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Abstract
Accurate modeling and control of response
length is essential for optimizing large lan-
guage model (LLM) deployment, impacting
computational efficiency, user experience, and
system reliability. We develop a statistical
framework based on extreme value theory,
analyzing 14,301 GPT-4o responses across
temperature settings and prompting strategies,
with cross-validation on Qwen and DeepSeek
architectures. Our analysis reveals that re-
sponse lengths follow Weibull-type general-
ized extreme value (GEV) distributions, ex-
hibiting heavier tails under stochastic genera-
tion conditions. The key contributions include:
(1) a novel GEV-generalized Pareto (GPD)
hybrid model that achieves superior tail fit
(R2

CDF = 0.9993 vs standalone GEV’s 0.998)
while preserving architectural generalizability;
(2) quantitative characterization of prompt an-
choring effects, showing reduced dispersion
but increased outlier propensity under random-
ization; and (3) identification of temperature-
dependent response patterns that remain consis-
tent across architectures, where higher temper-
atures amplify length variability while main-
taining the underlying extreme-value mecha-
nisms. The proposed hybrid model’s adaptive
threshold selection enables precise verbosity
control in production systems, regardless of the
specific LLM architecture employed. These
findings provide both theoretical insights into
LLM generation patterns and practical tools
for response length optimization.

1 Introduction

Large language model deployments face a criti-
cal operational challenge: response length vari-
ability directly impacts computational costs and
user satisfaction (Nayab et al., 2024; Zheng et al.,
2023). While API pricing scales linearly with to-
ken counts, users increasingly demand concise an-
swers tailored to contextual needs (Butcher et al.,
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2025). Despite these practical imperatives, the
field lacks fundamental understanding of LLM
verbosity patterns across different architectures
(Muñoz-Ortiz et al., 2024). Current approaches
treat length as an incidental output property rather
than a statistically regular phenomenon worthy of
rigorous modeling (Borbély and Kornai, 2019).

Recent studies have made incremental progress
in related areas. Temperature scaling has been
shown to affect output diversity (Radford et al.,
2019), while reinforcement learning from human
feedback demonstrates length-quality tradeoffs
(Singhal et al., 2023). Cross-linguistic analyses of
human communication suggest potential distribu-
tion families like lognormal or Weibull for natural
utterance lengths (Borbély and Kornai, 2019). Pub-
lic speech analysis further reveals temporal com-
pression patterns in human verbal output (Tsizh-
movska and Martyushev, 2021). However, these
findings focus on biological language production,
leaving neural language models’ statistical prop-
erties unexplored - particularly the consistency of
length distributions across model architectures and
scales.

Three fundamental barriers prevent effective ver-
bosity control. First, existing evaluation frame-
works lack principled statistical models for length
distributions despite their operational importance,
with no systematic comparison across model fami-
lies. Second, the interaction between prompt struc-
ture and generation properties remains poorly quan-
tified, with anecdotal evidence outweighing sys-
tematic analysis. Third, the effects of temperature
scaling on extreme-value behavior have not been
characterized across different models, despite its
known impact on output randomness. These gaps
leave practitioners without reliable tools for pre-
dicting or shaping LLM verbosity patterns across
the growing ecosystem of available models.

We bridge these gaps through extreme value
analysis of 14,301 GPT-4o responses generated
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under controlled conditions, extended with cross-
architecture validation on Qwen and DeepSeek
models. Our framework combines three method-
ological innovations: generalized extreme value
(GEV) distributions model central tendencies
across architectures, generalized Pareto (GPD) cor-
rections address tail behavior through optimized
thresholds, and causal analysis quantifies anchor-
ing effects across prompt variants. Controlled ex-
periments vary temperature (0 vs. 0.7) and prompt
structures (direct vs. anchored) to isolate genera-
tion mechanism impacts while maintaining archi-
tectural generalizability.

