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Abstract

Retrieval systems are central to many NLP
pipelines, but often rely on surface-level cues
such as keyword overlap and lexical semantic
similarity. To evaluate retrieval beyond these
shallow signals, recent benchmarks introduce
reasoning-heavy queries; however, they primar-
ily shift the burden to query-side processing
techniques – like prompting or multi-hop re-
trieval – that can help resolve complexity. In
contrast, we present IMPLIRET, a benchmark
that shifts the reasoning challenge to document-
side processing: The queries are simple, but rel-
evance depends on facts stated implicitly in doc-
uments through temporal (e.g., resolving “two
days ago”), arithmetic, and world knowledge
relationships. We evaluate a range of sparse
and dense retrievers, all of which struggle in
this setting: the best nDCG@10 is only 14.91%.
We also test whether long-context models can
overcome this limitation. But even with a short
context of only thirty documents, including the
positive document, GPT-o4-mini scores only
55.54%, showing that document-side reasoning
remains a challenge. Our codes are available at
github.com/ZeinabTaghavi/IMPLIRET.

1 Introduction

Retrieval systems play a pivotal role in many NLP
applications, enabling models to utilize relevant
information from large corpora such as document
collections, web pages, or conversational histories
(Lewis et al., 2020; Gao et al., 2023). Relevance
in retrieval can be established through a range of
connections, from explicit lexical or semantic sim-
ilarity to more implicit, context-dependent asso-
ciations. However, widely used retrieval systems
are highly reliant on surface-level cues such as ex-
act matches, repetition, or where a fact appears
in the text (Ram et al., 2023; Coelho et al., 2024;
Fayyaz et al., 2025). Additionally, many popular
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Query: Who was visiting a museum on October 06, 2024?

Retrieval  
Score: 
0.39

2024-10-13 11:30, Maeve: ... when I visited 
the Smithsonian National Air and Space in 
Washington, D.C. seven days ago...

Positive Document

Retrieval  
Score: 
0.42

2024-09-26 12:14, Amarantha: … I visited 
the exhibit at the Rijksmuseum in 
Amsterdam 5 days ago and was …

Negative Document

Figure 1: An example from IMPLIRET: a query and
two sample documents, negative and positive. Retrieval
of the relevant positive document requires surfacing
implicit knowledge: that Maeve visited the Smithsonian
on 2024-10-06.

benchmarks (e.g., BEIR (Thakur et al., 2021)) do
not surface these issues as their queries have lexical
overlap with relevant documents (Shao et al., 2025).
There are attempts to create reasoning-intensive
datasets that push beyond lexical and surface-level
matches. For instance, RAR-b (Xiao et al., 2024)
reframes multiple-choice reasoning tasks into re-
trieval problems, BIRCO (Wang et al., 2024) col-
lects multi-faceted questions across five domains,
and BRIGHT (Su et al., 2025) uses full StackEx-
change problem descriptions as queries against the
pages they cite. Since the reasoning burden lies
on the query side, techniques like query expansion,
chain-of-retrieval inference, or agentic retrieval can
help models handle complex prompts and outper-
form standard retrievers (Wang et al., 2025; Song
et al., 2025; Li et al., 2025).

In contrast, we present IMPLIRET, a benchmark
that shifts reasoning to document-side processing:
the queries are simple, but relevance depends on
facts stated implicitly within the documents, span-
ning arithmetic, temporal, and world knowledge
relationships that require inference to uncover. Fig-
ure 1 gives an example: the correct document re-
quires resolving a reference to a date that is im-
plicit, i.e., not stated directly. An effective retrieval
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system must infer such implicit facts from the doc-
ument content, ideally as part of the indexing pro-
cess, in order to retrieve the correct result at query
time. Yet current retrieval methods fail to capture
the implicit signals needed for accurate retrieval.
We evaluate sparse and dense approaches, includ-
ing BM25 (Robertson and Zaragoza, 2009), Col-
BERT (Santhanam et al., 2022), and Dragon+ (Lin
et al., 2023), and observe consistently poor perfor-
mance: the best nDCG@10 is only 14.91% across
our benchmark. To test whether long-context ca-
pabilities could mitigate the problem, we evaluate
models in a setting where the positive document
is included among several distractors. While GPT-
o4-mini answers correctly when given only the
positive document, its performance drops sharply
even with just thirty documents in-context, achiev-
ing a ROUGE-1 recall of 55.54%. Our dataset
IMPLIRET introduces a new setting that requires
document-side reasoning for retrieval rather than
query-side reasoning. IMPLIRET presents chal-
lenges for both retrieval and long-context process-
ing, highlighting the need for models that can rea-
son over implicit information embedded in large
corpora.

2 IMPLIRET

In IMPLIRET, we construct examples whose rel-
evance depends on information that is implicitly
stated in the document, i.e., it can only be discov-
ered through reasoning, not by surface-level over-
lap. IMPLIRET covers three reasoning categories:
World Knowledge, Arithmetic, and Temporal.

We compile a collection of implicit-tuple sets.
Within each set, a tuple links an implicit surface
form that appears in a document to the explicit
form that will appear in the query; see Fig. 1, e.g.
(“2024-10-13 . . . seven days ago”, “October 06,
2024”).

For every reasoning category, we create N such
tuple sets. Each set Ti (i = 1, . . . , N ) contains M
unique tuples (|Ti| = M ). Tuples in the tuple sets
are unique but not guaranteed to be unique through-
out the collection of tuple sets. Hence, before docu-
ment generation, we inject distinct auxiliary lexical
entities (e.g. named entities, speaker names) into
each tuple so that the documents generated from
Ti remain distinguishable from those of Tj when
i ̸= j (see Appendix A.4).

From each tuple in the tuple set, we generate a
document, yielding a pool of documents DTi with

|DTi | = M . The document derived from ti ∈ Ti is
the only positive for the query constructed from ti,
whereas all other documents in the global collec-
tion D =

⋃N
i=1DTi – including those from tuples

t′i ̸= ti in the same set and every document from
any other set Tj ̸= Ti – are treated as negatives.

For each reasoning category, we generate two
collections of tuple sets, one realized in the uni-
speaker style and the other in the multi-speaker
style, keeping their respective document pools sep-
arate to foster surface diversity. Thus, every query
has exactly one positive document, while every
other document in the global collection serves as
a semantically irrelevant negative. In the remain-
der of this section, we detail the construction of the
implicit-tuple sets and our procedure for generating
documents and queries.

2.1 Generating Tuple Sets

Arithmetic. An arithmetic relation requires sim-
ple numerical reasoning. For instance, the query
“Which bag costs $1,600?” can be answered by
“The Prada bag costs $2,000, the Gucci bag is
20% cheaper,” since $2,000 × 0.8 = $1600. Here,
the model must identify the reference price, inter-
pret the relative statement (“20% cheaper”), and
perform the corresponding computation to infer
the answer. Therefore, each tuple in the implicit
tuple set takes the form

(
(p1, r, e), p2

)
, where

p1 is the base price, r is the relative multiplier,
e ∈ {“Lower”, “Higher”} indicates the direction
of the change, and p2 is the queried price (e.g.,
((2000, 0.2, Lower), 1600)). We apply constraints
to ensure that queried prices are unique, realistic,
and well-distributed across the tuple set. Tuples are
generated using a sampling algorithm that selects
base prices and checks constraint satisfaction, back-
tracking as needed until M valid tuples are found
(where M is the target number of documents indi-
cated as “Docs” in Table 1). Full constraint details
and sampling logic are provided in Appendix A.1.

