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Abstract
The rapid advancements of Large Language
models (LLMs) necessitate robust benchmarks.
In this paper, we present AraEval, a pioneering
and comprehensive evaluation suite specifically
developed to assess the advanced knowledge,
reasoning, truthfulness, and instruction-
following capabilities of foundation models
in the Arabic context. AraEval includes a
diverse set of evaluation tasks that test various
dimensions of knowledge and reasoning,
with a total of 24,378 samples. These tasks
cover areas such as linguistic understanding,
factual recall, logical inference, commonsense
reasoning, mathematical problem-solving,
and domain-specific expertise, ensuring that
the evaluation goes beyond basic language
comprehension. It covers multiple domains of
knowledge, such as science, history, religion,
and literature, ensuring that the LLMs are
tested on a broad spectrum of topics relevant
to Arabic-speaking contexts. AraEval is
designed to facilitate comparisons across
different foundation models, enabling LLM
developers and users to benchmark perfor-
mance effectively. In addition, it provides
diagnostic insights to identify specific areas
where models excel or struggle, guiding further
development. AraEval datasets can be found at
https://huggingface.co/collections/humain-ai/
araeval-datasets-687760e04b12a7afb429a4a0.

1 Introduction

With the unprecedented scaling of large language
models (LLMs) (OpenAI, 2022; Google, 2024; An-
thropic, 2022; Dubey et al., 2024; Mistral, 2024;
Team et al., 2024; Liu et al., 2024; Team, 2024),
algorithmic intelligence has reached new frontiers
(Guo et al., 2025; Jaech et al., 2024) across numer-
ous domains, demonstrating remarkable abilities
in tasks ranging from creative writing (Gómez-
Rodríguez, 2023), program synthesis (Jimenez
et al., 2023; Khan et al., 2024), instruction fol-
lowing (Zhou et al., 2023), knowledge extraction

(Hendrycks et al., 2021; Wang et al., 2024b) to rich
scientific reasoning (Mialon et al., 2023; Rein et al.,
2023). The field has witnessed breakthroughs,
with models matching or surpassing expert human
performance (Glazer et al., 2024) - from solving
olympiad-level problems (AlphaCode Team, 2023;
Chervonyi et al., 2025) to generating research-level
insights (Google, 2025; OpenAI, 2025) - catalyz-
ing massive industry investments 1 and research
efforts (Workshop et al., 2022; Lovenia et al., 2024;
LAION-AI, 2025; Lozhkov et al., 2024). As model
capabilities rapidly expand and emerge on a dif-
ferent scale (Wei et al., 2022; Srivastava et al.,
2022), systematic evaluation (Laskar et al., 2023;
Phan et al., 2025) serves as a vital proxy for de-
cision making across the ecosystem, enabling key
stakeholders - from developers and regulators to
investors, researchers, and industry practitioners -
to make informed strategic choices (Handa et al.,
2025) about model development, deployment, and
adoption (Latent Space, 2024).

Despite progress, the evaluation landscape re-
mains significantly skewed towards English and
other high-resource languages (Joshi et al., 2020),
creating a significant gap in our understanding of
LLM capabilities in different linguistic and cul-
tural contexts. In addition to that Yong et al. (2023)
showed that safety or instruction following don’t
generalize with low-resource languages. This dis-
parity is particularly pronounced for Arabic, the
fifth most spoken language worldwide with more
than 400 million speakers (Eberhard et al., 2020)
and rich dialectal variations spanning more than
20 countries. Although recent years have seen
the emergence of Arabic-specific language mod-
els (Bari et al., 2025; Abbas et al., 2025; Sengupta
et al., 2023b; Huang et al., 2023) and the increasing
integration of Arabic in multilingual models (Team,

1https://openai.com/index/
announcing-the-stargate-project/
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2024; Mistral, 2024; Jaech et al., 2024), compre-
hensive evaluation frameworks for assessing their
capabilities remain limited.

Existing Arabic evaluation efforts have primarily
focused on translating english benchmarks (Huang
et al., 2023; OpenAI, 2025; Sengupta et al., 2023b)
or targeted towards only knowledge base questions
(Koto et al., 2024; Almazrouei et al., 2023), lacking
the systematic multi-task assessment necessary for
understanding model performance across diverse
linguistic phenomena and real-world applications.
Notable initiatives like ArabicMMLU (Koto et al.,
2024), Exams (Hardalov et al., 2020), ACVA (Huang
et al., 2023), Belebele (Bandarkar et al., 2023),
and AraDiCE (Mousi et al., 2024), along with vari-
ous leaderboard efforts (El Filali et al., 2024), have
established foundational work in Arabic language
evaluation. Recent work by Bari et al. (2025) and
Abbas et al. (2025) have attempted to address these
limitations through human evaluation, but this ap-
proach faces inherent challenges of scalability and
consistency, being vulnerable to variations in setup,
prompt design, individual assessor biases, and tem-
poral factors.

In this work, we introduce AraEval, a compre-
hensive Arabic multi-task evaluation suite designed
to rigorously assess large language models (LLMs).
AraEval introduces a collection of novel, carefully
designed holistic Arabic language benchmarking
evaluation datasets that address these critical limi-
tations. AraEval serves as a native Arabic bench-
mark, ensuring cultural, linguistic, and normative
alignment with Arabic-speaking communities. Our
contributions include:

1. AraEval includes 24,378 novel samples
across knowledge, reasoning, truthfulness,and
instruction-following (Table 1).

2. AraEval facilitates detailed diagnostic assess-
ments of model performance, enabling the
identification of specific strengths and weak-
nesses in reasoning, instruction-following,
and knowledge retention. (Figures 1, 3, 4
and 7 and tables 9 to 12)

3. AraEval includes higher Arabic token cover-
age than ArabicMMLU and OpenAI’s Arabic-
translated MMMLU (Figure 5 and table 18).

4. AraEval supports both log-probability-based
and API-based evaluation schemes, facilitat-
ing seamless assessment of both open and
close-source models.

2 AraEval Evaluation Suite

We contribute seven datasets of Arabic benchmarks,
which vary in capabilities as shown in Table 1.

Task Type Dataset Test Split Dev Split

Knowledge MCQ AraPro 5001 110
Knowledge MCQ IEN MCQ 9990 190
Knowledge Boolean IEN TF 5823 190
Reasoning MCQ AraMath 605 5
Reasoning MCQ ETEC 1887 5
Instruction following Generation AraIFEval 536 -
Truthfulness MCQ AraTruthfulQA 536 5

Total 24,378

Table 1: AraEval tasks splits statistics.

2.1 Design Principles

To establish a comprehensive Arabic benchmark
for evaluating LLMs across diverse tasks, we devel-
oped our datasets based on the following principles:

Human-curated or human-validated: Every
dataset of AraEval is meticulously created by ex-
perts or rigorously validated by humans to ensure
the highest standards of quality and relevance. This
guarantees that the questions, answers, and annota-
tions are both accurate and meaningful, reflecting
real-world scenarios and challenges. The validation
criteria were task-specific, and human validators
received specialized training on the respective tasks
before beginning the validation process. The val-
idaiton process was conducted by three humans
where majority agreement was taken as the final
verdict. Guidelines for human annotators to cre-
ate/validate the datasets can be found in Section G.

Granularity for fine-grained evaluation: Our
datasets are designed with a high level of granu-
larity, enabling detailed evaluation and nuanced in-
sights into model performance. Fine-grained labels
allow for the analysis of specific areas of strength
and weakness, making the datasets particularly use-
ful for diagnostic and comparative studies.

Cultural and normative alignment: All
datasets are thoughtfully aligned with Arabic cul-
ture, values, and norms. This ensures the content
is appropriate, contextually relevant, and reflective
of the diverse realities of Arabic-speaking com-
munities, allowing for more authentic and reliable
evaluations.

2.2 Datasets Overview

2.2.1 AraPro
This dataset comprises 5,001 multiple-choice ques-
tions (MCQs) carefully crafted by university pro-
fessors across 19 distinct knowledge domains.
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These experts were selected and instructed to cre-
ate MCQs that reflect the competencies expected
of professionals in their respective fields. There-
fore, the questions evaluate LLMs in achieving
professional-level competency within these do-
mains. To ensure cultural and geographic neutrality,
we did not impose any restrictions tying the content
to Saudi Arabia or any specific country, as shown
in the guideline in Table 14. A detailed breakdown
of the knowledge domains and the corresponding
number of questions is provided in Table 12, while
we show subject categories distribution in Figure 7.

2.2.2 IEN

The global pandemic of COVID-19 has challenged
the world and inevitably the education sector. In
Saudi Arabia, the Ministry of Education responded
by launching the IEN2 platform as part of its
broader e-learning and distance education strategy.

The IEN platform includes a vast repository of
more than 1.5 million questions and answers, metic-
ulously classified into varying levels of difficulty.
This extensive database not only supports differen-
tiated learning, but also enables customized assess-
ments that address the unique needs and abilities of
students at every stage of their educational journey.

A representative subset that covers all grades,
subjects and levels of difficulty was randomly se-
lected from the IEN platform as shown in Table 1,
the selection contains 5,823 samples as true/false
questions and 9,990 MCQs. Figure 1 shows the
detailed distributions of the questions and subjects
per grade level. Table 10 and Table 11 provide
more granular details about the dataset.

Figure 1: Course and grade level coverage for TF and
MCQ IEN datasets combined.