This work establishes four key advances in LLM
verbosity understanding. We demonstrate that re-
sponse lengths follow Weibull-type GEV distribu-
tions consistently across models, with shape pa-
rameters revealing temperature-dependent tail be-
haviors. Our GEV-GPD hybrid model achieves
unprecedented tail fit accuracy (R2

CDF = 0.9993)
while maintaining cross-model applicability. Quan-
tification of anchoring effects reveals reduction in
dispersion parameters under deterministic genera-
tion that holds across tested architectures. Practi-
cally, we develop threshold selection methods that
reduce extreme-length outliers, enabling produc-
tion systems to balance conciseness with complete-
ness regardless of model choice.

Our analysis focuses on English question-
answering tasks using the HotpotQA dataset, with
a specific examination of how the anchoring phrase
“As previously stated," influences response ver-
bosity. This controlled setup provides a foundation
for understanding distributional patterns that fu-
ture work can extend to other tasks and prompting
styles.

2 Related Work

Controlling response length in large language mod-
els (LLMs) is critical for efficient deployment, yet
statistical modeling of length distributions remains
underexplored. Prior work spans temperature ef-
fects, long-tailed distributions, length generaliza-
tion, and anchoring, but lacks a unified framework
integrating these factors. We review these efforts,
highlighting gaps our GEV-GPD hybrid model ad-
dresses.

2.1 Temperature Effects and Long-Tailed
Distributions

Temperature governs LLM output randomness, in-
fluencing verbosity and tail behavior. Early work
noted that higher temperatures increase diversity
and length (Radford et al., 2019), with recent stud-
ies confirming temperature-driven phase transi-
tions in output distributions (Arnold et al., 2024).
However, (Peeperkorn et al., 2024) found weak
temperature effects on creativity, with slight nov-
elty increases at higher settings, and (Renze, 2024)
reported minimal impact on problem-solving tasks,
suggesting task-specific influences. Long-tailed
distributions exacerbate challenges for rare inputs,
as shown in code generation, where performance
degrades due to skewed distributions (Zhou et al.,
2023). Data augmentation has been proposed
to mitigate such issues (Wang et al., 2024). Be-
yond LLMs, sentence length distributions in public
speaking follow Weibull distributions, with lengths
decreasing over time (Tsizhmovska and Martyu-
shev, 2021), while cross-linguistic studies suggest
lognormal fits (Borbély and Kornai, 2019). These
findings highlight the prevalence of heavy-tailed
distributions but lack quantitative models for LLM-
specific length prediction.

Our work diverges by developing a GEV-GPD
hybrid model that explicitly quantifies temperature-
dependent tail behavior in LLM outputs. Unlike
prior studies, which describe distributions qual-
itatively or focus on non-LLM contexts (Tsizh-
movska and Martyushev, 2021; Borbély and Ko-
rnai, 2019), we provide a statistically rigorous
framework that captures both bulk and extreme
length distributions, enabling precise prediction
and theoretical insights into LLM verbosity.

2.2 Length Generalization and Anchoring
Strategies

LLMs struggle with generating or processing long
outputs, but prompting strategies improve general-
ization (Anil et al., 2022). Constrained prompting
enhances conciseness (Nayab et al., 2024), and
precise length control has been achieved through
tailored methods (Butcher et al., 2025). Longer rea-
soning steps boost performance (Jin et al., 2024),
while shorter inputs degrade reasoning (Levy et al.,
2024). Length optimization in RLHF influences
helpfulness perceptions (Singhal et al., 2023), and
response length prediction improves inference ef-
ficiency (Zheng et al., 2023). Anchoring biases,
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where initial prompts disproportionately shape out-
puts, have been observed in LLMs, with mitigation
requiring comprehensive hint collection rather than
simple strategies like Chain-of-Thought (Lou and
Sun, 2024). Statistical modeling of lengths is less
studied, with (Muñoz-Ortiz et al., 2024) noting
consistent distributions without quantitative frame-
works. Transformer architectures enable anomaly
detection (Vaswani et al., 2017), but length-specific
outliers remain underaddressed.

Our approach advances this field by integrating
anchoring effects into a statistical length model,
using GEV-GPD to quantify how prompts reduce
central tendency in deterministic settings while
increasing outliers in stochastic ones. Unlike prior
work, which focuses on empirical observations or
mitigation without statistical grounding (Lou and
Sun, 2024; Nayab et al., 2024), our framework
provides a unified analysis of length distributions,
offering practical applications in outlier detection
and prompt engineering.