World Knowledge. A world knowledge relation
connects a textual mention to an external fact. For
instance, the query “Who was in the UK?” can
be answered by “Lenna was at Big Ben,” based
on the implicit fact that Big Ben is located in the
UK. The model must identify the mentioned en-
tity, retrieve the associated world fact, and use it
to resolve the query. Each tuple is encoded as
(landmark, country), e.g., (“Big Ben”, “UK”). To
build the tuple set, we collect landmark-country
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Reasoning Style Docs Tokens

Avg. Total

Arithmetic Uni-speaker 1500 553 830,098
Multi-speaker 1500 142 213,750

World- Uni-speaker 1500 471 707,047
Knowledge Multi-speaker 1500 168 253,337

Temporal Uni-speaker 1500 479 719,226
Multi-speaker 1500 141 212,502

Table 1: IMPLIRET statistics. For each reasoning cate-
gory and discourse style (uni-speaker vs. multi-speaker),
we list the number of documents (50 tuple sets × 30
docs = 1500), the average document length, and the total
token count. Every document has exactly one associated
query, so the document and query counts coincide.

pairs that are unambiguous, globally unique, free of
lexical cues revealing the country, and refer to spe-
cific rather than generic locations. Candidates are
sourced from Wikidata (Vrandečić and Krötzsch,
2014) and filtered using LLMs, embedding simi-
larity, and web search verification. Full filtering
criteria, prompts, and implementation details are
provided in Appendix A.2. Here, we again generate
a set of M tuples of each implicit tuple set.

Temporal. A temporal relation involves reason-
ing over relative dates; we gave an example in Fig-
ure 1. The model must identify the reference date
(2024-10-13), interpret the relative time expres-
sion (“seven days ago”), and compute the resulting
absolute date (“2024-10-06”). Each example is
represented as a tuple

(
(dB, R), DL

)
, where dB is

the base date explicitly mentioned in the document,
R is a list of relative offsets (e.g. [“1 day after”,
“2 days after”]), and DL is the list of resolved ex-
plicit dates (e.g., [“March 6th”, “March 7th”]). We
generate M such tuples under constraints that en-
sure date uniqueness, broad coverage across a fixed
window, and realistic time offsets. Target date se-
quences are first sampled, then anchored to a base
date to define relative expressions. The sampling
algorithm verifies constraints and backtracks as
needed until a valid set is found. Further details
on constraints and sampling logic are provided in
Appendix A.3.

2.2 Document-Query Pairs

We generate a document-query pair from every fact
tuple, realizing it in one of two styles: uni-speaker
(multi-turn chat) or multi-speaker (forum thread).

Uni-speaker (multi-turn chat). For each tuple,
we create a short multi-turn dialogue. The same
main conversant (e.g., “Alex”) appears in every di-
alogue within a tuple set and never appears in any
other tuple sets. To keep the interactions natural,
the second conversant’s name changes from one
dialogue to the next. Depending on the reasoning
category, the main conversant states which product
they bought at a certain price (Arithmetic), men-
tions visiting a landmark (World Knowledge), or
describes an activity that occurred on a specific date
(Temporal). The query then targets the implicit fact
contained in that statement: the product, person, or
activity linked to the given price, country, or date.

Multi-speaker (forum thread, one post per user).
Each tuple set receives a single prompt that serves
as the thread’s opening post. For that tuple set,
we create a forum thread in which each post is
authored by a different user, realizing one tuple,
and all posts respond to the shared prompt. Thus,
the thread mimics a discussion in which several
users independently mention their purchase, visit,
or scheduled activity, respectively. While the un-
derlying actions mirror the uni-speaker setting, the
query perspective shifts: instead of asking about
an attribute of a known entity, it now asks which
entity (product, person, or activity) satisfies a stated
condition such as a price, location, or date.

Generation Pipeline. In both styles, i.e., in each
conversation and post, every message includes a
timestamp and speaker name (see Figure 1). In
both styles, each example is produced via a three-
step pipeline: (1) Entity binding: We assign en-
tities (e.g., names, items, activities) to each tuple
to create a plausible scenario and define the query
target; (2) Document generation: We prompt an
LLM to generate a chat or forum passage that em-
beds the entity and the implicit part of the tuple,
without stating the explicit fact; (3) Verification: a
second model attempts to extract the original tu-
ple; we retain only examples where the intended
fact is fully recoverable. This pipeline is supported
by auxiliary lexical resources, including random
names, brand-item pairs, and activity lists, as well
as per-reasoning category prompt templates. We
use GEMMA-3-27B-IT (Team, 2025) to synthesize
the documents for each tuple.1 Table 1 presents

1Details such as prompts and query templates are available
in Appendix A.4.
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IMPLIRET statistics2.

Fluency and implicitness sanity check. We
drew a stratified random sample of 72 instances
(query–document pairs; 3 reasoning categories ×
2 discourse styles × 12 per cell) and manually as-
sessed each for (i) fluency, (ii) implicit support for
the queried fact, and (iii) absence of explicit leak-
age (i.e., a verbatim statement of the fact). In this
sample, all documents were fluent and supported
the queries implicitly; under our rubric, we ob-
served no cases of explicit leakage. Further details
are provided in Appendix A.5.

3 Experiments

We employ IMPLIRET to probe whether state-of-
the-art retrievers can perform document-side rea-
soning. Relevant documents are retrieved for each
query among those documents that are in its corre-
sponding (reasoning category and discourse style)
group.

At test time, each query is compared to all its
discourse style documents. Our evaluation cov-
ers a wide variety of retrieval methods: sparse
lexical baseline BM25 (Robertson and Zaragoza,
2009; Lù, 2024); dense encoders CONTRIEVER,
DRAGON+, and REASONIR (Izacard et al., 2021;
Lin et al., 2023; Shao et al., 2025); late interaction
model COLBERT V2 (Santhanam et al., 2022); and
knowledge graph augmented retriever HIPPORAG
2 (Gutiérrez et al., 2025). Effectiveness is reported
as nDCG@k in the main text; MRR@k appears in
Appendix B.

4 Results

The nDCG@10 results across all reasoning cate-
gories are presented in Table 2. The highest aver-
age score, 14.91 (achieved by DRAGON+), shows
the difficulty retrieval models face when reasoning
over implicit facts in documents. More efficient
baselines such as CONTRIEVER and BM25 per-
form substantially worse; notably, BM25 reaches
just 12.24 due to its reliance on surface-level lexical
overlap.

Performance varies across reasoning types: the
Arithmetic category exhibits the largest perfor-
mance spread (14.96 vs. 10.78), while it is nar-
rowest for Temporal (12.83 vs. 10.98). Discourse
style also plays a role: DRAGON+ scores 16.45%

2The tokens are counted using GPT-2 tokenizer (Radford
et al., 2019).

Retriever Reasoning Average
W. Know. Arithmetic Temporal

Sparse

BM25 14.69 11.06 10.98 12.24

Late-Interaction

ColBERT v2 15.79 14.96 11.99 14.25

Dense Encoders

Contriever 16.50 13.70 12.73 14.31
Dragon+ 17.46 14.61 12.66 14.91
ReasonIR 18.88 10.78 11.25 13.64

Knowledge-Graph Augmented Indexer

HippoRAG 2 16.62 14.13 12.83 14.53

Table 2: Retrieval evaluation. nDCG@10 for our rea-
soning categories (world knowledge (W. Know.), arith-
metic, and temporal), averaged over Uni-speaker and
Multi-speaker documents) and “Average” of reasoning.

Experiment k
Reasoning Average

W. Know. Arithmetic Temporal

Llama 3.3 70B
1 73.79 90.13 81.85 81.92
10 27.37 16.98 25.23 23.19
30 17.43 4.42 10.29 10.71

GPT-4.1
1 93.24 92.12 84.90 88.05
10 62.21 23.86 15.59 35.06
30 53.91 9.28 6.93 22.90

GPT-o4-mini
1 92.34 92.45 93.44 92.74
10 88.11 76.61 73.94 79.55
30 75.44 76.31 14.86 55.54

Table 3: RAG-style evaluation. ROUGE-1 (R-1) re-
call for our reasoning categories (world knowledge (W.
Know.), arithmetic and temporal, averaged over Uni-
speaker and Multi-speaker documents) and “Average”
across categories.

on multi-speaker examples compared to 13.37 on
uni-speaker ones, suggesting that stylistic structure
affects retrieval difficulty.3

RAG Performance with an Oracle Retriever on
Reason-Sensitive Documents. While retrieval
quality clearly affects end-to-end performance, we
ask whether an LLM with long-context capacity
can still succeed once the relevant document is
present. To test this, we use a retrieval-augmented
generation (RAG) set-up with an oracle retriever,
one that always includes the positive document in
its top-k. The model sees the question together with
k documents: one positive and k−1 hard negatives
sampled from the same pool (among other M −
1 samples), ensuring comparable style and topic.
This configuration removes retrieval as a variable
and isolates the LLM’s document-side reasoning
ability.

