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Abstract

Neural text-based models for detecting
machine-translated texts can rely on named
entities (NEs) as classification shortcuts.
While masking NEs encourages learning
genuine translationese signals, it degrades
the classification performance. Incorporating
speech features compensates for this loss, but
their interaction with NE reliance requires
careful investigation. Through systematic
attribution analysis across modalities, we find
that bimodal integration leads to more balanced
feature utilization, reducing the reliance on
NEs in text while moderating overemphasis
attribution patterns in speech features.

1 Introduction

The development of neural machine translation
(NMT) architectures has notably improved trans-
lation accuracy (Chen et al., 2018; Team et al.,
2022). Despite these gains, NMT models still ex-
hibit distinguishable characteristics from human
translation (Toral et al., 2018). NMT outputs are
characterized by machine translationese—a distinc-
tive linguistic phenomenon that diverges from real
target language use (Vanmassenhove et al., 2021;
Dutta Chowdhury et al., 2022). This artificially
constructed language manifests at various linguis-
tic levels, affecting lexical choice, syntactic struc-
ture, semantic interpretation, discourse coherence,
etc. in the target language domain (Vanmassenhove
et al., 2021). These observable differences have en-
abled researchers, e.g. Jones and Sheridan (2015);
Iyyer et al. (2018), to develop automatic methods
for distinguishing machine-translated texts from
those originally authored in the target language.
Such detection is increasingly important as MT
systems become widely used: for content authen-
ticity verification in news and documents, quality
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assurance in professional translation workflows,
research integrity in linguistic studies, and prevent-
ing malicious use of MT for generating inauthentic
content.

Recent work has demonstrated strong perfor-
mance in distinguishing machine-translated text
from human-authored or human-translated content
using pretrained language models (Pylypenko et al.,
2021; van der Werff et al., 2022). However, attri-
bution analysis through Integrated Gradient (IG)
(Sundararajan et al., 2017) has exposed a critical
limitation in these models: they rely on superficial
patterns, such as named entities (NEs), rather than
on genuine translationese signals alone (Amponsah-
Kaakyire et al., 2022). This behavior, termed
"Clever Hans" by Borah et al. (2023), suggests that
these models exploit spurious correlations instead
of capturing deeper linguistic cues. NE reliance is
problematic, as it represents topic-based shortcuts
rather than genuine translationese features—robust
models should detect translationese regardless of
content domain. As an example, if an English text
is translated from German, we argue that it would
be more principled to classify it as a translation due
to its linguistic features (e.g. its syntax is somewhat
German-like), rather than the fact that it contains
NEs that refer to locations in a German-speaking
country (e.g. Berlin).

To mitigate this issue, Borah et al. (2023)
masked NEs during training. While this approach
reduces reliance on NEs, it also results in a 2.6-
3.2 percentage point drop in classification accuracy.
More recently, Chen et al. (2025) have explored
integrating speech features alongside text-based
models to compensate for this performance decline.
Both handcrafted and self-supervised speech repre-
sentations have shown promise in preserving accu-
racy despite NE masking the text modality.

Amponsah-Kaakyire et al. (2022) and Borah
et al. (2023) primarily analyzed attribution at the
subword token level and relied on averaged fea-
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ture attributions, potentially overlooking important
linguistic patterns at the word or entity level. More-
over, attribution analyses in Borah et al. (2023)
largely depend on ranked token lists, providing an
incomplete perspective on model behavior. Addi-
tionally, while the bimodal classifiers in Chen et al.
(2025) show promise for maintaining performance
despite NE masking, it remains unclear whether
they truly address the underlying attribution bias
through cross-modal dependencies. Understand-
ing how speech and text features interact in their
reliance on spurious correlations is crucial for de-
veloping genuinely robust detection systems that
avoid topic-based shortcuts regardless of modality
combination.

To address these gaps, we propose a comprehen-
sive attribution analysis framework that systemat-
ically investigates model behavior across modali-
ties, particularly aiming to better understand how
bimodal classifiers balance feature utilization for
machine translationese classification while mitigat-
ing spurious correlations. Our work1 makes two
main contributions: (1) introducing a systematic
attribution analysis framework that enables word
and entity-level comparisons across modalities, (2)
quantifying how bimodal integration balances fea-
ture utilization by showing reduced NE reliance
in text while moderating overly strong attribution
patterns in speech features.

2 Proposed Framework

We employ IG to analyze model behavior in trans-
lationese classification across text, speech, and bi-
modal settings. Our analysis framework consists of
attribution computation and multiple aggregation
strategies at different granularity levels.

