each exploration starting with empty G lasts be-
tween 5 to 18 hours, depending on the computing
power of the computer used and the web loading
latency. The long loading time is due to the over-
head of web loading time, around 3 seconds, and
the time using the Playwright tool * to acquire the
accessibility tree for each screen, around 5 seconds.
Other than that, although our Q-ICRL introduces
some computation expenses for each exploration
step, they are easily parallelizable and on average
takes around 3 seconds when a new screen is ex-
plored and around 1 second otherwise.

Model Fine-tuning Configurations We fine-
tune three GUI grounding models—SeeClick
(Cheng et al., 2024), Qwen-GUI (Chen et al., 2024),
and UIX-7B (Liu et al., 2024)—using the data gen-
erated by the GUI-Bee agent. Fine-tuning is per-
formed in two input configurations: vision-only,
where the input consists of GUI screenshots only,
and Vision+A11ly, where the input includes both
GUI screenshots and the accessibility tree embed-
ded in the text prompt.

The accessibility tree (Al1ly tree) is a structured
representation of the GUI that exposes key infor-
mation about screen elements, such as their type,

* https://playwright.dev
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properties, and hierarchical relationships. Typically
used for assistive technologies like screen readers,
the Ally tree provides textual descriptions and spa-
tial information of the interface components, com-
plementing visual input for models. Including this
information in the input prompt allows models to
leverage both visual and structural cues, improving
their grounding accuracy.

SeeClick and Qwen-GUI are based on Qwen-VL
(Bai et al., 2023), while UIX-7B is derived from
Llava-1.6 (Li et al., 2024) with Qwen2-7B-Instruct
(Yang et al., 2024a) as the primary LLM backbone.
For models that predict bounding boxes, such as
Qwen-GUI and UIX-7B, the center of the predicted
bounding box is used as the final output point for
evaluation.

Fine-tuning Settings For all models, fine-tuning
is conducted with a batch size of 16, a learning rate
of 1 x 1075, and for 5 training epochs. The gen-
erated exploration data are formatted to match the
original training format of these models to ensure
consistency. For models trained with bounding
boxes, the ground truth bounding box coordinates
are converted to center points to align with evalua-
tion requirements.

I Human Data Annotation Details

We recruited annotators from within our research
team, ensuring familiarity with GUI environments.
Annotators were compensated fairly for their work
to maintain ethical standards. All queries undergo
manual review to eliminate ambiguity, duplication,
and low quality, ensuring alignment with recorded
actions.

Annotation Interface Figure 8 shows an exam-
ple of the annotation interface, where annotators
view the screens and marked target element to input
queries efficiently.

J Examples of NovelScreenSpot

We randomly sample data from each environment
in the NovelScreenSpot benchmark and present
examples in Figure 11, 12, 13, 14, and 15. Each fig-
ure illustrates the GUI screen, the Ally string, the
corresponding query, and the ground truth target
element, showcasing the diversity and environment-
specific nature of the benchmark.
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Explore what's popular within Music >
Explore what's popular within Music

2 .
Most popular events L I,
B— . ’ '&'.:!.f;'.,.,d

Your task is to write natural language queries or questions that uniquely lead to the action of clicking the target
element marked with bounding box 1 in the left image. The right image shows the screen after the action. Each query
must be clear, concise, and unambiguous, ensuring it precisely identifies the target element and the action to be
performed. You may leave blank if no good answer.

Provide a query/question with the direct name or label of the target element:

Provide a query/question with the appearance of the target element, such as its color, shape, or position:

Provide a query/question with the outcome of interacting with the target element:

Figure 8: Example of the annotation interface for collecting GUI action grounding queries. The target element is
marked with bounding box 1, and annotators will write queries uniquely identifying this action.