We evaluate three settings: k=1 (positive only),

3Full results per category and style in Appendix B.
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k=10 (positive plus nine negatives), and k=30
(a full-pool setting where all documents from the
pool are provided as context). The model receives
the query along with the sequence of documents
and must generate an answer. We evaluate three
reader models: LLAMA 3.3 70B, GPT-4.14, and
GPT-O4-MINI5. In Table 3, we report the average
ROUGE-1 recall6 scores to measure the overlap be-
tween the generated output and the positive answer
(Lin, 2004). When given only the positive docu-
ment (k=1), the models achieve average ROUGE-1
Recall of 81.92, 88.05, and 92.74. This suggests
that the query itself is straightforward to answer
once the relevant document is isolated. This also
means that an LLM can solve the task if a high-
performing retriever (which would retrieve the rel-
evant document at rank 1) is available. However,
as k increases (even with the positive included),
performance declines, showing that LLMs struggle
to focus on the correct evidence amid structurally
similar negatives. This supports prior findings on
long-context limitations and highlights the need for
retrieving a small, focused set of documents rather
than increasing context size (Kuratov et al., 2024;
Modarressi et al., 2025).

Error Analysis RAG has two stages—retrieval
and generation—so we analyze errors along two
axes. 1. Retrieval side (Rank-1 vs. Positive). For
each query, we compare the retriever’s top-1 pas-
sage with the annotated positive. We analyze the 60
queries where DRAGON+’s top-1 document differs
from the positive (3 reasoning categories × 2 dis-
course styles × 10 queries), yielding 120 passages
(top-1 and positive per query). We categorize mis-
rank reasons into four groups: (i) Word Overlap
(top-1 has extra query surface tokens), (ii) Seman-
tic Cue (similar overlap but extra topical/theme
terms), (iii) Length (overlap/semantics comparable;
shorter passage chosen), and (iv) Unknown (indis-
tinguishable under our heuristics). Table 4 shows
that Semantic Cue is most frequent in arithmetic
queries, and Word Overlap in temporal and world
knowledge. 2. Generation side (Oracle-RAG,
k=10 vs. all). To isolate generation errors, we eval-
uate an oracle setting where the positive passage
is guaranteed in context. We randomly select 60
queries (3× 2× 10) and evaluate two context sizes
(k=10 and k=all, others selected randomly), yield-

4Checkpoint: gpt-4.1-2025-04-14
5Checkpoint: o4-mini-2025-04-16
6R-1 Rec. = |Output Unigrams ∩ Gold Answer Unigrams|

|Gold Answer Unigrams|

Reasoning Word overlap Semantic cue Length Unknown

Arithmetic 15% 55% 5% 25%
Temporal 55% 5% 35% 5%
W. Know. 50% 5% 30% 15%

Table 4: Retrieval-side error types distribution for
top-1 vs. positive. For each reasoning category, we con-
sider 20 query pairs (2 discourse styles × 10 queries);
the percentages indicate the share of those 20 pairs for
which the error type(column) was the primary reason
the top-1 passage differed from the positive document
(W. Know. = world knowledge).

Reasoning k Malformation No-answer/Unrelated Distraction

Arithmetic 10 40% 60% 0%
all 20% 75% 5%

W. Know. 10 45% 55% 0%
all 15% 85% 0%

Temporal 10 0% 35% 65%
all 0% 40% 60%

Table 5: Generation-side error type distribution un-
der oracle RAG with two context sizes (k=10 vs.
k=all), where the positive document is included in the
context. Results are based on a randomly selected set
of 60 queries (120 evaluated cases). Percentages are
computed over incorrect answers within each (reason-
ing category, k) cell (W. Know. = World Knowledge).

ing 120 cases. After reviewing outputs, we assign
a single label to each incorrect answer: (i) Malfor-
mation (positive present, answer malformed), (ii)
No-answer/unrelated, or (iii) Distraction (copied
from a surface-similar distractor). Table 5 shows
that No-answer/unrelated is most frequent, Dis-
traction occurs mainly in temporal queries, and
longer context reduces Malformation but raises No-
answer/unrelated, suggesting that context length
alone does not fix generation errors.

5 Conclusion

We introduce IMPLIRET, a benchmark for eval-
uating retrieval models when relevance depends
on document-side reasoning on implicit facts. Un-
like prior datasets that emphasize complex queries,
IMPLIRET shifts the reasoning burden to the doc-
uments. It covers three reasoning types – world
knowledge, arithmetic, and temporal – and two
discourse styles. Across sparse, dense, and KG-
augmented retrievers, the best nDCG@10 is only
14.91. Even with GPT-o4-mini, given thirty docu-
ments including the positive, performance peaks at
just 55.54%. These results highlight the difficulty
of retrieving implicit facts and the need for models
that can reason beyond surface cues.
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Limitations

While our benchmark is carefully designed to eval-
uate implicit document-side reasoning in retrieval
systems, it has the following limitations:

Synthetic Dataset. Documents and queries in
IMPLIRET are synthesized using LLMs and struc-
tured templates. This allows control over the facts
and how they are implicitly expressed, while avoid-
ing conflicts. It also enables easy regeneration if
data contamination or memorization is suspected.
As with any synthetic benchmark, the data may
differ slightly from naturally occurring text in dis-
course structure or topic diversity. All examples
are in English and follow conversational formats
(uni-speaker chats and multi-speaker forum posts).
Although the use of LLMs helps ensure fluency, it
introduces the risk of subtle hallucinations or unin-
tended cues, which we address through automatic
verification during dataset construction.

Reasoning Types & Level. In IMPLIRET, we
only cover three simple categories of reasoning re-
lations: arithmetic, temporal, and world knowledge,
each with shallow composition. While the cover-
age of reasoning types is limited, the core finding
remains: current retrievers struggle to locate rel-
evant documents when reasoning is implicit, and
LLMs fail to reliably attend to the correct evidence
in long-context settings.
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A Dataset Generation

In this appendix, we describe, for each of the
three reasoning categories, Arithmetic, World-
Knowledge, and Temporal, (i) how we construct
the implicit-tuple sets and (ii) what arguments are
required to synthesize their corresponding contexts.
After covering tuple-set construction, we explain
in Section A.4 how a language model is used to
generate the final passages.

A.1 Arithmetic Reasoning

For each implicit tuple set in the collection, to gen-
erate M tuples for the Arithmetic category, we use
Algorithm 1, which ensures that all tuples satisfy
the these constraints: (i) all p1 and p2 values across
the tuples are distinct, ensuring exactly one correct
answer per query; (ii) all p1 and p2 values should
be a multiple of 10, so that values resemble realis-
tic prices; (iii) the p2 values are evenly distributed
across a predefined range of plausible prices, avoid-
ing value clustering; and (iv) the resulting mul-
tiplier must have at most 2 decimals; hence, the
required calculation is simple. The Algorithm1 re-
turns a set of tuples of the form ((p1,i, ri, ei), p2,i),
where the two prices are mutually distinct and the
multiplier ri satisfies predefined numerical con-
straints. The construction guarantees uniform dis-
tribution across price ranges and ensures that each
tuple encodes a plausible relative-price comparison
suitable for reasoning-based retrieval.