2.1 Attribution Computation

Unimodal Setting For the text modality, we com-
pute attributions with respect to input embeddings,
yielding an attribution tensor A ∈ Rm×n where
m stands for sequence length and n for feature di-
mension. For the speech modality, the attributions
are computed on the raw audio features, producing
a tensor B ∈ Rs where s is the sequence length.
We use Captum’s IG implementation (Kokhlikyan
et al., 2020) with 50 steps for integral approxima-
tion, using zero tensors as baselines for text and
silence tensors for speech.

1Code and data available at: https://github.com/
yongjianchen-lang/bimodal_mt_discrimination

Bimodal Setting For bimodal inputs, we com-
pute attributions for each modality while keeping
the other fixed. Given a text-speech pair processed
through their respective encoders, we calculate: (i)
Text attributions with respect to input embeddings
(T ∈ Rm×n) while keeping audio features fixed;
(ii) speech attributions with respect to raw audio
features (S ∈ Rs) while keeping text embeddings
fixed. The computation yields separate attribution
tensors for each modality: a text attribution tensor
T ∈ Rm×n and a speech attribution tensor S ∈ Rs,
maintaining the same dimensionalities as in the
unimodal setting. This way we can analyze how
each modality’s contribution is influenced by the
presence of the other one. This allows us to subse-
quently analyze each modality’s contribution to the
model’s decisions in the same way as the unimodal
case, while accounting for the cross-modal effects
on attribution patterns.

2.2 Attribution Aggregation
To investigate potential spurious correlations in
translationese classification, particularly how mod-
els may rely on topical information from NEs ver-
sus non-NEs, we need to compute feature attribu-
tion scores at two levels: for individual word spans
(aggregating attributions for each word) and for
entity spans (aggregating attributions for each NE
or non-NE sequence). For example, in “The Berlin
Wall fell in November 1989,” we first aggregate
subword tokens, e.g. ([Ber] [##lin]) into words
([Berlin]), and then group words into individual
NE spans ([Berlin Wall], [November 1989]) versus
individual non-NE spans ([The], [fell], [in]).

The aggregation process differs between the text
and speech modalities. For the text modality, we
first aggregate attributions across tokens within
each span (word or entity) for each feature dimen-
sion using one of two approaches: (i) a mean-based
method that captures overall feature contributions
by averaging across tokens, or (ii) a signed-max
method that identifies influential features by select-
ing the maximum magnitude value while preserv-
ing its sign. In contrast, speech modality attribution
tensors do not require this step as there is no feature
dimension to consider (as described in Section 2.1).

Subsequently, for both text and speech modali-
ties, we apply one of three normalization variants to
obtain scalar scores: (i) mean normalization, which
captures the central tendency of attributions; (ii)
L1 normalization, which sums absolute values to
track total magnitude regardless of sign; and (iii)
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Split English Chinese

Orig. MT Orig. MT

Training
Total 5,938 5,237 5,481 5,237
w/ NE 4,243 3,630 4,205 3,394
w/o NE 1,695 1,607 1,276 1,843

Test
Total 1,500 1,498 1,498 1,498
w/ NE 1,046 985 1,215 910
w/o NE 454 513 283 588

Table 1: Dataset distribution for English and Chinese
splits showing original and machine-translated sentence
counts.

L2, which applies the Euclidean norm to give more
weight to features with larger attribution values.

3 Experimental Setup

Data Following Chen et al. (2025), we use WMT
news task data2 for English and Chinese targets,
translating German source texts from WMT’s
German-to-English datasets into both target lan-
guages via Google Translate. This setup compares
English (Germanic, non-tonal) with Chinese (non-
Germanic, tonal). Training data spans 2014–2017
(English) and 2017–2019 (Chinese), with 2018 and
2020 as test sets, respectively. The final dataset
composition is shown in Table 1. Speech data is
synthesized by employing Microsoft Azure TTS
API’s male voices (en-US-AndrewNeural for En-
glish, zh-CN-YunyangNeural for Chinese). Model
accuracy is evaluated on the complete test set, and
attribution analysis concerns solely sentences con-
taining NEs.