2https://ien.edu.sa/

2.2.3 AraMath
AraMath consists of 605 MCQs derived from Ar-
Math (Alghamdi et al., 2022), which includes math-
ematical word problems, and the solution is an
equation that solves the problem. We reformulated
the dataset and converted it to a multiple-choice
problem (MCQ). The correct answer is extracted
from the equation by parsing the formulas, and
three random distractors were generated to com-
plete the set of options.

Human annotators meticulously reviewed and
validated the dataset to ensure the accuracy of the
equations in representing the mathematical word
problems. They also assessed choice distinctive-
ness, verifying that all answer choices were unique
and free of duplicates, and answer correctness, en-
suring that the labeled answer corresponded to the
correct choice.

2.2.4 ETEC
The Education & Training Evaluation Commission
(ETEC)3serves as an independent regulatory body
responsible for evaluating, measuring, and accredit-
ing qualifications in education and training in both
the public and private sectors in Saudi Arabia. Its
role includes ensuring and enhancing the quality
and efficiency of educational and training institu-
tions, programs, and their outcomes. The com-
mission offers more than 42 types of qualification
tests spanning all educational levels from K12 to
professional levels. A subset of 1887 MCQs were
chosen from different types of tests that include: a)
Qudurati: A series of tests offered to students from
3rd grade elementary school to 10th grade to assess
their level of general aptitude in comprehension,
analysis, reasoning, and application, focusing on
their readiness for learning. b) Professional Edu-
cational Occupation License Test: A standardized
assessment tool to measure applicants’ competency
in general and specialized educational standards
for on-the-job teachers.

2.2.5 AraIFEval
AraIFEval is an Arabic instruction-following (IF)
evaluation benchmark designed to automatically
assess language models’ compliance with speci-
fied instructions through verifiable methods. The
dataset consists of 535 instances, each containing
two to four verifiable instructions that can be vali-
dated using deterministic programming approaches.

3https://etec.gov.sa/en/
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An example of the AraIFEval dataset with verifi-
able instructions is shown in Section E.3.

We created a collection of 23 Arabic verifiable
instructions, inspired by Zhou et al. (2023). To
construct the dataset, we randomly selected open
questions from our data to serve as seed prompts.
We generated IF prompts by randomly combining
two to four instructions for each prompt, carefully
ensuring logical consistency and avoiding contra-
dictions between instructions. The dataset was then
reviewed by humans for quality assurance. The
Arabic verifiable instructions are presented in Sec-
tion F, while the dataset distribution is detailed
in Figure 8. To enable automatic response ver-
ification, we implemented regex-based category
phrase checking. We followed Zhou et al. (2023)’s
evaluation approach to assess instruction-following
capabilities following strict and loose criteria. Sim-
ilar to Fourrier et al. (2024), we only report strict
accuracy in this work.

2.2.6 AraTruthfulQA
Inspired by TruthfulQA Lin et al. (2021), this
benchmark evaluates the truthfulness of LLM re-
sponses to questions designed to elicit common
misconceptions. The benchmark targets questions
that some individuals may answer incorrectly due
to false beliefs or misinformation. It comprises
questions spanning diverse categories with a partic-
ular emphasis on prevalent misconceptions in the
Arab world. To ensure cultural relevance, we re-
viewed TruthfulQA dataset and selected 287 ques-
tions that align with Arabic cultural norms and
beliefs, ensuring they are culturally appropriate
and broadly acceptable across the Arabic-speaking
world. To avoid regional or cultural skew, we in-
structed the human annotators to use Modern Stan-
dard Arabic (MSA) for translation (see Table 17).
Additionally, we crafted 249 culturally relevant
questions of similar complexity and depth, specif-
ically addressing common misconceptions in the
Arab world, further enhancing the benchmark’s
comprehensiveness.

3 Experiments

3.1 Setup

In this paper, we integrate the AraEval benchmark
with the LM Evaluation Harness framework (Gao
et al., 2024). We evaluate models in zero-shot
and few-shot settings, using test and dev sets; ex-
cept for AraIFEval, where only zero-shot results

are reported. To mitigate token bias (Alzahrani
et al., 2024), we ensured a balanced distribution of
correct answer positions across four-choice MCQ
datasets such as AraMath, ETEC, and AraPro (see
Figure 9). For the few-shot experiments in IEN-
MCQs, IEN-TF, and AraPro, we selected examples
from the same domain as the target question to
reduce the impact of out-of-domain samples. A
complete list of models evaluated, including both
open-source and closed-source models, is provided
in Appendix C.

3.1.1 Open Models Setup
For open-source models, where weights are ac-
cessible, we evaluated performance using log-
probability–based scoring on the MCQ datasets
and reported normalized accuracy. We used labels
(A, B, C, D, etc.) to compute log probabilities,
with the exception of AraTruthfulQA, where we
calculated the log-probability of the choice label
followed by the context of the choices. AraIFEval
was implemented as a generation task in the LM
Evaluation Harness, and we report both prompt-
level and instruction-level strict accuracies. Addi-
tional details on metrics are provided in Section I.

3.1.2 Closed Models Setup
To evaluate the closed-source models for the
AraEval suite, we implemented a generation-based
evaluation using the LM Evaluation Harness frame-
work. Since closed models can only be accessed
through APIs and do not provide token-level proba-
bilities (logprobs), we adapted all benchmark tasks
in AraEval to a generation-based format to suit
such models. We set the generation temperature
to 0.0 to ensure consistency and determinism in
the model responses. For the multiple-choice tasks,
such as the IEN datasets MCQ and TF, ETEC, Ara-
Math, AraPro, and AraTruthfulQA, we applied fil-
ters that extract the model’s selected answer from
its generated response. Such filters ensure that the
extracted response corresponds exactly to one of
the provided answer choices. After processing the
model outputs, accuracy was calculated by com-
paring the extracted responses to the gold-standard
labels using an exact match criterion.

3.2 Baselines

We evaluate a range of Arabic and state-of-the-art
multilingual models to assess the utility of our eval-
uation suite. To this end, we design a series of
experiments that: (1) compare model performance
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across various tasks, analyzing fine-grained results
across different domains, (2) examine knowledge
retention across different model sizes within the
same family, and (3) compare base and instruct
(chat) models to assess their relative strengths. Our
evaluation covers models shown in Table 8, con-
sidering variants with 7B, 13B, 30B, and 70+B pa-
rameters to study scaling trends and performance
variations.

3.3 Results
Zero-shot results for instruct models are shown
in Table 2, while zero-shot for base models and
five-shot results for base and instruct models are
presented in Table 3, Table 4, and Table 5, respec-
tively, in Appendix A. All results in this section for
open-source models are based on log-probability
evaluation, except for AraIFEval. We report nor-
malized accuracy for the tasks, and similar to Four-
rier et al. (2024), we report strict prompt-level and
instruction-level accuracy Zhou et al. (2023) for
AraIFEval (see Section I for more details). We
also evaluate open-source models using generation-
based evaluation and provide a comparative analy-
sis with log-probability evaluation in Section B.

The results reveal notable performance varia-
tions across models, model sizes, and shot settings.
GPT4o, Claude, and Gemini demonstrate the high-
est performance across most tasks, consistently out-
performing other models. Qwen 32B and 72B mod-
els and ALLaM 34B follow closely, showing ro-
bust performance across multiple tasks, especially
in IEN MCQs and IEN TF. Llama 70B performs
well but lags behind top-tier models, particularly
in reasoning and advanced knowledge tasks includ-
ing ETEC, AraPro, and AraMath, where its scores
remain in the high 60s to low 70s. Among the Ara-
bic models, these tasks remain challenging to Jais-
family models where they underperform, while the
AceGPT 32B model demonstrates improved per-
formance; however, it falls short of achieving 70%
accuracy.

The impact of model scaling varies across differ-
ent types of tasks. For example, AraMath shows
the most significant improvements with scaling,
where Qwen 7B achieves an accuracy of 71.24%
that increases to 92.07% with Qwen 32B. Simi-
larly, Llama 3.3 70B achieves 69.92% compared to
32.73% with Llama 3.1 8B. Conversely, AraTruth-
fulQA do not exhibit the same level of improve-
ment. For example, the Qwen models—7B, 14B,
and 72B—achieve comparable accuracy rates of

52.8%, 58.4%, and 57.84%, respectively, while the
Qwen 32B model outperforms them slightly with a
higher accuracy of 61.19%.

The results highlight distinct patterns in task dif-
ficulty levels. Certain tasks, such as IEN MCQ
and IEN TF, demonstrate consistently high accu-
racy across multiple models, suggesting a lower
level of difficulty. This outcome is expected, as
these tasks primarily consist of questions covering
K01–K12 school subjects, which involve funda-
mental concepts and factual recall, making them
easier for language models to handle. However,
These two datasets are designed with multiple dif-
ficulty levels, as shown in Table 10 and Table 11,
enabling the creation of more challenging subsets if
needed. Other advanced knowledge and reasoning
tasks, such as ETEC, AraPro, and AraMath, show
a wider variance in scores, highlighting higher dif-
ficulty level. For ETEC, performance varies sig-
nificantly across models, with Claude Sonnet 3.5
(86.06%) and Gemini Pro 1.5 (83.31%) achieving
high scores, but Llama 8B is struggling at 45.89%.
Similar trends are seen in AraMath and AraPro,
where high variance is observed across models,
with GPT4o achieving 81.16% and 80.86%, respec-
tively, and Llama 8B scoring 32.73% and 52.51%,
respectively. AraIFEval exhibit consistently low
performance across all model families, indicat-
ing inherent difficulty. Even the strongest models
achieve relatively low scores, compared to other
tasks, with Claude sonnet 3.5 at 53.73%.