A.2 World-Knowledge Reasoning

As described in Section 2, we gather landmark-
country pairs under three constraints: (i) each
landmark must refer to a globally unique location,
avoiding names that could correspond to multi-
ple places; (ii) the landmark name must not in-
clude lexical, semantic, or language-specific cues
that reveal its country, avoiding surface-form short-
cuts; and (iii) landmarks must refer to specific,
recognizable sites rather than generic ones. To
do so, we first assemble a seed list of unique
landmark-country pairs via five steps: (i) issue
a SPARQL query to Wikidata to retrieve every
entity whose instance-of (P31) chain includes
exactly one of the high-level place classes, mu-
seum (Q33506), university (Q3918), church build-
ing (Q16970), venue (Q17350442), or landmark
(the superclass of Q17350442), and that is linked to
exactly one sovereign state via the country (P17)
property; (ii) for each hit, extract the English labels
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Algorithm 1 Arithmetic Tuple Set
Require: Number of tuples M ; style ∈ {multi, uni}; Total

number of attempts limit
1: if style = multi then
2: (BL, BU )← (50, 2050)
3: else
4: (BL, BU )← (50, 3050)
5: end if
6: ∆← ⌊(BU −BL)/M⌋
7: ImplicitTupleSet← ∅
8: PriceSet← ∅
9: repeat

10: for i← 0 to M − 1 do
11: p2,i ← BL + i∆
12: ri ← None
13: attempts← 0
14: repeat
15: Sample p1,i ∼ Uniform

(
{x ∈ 10M |

BL ≤
x ≤ BU}

)
16: if p2,i > p1,i then
17: ri ← p2,i

p1,i
18: else
19: ri ← p1,i

p2,i
20: end if
21: attempts←attempts+1
22: until (0 < ri < 3 and Round(ri,2) = ri and

p1,i /∈ PriceSet and p2,i /∈ PriceSet)
or attempts exceeds limit

23: if ri then

24: ei ←
{
Lower, p2,i < p1,i
Higher, otherwise

25: ImplicitTupleSet← ImplicitTupleSet
∪{((p1,i, ri, ei), p2,i)}

26: else
27: p2,i ← p2,i + 1
28: if p2,i = BL + (i+ 1)∆ then
29: restart entire generation
30: end if
31: end if
32: end for
33: until |ImplicitTupleSet| = M
34: return ImplicitTupleSet

of its enclosing administrative region (P131), city
(P131 restricted to Q515), generic location (P276),
and street (P669), yielding up to five concentric
location strings; (iii) discard entities with missing,
machine-generated, or multi-country labels, then
drop any whose name tokens overlap these location
strings; embed each remaining landmark-country
pair with the 768-dimensional Contriever encoder
and retain only those with cosine similarity below
0.25; (iv) pass the remainders to a 70B-parameter
Llama-3.3 classifier that flags and removes generic
names (e.g., “Downtown Club”) or labels leaking
their country, using exponential back-off retries un-
til accepted; and (v) submit each accepted label to
GPT-4o in web-search mode7, prompting it to re-

7Checkpoint: gpt-4o-search-preview-2025-03-11

turn the place’s country in a dictionary format, and
keep only those for which the model returns exactly
one location. This process yields a balanced pool
of 100 unique landmark-country pairs, ensuring
we sample across different countries rather than
multiple landmarks from the same country. Finally,
for each implicit tuple set, we select a set of M dis-
tinct countries C and, for each c ∈ C, sample one
landmark lc ∼ Uniform(Lc) from that country’s
filtered list Lc. The resulting implicit tuple sets is
as follows:

ImplicitTupleSets = { (lc, c) | c ∈ C }.

Generating N implicit tuple sets, we have our col-
lection.

A.3 Temporal Reasoning

As described in Section 2, for each tuple set,
we generate a implicit tuple sets of M tuples(
(dB, R), DL

)
to have the following constraints:

(i) all explicit dates in any DL are unique within the
tuple set, ensuring that each query maps to exactly
one positive document; (ii) all dates used as base
or resolved targets are evenly distributed across a
fixed date window to avoid clustering; and (iii) all
relative offsets in R must fall within a limited num-
ber of days from. Because context synthesis differs
between multi-speaker and uni-speaker modes, we
describe the two procedures separately in the fol-
lowing subsections.

A.3.1 Multi-Speaker: Tuple Construction
Here, we generate N implicit tuple lists, each con-
taining M tuples. For generating them, we use
Algorithm 2. The returned output contains all the
information detailed before.

A.3.2 Uni-Speaker: Tuple Construction
We want to generate N implicit tuple sets, each
containing M tuples. Each tuple set describes a
main conversant’s 28-day activity schedule. We
categorize activities into three types:

1. One-time: executed exactly once in the 14-
day period (we have 9 for then in each sched-
ule).

2. Repeating-Non-Sequential: occurring on
multiple, non-consecutive days (we have 3
for them in each schedule: 2 days, 3 days, and
2 days).
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Algorithm 2 Multi-Speaker Temporal Tuple Set
Require: DateWindow from 2024-01-01 to 2024-12-31

DATESELECTION(n,DateWindow): return n dis-
tance date in DateWindow in which for i ∈
[0, . . . , n− 2], days between datei and datei+1 be be-
tween 2, up to 7 days, and the distance between daten−1

and the end of DateWindow be at least 14 days.

1: {work_datei}19i=0 ←
DATESELECTION(20, DateWindow)

2: for i← 0 to 18 do
3: message_datei ← work_datei+1

4: ri ← (message_datei − work_datei).days
5: TupleSet← TupleSet

∪((message_datei, ri),work_datei)
6: end for
7: message_date19 ← work_date19 +

UNIFORMSAMPLE((1, 7))
8: r19 ← (message_date19 − work_date19).days
9: TupleSet← TupleSet

∪((message_date19, r19),work_date19)
10: return TupleSet

3. Repeating-Sequential: performed on con-
secutive days (we have 3 for them in each
schedule: 3 days, 3 days, and 4 days).

Each set covers two consecutive 14-day blocks,
contains exactly M=30 activities, and is
constructed in three phases: (i) scheduling
activities without temporal overlap, (ii) se-
lecting one message time per activity such
that it differs from the scheduled lot, and
(iii) packaging every activity into a tuple
(day(s), start_hour, end_hour,message_time).
Algorithm 3 details the procedure.

A.4 Synthesizing the Context
Now, for each reasoning category and document
style, we have a list of implicit tuple sets contain-
ing all the information needed to have a consis-
tent dataset. Consider having the auxiliary lexical
content (personal names, daily-work verbs, brand
names with corresponding items, and per-category
forum topics and questions needed)8, to each tuple
of the implicit tuple list, we assign unique entities
and then each tuple, contains all the information to
generating the document in natural way. The exact
item required for each reasoning category and style
is mentioned in Table 6. Depending on the style,
we proceed as follows:

A.4.1 Uni-Speaker (Chat-Style)
In the conversation-generation stage, we
load the implicit tuple sets for each (cat-
egory, style) pair. First, we use the

8Generated using Gemma-3-27B-it (Team, 2025)

Algorithm 3 Uni–Speaker Temporal Tuple Set
Require: period duration 14-days, day span 7:00–19:00

Auxiliary functions
PLACESCHEDULE(d, T, F, S): place a 2-4 hour

scheduled slot, if T = ‘Seq’, for d consecutive days, if
T = ‘NonSeq’, for d non-consecutive days, and if T =
‘Once’, for one day; mark blocks in F to remove the free
times, add the slot into the schedule list S, and make a
tuple from the list of occupied days DL and start and end
hours ((hstart, hend)) as a = (DLa, hstart, hend) and
returns it

SHIFTDATES(S,doff ): shift all the relative days to 14
days later if doff=1.

SELECTQTIMES(S): Randomly selects a random day
and hour (not exact time of start or end) as question time
for each schedule to appear in the query.

DIFFTIMES(m, a): Returns a list of day differences
between every scheduled day di,a in the activity a and
m ((m− di,a).day).