T with box 1 marked Ittt
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& Selectsubject | &3 Importimage | @ € e+ | Rec &, selectswbject | &3 mportimage | @ @ - Rec
i t

[ (74
"system_1_queries": [ "Click the button with 'fx' written on it in a stylized font.", "Locate a square button that has a small triangle in the
bottom-right corner and click it.", "Find the white square containing the 'fx' label in black, and select it.", "Where can | add effects or

4 layer styles to this image?", "Which button opens a menu to apply visual effects like strokes or shadows to the layer?", "Click the button

used for accessing layer effects in Photoshop." ],

"system_2_queries": [ "Click the button to show the 'Layer effects' dropdown menu.", "How do | add a stroke or drop shadow effect to
this layer?", "Open the menu that lets me choose effects like gradient overlay or bevel & emboss.","Where can | find options like '‘Color
overlay' or 'Outer glow'?", "Show me the effects | can apply to the layer, such as patterns or shadows." ]

Figure 9: Examples of the input images (I* with box 1 marked, I**! and e’) and output GUI action grounding
queries u! in process of generating data generation along the exploration.
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Image input for the MLLM: Prompt for the MLLM:
The first image shows the screenshot of the _Photoshop-web website with a some elements
marked with bounding boxes. You are an agent exploring the website and the followings are
descriptions of the previous exploration:

Previous exploration covers:

1. Trash Bin Icon: Located in the Layers section. indicating a Delete Layer button.

2. Edit dr wn button: Positioned in the Hist nel. Clicking it expands th

B = e o

»

£

Noa %

Your task is to generate a rating between 0 and 100 for the element in box 1, where the higher the
rating means the more likely the element is: 1. clickable. 2. leading to something looks mysterious
or not explored in the previous exploration. 3. leading to something that has been explored but is
a must-click to more possibilities (get score no more than 60). Please output a json dictionary with
2 keys: "analysis" and "score".

The elements in box 2 and 3 serve as examples. The element in box 2 got a score of 20
o and the element in box 3 got a score of 80

=@ N & 5 0

Output from the MLLM:

{ "analysis": "The element in Box 1, labeled 'Layers', appears to be a panel heading. Furthermore,
based on the provided examples, it seems unlikely to open a previously unexplored or
mysterious section. It might be less interactive compared to elements such as the 'Edit'

@ oot IS dropdown.",
"score": 15}

Figure 10: Example of the full MLLM input and output when predicting Q(a;) through in-context learning. The
input includes two example actions (a1, deg2) marked by bounding boxes 2 and 3, and the candidate action a’,
marked by bounding box 1. The prompt if formed by a fixed template with the GUI environment name, state st, and
(Q(aeg1), Q(aeg)) that are all underlined. The output is the predicted Q-value Q(a’,) for aZ,.

Screenshot A11y information (truncated)
" e e link 'My Wish List 10 items' [0.651, 0.011, 0.769, 0.031]
One Ston Market =0 link 'Sign Out' [0.781, 0.011, 0.828, 0.031]
e o StaticText 'Welcome, Emma Lopez!' [0.853, 0.011, 0.983, 0.031]
Electronics Video Games image 'one stop market logo' [0.017, 0.076, 0.185, 0.105]

link '\\ue6ll My Cart 31 3litems' [0.931, 0.076, 0.983, 0.111]
StaticText 'Search' [0.708, 0.110, 0.745, 0.130]

combobox '\\ue6l5 Search' autocomplete: both hasPopup: listbox
required: False expanded:... [0.710, 0.076, 0.920, 0.110]
link 'Advanced Search' [0.710, 0.116, 0.803, 0.136]

button 'Search' disabled: True [0.893, 0.076, 0.911, 0.110]
tablist '' multiselectable: False orientation: horizontal
[0.000, 0.137, 1.000, 0.251]

menuitem '\\ue622 Beauty & Personal Care' hasPopup: menu
[0.007, 0.137, 0.171, 0.194]

One Stop Market

Producs Showcases

. menuitem '\\ue622 Sports & Outdoors' hasPopup: menu [0.179,
0.137, 0.314, 0.194]
(More)
Query: Ground truth grounding target:
Add the Dairy Free CocoWhip Light to 'My [0.898, 0.867, 0.927, 0.904] I
Wish List'
Figure 11: Example of NovelScreenSpot data from the Shopping environment.
Screenshot A11y information (truncated)

link 'My account' [0.627, 0.029, 0.702, 0.067]
EOsﬂass wysecoune oo (IR link 'Logout' [0.704, 0.029, 0.757, 0.067]
link 'Publish Ad' [0.759, 0.029, 0.832, 0.067]
link 'Classifieds' [0.170, 0.116, 0.216, 0.137]
Toursearen BoatsArlington StaticText '> ' [0.218, 0.116, 0.227, 0.137]
link 'Boats' [0.227, 0.116, 0.251, 0.137]