Most models benefit from few-shot prompting,
but the degree of improvement varies. For in-
stance, Qwen models show substantial improve-
ments, particularly Qwen 7B, which gains over
10% in IEN MCQ, while Jais-family models strug-
gle with few-shot prompting, with Jais-13B experi-
encing a performance drop in ETEC from 48.97%
to 26.66%. Instruct models consistently outperform
base models, particularly in AraMath, AraIFE-
val, and AraTruthfulQA. For example, Qwen 72B-
Instruct scores 87.51% on AraIFEval, while its base
counterpart achieves only 50.31%, highlighting the
impact of instruction tuning on instruction follow-
ing. Similarly, in AraTruthfulQA, ALLaM 34B
Instruct scores 81.53%, whereas its base version
achieves 64.18%, in five-shot setting showing that
fine-tuning improves truthfulness and misinforma-
tion resistance. However, for simpler knowledge-
based tasks like IEN MCQ, the gap is smaller. In
some cases, base models outperform their instruct
counterparts, as seen in IEN MCQ, where Qwen
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72B Base scores 90.77%, surpassing the 86.54% of
its instruct version. Few-shot prompting benefits
base models more than instruct models, as seen
in the AraMath task, where Qwen 72B improves
from 88.60% (0-shot) to 95.87% (5-shot). Overall,
instruction tuning significantly enhances reasoning,
alignment, and reliability, while larger base models
still perform well in factual retrieval.

4 Analysis

4.1 Cross-Models Analysis
AraEval aggregates 7 datasets into a single score
representing general Arabic capabilities. Inspired
by Fourrier et al. (2024), we take the average nor-
malized score across benchmarks, which is defined
as:

Norm. Score = 100 · Raw Score � Baseline
100 � Baseline

(1)

This transformation assigns a normalized score of
0% for the random baseline and 100% for a perfect
score, with the rest linearly interpolated. In effect,
this unifies score variances across benchmarks;
it increases the contribution of benchmarks with
high random baselines, such as true/false bench-
marks, such that their scores span [0, 100] instead
of [50, 100]. The final score is the mean of the
7 normalized benchmark scores. Five-shot eval-
uation is used whenever applicable to decouple
formatting from base model evaluation.

Figure 2 illustrates the relationship between
model size and AraEval accuracy for several
prominent model families, including Qwen 2.5,
Llama 3, Jais Family, AceGPT v2, Fanar, ALLaM,
and ALLaM Adapted. Across all model families,
there is a consistent trend of increasing accuracy as
model size scales from 7B to 70B parameters. This
suggests that larger models are better equipped to
capture the complexities of the Arabic language,
benefiting from richer parameterization. While all
models demonstrated performance gains with in-
creased size, ALLaM Base exhibited the most sig-
nificant improvements, particularly in the small-
to-mid size range (7B–30B), indicating the effec-
tiveness of its architecture and training data for
Arabic-specific tasks. The sensitivity of AraEval to
variations in model scale—from 7B to 70B param-
eters—further highlights the benchmark’s robust-
ness. It effectively captures nuanced performance
differences, making it particularly well-suited for
fine-grained comparisons across diverse model con-
figurations.

Although performance generally improved with
size, diminishing returns became apparent beyond
the 30B parameter mark for Qwen2.5 and for AL-
LaM instruct scaling from 7B to 30B. For these
models, the accuracy gains were marginal com-
pared to the more substantial improvements ob-
served when scaling from 7B to 30B in ALLaM
base. This suggests potential saturation points
where further parameter increases yield limited ben-
efits. This ability to detect performance plateaus
is critical for guiding model scaling decisions and
optimizing resource allocation.

Instruct models consistently outperform their
Base counterparts across all size categories, un-
derscoring the benchmark’s ability to reflect im-
provements from fine-tuning strategies aimed at
aligning models with user instructions.

4.2 Fine-Grained Analysis
While average evaluation metrics provide a gen-
eral overview of LLMs performance, fine-grained
assessments offer deeper insights into specific ca-
pabilities and areas needing improvement. This
detailed evaluation is crucial for understanding
the strengths and weaknesses of LLMs in vari-
ous contexts. Several approaches were proposed
to reveal the fine-graind capabilities of models.
FAC2E (Wang et al., 2024a) proposed a frame-
work for better understanding LLM capabilities
by dissociating Language and Congitive capabili-
ties allowing for a more detailed analysis of LLM
performance. Similarly, the "FLASK" (Ye et al.,
2024) evaluation protocol decomposes overall scor-
ing into specific skill sets for each instruction, pro-
viding a fine-grained evaluation that enhances inter-
pretability and reliability. To this extent, AraEval
benchmark offers a deeper insight into the capa-
bilities of LLMs by pinpointing model scoring not
only at an overall view but more deeper such as
grade, subject, and difficulty level, See Figure 3,
4 and 6. The variations in the figures indicate
that the models performances varies and provide
insightful remarks about how each model performs
when compared to others, and at the same time
will identify the gap or the deficiencies the model
might suffer from. In Figure 3(b), it is notice-
able that “Above average” questions have more
variance between the models compared to “Aver-
age” or “Below average” questions. Table 6 reports
the performance of all instruct models on the IEN
datasets, broken down by difficulty level.

Further, subjects like “Language” in Figure 3(c),
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Model IEN AraPro AraMath ETEC AraTruthfulQA AraIFEval

MCQ TF Prompt Instruction

ALLaM 7B-Instruct 93.07 83.17 73.57 67.44 69.26 65.30 61.94 83.75
Llama-3.1-8B-Instruct 59.24 72.83 52.51 32.73 45.89 54.29 53.36 79.32
Qwen2.5-7B-Instruct 66.20 78.79 64.63 71.24 64.23 52.8 28.17 65.19
Fanar-1-9B-Instruct 79.51 79.70 66.63 59.67 62.53 79.48 44.59 77.13

ALLaM Adapted 13B-Instruct 93.39 84.23 74.69 78.68 73.98 67.16 59.33 83.14
Jais-family-13B-chat 63.01 69.05 57.53 42.64 48.97 56.53 17.16 54.27
Qwen2.5-14B-Instruct 80.32 77.25 69.11 80.17 72.66 58.4 68.66 86.76

ALLaM 34B-Instruct 93.21 87.19 79.52 60.50 74.46 78.36 67.16 86.76
AceGPT-v2-32B-chat 81.61 80.92 67.19 64.13 65.08 65.11 25.75 63.41
Jais-family-30B-16k-chat 74.70 68.62 62.79 50.74 53.37 63.99 16.60 54.95
Jais-family-30B-8k-chat 72.78 70.62 61.27 42.64 53.63 62.69 16.79 54.68
Qwen2.5-32B-Instruct 84.71 81.97 71.81 92.07 78.91 61.19 56.90 82.87

ALLaM Adapted 70B-Instruct 92.43 85.88 75.82 73.22 76.26 81.72 65.49 85.39
Jais-adapted-70B-chat 74.41 76.85 64.59 50.74 56.76 71.46 27.05 65.05
Llama-3.3-70B-Instruct 79.68 78.50 70.49 69.92 69.00 67.16 70.90 88.60
Qwen2.5-72B-Instruct 86.90 87.12 74.69 89.26 78.96 57.84 67.72 87.51

GPT-4o 92.07 89.87 80.86 81.16 79.23 87.69 70.90 88.12
Gemini pro 1.5 89.33 85.73 76.22 96.36 83.31 88.43 74.81 90.17
Claude Sonnet 3.5 92.45 89.64 81.46 88.6 86.06 90.67 53.73 80.14

Random baseline 30.77 50 25 25 25 23.46 0 0

Table 2: Zero-shot results of instruct models on all AraEval benchmarks.

Figure 2: LLMs performance on AraEval for various model sizes. Instruct models are in solid lines, while Base
models are in dashed lines.

and “Humanities” in Figure 4 show similar trends
where the performance of the models varies widely.
Such nuances and observations are useful and in-
sightful and reflect the utility of a high-quality
benchmark.

4.3 Vocabulary Coverage Analysis

A robust evaluation of large language models in
Arabic requires not only challenging tasks, but also
a comprehensive vocabulary coverage. In this work,
we assess the vocabulary coverage of several mod-
els across the Arabic datasets within our proposed
benchmark AraEval, and compare it against two
widely used benchmarks in the community, includ-

ing Arabic MMLU (Koto et al., 2024) and OpenAI
MMMLU (translated to Arabic) (OpenAI, 2024).

As shown in Figure 5, the vocabulary cov-
erage values are averaged across all models.
AraEval achieves 74.05% coverage of Arabic
tokens, closely aligning with OpenAI Arabic
MMMLU (74.17%), while surpassing Arabic
MMLU (66.38%). This coverage ensures that
AraEval incorporates a diverse range of Arabic
tokens, including domain-specific tokens from sci-
ence, history, and literature.

This rich token representation makes AraEval a
more faithful and challenging benchmark for eval-
uating LLM performance in Arabic. A detailed
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Figure 3: Average accuracies on all evaluated models for various IEN MCQ subsets. Error bars represent 95%
confidence intervals of the average accuracy across all models.

Figure 4: Average accuracies on all evaluated models
for various AraPro subsets. Error bars represent 95%
confidence intervals for the average across models.

breakdown of the vocabulary coverage is provided
in Table 18.

Figure 5: Average Arabic vocabulary coverage across
various tokenizers. Details are presented in Table 18.
AraEval covers a large portion of Arabic vocabulary
without using translated data.