3 Methods

3.1 Experimental Design

We analyzed 14,301 English question-answer pairs
from the HotpotQA test set (Yang et al., 2018)
under controlled conditions to investigate (1) the
statistical modeling of LLM output word counts,
and (2) the impact of anchored prompts and tem-
perature on LLM response characteristics. The
experimental setup (Table 1) used GPT-4o (gpt-
4o-2024-11-20) with two temperature conditions
(T = 0: n = 6,945; T = 0.7: n = 7,356, the lat-
ter being the standard default for most LLM APIs)
and two prompt variants:

• Direct prompts: Standard question format
without additional framing

• Anchored prompts: Questions prefixed with
“As previously stated," to induce semantic an-
choring effects

Table 1: Experimental Conditions

Parameter Value

Model GPT-4o (gpt-4o-2024-11-20)
Temperature 0 (deterministic), 0.7 (stochastic)
Prompt variants Direct, Anchored
Length metric Word count (whitespace-delimited)

3.2 Response Generation Protocol
Responses were generated under deterministic
(T = 0) and stochastic (T = 0.7) sampling con-
ditions for both standard prompts (e.g., “Are both
Volvic and Canfield’s Diet Chocolate Fudge natural
spring waters ?") and anchored prompts (e.g., “As
previously stated, are both Volvic and Canfield’s
Diet Chocolate Fudge natural spring waters ?").
The anchor phrase was selected as a representative
discourse marker that implies prior context.

3.3 Statistical Modeling with GEV
Four candidate distributions were evaluated: gener-
alized extreme value (GEV), log-normal, Weibull,
and generalized error model (GEM-2). Model se-
lection via maximum likelihood estimation used
both Akaike information criterion (AIC) and root-
mean-square error (RMSE). The GEV distribution
provided the best baseline fit but showed right-tail
deficiencies.

3.4 Generalization to Other Models
To validate the robustness of the Generalized Ex-
treme Value (GEV) distribution hypothesis across
model architectures, we extended our analysis
to three additional language models: Qwen3-8B,
Qwen3-14B, and DeepSeek-V3 (DeepSeek-V3-
0324). We used direct prompts with a fixed temper-
ature of 0.7 to ensure consistency in output diver-
sity. Each model was evaluated on distinct dataset
sizes: Qwen3-8B and Qwen3-14B on 200 samples
each, and DeepSeek-V3 on 600 samples.

3.5 Two-Stage Extreme Value Modeling
We developed a GEV-GPD hybrid model with
threshold u = Q0.95 (selected via MSE mini-
mization although mixed MSE minimization was
also done), improving performance from R2

CDF =
0.998 to R2

CDF = 0.9993. The model transitions
from GEV to generalized Pareto distribution (GPD)
at x > u.

The threshold optimization employs a mixed
objective function:

Lmixed(u) = 0.6LMSE + 0.3|ξ|+ 0.1I (1)

where:

• LMSE = n−1
∑

i(Fi − F̂i)
2 is the mean

squared error term

• ξ is the GPD shape parameter governing
tail heaviness, critical for modeling extreme
values (outliers)
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• I is an information-based penalty term de-
fined as I = |ξ · β

u |, which balances model
complexity and prevents overfitting by penal-
izing excessively complex tail behavior

This formulation balances fit quality (LMSE), tail
properties (|ξ|), and model complexity (I), ensur-
ing robust threshold selection.

3.6 Input-Output Analysis

Pearson correlation coefficients were computed to
assess the linear relationships between (1) context
length and output length, and (2) question length
and output length. The results revealed negligi-
ble correlations, suggesting that output length is
generated independently of input characteristics.

4 Results

4.1 Model Selection

We evaluate four parametric distributions for re-
sponse lengths, as shown in Table 2.