1: S ← ∅ ▷ Schedule list
2: A← ∅ ▷ Activity list
3: for period ∈ {0, 1} do

▷ two consecutive 14-day blocks
4: F ← {d 7→INITFREE(7, 19)| d = 1:14}

▷ free-time map
5: doff ← 14 · period ▷ calendar shift
6: for all len ∈ {3, 3, 4} do
7: A← A∪PLACESCHEDULE(len, ‘Seq’, F, S)
8: end for
9: for all len ∈ {2, 2, 3} do

10: A← A∪PLACESCHEDULE(len, ‘NonSeq’, F, S)
11: end for
12: for i← 1 to 9 do
13: A← A∪PLACESCHEDULE(len, ‘Once’, F, S)
14: end for
15: SHIFTDATES(S,doff )
16: end for
17: Q ← SELECTQTIMES(S)
18: TupleSet← ∅
19: for all activity a ∈ A do
20: ma ← RANDOM(Q \ {times(a)})
21: Ra ← DIFFTIMES(ma, a)

▷ Message time
22: TupleSet← TupleSet

∪((ma, Ra), a)
23: end for
24: return TupleSet

STARTING_CONVERSATION_PROMPT to gener-
ate M = 30 unique “starting phrases” for the
tuple set (one for each tuple), ensuring that
no two dialogues begin identically (Figure 2).
Next, for each tuple, we prepend one of these
starting phrases and feed the combination into the
CONVERSATION_GENERATION_PROMPT; category-
specific prompt templates and requirements are
shown in Figure 5 for the Arithmetic, Figure 9
for the World-Knowledge, and Figure 13 for
the Temporal reasoning. We then ask the model
to produce exactly ten utterances per chat, ver-
ify the count, and regenerate any that do not
meet this criterion. Finally, each completed
conversation is submitted to a separate LLM
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via the FEATURE_EXTRACTION_PROMPT, which
must reconstruct the original tuple to confirm
that the dialogue faithfully conveys the intended
information (Figure 7 for the Arithmetic, Figure 11
for the World-Knowledge, and Figure 15 for the
Temporal reasoning).

A.4.2 Multi-Speaker (Forum-Style)
In the forum-style generation stage, we simi-
larly load the implicit tuple sets for each (cat-
egory, style) pair. We first generate M = 30
unique starting phrases for the tuple set using the
STARTING_CONVERSATION_PROMPT, so that each
reply begins differently (Figure 4 for the Arith-
metic, Figure 8 for the World-Knowledge, and
Figure 12 for the Temporal reasoning). Then, for
each tuple, we provide the forum topic, its base
question, one starting phrases, and the tuple data
to the CONVERSATION_GENERATION_PROMPT con-
figured for forum responses; category-specific tem-
plates and requirements again appear in Figure 5 for
the Arithmetic, Figure 8 for the World-Knowledge,
and Figure 13 for the Temporal reasoning. We
generate exactly five sentences per response. Fi-
nally, each forum reply is passed to a separate LLM
via the FEATURE_EXTRACTION_PROMPT to extract
the original tuple, ensuring the response accurately
encodes the tuple’s information (Figure 6 for the
Arithmetic, Figure 10 for the World-Knowledge,
and Figure 14 for the Temporal reasoning).

A.5 Human Evaluation Details
We performed a small, stratified sanity check to
complement automatic validation. For each rea-
soning category × discourse style cell, we ran-
domly selected two queries (12 instances per cell).
For each selected query, candidate passages were
ranked with the REASONIR retriever, and six pas-
sages were drawn by uniform sampling from two
rank strata: top–20 (3) and bottom–20 (3). This
yielded 72 passages in total. We assessed each pas-
sage for (i) fluency, (ii) implicit support of their
corresponding queried fact (entailed but not stated
verbatim), and (iii) absence of explicit leakage. In
this sample, all passages were fluent and passed
the implicitness and non-leakage checks under our
rubric.

B Results

As explained in Section 4, our main retrieval met-
ric is nDCG@10. For completeness, we also com-
pute MRR@10, summarized in Table 7. The lower

MRR@10 scores confirm that, across reasoning cat-
egories, the systems often fail to rank the positive
documents first, underscoring the modest overall
performance already suggested by nDCG. Granu-
lar results for the Uni-Speaker and Multi-Speaker
settings are provided in Table 8. For the RAG-style
evaluation, model outputs were generated using the
prompt templates shown in Figures 16 and 17, and
then evaluated using ROUGE-1 Recall against the
reference answer.
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Reasoning
Multi-speaker Uni-speaker

Each Pool Each Document Each Pool Each Document

Arithmetic
Topic, Conversant, Brand, Model Years (Two random numbers Main Conversant Second Conversant, Shopping
Forum-Base-Question between 2013 up to 2024, the lower number is item, Low priced brand

the price of the lower-priced item) name, High priced brand

World-Knowledge
Topic, Conversant, Main Conversant Second Conversant, Landmark,
Forum-Base-Question Landmark Message Date

Temporal
Topic, Conversant, Item related to the Forum Base Question, Main Conversant Second Conversant,
Forum-Base-Question Daily work verb

Table 6: Entity-assignment granularity for each reasoning category and document style. Items listed under
Each Pool are unique in that pool and are never reused across other pools. Items listed under Each Document are
unique within their own set and never reused across other Documents in that pool. All entities are drawn from the
auxiliary lexical resources described in Section A.4.

**Task** 
Generate {num_starting_points} distinct, natural-sounding first phrases suitable as the opening line of a response in an online forum 
discussion, for example, "I think", "In my point of view". 

**Requirements** 
- No numbering, bullets, or extra text before or after each sentence. 
- Tone must be friendly, approachable, and universally applicable. 
- They should be usable at the start of the response, not in the middle. 
- Avoid any topic-specific references. 
- Use general phrasing. 
- Do not mention purchases or someone buying something. 
- Do not include numerical references in the sentences. 
- Do not use any locational information in the sentences. 

**Output Format** 
At least {num_starting_points} distinct phrases. 
Separate each sentence with a blank line. 

STARTING_CONVERSATION_PROMPT for Uni-Speaker (Chat Style) documents

Figure 2: Prompt for generating a list of the first phrase in Uni-Speaker (Chat Style) documents. This prompt is
used for all the reasoning categories of the Arithmetic, World-Knowledge, and Temporal.

Retriever Reasoning Average
W. Know. Arithmetic Temporal

Sparse Baseline

BM25 9.55 7.42 6.83 7.93

Late-Interaction

ColBERT v2 10.59 9.63 7.55 9.26

Dense Encoders

Contriever 11.19 8.84 8.48 9.50
Dragon+ 11.97 9.47 8.26 9.90
ReasonIR 14.23 7.13 7.78 9.71

Knowledge-Graph–Augmented Indexer

HippoRAG 2 11.30 9.28 8.57 9.72

Table 7: MRR@10 ranking metric scores for our reason-
ing category of World-Knowledge (W. Know.), Arith-
metic, and Temporal, averaged over both Uni-speaker
and Multi-speaker documents. The final “Average” col-
umn reports the mean MRR@10 across all reasoning
categories.
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Experiment

World-Knowledge Arithmetic Temporal Average

Uni-speaker Multi-speaker Uni-speaker Multi-speaker Uni-speaker Multi-speaker Uni-speaker Multi-Speaker

MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10 MRR@10 nDCG@10

Sparse Baseline

BM25 9.23 14.18 9.86 15.20 9.23 14.05 5.61 8.07 6.33 10.20 7.33 11.76 8.26 12.81 7.60 11.68

Late-Interaction

ColBERT v2 9.57 14.54 11.60 17.03 9.45 14.62 9.81 15.30 6.85 10.86 8.25 13.12 8.62 13.34 9.89 15.15

Dense Encoders
Contriever 9.77 14.77 12.60 18.23 8.23 12.87 9.45 14.52 8.17 12.22 8.78 13.25 8.72 13.29 10.28 15.33

Dragon+ 9.94 14.85 14.00 20.07 9.11 14.11 9.83 15.12 7.20 11.16 9.32 14.16 8.75 13.37 11.05 16.45

ReasonIR 7.75 10.54 20.71 27.21 3.87 5.68 10.39 15.89 2.95 4.17 12.60 18.33 4.86 6.80 14.57 20.48

Knowledge-Graph–Augmented Indexer

HippoRAG 2 9.95 14.94 12.66 18.30 8.31 12.97 10.26 15.29 8.18 12.24 8.96 13.42 8.81 13.38 10.63 15.67

Table 8: MRR@10 and nDCG@10 for each reasoning category and discourse setting. The maximum value in
every metric column is bold-faced. The final “Average” block shows per-setting means over the three categories.