5 Conclusion

In this paper, we introduced AraEval, a compre-
hensive benchmark designed to evaluate different
advanced capabilities of foundation models within
the Arabic context. Our evaluation highlights the

Figure 6: Average accuracies on all evaluated models
for various AraIFEval constraint subsets. Error bars
represent 95% confidence intervals across models.

robustness and diversity of the datasets within
AraEval, offering key insights into their effective-
ness in distinguishing model capabilities. Tasks
like AraMath, AraPro, ETEC, and AraIFEval prove
highly challenging, effectively differentiating mod-
els, making them strong indicators of true model
competency. AraTruthfulQA effectively measures
a model’s susceptibility to misinformation, reveal-
ing clear differences in truthfulness across models.
Conversely, IEN MCQ and IEN TF capture less
advanced knowledge that some base models can
handle. These findings emphasize the value of
AraEval as a benchmarking tool for Arabic LLMs.
We release the main results using log-probability
scoring due to its efficiency and replicability, while
also providing generation-based evaluation results
as they better reflect end-user expectations in real-
world applications. By releasing AraEval, we aim
to support further research into advanced Arabic
prompting strategies and provide a strong founda-
tion for future evaluations, paving the way for more
targeted advancements in Arabic NLP.
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6 Limitations

Despite AraEval’s contribution to addressing the
gap in comprehensive assessment datasets, sev-
eral limitations warrant consideration. First, the
dataset’s reliance on multiple-choice questions
(MCQ) and true/false formats inherently constrains
the evaluation of language models’ capabilities.
These structured response formats may not ade-
quately assess deeper levels of comprehension or
the ability to generate creative solutions that more
closely align with real-world applications.

Second, some AraEval’s datasets, mainly IEN
and ETEC, focus on the Saudi curriculum which
may introduce potential cultural bias. This geo-
graphical and cultural specificity may limit the gen-
eralizability of the dataset to educational contexts
in other regions and cultures, potentially overlook-
ing important cultural nuances and educational ap-
proaches from diverse Arab educational systems.

Third, the current benchmark’s scope is limited
to text-based assessments, excluding evaluation ca-
pabilities for multi-modal models. This limitation
becomes particularly significant as artificial intelli-
gence increasingly requires the ability to process
and synthesize information across various modal-
ities, including visual, auditory, and textual data.
However, some recent work has been conducted to
address this issue (Das et al., 2024; Ghaboura et al.,
2024).

Fourth, our dataset curation process emphasized
Arabic cultural alignment. However, Arabic is a
pluricentric language that spans many regions and
subcultures. We attempted to collect and filter data
in such a manner that conforms to the majority of
Arabic communities. However, we acknowledge
that the annotators and datasets are sourced pre-
dominately from Saudi Arabia, which could induce
Saudi biases.

These limitations suggest opportunities for fu-
ture work to develop more comprehensive evalu-
ation frameworks that incorporate open-ended re-
sponses, diverse cultural perspectives, and multi-
modal assessment capabilities.

7 Ethical Considerations

All authors of this work acknowledge and adhere
to the ACL Code of Ethics, upholding its princi-
ples throughout the research process. All domain
experts and annotators involved in the creation and
review of the datasets are official employees, who
are fairly compensated based on mutually agreed-

upon wage standards and working hours. These
employment agreements fully comply with local
labor regulations. Furthermore, we prioritize clear
communication about how data and annotations are
utilized, obtaining informed consent from domain
experts and annotators before incorporating their
contributions into our research. We are also dedi-
cated to safeguarding their privacy throughout the
annotation and data creation process, fostering an
ethical and respectful research environment.
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A Additional Results

In addition to zero-shot results for instruct models
in Table 2 in the main paper, we also show the five-
shot instruct models results in Table 5. Also, the
base models results in zero-shot and five-shot set-
tings are presented in Tables 3 and 4, respectively.
Further, the results of all instruct models across
difficulty level for the IEN datasets are presented
in Table 6.

B Generation-based Evaluation

We present a comparative analysis of open-source
models performance on the AraEval datasets us-
ing a generation-based zero-shot setting (shown
in Table 7) and contrasting the results with those
obtained under zero-shot log-probability scoring in
Table 2.

The ALLaM model family exhibits strong robust-
ness and stability across both log-probability and
generation-based evaluation paradigms. In contrast,
the Qwen models show marked improvement under
generation-based evaluation—particularly on the
AraTruthful dataset—highlighting their strength in
open-ended generation tasks. Conversely, the Jais-
family models consistently underperform in the
generation setting, suggesting potential limitations
in alignment, reasoning capabilities, or instruction
following.

At the dataset level, IEN MCQ and AraPro
show strong agreement between log-probability
and generation-based evaluations, with most mod-
els retaining similar rankings, suggesting these
datasets are less sensitive to prompting variations.
AraMath and ETEC display moderate shifts in
model performance rankings, indicating some influ-
ence of evaluation paradigm. In contrast, AraTruth-
fulQA shows the most pronounced divergence,
where models like Qwen see notable gains under
generation, reflecting its sensitivity to open-ended
reasoning and alignment capabilities.

These findings emphasize the importance of
evaluation choice when assessing Arabic language
models. While log-probability scoring provides
efficiency and replicability, generation-based eval-
uation better captures end-user expectations in real-
world applications.

C Evaluated Models

Table 8 outlines the LLMs used in our evaluation
with additional details.

Size Model Access

7B Qwen 2.5 (Qwen et al., 2025) weights
8B Llama 3.1 (et al., 2024) weights
9B Fanar I (Abbas et al., 2025) weights
7B ALLaM (Bari et al., 2025) weights

14B Qwen 2.5 weights

13B
Jais family 13b chat
(Sengupta et al., 2023a; Inception, 2024)

weights

13B ALLaM Adapted weights

32B Qwen 2.5 weights
30B Jais family 30b 8k-chat weights
30B Jais family 30b 16k-chat weights
32B AceGPT (Zhu et al., 2024; Liang et al., 2024) weights
34B ALLaM weights

72B Qwen 2.5 weights
70B Llama 3.3 weights
70B Jais-adapted 70b-chat weights
70B ALLaM Adapted weights

— GPT4o (Hurst and et al., 2024) API
— Gemini pro 1.5 (Gemini, 2024) API
— Claude 3.5 Sonnet (Anthropic, 2024) API

Table 8: Instruct models considered

D Related Work

Evaluating LLMs requires comprehensive bench-
mark datasets that assess knowledge, reasoning,
and language understanding. These datasets can
be categorized into general-purpose and domain-
specific types, ensuring models are both broadly
competent and specialized.

D.1 General-Purpose Datasets

General-purpose datasets evaluate a model’s ver-
satility across tasks like question-answering, trans-
lation, and commonsense reasoning. The Mas-
sive Multitask Language Understanding (MMLU)
dataset (Hendrycks et al., 2021) measures general
knowledge across 57 subjects, with adaptations
for languages such as Korean (KMMLU) (Son
et al., 2024), Turkish (TurkishMMLU) (Yüksel
et al., 2024), and Chinese (CMMLU) (Li et al.,
2024). OpenAI has also translated MMLU into 14
languages, including Arabic (OpenAI, 2024).

HellaSwag (Zellers et al., 2019) evaluates com-
monsense reasoning through multiple-choice ques-
tions, with multilingual extensions like XCOPA
(Ponti et al., 2020) and mCSQA (Sakai et al.,
2024). Grade School Math 8K (GSM8K) (Cobbe
et al., 2021) focuses on quantitative reasoning, ex-
tended to ten languages via MGSM (Shi et al.,
2023). Finally, BigBench (Srivastava and et al.,
2023) offers over 200 diverse tasks to test LLM
capabilities across various domains.
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Model IEN AraPro AraMath ETEC AraTruthfulQA AraIFEval

MCQ TF Prompt Instruction

ALLaM 7B Base 58.79 57.15 49.41 20.33 39.27 44.78 3.73 29.56
Llama-3.1-8B 64.36 54.63 51.07 26.61 42.82 54.29 7.28 41.50
Qwen2.5-7B 76.95 78.00 61.75 67.93 59.94 71.08 6.72 44.57
Fanar-1-9B 80.16 74.84 64.89 49.75 58.24 58.21 15.30 53.52

ALLaM Adapted 13B Base 63.36 67.18 54.85 23.14 40.75 50 6.53 38.50
Jais-family-13B 37.99 54.82 31.15 31.90 28.46 50 6.90 40.75
Qwen2.5-14B 83.55 68.38 68.45 79.17 70.06 66.98 10.82 47.78

ALLaM 34B Base 83.42 55.90 72.71 48.10 62.43 53.54 17.16 55.15
AceGPT-v2-32B 78.40 66.96 65.85 54.71 58.88 63.81 8.02 45.26
Jais-family-30B-16k 67.00 55.71 54.29 28.10 42.24 48.88 11.01 45.12
Jais-family-30B-8k 58.65 62.22 55.21 26.12 42.82 48.13 11.57 48.74
Qwen2.5-32B 84.99 82.38 71.43 81.82 76.15 73.13 11.75 46.35

ALLaM Adapted 70B Base 75.76 76.13 64.19 35.54 55.11 59.33 3.17 24.30
Jais-adapted-70B 70.27 61.48 61.79 37.69 44.78 61.19 9.89 43.21
Qwen2.5-72B 88.83 80.73 73.89 88.60 78.48 78.73 14.93 50.31

Random baseline 30.77 50 25 25 25 23.46 0 0

Table 3: Zero-shot results of base models on all AraEval benchmarks.