Table 2: Model Comparison (Temperature = 0.7, Direct)

Model RMSE AIC

GEV 0.000473 65783
LogNormal 0.001119 66434
GMM 0.001907 68399
Weibull 0.002506 69430

The GEV distribution emerged as the optimal
model, demonstrating both strong statistical sig-
nificance (∆AIC > 650) and superior predictive
performance with an RMSE reduction exceeding
50% compared to alternative approaches.

4.2 GEV Parameter Estimates

GEV parameters (c, µ, σ) are estimated via maxi-
mum likelihood using SCIPY’s genextreme.fit:

θ̂ = argmax
θ

n∑

i=1

log f(xi; θ) (2)

where f is the GEV density. 95% confidence
intervals are computed via bootstrap.

Tables 3 shows GEV parameters for tempera-
ture settings 0 and 0.7. Both conditions exhibit
Weibull-type distributions (c < 0), with anchoring
reducing tail thickness (c = −0.355 vs −0.411
at temp=0; −0.361 vs −0.411 at temp=0.7). An-
choring consistently lowers µ and σ values (Tables
3).

4.3 Outlier Analysis

At Temperature = 0, the direct method produced
80 outliers (1.2% of cases, with a maximum
length of 741 words), while the anchored approach
yielded slightly fewer at 79 outliers (1.1%, max
580 words). When increasing to Temperature
= 0.7, we observed 81 outliers (1.1%, max 680
words) for direct generation compared to 87 out-
liers (1.2%, max 759 words) with anchoring. This
pattern reveals that anchoring reduces outliers by
1.3% at temperature 0, but interestingly increases
them by 7.4% at temperature 0.7, demonstrating
its efficacy is temperature-dependent.

4.4 Temperature Comparison

Comparing temperature settings (0 vs. 0.7) re-
veals several key patterns. The tail behavior shows
similar shape parameters (c ≈ −0.41) across con-
ditions, though anchoring produces slightly heav-
ier tails at temperature 0.7 (−0.361) compared to
temperature 0 (−0.355). For central tendency, we
observe that µ consistently increases with tempera-
ture, rising from 25.60 to 26.19 for direct genera-
tion and from 24.39 to 24.80 for anchored genera-
tion. Variability also grows with temperature, with
σ increasing from 13.56 to 14.20 (direct) and from
12.10 to 12.46 (anchored).

Examining extremes, maximum lengths increase
for both methods: from 58.6 to 60.8 words for di-
rect generation and from 58.4 to 59.3 words for an-
chored generation. Outlier analysis shows similar
counts at temperature 0 (80 for direct vs 79 for an-
chored), but diverges at temperature 0.7 (81 direct
vs 87 anchored). Maximum outlier lengths show
mixed patterns, decreasing from 741 to 680 words
for direct generation while increasing substantially
from 580 to 759 words for anchored generation.

These results collectively demonstrate that
higher temperatures yield longer, more variable
responses with increased extremes, though anchor-
ing partially mitigates these effects.

4.5 GEV Validation

Note: All analyses from this subsection onward use
temperature=0.7 with direct prompts.

Figure 1 shows excellent GEV fit (R2
CDF =

0.998) for response lengths (parameters: c =
−0.441, µ = 26.2, σ = 14.2). Tail deviations
motivate our hybrid approach (Section 4.7).
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Table 3: GEV Parameters by Temperature and Generation Method

Note: 95% confidence intervals in brackets. Sample sizes: n = 6,945 (T=0), n = 7,356 (T=0.7).

Temperature = 0

Parameter Direct Anchored

Shape (c) −0.411 [−0.436, −0.386] −0.355 [−0.379, −0.331]
Location (µ) 25.60 [25.2, 26.0] 24.39 [24.0, 24.8]
Scale (σ) 13.56 [13.1, 14.0] 12.10 [11.7, 12.5]

Temperature = 0.7

Parameter Direct Anchored

Shape (c) −0.411 [−0.438, −0.387] −0.361 [−0.383, −0.339]
Location (µ) 26.19 [25.8, 26.6] 24.80 [24.5, 25.1]
Scale (σ) 14.20 [13.8, 14.6] 12.46 [12.1, 12.8]

Figure 1: GEV Q-Q plot. Linearity confirms good fit
for typical responses, with right-tail deviations visible.