**Task** 
Generate {num_starting_points} distinct, natural-sounding first phrases suitable as the opening line of a conversation between two friends, 
for example, "Hey! How's it going?", "Anything exciting happening?". 

**Requirements** 
- No numbering, bullets, or extra text before or after each sentence. 
- Tone must be friendly, approachable, and universally applicable. 
- They should be usable at the start of the conversation, not in the middle. 
- Avoid any topic-specific references. 
- Use general phrasing. 
- Do not mention purchases or someone buying something. 
- Do not include numerical references in the sentences. 
- Do not use any locational information in the sentences. 

**Output Format** 
At least {num_starting_points} distinct phrases. 
Separate each sentence with a blank line. 

STARTING_CONVERSATION_PROMPT for Multi-Speaker (Forum Style) documents

Figure 3: Prompt for generating a list of the first phrase in Multi-Speaker (Forum Style) documents. This prompt is
used for all the reasoning categories of the Arithmetic, World-Knowledge, and Temporal.
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**Task** 
Generate a natural response to a forum question. 

**Input** 
- `topic`: A short topic of the forum discussion. 
- `forum_question`: A base question posted in the forum. 
- `user`: a dictionary with the following keys: 
  - `name`: Name of the user. 
  - `persona`: Persona of the user. 
- `forum_post`: A list of three sentences:   
  1. The price of an item from a certain brand's model in dollars (e.g., "Gaming Chairs from Secretlab model 2019: 1650 dollars").   
  2. The price of another item from the same brand but a different model, described relative to the first item (e.g., "Secretlab, model 2019: 2.5 
times more expensive than model 2016").   
  3. A sentence stating which model of the brand was ultimately purchased (e.g., "model 2016 was purchased"). 
- `starting_phrase`: A starting phrase for the opening line of a response in an online forum discussion 

**Requirements** 
- Answer the `forum_question` by using the information in `forum_post`. 
- You may incorporate details from `user["persona"]` about `user['name']` to make the response more natural. 
- Explicitly mention the brand and model references, or the model that was purchased. 
- Preserve the numeric references (prices, multipliers, etc.). You may write the numbers as words, but do not change their values (e.g., 3.5 → 
"three and a half"). 
- Use the `starting_phrase` as the opening line of the response. 
- Write the relative price in a natural way (e.g., "The Secretlab 2019 model costs two and a half times as much as the 2016 model."). 
- Only mention the information once in the response. 

- Ensure all sentences are grammatically correct. 
- Your generated answer must be coherent and make the answer sound like a real human reply in **five sentences**. 

**Output Format** 
Only **one line** of response, without any prefix or suffix. 

INPUT: {context} 

CONVERSATION_GENERATION_PROMPT for Arithmetic Reasoning, Multi-Speaker (Forum Style) documents

Figure 4: Prompt for generating the conversations for Multi-Speaker (Forum Style) documents in the Arithmetic
reasoning.
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**Task** 
Generate a natural conversation between two people ("user_1" and "user_2") based on a shopping list. 

**Input** 
- `user_1`: A dictionary with the following keys: 
  - `name`: Name of the first user. 
  - `persona`: Persona of the first user. 
- `user_2`: A dictionary with the following keys: 
  - `name`: Name of the second user. 
  - `persona`: Persona of the second user. 
- `shopping_type`: Type of shopping. 
- `item_to_buy`: The purchased item. 
- `bought`: A list of three sentences:   
  1. The price of the item in another brand.   
  2. The price of the item in the brand bought, relative to the first.   
  3. The brand bought. 
  - `starting_phrase`: A starting phrase for the opening line of a conversation between two friends 

**Requirements** 
- In the conversation, `user_1['name']` must share a message describing their shopping experience: it was in the `shopping_type` category 
and they bought the `item_to_buy`.   
- `user_2['name']` must engage naturally in the conversation but should not mention or comment on any shopping, timing, locational, or 
numerical information.   
- You may use details from `user_1["persona"]` and `user_2["persona"]` to make the dialogue more natural.   
- Mention the exact `shopping_type`, brands, and `item_to_buy` **once** in the conversation.   
- Preserve all exact numbers and the original relative phrasing contained in the `bought` sentences.   
- Explicitly state that `user_1` did **not** buy from the first brand.   
- Explicitly state that `user_1` **did** buy from the second brand.   
- **Place the complete shopping report in exactly one user_1 utterance of your choice** (it may be the 2nd, 3rd, 7th—any single line).   
  - That utterance must contain the literal text of `shopping_type`, `item_to_buy`, **all brand names**, and **all numbers** from the three 
`bought` sentences.   
  - After that line, neither speaker may repeat or partially restate those strings or figures; use indirect terms like "it", "the item", or "that 
second brand" instead.   
  - No additional brands, items, or numerical prices may be introduced elsewhere. 
- Use the `starting_phrase` as the opening line of the first utterance. 
- All sentences must be grammatically correct.   
- The conversation must consist of **exactly 10 utterances**, each on its own line.   

**Output Format** 
Only 10 lines of dialogue are separated by newlines. For each line, separate the user name (one of the values of `user_1['name']` or 
`user_2['name']`) and the utterance with a colon. 

### EXAMPLE (structure only) 
user_1['name']: <starting_phrase> ...   
user_2['name']: ...   
... 

INPUT: {context} 

CONVERSATION_GENERATION_PROMPT for Arithmetic Reasoning, Uni-Speaker (Chat Style) documents

Figure 5: Prompt for generating the conversations for Uni-Speaker (Chat Style) documents in the Arithmetic
reasoning.
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**Task** 
Identify purchased items, their brands, and prices in a conversation transcript. 

**Input** 
You are given a forum response transcript with 4 sentences as INPUT. 

**Requirements** 
- Your task is to identify items purchased in the conversation, the brand of those items, and their prices. Note that the cost might be stated 
explicitly or described in relative terms. In such relative cases, you must calculate the final price numerically based on the information 
available. 
- Identify any items that someone actually buys or mentions buying. 
- Determine the brand associated with each purchased item (if specified). 
- Extract or compute the price in dollars, performing calculations for relative pricing. 
- If no purchases are found, return an empty list. 
- Do not include any additional commentary. 

**Output Format** 
A list of dictionaries with keys: 
- `item` (string): Name of the purchased item. 
- `brand` (string): Brand name. 
- `model` (integer): Model of the item. 
- `price` (integer): Price in dollars. 

INPUT: {context} 

FEATURE_EXTRACTION_PROMPT for Arithmetic Reasoning, Multi-Speaker (Forum Style) documents

Figure 6: Prompt for reconstructing the original tuple of implicit tuple set (extracting features) from generated
conversations for Multi-Speaker (Forum Style) documents in Arithmetic reasoning.

**Task** 
Identify purchased items, their brands, and prices in a conversation transcript. 

**Input** 
Input is a conversation transcript as a list of lines, each: 
<user name>: <utterance> 

**Requirements** 
- Detect items someone buys or mentions buying. 
- Determine the brand for each purchased item. 
- Extract or compute the price in dollars, performing calculations for relative pricing. 
- If no purchases are found, return an empty list. 
- Do not include any additional commentary. 

**Output Format** 
A list of dictionaries with keys: 
- `item` (string): Name of the purchased item. 
- `brand` (string): Brand name. 
- `price` (integer): Price in dollars. 

INPUT: {context} 

FEATURE_EXTRACTION_PROMPT for Arithmetic Reasoning, Uni-Speaker (Chat Style) documents

Figure 7: Prompt for reconstructing the original tuple of implicit tuple set (extracting features) from generated
conversations for Multi-Speaker (Forum Style) documents in Arithmetic reasoning.
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**Task** 
Generate a natural response to a forum question. 