Model IEN AraPro AraMath ETEC AraTruthfulQA
MCQ TF

ALLaM 7B Base 63.63 64.93 55.77 18.02 43.46 43.28
Llama-3.1-8B 71.05 63.85 59.29 39.67 48.01 51.49
Qwen2.5-7B 81.52 79.65 66.55 75.70 65.50 75.75
Fanar-1-9B 82.57 79.87 67.59 61.16 63.06 73.13

ALLaM Adapted 13B Base 72.43 71.29 62.93 23.47 51.19 59.70
Jais-family-13B 32.11 59.54 40.35 26.45 33.28 42.35
Qwen2.5-14B 86.56 83.75 72.53 92.56 76.21 83.96

ALLaM 34B Base 86.22 81.93 77.16 51.74 65.45 64.18
AceGPT-v2-32B 82.95 80.82 70.11 66.45 66.30 72.95
Jais-family-30B-16k 72.78 70.60 65.09 35.87 51.99 53.36
Jais-family-30B-8k 71.36 69.23 63.05 32.23 51.35 52.24
Qwen2.5-32B 87.84 86.16 74.99 94.05 80.29 82.28

ALLaM Adapted 70B Base 83.01 77.69 72.45 48.26 63.38 79.48
Jais-adapted-70B 78.07 75.17 66.97 51.24 52.46 77.24
Qwen2.5-72B 90.77 85.80 77.86 95.87 82.88 84.33

Random baseline 30.77 50 25 25 25 23.46

Table 4: Five-shot results of base models on all AraEval benchmarks

D.2 Domain-Specific Datasets

Domain-specific datasets evaluate LLMs in special-
ized fields. ARC-Challenge (Yadav et al., 2019)
tests science reasoning, with Arabic versions like
Okapi ARC-Challenge (Lai et al., 2023) and Al-
Ghafa Evaluation Benchmark (Almazrouei et al.,
2023). Minerva Math (Lewkowycz et al., 2022) as-
sesses mathematical reasoning, while CausalBench
(Wang, 2024) evaluates causal inference across tex-
tual, mathematical, and coding domains. Multi-
MedQA (Singhal et al., 2023) combines six medi-
cal datasets to evaluate clinical knowledge, making
it essential for healthcare-related tasks.

D.3 Arabic Datasets

Few datasets have been explicitly developed to eval-
uate LLMs in Arabic, but recent efforts have made
significant progress. One notable example is Ara-
bicMMLU (Koto et al., 2024), a comprehensive
multiple-choice question benchmark designed to as-
sess reasoning and knowledge capabilities of LLMs
in Modern Standard Arabic. Developed with input
from native speakers across North Africa, the Lev-
ant, and the Gulf, it includes 14,575 questions span-
ning 40 diverse tasks. These tasks cover subjects
such as STEM, social sciences, humanities, and
the Arabic language, sourced from educational ma-
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Model IEN AraPro AraMath ETEC AraTruthfulQA
MCQ TF

ALLaM 7B-Instruct 92.28 83.96 72.13 71.57 67.25 67.72
Llama-3.1-8B-Instruct 64.96 60.78 57.45 35.70 47.59 58.58
Qwen2.5-7B-Instruct 78.10 78.34 65.97 71.74 65.24 69.96
Fanar-1-9B-Instruct 81.87 80.23 68.33 54.71 65.29 81.53

ALLaM Adapted 13B-Instruct 92.64 83.69 74.93 75.04 73.77 70.34
Jais-family-13B-chat 53.65 59.75 32.99 26.61 26.66 48.69
Qwen2.5-14B-Instruct 80.73 80.10 71.31 82.81 73.82 70.34

ALLaM 34B-Instruct 92.84 87.50 80.70 62.81 74.09 81.53
AceGPT-v2-32B-chat 82.93 72.78 68.23 64.46 66.19 67.54
Jais-family-30B-16k-chat 71.11 63.63 62.57 41.49 48.75 61.75
Jais-family-30B-8k-chat 67.31 72.59 60.61 33.39 45.20 59.7
Qwen2.5-32B-Instruct 84.45 82.45 73.45 91.90 78.11 76.12

ALLaM Adapted 70B-Instruct 92.18 85.59 76.74 74.88 75.73 84.14
Jais-adapted-70B-chat 77.33 76.66 68.23 45.62 57.82 77.43
Llama-3.3-70B-Instruct 80.90 79.79 72.53 70.91 68.20 70.71
Qwen2.5-72B-Instruct 86.54 86.79 75.66 92.89 79.33 71.27

GPT-4o 91.43 89.63 81.46 83.47 79.92 90.11
Gemini pro 1.5 85.67 87.21 78.28 94.88 84.42 84.14
Claude Sonnet 3.5 92.64 90.74 83.96 79.83 86.96 93.47

Random baseline 30.77 50 25 25 25 23.46

Table 5: Five-shot results of instruct models on all AraEval benchmarks.

Model IEN MCQ IEN TF

Below Avg. Avg. Above Avg. Below Avg. Avg. Above Avg.

ALLaM-7B-Instruct 92.97 93.47 88.79 82.87 83.53 79.10
Llama-3.1-8B-Instruct 60.91 59.39 52.84 74.26 72.61 69.03
Qwen2.5-7B-Instruct 67.23 66.72 57.30 80.51 78.28 77.99
Fanar-1-9B-Instruct 80.43 79.89 72.50 80.88 79.50 76.87

ALLaM Adapted 13B-Instruct 94.33 93.47 89.86 85.29 84.27 78.36
Jais-family-13B-chat 64.34 63.33 55.61 68.97 68.92 71.64
Qwen2.5-14B-Instruct 80.59 80.81 73.73 79.49 76.62 75.75

ALLaM-34B-Instruct 93.84 93.48 88.33 87.79 87.39 80.97
AceGPT-v2-32B-Chat 83.59 81.81 73.73 83.38 80.50 75.00
Jais-family-30B-16k-chat 76.50 74.99 66.36 68.01 68.82 68.66
Jais-family-30B-8k-chat 74.43 72.83 67.59 70.00 70.70 72.39
Qwen2.5-32B-Instruct 85.93 84.84 79.72 84.26 81.48 77.99

ALLaM Adapted 70B-Instruct 93.84 92.45 88.33 87.06 85.86 80.22
Jais-adapted-70B-chat 75.57 74.56 69.43 77.28 76.92 73.51
Llama-3.3-70B-Instruct 80.15 79.91 75.73 79.93 77.90 80.60
Qwen2.5-72B-Instruct 87.90 87.17 80.95 88.16 87.13 81.72

GPT-4o 92.53 92.22 89.09 90.66 88.80 83.21
Gemini pro 1.5 90.46 89.35 85.87 86.76 85.20 82.46
Claude Sonnet 3.5 92.69 92.60 90.02 90.66 89.51 81.72

Table 6: Zero-shot results of instruct models on IEN MCQ and IEN TF datasets across difficulty levels.

terials in various Arabic-speaking countries. The
dataset reflects a range of educational levels.

Another important contribution is AraSTEM
(Mustapha et al., 2024), which focuses on STEM
subjects like mathematics, physics, chemistry, biol-
ogy, computer science, and medicine. This dataset
comprises multiple-choice questions sourced from
elementary, secondary, and higher education levels,

ensuring broad coverage of difficulty and topics.
It was carefully compiled from multiple internet
sources to ensure diversity and comprehensiveness.

Efforts to adapt existing English evaluation
datasets for Arabic include the AlGhafa Arabic
LLM Benchmark (Almazrouei et al., 2023). This
benchmark consists of 11 datasets translated or
modified from English benchmarks, verified by
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Model IEN AraPro AraMath ETEC AraTruthfulQA
MCQ TF

ALLaM 7B-Instruct 92.96 82.91 73.61 67.93 69.21 65.3
Llama-3.1-8B-Instruct 71.62 72.78 58.97 35.54 52.68 66.23
Qwen2.5-7B-Instruct 78.57 78.67 64.99 71.4 64.65 82.84
Fanar-1-9B-Instruct 75.27 80.2 66.71 56.86 61.05 77.61

ALLaM Adapted 13B-Instruct 93.47 83.63 74.83 79.01 74.14 66.98
Jais-family-13b-chat 55.52 55.42 57.71 44.13 45.95 55.41
Qwen2.5-14B-Instruct 82.06 78.04 69.37 79.17 72.71 84.51

ALLaM 34B-Instruct 93.24 86.18 79.56 60.5 74.72 77.8
AceGPT-v2-32B-Chat 82.66 62.56 68.25 69.75 67.62 82.46
Jais-family-30b-16k-chat 59.26 39.91 54.75 46.78 29.15 67.54
Jais-family-30b-8k-chat 55.66 41.23 50.09 34.38 23.26 62.5
Qwen2.5-32B-Instruct 84.27 82.74 71.89 91.24 78.48 83.58

ALLaM Adapted 70B-Instruct 92.51 85.63 75.82 73.22 76.47 82.28
Jais-adapted-70b-chat 59.62 48.12 61.31 44.96 25.65 75.56
Llama-3.3-70B-Instruct 82.74 80.18 72.89 71.07 71.65 77.8
Qwen2.5-72B-Instruct 88.29 86.97 74.45 89.09 79.12 86.94

GPT-4o 92.07 89.87 80.86 81.16 79.23 87.69
Gemini pro 1.5 89.33 85.73 76.22 96.36 83.31 88.43
Claude Sonnet 3.5 92.45 89.64 81.46 88.6 86.06 90.67

Random baseline 30.77 50 25 25 25 23.46

Table 7: Zero-shot results of instruct models on AraEval benchmarks using generation-based setting.

native Arabic speakers. Similarly, the Bench-
mark Arabic Dataset for Commonsense Explana-
tion (AL-Tawalbeh and Al-Smadi, 2020) translates
the original English ComVE task into Arabic. It
contains 12,000 instances, each presenting an Ara-
bic sentence that defies commonsense, accompa-
nied by three explanatory options. The task is to
identify the best explanation for why the sentence
is nonsensical.