4.6 Cross-Model GEV Validation

The Generalized Extreme Value (GEV) distribu-
tion demonstrated robust fit across all tested archi-
tectures, with GPT-4o and three additional open-
weight models consistently exhibiting Weibull-
type behavior (c < 0), as shown in Figure 2. Ta-
ble 4 summarizes the maximum likelihood esti-
mates of GEV parameters for each model.

Three key findings emerge from the cross-model
comparison. First, the progression from Qwen3-8B
to Qwen3-14B shows that larger models within the
same family may develop less extreme length varia-
tion, supported by differences in shape parameters.
Second, the universal quality of fit (R2

CDF ≥ 0.994
across all models) indicates the GEV distribution
captures a fundamental property of transformer-
based language generation. Third, the consistent
Weibull-type behavior (c < 0) across architectures
implies bounded output length distributions, with
model scale affecting both the location and shape
parameters.

This distributional regularity persists despite
variations in model size (8B to 14B parameters)

and architectural implementations, suggesting the
GEV structure emerges from fundamental proper-
ties of the transformer mechanism rather than spe-
cific implementation choices. The parameter sta-
bility across conditions provides strong evidence
for the GEV’s role in characterizing autoregressive
text generation.

4.7 GEV-GPD Hybrid Model

The hybrid model combines generalized extreme
value (GEV) and generalized Pareto (GPD) dis-
tributions through a threshold-dependent formula-
tion:

F (x) =





FGEV(x) x ≤ u,

FGEV(u) + [1− FGEV(u)]

× FGPD(x− u)
x > u.

(3)
We systematically evaluated optimal thresholds

u∗ across the 85th to 99th percentiles (1% incre-
ments) by minimizing:

u∗ = argmin
u∈{Qp}0.99p=0.85

L(u) (4)

Two distinct loss functions were employed: (1)
Pure MSE defined as LMSE(u) = n−1

∑
i(Fi −

F̂i)
2, and (2) Mixed objective combining multiple

criteria through 0.6LMSE + 0.3|ξ| + 0.1I, which
balances fit quality, tail properties, and model com-
plexity.

The results demonstrate clear trade-offs between
optimization approaches (Table 5). Pure mean
squared error (MSE) optimization at the 95th per-
centile produces heavier tails (ξ = 0.362), while
mixed optimization achieves superior tail behavior
(ξ = 0.183) with comparable MSE performance
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Table 4: Maximum Likelihood Estimates of GEV Parameters Across Models (Temperature = 0.7, Direct)

Model Shape (c) Location (µ) Scale (σ) Sample Size (n)

GPT-4o −0.41 26.2 14.2 7356
Qwen3-8B −0.40 40.4 24.2 200
Qwen3-14B −0.37 38.6 25.6 200
DeepSeek-V3 −0.14 63.4 29.8 600

(a) GPT-4o (b) Qwen3-8B

(c) Qwen3-14B (d) DeepSeek-V3

Figure 2: GEV fits for response lengths. Each subfigure shows: (Left) Probability density functions with hybrid
model (red) vs observed data (blue); (Right) Cumulative distribution functions comparing hybrid model (red) with
empirical CDF (blue).

Table 5: Threshold Optimization Results

Metric Pure MSE Mixed

Threshold (u∗) 95%ile 97%ile
Tail index (ξ) 0.362 0.183
MSE (×10−3) 0.92 0.93
R2

CDF 0.9993 0.9995

Table 6: Hybrid Model Performance

Metric Value

GEV Shape (c) -0.411
GEV Location (µ) 26.2
GEV Scale (σ) 14.2
GPD Shape (ξ) 0.362
GPD Scale (β) 50.3
R2

CDF 0.9993

(0.93 versus 0.92) and marginally better distribu-
tional fit (R2

CDF = 0.9995 versus 0.9993). The dif-
ference in optimal thresholds reflects the inherent
balance between overall fit quality and precise tail
characterization.