**Input** 
- `topic`: A short topic of the forum discussion. 
- `forum_question`: A base question posted in the forum. 
- `forum_post`: The location that the person wants to use for responding to the "forum_question". 
- `user`: a dictionary with the following keys: 
  - `name`: Name of the user. 
  - `persona`: Persona of the user. 
- `type_of_location`: The type of location that the person in the post is talking about in "forum_post". 
- `starting_phrase`: A starting phrase for the opening line of a response in an online forum discussion 

**Requirements** 
- In the response, you should answer the "forum_question" by stating that you participated in the activity mentioned in "topic" at the 
"forum_post" location or at a place directly behind it. 
- If the activity in `topic` would be inappropriate at the exact `forum_post` location, you may instead reference a suitable place immediately 
next to or behind it (e.g., "the dance studio just behind St. Mary's Church"), while still mentioning the `forum_post` location name exactly 
once. 
- You can use the information in `user["persona"]` that is about the `user['name']` to make the response more natural. 
- You should mention that the user was in the location mentioned in "forum_post" or behind it, and you can use the information in 
`type_of_location` to know the type of location mentioned in "forum_post", but make sure that you mention the location name exactly as it 
is in "forum_post". 
- Only mention the `forum_post` location name once in the response. 
- Do not alter the location in `forum_post`; use it exactly as it is without any changes. 
- Do not mention any other location than the one in `forum_post`. 
- Use the `starting_phrase` as the opening line of the response. 
- Make sure that you generate grammatically correct sentences. 
- Your generated answer must be coherent and must read naturally, as if a human is really answering the `forum_question`, in exactly 5 
sentences. 

**Output Format** 
Only 1 line of response, without any prefix or suffix. 

INPUT: {context} 

CONVERSATION_GENERATION_PROMPT for World-Knowledge Reasoning, Multi-Speaker (Forum Style) documents

Figure 8: Prompt for generating the conversations for Multi-Speaker (Forum Style) documents in the World-
Knowledge reasoning.

33172



**Task** 
Generate a natural conversation between two people ("user_1" and "user_2") based on a trip. 

**Input** 
- `user_1`: A dictionary with the following keys: 
  - `name`: Name of the first user. 
  - `persona`: Persona of the first user. 
- `user_2`: A dictionary with the following keys: 
  - `name`: Name of the second user. 
  - `persona`: Persona of the second user. 
- `trip_destination`: Destination of the trip. 
- `type_of_location`: The type of location. 
- `trip_purpose`: The purpose of the trip. 
- `starting_phrase`: A starting phrase for the opening line of a conversation between two friends 

**Requirements** 
- In the conversation, user_1['name'] will share a trip-information message stating that they were at the `trip_destination` for the purpose 
specified in `trip_purpose`, while user_2['name'] must engage naturally but must not reveal or comment on any trip or locational 
information. 
- Mention the `trip_destination` exactly once, spelled exactly as provided, and do not add or change any details. Do not mention its country 
or city. 
- Mention the `trip_purpose` exactly once, spelled exactly as provided. 
- If the activity in `trip_purpose` would be inappropriate at the exact `trip_destination` location, you may instead reference a suitable place 
immediately next to or behind it (e.g., "the dance studio just behind St. Mary's Church"), while still mentioning the `trip_destination` 
location name exactly once. 
- Do not mention any other locational information in the conversation. 
- user_2['name'] replies naturally without referencing trip or locational information. 
- You may use the information in user_1["persona"] and user_2["persona"] to make the responses more natural. 
- `type_of_location` describes the kind of place user_1 visited and can help make the conversation sound natural. 
- Use the `starting_phrase` as the opening line of the first utterance. 
- **Place the complete trip note in exactly one user_1 utterance of your choice** (it may be the 2nd, 3rd, 7th—any single line).   
  - That utterance must contain the literal text of `trip_destination` and `trip_purpose`, each spelled exactly as provided.   
  - After that line, either speaker may refer to the place or activity only indirectly (e.g., "there", "it", "that visit") and must never restate or 
partially repeat those exact strings.   
  - No additional locational or purpose details may be introduced later. 
- Make sure that you generate grammatically correct sentences. 
- The conversation must consist of exactly 10 utterances. 
- Each utterance is on its own line. 

**Output Format** 
Only 10 lines of dialogue are separated by newlines. For each line, separate the user name (one of the values of `user_1['name']` or 
`user_2['name']`) and the utterance with a colon. 
### EXAMPLE (structure only) 
user_1['name']: <starting_phrase> ...   
user_2['name']: ...   
... 

INPUT: {context} 

CONVERSATION_GENERATION_PROMPT for World-Knowledge Reasoning, Uni-Speaker (Chat Style) documents

Figure 9: Prompt for generating the conversations for Uni-Speaker (Chat Style) documents in the World-Knowledge
reasoning.
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**Task** 
Identify the location that the person was in. 

**Input** 
You are given a forum response transcript with 4 sentences as INPUT. 

**Requirements** 
- Your task is to identify the location that the person was in. 
- Extract the exact name and do not change it. 
- If no location is found, return an empty list. 
- Do not include any additional commentary. 

**Output Format** 
A list of dictionaries with the key: 
- `location` (string): Name of the location that the person was in. 

INPUT: {context}

FEATURE_EXTRACTION_PROMPT for World-Knowledge Reasoning, Multi-Speaker (Forum Style) documents

Figure 10: Prompt for reconstructing the original tuple of implicit tuple set (extracting features) from generated
conversations for Multi-Speaker (Forum Style) documents in the World-Knowledge reasoning.

**Task** 
Identify the destination of the trip and the purpose of the trip. 

**Input** 
Input is a conversation transcript as a list of lines, each: 
<user name>: <utterance> 

**Requirements** 
- Detect the destination of the trip and the purpose of the trip. 
- If no destination or purpose is found, return an empty list. 
- Do not include any additional commentary. 

**Output Format** 
A list of dictionaries with keys: 
- `destination` (string): Name of the destination of the trip. 
- `purpose` (string): Name of the purpose of the trip. 

INPUT: {context}

FEATURE_EXTRACTION_PROMPT for World-Knowledge Reasoning, Uni-Speaker (Chat Style) documents

Figure 11: Prompt for reconstructing the original tuple of implicit tuple set (extracting features) from generated
conversations for Uni-Speaker (Chat Style) documents in the World-Knowledge reasoning.
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**Task** 
Generate a natural response to a forum question. 

**Input** 
- `topic`: A short topic of the forum discussion. 
- `forum_question`: A base question posted in the forum. 
- `forum_post`: The item related to the topic that the person wants to use for responding to the "forum_question". 
- `user`: a dictionary with the following keys: 
  - `name`: Name of the user. 
  - `persona`: Persona of the user. 
- `offset_days`: The relative date (e.g., "3 days ago") that the person in the post is talking about in "forum_post". 
- `starting_phrase`: A starting phrase for the opening line of a response in an online forum discussion 

**Requirements** 
- In the response, answer the "forum_question" by stating that the user did the work on the date given in "offset_days", choosing a verb 
appropriate to the 'topic'. 
- You can use the information in `user["persona"]` about `user['name']` to make the response more natural. 
- Mention the `forum_post` item exactly once and do not mention any other item. 
- Do not alter `offset_days`; use it exactly as written, though you may spell out its number component (e.g., "2 days ago" or "two days ago"). 
Do not convert it to a calendar date. 
- The work must have occurred on a single day; avoid vague temporal expressions such as "until", "by the ...", "completed", or "finished". 
- Do not mention any date other than the one in `offset_days`. 
- Use the `starting_phrase` as the opening line of the response. 
- Make sure that you generate grammatically correct sentences. 
- Your generated answer must be coherent and sound natural, as if a real person is answering the `forum_question`, in exactly five sentences. 

**Output Format** 
Only 1 line of response, without any prefix or suffix. 

INPUT: {context} 

CONVERSATION_GENERATION_PROMPT for Temporal Reasoning, Multi-Speaker (Forum Style) documents

Figure 12: Prompt for generating the conversations for Multi-Speaker (Forum Style) documents in the Temporal
reasoning.
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**Task** 
Generate a natural conversation between two people ("user_1" and "user_2") based on the given schedule. 