Text Classifiers We use DeBERTA-v3-large (He
et al., 2021) and MacBERT-large (Cui et al., 2020)
for English and Chinese respectively, following
Chen et al. (2025). We fine-tune them on our
training sets to detect machine-translated con-
tent under two conditions: standard fine-tuning
and fine-tuning with NE masking. We use
NER models en_core_web_sm (for English) and
zh_core_web_sm (Chinese) from spaCy (Honnibal
et al., 2020), replacing identified NEs in the train-
ing sets with the [MASK] token. The standard fine-
tuning and the NE-masked fine-tuning altogether
yield four text-based classifiers: DeBERTa_ft and
DeBERTa_ft_mask for English, and MacBERT_ft
and MacBERT_ft_mask for Chinese.

2E.g. statmt.org/wmt20/translation-task.html

Speech Classifiers We maintain the use of
hubert-large-ll60k (Hsu et al., 2021) for English
and chinese-hubert-large (Guo and Liu, 2022) for
Chinese from Chen et al. (2025). These models
share architectural similarities with the text-based
models, with the key distinction that HuBERT in-
corporates feature extraction layers preceding the
transformer layers. Rather than following the pre-
vious two-stage approach (Chen et al., 2025), we
adopt a streamlined approach, facilitating direct
computation of integrated gradients attribution and
providing better interpretability of model predic-
tions by tracking feature importance back to the
input. The models are directly fine-tuned under two
parameter configurations: with frozen base param-
eters to mimic the two-stage implementation from
Chen et al. (2025) and with unfrozen parameters
to probe whether standard fine-tuning can lead the
speech-based classifiers to rely more on NEs, as
observed for text-based classifiers. Notably, in both
parameter settings, the feature extraction layers’ pa-
rameters remain frozen. Altogether we obtain four
speech-based classifiers: HuBERT_froz_en and Hu-
BERT_unfroz_en for English and HuBERT_froz_zh
and HuBERT_unfroz_zh for Chinese.

Bimodal Classifiers Chen et al. (2025) demon-
strated that integrating representations from fine-
tuned BERT models (DeBERTa and MacBERT)
with pre-trained HuBERT representations effec-
tively compensates for the performance degrada-
tion caused by NE masking. Based on their prob-
ing results of the speech modality, we proceed to
fuse DeBERTa and MacBERT, that are fine-tuned
with NE-masking, with frozen HuBERT. In con-
trast to their cascade approach for training bimodal
classifiers, we use the streamlined approach, so
that we can compute IG attribution and maintain
comparability across modalities. Given the robust
performance for both target languages (Chen et al.,
2025), we adopt the MISA fusion technique (Haz-
arika et al., 2020), which projects each modal-
ity into modality-invariant (capturing cross-modal
commonalities through distributional alignment)
and modality-specific (preserving unique modal-
ity characteristics) subspaces. This factorized ap-
proach is particularly well-suited for investigating
attribution balance, as it enables us to separately
analyze how models utilize shared cross-modal pat-
terns versus modality-unique features, providing
clearer insights into how bimodal integration af-
fects reliance on spurious correlations. We train
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Model EN ZH

DeBERTa_ft 86.39 -
DeBERTa_ft_mask 84.32 -
MacBERT_ft - 92.62
MacBERT_ft_mask - 92.02
HuBERT_froz_* 60.64 71.50
HuBERT_unfroz_* 69.98 83.95
MISA_mask_froz_* 85.06 92.19

Table 2: Classification accuracy for English (EN) and
Chinese (ZH). ’*’ represents the respective language.

two bimodal classifiers: MISA_mask_froz_en and
MISA_mask_froz_zh.

Attribution Comparison Configuration We
evaluate the classification accuracy on the complete
test sets and analyze their behavior in distinguish-
ing original from machine-translated texts via our
proposed framework on sentences containing NEs,
which is performed separately for each aggrega-
tion method and granularity level (see Section 2.2).
For sentences, word and entity boundaries are both
identified using the aformentioned SpaCy models,
while for utterances, frames are aligned to word or
entity spans using time stamps.3

To quantify the relationship between NEs and
model attribution patterns, we compare the mean
attribution scores (µ) of NE spans versus non-NE
spans across different models. We calculate a nor-
malized difference score (δ) between these means
for each model, then measure the change in this
difference (∆) between experimental conditions
(standard vs. masked text, unfrozen vs. frozen
speech parameters, and unimodal vs. bimodal in-
puts).4 This analysis reveals how different training
approaches affect the model’s reliance on NEs.

4 Results

4.1 Classification Performance
Table 2 presents accuracy results across text-based,
speech-based, and bimodal machine translationese
classification models. The textual classifiers main-
tain performance levels consistent with those in the
previous work, as expected given identical exper-
imental configurations. While we observe some
performance degradation in speech and bimodal
classifiers under the streamlined approach com-
pared to the two-stage implementation in Chen
et al. (2025), this decline does not compromise our
primary objective of analyzing attribution patterns.