Figure 3 presents quantile-quantile (Q-Q) plots
comparing our two optimal threshold candidates:
the 95th percentile (pure MSE) and 97th percentile
(mixed criterion) selections. Both demonstrate the
hybrid model’s robustness across optimization ap-
proaches, with visual inspection strongly favoring
the 97th percentile threshold for extreme-value fit.

4.8 Final Hybrid Model

For subsequent analysis, we adopt the pure MSE
criterion due to its simplicity and interpretabil-
ity. The hybrid model integrates a Generalized
Extreme Value (GEV) distribution for the body
of the data and a Generalized Pareto Distribution
(GPD) for the tail, with an optimized threshold of
u = 108.7.

4.9 Model Fit Tests

As shown in Table 6, the GPD’s positive shape pa-
rameter (ξ = 0.362) confirms heavier-tailed behav-
ior beyond the 95th percentile (u = 108.7 words).
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(a) 95th Percentile Threshold (u = Q0.95) (b) 97th Percentile Threshold (u = Q0.97)

Figure 3: Comparison of hybrid model Q-Q plots for different thresholds (n=7,356). Both use GEV parameters
(c = −0.411 (shape), µ = 26.2 (location), σ = 14.2 (scale)) but differ in GPD fits: (a) 95% threshold yields
ξ = 0.362, β = 50.3; (b) 97% threshold gives ξ = 0.183, β = 75.4. Vertical dashed lines mark transition points
between distribution components.

Figure 4: GEV-GPD Hybrid Model vs Empirical Distribution. Left: Probability density functions showing hybrid
model (red) vs observed data (blue). Right: Cumulative distribution functions comparing hybrid model (red) with
empirical CDF (blue).

Our analysis reveals three principal results. First,
the model exhibits heavy-tail characteristics with
a shape parameter ξ = 0.362. Second, thresh-
old optimization identifies u = 108.7 words
(95th percentile) as the optimal transition point be-
tween distribution regions. Third, error analysis
demonstrates region-specific patterns: the body
of the distribution (p < 0.95, range: 10.1–100.4
words) shows low errors (MAE = 0.71, Max AE
= 2.09); the transition region (0.95 ≤ p < 0.99,
range: 109.1–163.7 words) exhibits moderate er-
rors (MAE = 2.16, Max AE = 4.90); while the
extreme tail (p ≥ 0.99, single observation at 218.7
words) displays substantially higher errors (MAE
= Max AE = 10.80).

4.10 Input-Length Independence

The analysis revealed consistently weak correla-
tions between input and response lengths across
all conditions (|r| < 0.1). For direct generation,
question length showed a negligible negative corre-
lation with response length (r = −0.08). Notably,
anchored generation cut this association in half
(r = −0.04). Context length demonstrated virtu-
ally no linear relationship with response length in
either condition (r = −0.02 for both direct and
anchored generation). These results suggest that
response length distributions are primarily deter-
mined by the LLM’s generation process rather than
input characteristics.

This preliminary analysis suggests the
GEV/GPD structure is intrinsic to the LLM’s
generation process rather than inherited from input
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distributions.

5 Discussion

Our results reveal that LLM response lengths ex-
hibit statistically robust structure, challenging the
assumption that verbosity is merely incidental or
model-specific. The consistent Weibull-type behav-
ior captured by the GEV distribution across prompt
variants and temperatures suggests that response
generation is governed by stable underlying mech-
anisms. This aligns with the hypothesis that autore-
gressive models optimize for succinctness under
bounded uncertainty, leading to inherent length
regularization.

Anchoring Effects. Prompt anchoring exerts a
measurable influence on response distributions.
Specifically, it reduces both the location (µ) and
scale (σ) parameters of the GEV fit, suggesting
lower average length and less variability. Notably,
the shape parameter (c) becomes less negative with
anchoring, indicating slightly thicker tails—a coun-
terintuitive result implying anchoring may shift
some responses into more extreme regimes under
stochastic decoding. These findings echo psycho-
logical theories of anchoring bias, where initial
cues shape the perceived relevance or extent of
follow-up content. While this study focused on
the specific phrase “As previously stated," future
work should explore how different types of anchor-
ing phrases (e.g., summarization cues, discourse
markers, or semantic constraints) might similarly
influence verbosity patterns.