Qian et al. (2024) introduced CamelEval, a suite
of three test sets designed to evaluate general in-
struction following, factuality, and cultural align-
ment in Arabic. Each test set includes 805 carefully
curated cases reflecting the nuances of the Arabic
language and culture.

While these datasets significantly advance the
evaluation of Arabic LLMs, they also exhibit cer-
tain limitations. For instance, ArabicMMLU and
AraSTEM may not fully capture the diversity of
educational systems, cultural nuances, and histori-
cal contexts across Arabic-speaking countries. De-
spite sourcing questions from multiple regions, Ara-
bicMMLU might struggle to encompass the full
spectrum of curricula and perspectives in the Arab
world. Similarly, AraSTEM, while focusing on
STEM subjects, may not adequately represent the
varied educational strategies and cultural contexts
found in different Arabic-speaking nations.

Additionally, translating English datasets into

Arabic, such as in the case of AlGhafa and the
Benchmark Arabic Dataset for Commonsense Ex-
planation, presents challenges. Translations may
fail to preserve cultural nuances and contextual
meanings inherent in the original language, leading
to potential misinterpretations. Furthermore, these
datasets may not align well with the educational
curricula and cultural contexts of Arabic-speaking
countries, where educational systems and cultural
norms vary significantly. This misalignment can re-
sult in evaluations that do not accurately reflect the
capabilities of Arabic-centric LLMs in real-world
applications.

E AraEval Datasets

In this section, we detail each dataset used in AraE-
val, including fine-grained analyses, task statistics,
and example samples.

E.1 Domain and Subject Distribution

Table 10 and Table 11 show distribution for both
IEN MCQ and IEN TF, respectively, in terms of
study stage, difficulty level, and subjects.

AraPro subjects distribution is presented in Ta-
ble 12 and category distribution in Figure 7. For
AraIFEval, we show the distribution of constraint
groups in Figure 8, while Table 9 shows the dis-
tribution of instructions, where each sample com-
prises multiple instructions.
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Category Count Percent (%)

number words at least 265 18.09
number paragraphs 225 15.36
response language 139 9.49

title 135 9.22
keyword frequency 135 9.22

number words at most 87 5.94
include keywords 63 4.30
forbidden words 60 4.10
number bullets 48 3.28
letter frequency 46 3.14

postscript 34 2.32
first word in i-th paragraph 33 2.25

check end 27 1.84
number sentences at least 25 1.71

minimum number highlighted section 22 1.50
json format 21 1.43

multiple sections 20 1.37
quotation 20 1.37

number placeholder 14 0.96
repeat prompt 13 0.89
two responses 12 0.82

number sentences at most 11 0.75
no commas 10 0.68

Total 1465 –

Table 9: Category distribution and percentage of
AraIFEval dataset.

Figure 7: Subject distribution of AraPro.

Figure 8: Constraint distribution of AraIFEval.

Category #Subject/Specialty #Questions

In terms of study stages
Secondary education 17 3747
Primary education 10 3739

Intermediate education 11 2504

In terms of difficulty level
Below average 17 1834

Average 17 7505
Above Average 17 651

In terms of Levels
K01 8 551
K02 8 583
K03 8 595
K04 9 680
K05 9 660
K06 9 670
K07 10 769
K08 10 892
K09 11 906
K10 13 1057
K11 13 1293
K12 13 1240

Breakdown by Subject/Specialty
Social Studies and National Ed – 844

Biology – 178
Research and Information Sour – 92
Family and Health Education – 854

Physical Education – 517
Art Education – 829

Computer Science – 1003
Mathematics – 799

Science – 944
Administrative Sciences – 284

Islamic Studies – 1209
Behavioral Sciences – 267

Physics – 239
Chemistry – 220

English Language – 637
Arabic Language – 980

Environmental Science – 93

Total 17 9990

Table 10: Statistics of IEN MCQs.

E.2 MCQ Datasets Distribution
Figure Figure 9 shows the options distribution in
AraEval datasets.

E.3 Dataset Examples
Figure 10 illustrates the construction of verifiable
instructions in AraIFEval: the upper part shows
the original (normal) instruction, while the bottom
part shows the instruction after adding verifiable
prompts.

F AraIFEval Prompts

Table 13 shows the instructions categories prompts
in AraIFEval.

G Dataset Curation and Validation

The guidelines for domain experts on creating Ara-
Pro can be found in Table 14, while the validation
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Category #Subject/Specialty #Questions

In terms of study stages
Secondary education 17 2539
Primary education 10 1678

Intermediate education 11 1606

In terms of difficulty level
Below average 17 1360

Average 17 4195
Above average 17 268

In terms of levels
K01 8 221
K02 8 251
K03 8 281
K04 9 301
K05 9 308
K06 9 316
K07 10 505
K08 11 490
K09 11 611
K10 13 730
K11 13 973
K12 13 836

Breakdown by Subject/Specialty
Social Studies and Nation – 482

Biology – 159
Research and Information – 99
Family and Health Educat. – 453

Physical Education – 421
Art Education – 380

Computer Science – 598
Mathematics – 507

Science – 421
Administrative Sciences – 161

Islamic Studies – 558
Behavioral Sciences – 233

Physics – 133
Chemistry – 197

English Language – 394
Arabic Language – 530

Environmental Science – 97

Total 17 5823

Table 11: Statistics of IEN TF.

guidelines for AraMath are presented in Table 15.
The guideline for validation of AraIFEval is de-
tailed in Table 16, and the guidelines for AraTruth-
fulQA are provided in Table 17.

H Tokenizer Vocabulary Coverage

Table 18 shows the models’ vocabulary coverage
across the Arabic datasets within AraEval com-
pared to MMLU and OpenAI MMLU benchmarks.

I Evaluation Metrics

I.1 Normalized Accuracy
For all AraEval benchmarks, except AraIFEval,
we used normalized accuracy as a metric, which
simply selects the pre-defined answer completion

Subject #Question

Breakdown by Subject/Specialty
Sociology 403
Biology 212
Management 197
Arabic Literature 558
Economics 397
History 297
Computing 199
Religion 299
Sports 396
Mathematics 200
Politics 414
Physics 97
Chemistry 200
Arabic Linguistics 434
Finance 100
Human Resources 200
Engineering 98
Psychology 200
Earth Sciences 100

Total 5001

Table 12: Statistics of AraPro.

Figure 9: Distribution percentage of the correct answer
in each MCQ dataset of AraEval.

to each question that maximizes the sum of log like-
lihood, normalized by the answers token lengths:

1

m

mX

i=1

log P (ai|q1, ..., qn, a1, ..., ai�1) (2)

Where the tested prompt is [q1, ..., qn, a1, ..., am],
where qi represents the ith question token (with n
total) and ai represents the ith answer token (with
m total). This is identical to choosing the prompt
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Figure 10: Example of verifiable instruction created of
an existing instruction in Arabic.

which the maximum geometric mean probability
over the answer’s tokens, since Equation (2) can be
rearranged to:

log

2
4
 

mY

i=1

P (ai|q1, ..., qn, a1, ..., ai�1)

! 1
m

3
5 (3)

and log(·) is a monotonic function, which is maxi-
mized by maximizing its argument.

If the question’s prompt asks the model answer
an MCQ by outputing the current answer key (A,
B, C, or D), then the answer is a single token (the
answer key). In such case, we simply pick the token
out of the 4 with the highest probability. However,
AraTruthfulQA has 4 pre-defined answers that are
not presented as multiple choice answers, but we
evaluate the models likelihood to generate these
answers and select the most probable one as the
model’s answer.

I.2 AraIFEval Metrics
Inspired by (Zhou et al., 2023), AraIFEval con-
sists of four metrics, loose prompt-level, loose
instruction-level, strict prompt-level, and strict
instruction-level accuracies. Which are defined
as follows:

1. Strict: The instruction is followed without
post-processing.

2. Loose: The instruction is followed using any
combination of:

• Removing the first paragraph.

• Removing the last paragraph.

• Removing markdown artifacts.

3. Prompt-level: The proportion of prompts for
which the model follows all the instructions.

4. Instruction-level: The proportion of instruc-
tions that the model follows.

I.3 Mitigating Risks of Data Contamination

Most of the AraEval datasets were carefully de-
signed to minimize contamination risks, with com-
ponents that are either fully original or constructed
through controlled human annotation and valida-
tion. For instance, AraPro was authored entirely
by university professors across diverse knowledge
domains, ensuring complete originality. AraIFEval
was built from scratch using manually designed
multi-instruction prompts and validated through
human and deterministic checks. AraTruthfulQA
combines 287 culturally filtered, human-translated
items from TruthfulQA with 249 newly authored,
culturally grounded questions, thereby extending
beyond the original benchmark. Finally, the IEN
datasets were provided directly by the Ministry of
Education; since the IEN platform is closed and
inaccessible to the public, the risk of contamination
is further minimized.

J GPU Time

GPU time for running evaluation on AraEval
datasets is reported in Table 19.