Classfinds > Bosts > Viginis > Arlngton

— oot = || S link 'Virginia' [0.262, 0.116, 0.295, 0.137]
Listings StaticText 'Arlington' [0.305, 0.116, 0.346, 0.137]
T e S 2007 Sea Ray 310 Sundancer group '' [0.177, 0.175, 0.302, 0.240]
i - " o heading 'Your search' [0.177, 0.175, 0.302, 0.193]
e e e e textbox '' required: False [0.177, 0.196, 0.302, 0.240]
oty oy s Spestars v, 1St 16 o e group '' [0.177, 0.262, 0.302, 0.327]
Ea o heading 'City' [0.177, 0.262, 0.302, 0.280]
@:sco.oos textbox '' required: False [0.177, 0.283, 0.302, 0.327]
b o i s ‘ N StaticText 'Arlington' [0.183, 0.294, 0.226, 0.316]

= c Conter
Subes o cleartie) 7039296240ne

group '' [0.177, 0.349, 0.302, 0.393]

Raton ey 2017 Doni 3400 Twin 300hp Suzikis Ofihore CC Center Console heading 'Show only' [0.177, 0.349, 0.302, 0.367]
ﬁ 0.0 checkbox 'listings with pictures' checked: false [0.177,

son i vannie 0.370, 0.189, 0.390]
B B oo o group '' [0.177, 0.415, 0.302, 0.498]
o heading 'Price' [0.177, 0.415, 0.302, 0.433]
ssani:;;asc s (More)
Query: Ground truth grounding target:

[0.627, 0.028, 0.701, 0.066] My account

Check my personal listings.

Figure 12: Example of NovelScreenSpot data from the Classifieds environment.
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Screenshot A11y information (truncated)

link 'Home' [0.000, 0.000, 0.151, 0.065]

“ Q Login Sign up image '' [0.064, 0.022, 0.087, 0.042]
button 'Places' hasPopup: menu expanded: False [0.827, 0.000,
0.978, 0.065]
/f/food image '' [0.890, 0.022, 0.914, 0.042]
e e —— A button 'Search' hasPopup: menu expanded: False [0.151, 0.000,

0.302, 0.065]

[homemade] Obligatory Halloween Pumpkin Loaf! image '' [0.215, 0.022, 0.238, 0.042]
Submitted by kneechalice [t3_yid9lu] 2 years ago link 'Log in' [0.302, 0.000, 0.557, 0.065]
45 commants StaticText 'Log in' [0.397, 0.021, 0.462, 0.044]

[ ate] Maple Pecan Croissant linkl'Sign L'lp' [0.5_?7, 0.000, 0.827, 0.065]

it Ackigod? 501 2030 StaticText 'Sign up' [0.653, 0.021, 0.731, 0.044]

204 comments. heading '/f/food' [0.021, 0.083, 0.957, 0.135]
StaticText '/f/' [0.021, 0.088, 0.067, 0.129]

ik [Homemade] Margherita pizza StaticText 'food' [0.067, 0.088, 0.152, 0.129]
v briinls huoianbeS e & link 'Submissions' [0.021, 0.152, 0.172, 0.196]
StaticText 'Submissions' [0.036, 0.164, 0.156, 0.184]
“;‘9 \  [Homemade] Sichuanese Spicy Beef Noods! link 'Comments' [0.172, 0.152, 0.305, 0.196]
% Submitted by cencwty [13_11akely] 2 years ago StaticText 'Comments' [0.187, 0.164, 0.289, 0.184]
(e button 'Sort by: Hot' hasPopup: menu expanded: False [0.326,
[1 ate] Sushi platter 0.152, 0.432, 0.196]
Submitted by laryBreko [13_100109K] 2 years ago image '' [0.341, 0.165, 0.362, 0.182]
183 comments StaticText 'Hot' [0.367, 0.164, 0.401, 0.184]

article '' [0.021, 0.214, 0.957, 0.301]