Temperature Sensitivity. The temperature ef-
fects reveal a dual pattern: while shape parameters
(c) remain stable, the systematic increases in µ and
σ at T = 0.7 suggest temperature primarily af-
fects output dispersion rather than extreme-value
mechanisms. Anchoring’s consistent reduction of
σ (10-15%) confirms its stabilizing role for typi-
cal responses, though its diminished tail protection
at higher temperature (evidenced by heavier tails
and increased outlier propensity) implies thermal
modulation of anchoring efficacy. The borderline
significant tail changes (∆c = +0.006) amidst
confidence interval overlap may reflect either lim-
ited statistical power or a genuine architectural ef-
fect—a crucial distinction that future studies with
larger samples should address.

Cross-Model GEV Analysis. The GEV distribu-
tion provides consistent fits across all tested mod-

els (R2
CDF ≥ 0.994), with parameter estimates

revealing substantial variations (Table 4). The
location parameters µ span a wide range from
26.2 (GPT-4o) to 63.4 (DeepSeek-V3), indicat-
ing fundamental differences in typical response
lengths across architectures. While GPT-4o and
Qwen3-8B/14B share similar Weibull-type behav-
ior (c ≈ −0.4), their µ values differ significantly
(26.2 vs. 40.4/38.6). Notably, the larger Qwen3-
14B shows both a less negative shape parame-
ter (c = −0.37) and lower location parameter
(µ = 38.6) compared to Qwen3-8B (c = −0.40,
µ = 40.4). DeepSeek-V3 exhibits the most dis-
tinct profile with c = −0.14 and µ = 63.4. These
variations demonstrate that while the GEV frame-
work is universally applicable, the specific param-
eter values capture important architectural differ-
ences in length generation patterns.

GEV-GPD Hybrid Advantages. While GEV
captures central tendencies effectively (R2

CDF =
0.998), it underfits the upper tail. Our hybrid
model substantially improves this, increasing over-
all fit (R2

CDF = 0.9993). The theoretical validation
of compatibility between GEV and GPD shape
parameters strengthens the statistical justification
for this architecture and confirms the Weibull-type
domain of attraction.

Implications for LLM Engineering. These find-
ings open practical avenues for controlling ver-
bosity in production environments. By adjust-
ing temperature and anchoring strategies, devel-
opers can manipulate the shape and spread of out-
put length distributions. Furthermore, the hybrid
model enables anomaly detection in long responses
(e.g., hallucinations, verbosity drift), offering a
probabilistic safeguard mechanism.

Overall, this work positions extreme value the-
ory as a foundational tool for modeling and man-
aging LLM response behaviors, with implications
spanning statistical modeling, prompt design, and
safety.

6 Conclusion

This work establishes extreme value theory as
a principled framework for modeling LLM ver-
bosity patterns in question-answering tasks across
architectures. Through analysis of 14,301 GPT-
4o responses at different temperatures and cross-
validation on Qwen and DeepSeek models at tem-
perature 0.7, we demonstrate three key findings:
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(1) temperature systematically increases both cen-
tral tendency (µ) and dispersion (σ) in GPT-4o
while preserving Weibull-type behavior, with shape
parameters becoming more negative (e.g., from -
0.355 to -0.361 for anchored generation) indicating
heavier tails under stochastic generation, (2) the
GEV distribution provides a consistent modeling
framework that captures length distributions across
diverse architectures despite substantial parame-
ter variations, and (3) prompt anchoring reduces
scale parameters by 10-15% across models while
showing limited protection against temperature-
induced tail changes. Our GEV-GPD hybrid model
achieves superior tail fit (R2

CDF = 0.9993) while
maintaining architectural robustness, with thresh-
old optimization enabling precise verbosity control
in diverse deployment scenarios.