Dataset 7B 13B 30B 70B

AraPro (0 shot) 447.65 969.77 4326.20 9770.33
AraPro (5 shot) 328.78 576.82 1434.85 2459.53

IEN MCQ (0 shot) 420.02 463.81 1268.43 2129.42
IEN MCQ (5 shot) 552.10 867.71 2875.39 4196.97

IEN TF (0 shot) 269.64 357.27 1232.53 1686.52
IEN TF (5 shot) 321.30 514.43 1344.34 2677.28

AraMath (0 shot) 44.55 62.17 1676.55 3623.28
AraMath (5 shot) 61.19 94.08 253.83 396.62

ETEC (0 shot) 153.76 172.00 351.70 550.40
ETEC (5 shot) 226.07 367.63 1031.75 1685.91

AraIFEval (0 shot) 7051.31 6954.25 29382.06 29724.12

AraTruthfulQA (0 shot) 514.21 844.75 4443.01 9924.95
AraTruthfulQA (5 shot) 250.30 494.59 1226.33 2111.18

Table 19: GPU time for different model sizes. The
reported time is in seconds and is the average across all
models of the corresponding size.
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Instruction Category Prompt

include_keywords º XP ⌦̇
 Ø ⇣ÈJ⌦k A⇣J  Æ÷œ @ ⇣H A“ æÀ @  ·�⌦“  í⇣JK. ’⇣Ø

qm btDmyn AlklmAt AlmfAtAHyp (keyword1), (keyword2) fy rdk.
Include the keywords (keyword1) and (keyword2) in your response

keyword_frequency ⇣ËQ” (N) º XP ⌦̇
 Ø (word) ⇣È“ æÀ @ QÍ  ¢⇣�  ‡

�
@ I. m.⇢'⌦

yjb >n tZhr Alklmp (word) fy rdk (N) mrp
The word (word) must appear in your response (N) times

forbidden_words ⇣ËP Ò  ¢j÷œ @ ⇣H A“ æÀ @  ·�⌦“  í⇣JK. ’ ⇣Æ⇣K B
lA tqm btDmyn AlklmAt AlmHZwrp
Do not include the (forbidden word)

letter_frequency ⇣ËQ” (N) º XP ⌦̇
 Ø (letter)

 ̈ QmÃ '@ QÍ  ¢�⌦  ‡
�
@ I. m.⇢'⌦

yjb >n yZhr AlHrf (letter ) fy rdk (N) mrp.
The letter (letter) must appear (N) times in your response

response_language ¯ Q  k
�
@ ⇣È  ™À ⌦̄

�
AK. i“Ç��⌦ B (language) ⇣È  ™ À AK. …” AæÀ AK. º XP  ‡ Ò∫K⌦  ‡

�
@ I. m.⇢'⌦

yjb >n ykwn rdk bAlkAml bAllgp (language) wlA ysmH blgp >xrY
Your response must be entirely in (language), and no other language is allowed

number_paragraphs ⇣H @Q ⇣Æ  ÆÀ @  ·”  ·�⌦™” X Y´ ˙Œ´ º XP ⌦̄ Ò⇣Jm⇢'⌦  ‡
�
@ I. m.⇢'⌦

yjb >n yHtwy rdk ElY Edd mEyn mn AlfqrAt
Your response must contain (N) paragraphs

number_words_at_least ⇣È“ ø (N)  ·´ … ⇣ÆK⌦ B A÷fl. I. k.
�
@

>jb bmA lA yql En (N) klmp
Answer with at least (N) words

number_words_at_most ⇣È“ ø (N)  ·´ YK⌦  QK⌦ B A÷fl. I. k.
�
@

>jb bmA lAyzyd En (N) klmp
Answer with (N) words at most

number_sentences_at_least ⇣È ‘g. (N)  ·´ … ⇣ÆK⌦ B A÷fl. I. k.
�
@

>jb bmA lA yql En (N) jmlp
Answer with at least (N) sentences

number_sentences_at_most ⇣È ‘g. (N)  ·´ YK⌦  QK⌦ B A÷fl. I. k.
�
@

>jb bmA lA yzyd En (N) jmlp
Answer with (N) sentences at most

first_word_in_i-th_paragraph ⇣Ë X Ym◊ ⇣È“ æK. ⇣H @Q ⇣Æ  ÆÀ @ ¯ Yg @�
�
@ YJ. ⇣K ⇣H @Q ⇣Æ  ÆÀ @  ·”  ·�⌦™” X Y´ ˙Œ´ ⇣ÈK. Ag. B� @ ⌦̄ Òm⇢⇣'  ‡

�
@ I. m.⇢'⌦

yjb >n tHwy Al<jAbp ElY Edd mEyn mn AlfqrAt wtbd> <HdY AlfqrAt bklmp mHddp )
The answer must contain a specific number of paragraphs, with one of the paragraphs starting with a specific word

postscript (postscript marker) H.
�
@ YJ. ⇣K º XP ⇣ÈK⌦ AÓ  E ⌦̇

 Ø ⇣ÈJ⌦j⌧⌦  ìÒ⇣K ⇣È  ¢k C” ⇣È  Ø A  ì @� ⌦̇k. QK⌦
yrjy <DAfp mlAHZp twDyHyp fy nhAyp rdk tbd> b (postscript marker)
Please add a clarifying note at the end of your response, starting with (postscript marker)

number_placeholder ⇣È™K. Q” Ä @Ò⇣Ø
�
AK. …⌘J÷ ⇣fl  Q�⌦”Q⇣�À @ ©  ì @Ò”  ·” X Y´ ˙Œ´ º XP ⌦̄ Òm⇢'⌦  ‡

�
@ I. m.⇢'⌦

yjb >n yHwy rdk Ely Edd mn mwADE Altrmyz tmvl b>qwAs mrbEp
Your response must contain at least (N) placeholders, represented using square brackets

number_bullets † A ⇣Æ  JÀ @  ·”  ·�⌦™” X Y´ ˙Œ´ º XP ⌦̄ Ò⇣Jm⇢'⌦  ‡
�
@ I. m.⇢'⌦

yjb >n yHtwy rdk ElY Edd mEyn mn AlnqAT
Your response must contain a specific number of points.

title ⇣Èk.  X  Q” Ä @Ò⇣Ø
�
@  ·�⌦K.  ‡ @Ò  J´ ˙Œ´ º XP ⌦̄ Ò⇣Jm⇢'⌦  ‡

�
@ I. m.⇢'⌦

yjb >n yHtwy rdk ElY EnwAn byn >qwAs mzdwjp
Your response must include a title enclosed in double angle brackets

minimum_number_high-
lighted_section

…⇣Ø
�
B @ ˙Œ´ – AÇ⇣Ø

�
B @  ·” – X Y´ ˙Œ´ ZÒ  íÀ @ °J⌦ Ç⇣⌧K. ’⇣Ø

qm btslyT AlDw’ ElY Edd m mn Al>qsAm ElY Al>ql
Highlight at least Highlight at least sections.

multiple_sections ’ÊÑ⇣Ø …ø ⇣ÈK⌦ @ YK. ˙Œ´ ⇣È” C´ ©  ì . – AÇ⇣Ø
�
B @  ·” – X Y´ ˙Œ´ º XP ⌦̄ Ò⇣Jm⇢'⌦  ‡

�
@ I. m.⇢'⌦

yjb >n yHtwy rdk ElY Edd m mn Al>qsAm . DE ElAmp ElY bdAyp kl qsm
Your response must contain N sections. Place a section separator at the beginning of each section

json_format JSON ⇣áJ⌦Ç  ⌧⇣JK. …” AæÀ AK. XQÀ @  ‡ Ò∫K⌦  ‡
�
@ I. m.⇢'⌦

yjb >n ykwn Alrd bAlkAml btnsyq JSON
Your response must be entirely formatted in JSON

repeat_prompt Ω⇣JK. Ag. @� – Y⇣Ø ’Á⌘' Q�⌦J⌦  ™⇣K  ‡  X …  g Y÷œ @ P Qª
krr Almdxl dwn tgyyr vm qdm <jAbtk
Repeat the input without modification then respond to the prompt

two_responses – Òm.⇢
 '  P Ò”P 6 ⇧K. AÍ í  Ø I. m.⇢'⌦ ° ⇣Æ  Ø X XQÀ @ .  ·�⌦⇣J  Æ ⇣J  m◊  ·�⌦⇣JK. Ag. @� – Y⇣Ø

qdm <jAbtyn mxtlftyn. Alrdwd fqT yjb fSlhA b 6 rmwz njwm
Provide two different answers. The responses should only be separated by six asterisk symbols

end_checker ⇣Ë X Yj÷œ @ ⇣ËP AJ. ™À AK. º XP È  K @
Anh rdk bAlEbArp AlmHddp
End your response with specific phrase

quotation ⇣Èk.  X  Q” Ä AJ. ⇣J⇣Ø @ ⇣H A” C´  ·�⌦K. …” AæÀ AK. º XP  ‡ Ò∫K⌦  ‡
�
@ I. m.⇢'⌦

yjb >n ykwn rdk byn ElAmAt AqtbAs mzdwjp
Your response should be between double quotation mark

no-comma º XP ⌦̇
 Ø …ì @Ò  Ø – @ Y  j⇣JÉ @  ·´ ©  J⇣J” @

AmtnE En AstxdAm fwASl fy rdk
Don’t use comma in your response

Table 13: Instructions categories prompts. We used buckwalter transliteration to transliterate Arabic instructions.
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Section Guidelines

Objective The goal of these MCQs is to evaluate Large Language Models (LLMs) in achieving
professional-level competency in your field of expertise. Each question should reflect
real-world knowledge, critical thinking, and problem-solving skills relevant to industry
standards. The data you create will only be used for research purposes.