! [Homemade] Korean Fried Chicken
Obligatory Halloween Pumpkin Loaf!' [0.216, 0.217, 0.825,

Submitted by dooblyderp [(3_122gjpd] 2 years ago

94 comments 0.244]
R Obligatory Halloween Pumpkin Loaf!' [0.216, 0.217, 0.825,
[homemade] Belgian Waffles 0.244]
Submitted by Substantial_carrots [13_yhd80m] 2 years ago . .
A viais Obligatory Halloween Pumpkin Loaf!' [0.216, 0.217, 0.825,
0.244]
[homemade] snickerdoodles StaticText 'Submitted by ' [0.216, 0.254, 0.324, 0.271]
haited & HAeeseal link 'kneechalice' expanded: False [0.324, 0.254, 0.419, 0.271]
StaticText 'kneechalice' [0.324, 0.254, 0.419, 0.271]
StaticText ' ' [0.419, 0.254, 0.424, 0.271]
(More)
Query: Ground truth grounding target:
Go to 'Featured forums' section. [0.063, 0.021, 0.086, 0.041]

Figure 13: Example of NovelScreenSpot data from the Reddit environment.

Screenshot A11y information (truncated)
. - button 'Date' hasPopup: menu pressed: false expanded:
i @ Muie D Ats D Auto,Bosandhi [ Busiess S CrariyBCouses 35 Community (5 Famit| > X
False controls: dateFilterDropdown [0.063, 0.056, 0.125,
0.111]
i StaticText 'Date' [0.076, 0.070, 0.100, 0.096]
o button 'All' pressed: true [0.148, 0.050, 0.209, 0.117]
StaticText 'All' [0.180, 0.070, 0.193, 0.096]
- button 'Music' pressed: false [0.209, 0.050, 0.287, 0.117]
StaticText 'Music' [0.241, 0.070, 0.271, 0.096]
i siennsitrs || soumczoroansite = || s smprstin = | eoromsiionss | Dutton 'Arts' pressed: false [0.267, 0.050, 0.356, 0.117]
Holiday Reception +OFFICIAL# New York City Annual 12 Bars of S StaticText 'Arts' [0.319, 0.070, 0.340, 0.096]
st e sl Dl gt button 'Auto, Boat, and Air' pressed: false [0.356, 0.050,
. o Frououndation 0.496, 0.117]
Sesin ot oI :;mm.gmsmm k Ak StaticText 'Auto, Boat, and Air' [0.388, 0.070, 0.480,
+ ssBtalousrs 3 2 iotemaes 0.096]

button 'Business' pressed: false [0.496, 0.050, 0.589,
0.117]

'WINTER WONDERLAND.
NG

(More)
Query: Ground truth grounding target:
1
Click the share icon of 'IF You Foundation [0.893, 0.470, 0.924, 0.525] =

Christmas' event card.

Figure 14: Example of NovelScreenSpot data from the Eventbrite environment.
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Screenshot A11y information (truncated)

?Z:_m“;u::ﬂm f 2ol _Joo ‘ generic '' describedby: sp-overlay-helper-571104f6

B = [0.005, 0.011, 0.020, 0.041]

3 = button 'Main menu' hasPopup: menu expanded: False

B B gescribedby: option-picker [0.030, 0.005, 0.050, 0.047]

P button

a 'photo-and-editing-techniques-for-creative-images'

; hasPopup: menu expanded: False describedby:

% option-picker [0.053, 0.005, 0.243, 0.047]

° button 'Upgrade' [0.684, 0.011, 0.738, 0.042]

s button 'Undo' [0.742, 0.005, 0.762, 0.047]

; button 'Redo' disabled: True [0.764, 0.005, 0.784,
0.047]
button 'Zoom level' hasPopup: menu expanded: False
describedby: option-picker [0.786, 0.005, 0.827, 0.047]
(More)

Query: Ground truth grounding target:

Find the crop tool.

N

[0.002, 0.070, 0.021, 0.112]

Figure 15: Example of NovelScreenSpot data from the Photoshop-web environment.
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