The cross-model results reveal important ar-
chitectural insights: while all tested transform-
ers exhibit Weibull-type behavior, larger models
(Qwen3-14B vs 8B) show less extreme variation
(shape parameter -0.37 vs -0.40), suggesting scale-
dependent regularization of output lengths. The
hybrid model’s consistent performance across ar-
chitectures (GPT-4o, Qwen3-8B/14B, DeepSeek-
V3) confirms its generalizability, though parameter
estimates reveal model-specific verbosity profiles
- from GPT-4o’s concise responses (µ = 26.2) to
DeepSeek-V3’s more verbose outputs (µ = 63.4).

The results also reveal that temperature affects
different aspects of the length distribution distinctly
- while increasing µ and σ for typical responses,
it also amplifies extreme-value behavior through
more negative shape parameters. This suggests sep-
arate thermal modulation mechanisms for bulk ver-
sus tail generation processes. The hybrid model’s
threshold selection method (optimal u = 108.7
words) provides a practical tool for managing these
effects in production systems.

Future research directions include extending
this framework to diverse tasks beyond question-
answering (e.g., summarization, dialogue), investi-
gating different prompting styles and their effects
on length distributions, validating the approach
across emerging architectures such as mixture-of-
experts models, and developing temperature-aware
adaptation methods for cross-model verbosity con-
trol. This work establishes a statistical founda-
tion for understanding length generation patterns
while providing methodologies for verbosity man-
agement in diverse LLM applications.

Data Statement

Data from HotpotQA (CC BY-SA 4.0). Full state-
ment in Appendix.

Limitations

While empirically validated, several open ques-
tions remain. First, while our correlation analy-
sis (Section 4.10) excludes linear dependence in
input-length relationships, future work should ex-
plore non-linear dependencies via mutual infor-
mation, conduct causal analysis through prompt-
length interventions, and examine threshold ef-
fects like minimum context requirements. Sec-
ond, the findings’ generalizability is currently lim-
ited to English-language data; cross-linguistic val-
idation is needed to assess cultural and typolog-
ical dependencies. Third, the generalizability to
non-QA tasks (summarization, dialogue) and few-
shot scenarios remains unverified. Fourth, the an-
choring effects are examined with a single phrase;
investigating diverse anchoring strategies would
strengthen the conclusions. Fifth, this study fo-
cuses on temperature sampling; other decoding
strategies like Top-K and Nucleus sampling may
yield different length distribution patterns and war-
rant separate investigation. Finally, while the con-
sistent GEV patterns across models with varying
sample sizes (200-7,356) support distributional ro-
bustness, larger cross-model samples could fur-
ther strengthen statistical confidence, and the GEV
structure requires validation across alternative ar-
chitectures beyond standard Transformers, includ-
ing both non-Transformer paradigms and Trans-
former variants like Mixture-of-Experts models.
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A Data Statement

The experimental data in this work derives from
the HotpotQA dataset (Yang et al., 2018), licensed
under Creative Commons Attribution-ShareAlike
4.0 International (CC BY-SA 4.0). HotpotQA con-
tains 112,779 English question-answer pairs col-
lected from Wikipedia, covering diverse domains
including history, science, and culture. Each ques-
tion requires multi-hop reasoning with annotated
supporting facts, though demographic information
about annotators is not available.

While HotpotQA was originally designed for
multi-hop question answering research, our repur-
posing for LLM response length analysis consti-
tutes a valid research use under the license terms.
Our derived GEV-GPD model specifically analyzes
whitespace-delimited word counts in English LLM
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responses, with applicability to transformer-based
models (tested on GPT-4o, Qwen, and DeepSeek
architectures). The model assumes stationary
length distributions and may not generalize to
character-level or multilingual settings.

All derived annotations will be shared under the
same CC BY-SA 4.0 license with research-only
restrictions. Our implementation code will be re-
leased under the MIT License, including documen-
tation of model assumptions and usage examples.

The HotpotQA dataset is derived from
Wikipedia. While we did not independently verify
content due to the dataset’s scale and established
academic usage, three factors mitigate risks: (1)
Wikipedia’s public editing policies inherently filter
explicit PII, and (2) our analysis exclusively used
whitespace-delimited word counts which discard
raw text semantics.
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