Question Structure Each MCQ should consist of:

• A clear and concise question that assesses knowledge, application, or analysis.

• Four answer choices (A, B, C, D), with only one correct answer.

Guidelines for Crafting
Questions • Ensure relevance to key competencies in the profession.

• Avoid ambiguity, excessive complexity, or unnecessary jargon.

• Use practical scenarios, case studies, or problem-solving situations where possi-
ble.

• Maintain a mix of basic, intermediate, and advanced questions.

• Avoid testing trivial facts; focus on meaningful concepts.

Answer Choices
• One clear correct answer that is indisputably accurate.

• Three plausible distractors that are incorrect but not obviously wrong.

Example Question Format Question: What is the primary purpose of risk assessment in cybersecurity?

• A) To eliminate all potential threats

• B) To identify, analyze, and mitigate security risks

• C) To ensure compliance with industry regulations only

• D) To monitor network traffic for suspicious activity

Correct Answer: B) To identify, analyze, and mitigate security risks
Domain: Computing

Submission Format
• Provide questions in a structured format (Question, Options, Correct Answer,

Domain).

• Ensure accuracy and relevance.

• Submit questions in a spreadsheet as instructed.

Review Process All questions will be reviewed for accuracy, clarity, and alignment with professional
competencies before finalization.

Table 14: Guidelines for Creating AraPro Dataset.
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Section Guidelines

Objective The purpose of this validation process is to ensure the accuracy, consistency, and qual-
ity of a dataset containing mathematical word problems. Annotators are responsible
for verifying the correctness of equations, answer choices, and labels to maintain data
integrity. This dataset is used to evaluate mathematical reasoning capability of Large
Language Models (LLMs). The data will be used for research purposes only.

Dataset Components Each data entry consists of:
- Mathematical Word Problem: A problem statement requiring mathematical reason-
ing.
- Equation: The corresponding mathematical equation representing the problem.
- Answer Choices (A, B, C, D): Four distinct answer options.
- Correct Answer: The solution to the problem.
- Answer Label: The letter (A, B, C, or D) corresponding to the correct choice.

Validation Criteria 1. Accuracy of Equations
- Verify that the equation correctly represents the given word problem.
- Ensure the mathematical formulation aligns with the intended logic.
- Check for errors in mathematical symbols, operations, and missing components.

2. Choice Distinctiveness
- Confirm that all four answer choices are unique and do not repeat.
- Ensure that distractor options are plausible but incorrect.
- Avoid choices that are too similar (e.g., minor rounding differences).

3. Answer Correctness
- Solve the problem independently and compare it with the provided correct answer.
- Cross-check that the correct answer matches the labeled answer choice.
- If errors are found, provide corrected answers and labels.

4. Presence of Correct Answer
- Ensure that the correct answer is one of the four given choices.
- If the correct answer is missing from the options, flag the entry for correction.

5. Formatting and Consistency
- Ensure uniform formatting across all dataset entries.
- Verify that symbols, units, and mathematical notation follow standard conventions.

6. Logical Soundness
- Assess whether the problem makes sense mathematically and linguistically.
- Check for unintended biases or misleading wording.

Annotation Process 1. Read the problem statement carefully and understand its context.
2. Examine the provided equation and ensure it correctly models the problem.
3. Verify that the correct answer is calculated accurately.
4. Confirm that all answer choices are unique and logically reasonable.
5. Check that the correct answer exists within the four given choices.
6. Cross-check the labeled answer against the correct answer.
7. If discrepancies are found, document corrections and flag the entry for review.

Error Reporting &
Corrections

Annotators should log any errors found, specifying:
- Entry ID: The unique identifier of the dataset entry.
- Issue Type: (Equation Error, Answer Mismatch, Duplicate Choices, Missing Correct
Answer, Formatting Issue, etc.).
- Correction: The revised equation, answer choice, or label.
- Comments: Additional notes explaining the error.

Final Review & Ap-
proval

- After validation, a second-level review may be conducted to ensure error-free dataset
entries.
- Approved entries will be included in the final dataset, while flagged entries undergo
correction and re-evaluation.

Table 15: Guidelines for Human Annotators to validate AraMath Dataset.
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Section Guidelines

Objective The purpose of this task is to ensure that each instance in this data accurately represents
its instructed prompt and instruction categories. Annotators review the dataset for
logical consistency, completeness, and correctness. This dataset is used to evaluate
instruction following capability of Large Language Models (LLMs). The data will be
used for research purposes only.

Dataset Components Each data entry consists of:
- Instructed Prompt: A textual prompt containing verifiable instructions.
- Instruction Categories: A set of verifiable instructions used in the prompt.

Validation Criteria 1. Contradiction Check
- Ensure that no contradictory instructions exist within the instructed prompt.
- Flag instances where conflicting instructions lead to logical inconsistencies.

2. Instruction Completeness
- Verify that all instruction categories in the instruction set are explicitly mentioned in
the instructed prompt.
- If an instruction is missing, annotate it as an omission.

3. Prompt Coverage
- Ensure that all instructions present in the instructed prompt are correctly identified in
the instruction set.
- If additional, unlisted instructions are found, flag them for review.

4. Logical Coherence
- Assess whether the prompt flows naturally and follows a coherent structure.
- Check for redundant, unclear, or ambiguous wording.

5. Formatting and Standardization
- Verify that instruction labels and categories follow the predefined taxonomy.
- Ensure proper punctuation, spelling, and grammar for clarity.

Annotation Process 1. Read the instructed prompt carefully to understand its structure and intent.
2. Compare the instruction categories with the prompt to check for completeness.
3. Identify and flag any contradictory instructions within the prompt.
4. Verify that no instruction is missing from the instruction set.
5. Ensure that no extra, unlisted instructions are present in the prompt.
6. Check for formatting, clarity, and coherence issues.
7. Document errors and suggest corrections where necessary.

Error Reporting &
Corrections

Annotators should log errors using the following details:
- Entry ID: Unique identifier of the dataset instance.
- Issue Type: (Contradiction, Missing Instruction, Extra Instruction, Formatting Issue,
etc.).
- Correction: Suggested revision for the prompt or instruction set.
- Comments: Additional explanation of the issue.

Final Review & Ap-
proval

- A second-level review may be conducted to ensure high-quality validation.
- Approved entries are included in the final dataset, while flagged entries undergo
correction and re-evaluation.

Table 16: Guidelines for Validation of AraIFEval Dataset.

33049



Section Guidelines

Objective The purpose of this review process is to evaluate multiple-choice questions (MCQs)
for alignment with Arabic cultural norms and beliefs, ensuring that the content is
appropriate, respectful, and contextually relevant. Additionally, validated MCQs
should be translated into Arabic while maintaining their original meaning and intent.
This dataset is used to evaluate truthfulness of Large Language Models (LLMs). The
data will be used for research purposes only.

Dataset Components Each MCQ consists of:
- Question: The main stem of the MCQ.
- Four Answer Choices: Options (A, B, C, D), with only one correct answer.
- Correct Answer Label: The letter corresponding to the correct answer.

Validation Criteria 1. Cultural Alignment
- Ensure that the question and answer choices do not conflict with Arabic cultural and
social values.
- Avoid topics that may be considered sensitive or inappropriate in an Arabic cultural
context.
- Verify that examples, names, and scenarios used in the MCQ are relevant and
culturally recognizable.

4. Translation Guidelines
- Translate only the MCQs that align with Arabic cultural norms.
- Maintain the original intent and meaning of the question while using culturally
appropriate phrasing.
- Adapt idiomatic expressions or region-specific references to ensure clarity for Arabic
speakers.
- Use Modern Standard Arabic (MSA) for translation, avoiding dialect-specific terms.

Annotation Process 1. Read the MCQ carefully and assess its cultural appropriateness.
2. If the MCQ is not aligned, flag it and provide a justification.
3. If the MCQ is aligned, proceed with translation while preserving accuracy and
clarity.
4. Ensure that all answer choices remain meaningful and distinguishable after transla-
tion.
5. Verify that the correct answer remains unchanged in meaning.
6. Document any modifications made during translation for transparency.

Table 17: Guidelines for Reviewing and Translating TruthfulQA dataset.

Benchmark ALLaM-7B ALLaM-34B ALLaM-Adapted Jais-Family Jais-Adapted Qwen-2.5* Llama-3**

AraIFEval 7.80 7.54 9.72 6.64 8.98 37.29 35.79
ETEC 32.37 33.34 38.10 28.39 35.53 67.22 58.74
IEN MCQs 53.64 56.15 60.22 48.33 56.82 77.34 63.36
IEN TF 36.24 36.84 42.24 32.21 39.26 71.20 59.70
AraPro 44.18 46.73 50.81 39.87 48.39 73.53 61.82
AraTruthfulQA 17.92 17.60 21.67 15.46 20.01 53.56 49.54
AraMath 5.63 5.19 7.26 5.61 6.41 26.35 38.68

AraEval 72.02 75.37 77.67 68.26 75.96 82.66 66.38
OpenAI Arabic MMMLU 71.33 74.69 75.89 73.08 79.54 80.20 64.45
Arabic MMLU 61.60 63.02 68.17 57.04 65.60 79.95 69.25

Vocabulary Token Statistics

Arabic tokens 29,552 36,028 37,195 43,857 32,046 3,990 3,769
Arabic and math tokens 29,643 36,065 37,236 44,947 32,137 4,311 4,995
*Tokenizer identical to AceGPT-V2 8B/70B’s.

**Tokenizer identical to AceGPT-V2 32B’s.

Table 18: Vocabulary coverage across Arabic benchmarks and model tokenizers.
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