**Input** 
- `user_1`: A dictionary with the following keys: 
  - `name`: Name of the first user. 
  - `persona`: Persona of the first user. 
- `user_2`: A dictionary with the following keys: 
  - `name`: Name of the second user. 
  - `persona`: Persona of the second user. 
- `work`: The work task. 
- `hours`: The hours that the work is to be performed. 
- `offset_days`: A list describing when the work was done, relative to `message_time`. Each element is either a single relative day (e.g., '3 
days ago', 'yesterday', 'today', 'in 2 days') or a span (e.g., 'Starting in 3 days for 4 consecutive days'). 
- `message_time`: The time that the conversation is being sent: [date of the message, day of the week, hour in 24h format] 
- `starting_phrase`: A starting phrase for the opening line of a conversation between two friends 

**Requirements** 
- In the conversation, user_1['name'] will share a message describing their recent or upcoming work schedule and must mention the `work` 
and all `offset_days` in a single utterance. 
- user_2['name'] must engage naturally in the conversation but should not mention or comment on any schedule, timing, or numerical details. 
- You can use the information in user_1["persona"] that is about the user_1['name'], and user_2["persona"] that is about the user_2['name'] to 
make the response more natural. 
- You should mention that the user_1['name'] did the 'work' on the specific day or days. Mention the day(s) of work using the same relative 
phrasing as in offset_days. You may express numbers as words (e.g., '2 days ago' or 'two days ago'), but do not rephrase or summarize the 
content of any span. 
- All the work is being done in the same hour interval as specified in hours, you should not directly mention the end hour, but make sure that 
you accurately mention end hour relative to the start hour (e.g., "from 1 p.m. until 3 hours after that" or "from 9 in the morning for three 
hours"). Do not change the hours. 
- Mention the `work` in the conversation exactly as it is (only change the tense if needed). 
- **Place the full schedule in exactly one user_1 utterance of your choice** (it may be the 2nd, 3rd, 7th—any single line).   
  - That utterance must: 
    - include the literal text of `work` (tense may change),   
    - repeat every phrase in `offset_days` verbatim, and   
    - give the hour window exactly once, phrased relative to the start hour (e.g., "from 1 p.m. until three hours after that").   
  - After that line, either speaker may refer to the activity only indirectly ("it", "those sessions", "the task") and must **never** restate the 
exact `work` string, schedule, or hours.   
  - No new dates, spans, or numerical details may appear elsewhere. 
- Do not change the "message_time" information. Ensure that the "hours" you use in the conversation for "work" are correct and accurate. 
For example, if the work is "updating a work log" and the "message_time" is ("2023-07-21", "Friday", 14), and the "hours" are (7, 10), You 
can use it like this: "2023-07-21", "Alaina", "I have to update a work log tomorrow from 7 in the morning for three hours." 
- The message time is the time at which the conversation is being sent; Use the hour provided in message_time. For each utterance, 
randomly select a valid minute (00-59), ensuring that time either increases or remains the same across the 10 utterances.The final format of 
the message time should be like this: "YYYY-MM-DD HH:MM" (e.g., "2024-01-01 12:00"). 
- Use the `starting_phrase` as the opening line of the first utterance. 
- Make sure that you generate grammatically correct sentences. 
- The conversation must consist of exactly 10 utterances. 
- Each utterance is on its own line. 

**Output Format** 
Only 10 lines of dialogue are separated by newlines. For each line, separate the final formatted message time and the user name (one of the 
values of `user_1['name']` or `user_2['name']`) with a comma, and separate the user name and the utterance with a colon. 
### EXAMPLE (structure only) 
reformed_message_time, user_1['name']: <starting_phrase> ...   
reformed_message_time, user_2['name']: ...   
... 

INPUT: {context} 

CONVERSATION_GENERATION_PROMPT for Temporal Reasoning, Uni-Speaker (Chat Style) documents

Figure 13: Prompt for generating the conversations for Uni-Speaker (Chat Style) documents in the Temporal
reasoning.
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**Task** 
Identify a work-related task described in the user's mention for the forum response and extract its temporal details. Specifically, you should: 

1.  Determine the work task (e.g., the action or project mentioned). 
2.  Identify any temporal expressions referring to when the work is to be performed. Convert relative time expressions (such as 
"tomorrow", "next week", etc.) into numerical offset_days (e.g., "1 day ago", "2 days ago", "3 days ago", etc.). Be very careful that the 
relevant dates are correct. 

**Input** 
You are given a forum response transcript with 4 sentences as INPUT. 

**Requirements** 
- Your task is to identify the work task and the `offset_days`. 
- Mention the `offset_days` as a number with words (e.g., "1 day ago", "2 days ago", "3 days ago", etc.). 
- Extract the exact work task and do not change it. 
- If no work task or offset_days is found, return an empty list. 
- Do not include any additional commentary. 

**Output Format** 
A list of dictionaries with the keys: 
- `work` (string): The work task. 
- `days` (string): The offset_days. 

INPUT: {context}

FEATURE_EXTRACTION_PROMPT for Temporal Reasoning, Multi-Speaker (Forum Style) documents

Figure 14: Prompt for reconstructing the original tuple of implicit tuple set (extracting features) from generated
conversations for Multi-Speaker (Forum Style) documents in the Temporal reasoning.

**Task** 
Identify a work-related task described in the conversation and extract its temporal details. 

**Input** 
Input is a conversation transcript as a list of lines, each: 
<message time>, <user name>: <utterance> 

**Requirements** 
- Determine the work task (e.g., the action or project mentioned). 
- Identify any temporal expressions referring to when the work is to be performed. Convert relative time expressions (such as "tomorrow", 
"next week", etc.) into absolute dates (YYYY-MM-DD) using the conversation date as a reference. Be very careful that the relevant dates be 
correct. 
- Extract the time range mentioned for the task and express it as a tuple of two integers representing the start and end hours in 24-hour 
format. 
- If no work task or offset_days is found, return an empty list. 

**Output Format** 
A list of dictionaries with keys: 
- `work` (string): A string describing the identified task. 
- `days` (list): A list of one or more dates (YYYY-MM-DD) on which the task occurs. 
- `hours` (tuple): A tuple of two integers representing the start and end hours. 

INPUT: {context} 

FEATURE_EXTRACTION_PROMPT for Arithmetic Reasoning, Uni-Speaker (Chat Style) documents

Figure 15: Prompt for reconstructing the original tuple of implicit tuple set (extracting features) from generated
conversations for Uni-Speaker (Chat Style) documents in the Temporal reasoning.
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**Task** 
Answer the Question based on the context provided.  

**Input** 
- The INPUT contains a Topic, Forum Question and several Responses to the Forum Question.  
- Each response is mentioned by a number in the following format: 
Response {{number}}: 
- Each response is separated by a new line. 
- Each response contains the date, speaker and the message in the following format: 
<date>, <speaker>: <message> 

**Output** 
return the final answer in a new line after "Answer:" without any prefix or suffix. 

INPUT: 
{context} 

Answer the following question as precisely as possible, using the information provided in the responses. You may 
rely on the response content, the time each response was sent, and who sent it. 

Question: {question} 

Answer: 

RAG_STYLE_PROMPT for Multi-Speaker (Forum Style) documents

Figure 16: Prompt for RAG-style experiment, while the input is forced to contain the positive document, in Multi-
Speaker (Forum Style). This prompt is used for all the reasoning categories of the Arithmetic, World-Knowledge,
and Temporal.
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**Task** 
Answer the Question based on the context provided.  

**Input** 
- The INPUT contains several conversations between two users as Context and a Question. 
- Each conversation is mentioned by a number in the following format: 
Conversation {{number}}: 
- Each conversation contains 10 utterances that are separated by lines. 
- Each utterance contains the date, speaker and the message in the following format: 
<date>, <speaker>: <message> 

**Output** 
return the final answer in a new line after "Answer:" without any prefix or suffix. 

INPUT: 
Context: {context} 

Answer the following question as precisely as possible, using the information provided in the conversation. You may 
rely on the conversation content, the time each conversation was sent, and who sent it. 

Question: {question} 
         
Answer: 

RAG_STYLE_PROMPT for Uni-Speaker (Chat Style) documents

Figure 17: Prompt for RAG-style experiment, while the input is forced to contain the positive document, in
Uni-Speaker (Chat Style). This prompt is used for all the reasoning categories of the Arithmetic, World-Knowledge,
and Temporal.
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