3Obtained with github.com/readbeyond/aeneas
4Methodological details are provided in Appendix A.1.

Importantly, the relative performance trends across
experimental configurations align with their find-
ings, validating our proposed analytical framework.

The speech-based models exhibit strong discrim-
inative capacity, achieving classification accuracy
substantially above chance level for both target lan-
guages. This confirms the effectiveness of acous-
tic features in distinguishing between original and
machine-translated texts. The unfrozen fine-tuning
configuration yields superior performance com-
pared to its frozen counterpart. Moreover, the
bimodal classifiers consistently outperform their
NE-masked text-based counterparts across both
languages, with particularly pronounced gains in
English—replicating the previous findings in Chen
et al. (2025). This consistent cross-lingual perfor-
mance differential, despite the overall accuracy re-
duction under the streamlined approach, reinforces
the robustness of the observed phenomena and un-
derscores the compensatory effect of speech rep-
resentations for NE masking in machine transla-
tionese classification.

4.2 Attribution Importance

Table 3 shows the results of the attribution analysis.
For each condition, level and language we report
the result with the approach that leads to the highest
absolute score, which most often is signed-max
aggregation and mean normalisation.5

Attribution Analysis for Text Classifiers Our
analysis reveals consistently higher attribution con-
trasts between NE and non-NE spans in standard
conditions compared to masked conditions for both
languages, demonstrating that NE masking effec-
tively reduces the model’s reliance on NEs. This ef-
fect is substantially more pronounced in English (∆
1.32) than in Chinese (0.25). Moreover, entity-level
analysis consistently produces stronger standard-
masked differences than word-level analysis across
both languages, indicating that the text-based mod-
els more effectively recognize and utilize complete
NEs compared to their component words.

Attribution Analysis for Speech Classifiers
The comparative differences in Table 3 also cap-
ture a substantial shift in attribution patterns from
unfrozen to frozen speech models. The positive
∆ values across both languages at both levels con-
firm that unfrozen speech classifiers attribute rela-
tively more importance to NEs than frozen classi-

5The complete results are provided in Appendix A.2.
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Modality Experimental Condition
(1st → 2nd)

Word Level Entity Level

ZH EN ZH EN

Text Standard → Masked 0.16 0.75 0.25 1.32
Speech Unfrozen → Frozen 3.95 1.37 3.77 1.54
Text Unimodal Masked → Bimodal Masked 0.08 0.21 0.11 0.28
Speech Unimodal Frozen → Bimodal Frozen -0.06 -1.26 -0.09 -1.21

Table 3: Key Attribution Pattern changes (∆) across
experimental conditions. Positive values indicate de-
creased relative attribution to NEs in the second con-
dition compared to the first; negative values indicate
increased relative attribution to NEs in the second con-
dition compared to the first.

fiers do. Therefore, although the unfrozen classi-
fiers achieve better classification performance than
their frozen counterparts (see Table 2), their highly
stronger dependence on NEs raises concerns. This
motivates our decision to utilize the frozen mod-
els for bimodal fusion. Unlike the text modality,
speech-based models show comparable effects at
both word and entity levels, suggesting a more uni-
form processing of linguistic units across different
granularities than their text-based counterparts.

Attribution Analysis for Bimodal Classifiers
The third result row of Table 3 shows the compara-
tive differences between unimodal and bimodal set-
tings for NE-masked text features. The unimodal
text modality exhibits higher attribution contrasts
than its bimodal counterpart for both languages,
with stronger effects in English, suggesting that
the unimodal-bimodal transition further reduces
reliance on NE cues for the text modality. Addi-
tionally, both languages show greater unimodal-
bimodal differences at the entity level than at the
word level, indicating that text modality in bimodal
classifiers, like their unimodal counterparts, pro-
cesses complete NEs more effectively than their
component words.

For speech features, the last row of results from
Table 3 shows the comparative differences between
unimodal and bimodal settings under frozen con-
ditions. English displays negative ∆, indicating
that the bimodal integration increases the speech
modality’s relative attribution to NEs compared to
the unimdoal frozen model, but still maintains a
shift in smaller magnitude compared to the uni-
modal unfrozen-frozen contrast (compare |∆| in
the second result row of Table 3 to |∆| in the last
result row of Table 3). In contrast, Chinese displays
minimal changes (small negative values of -0.06
at word level and -0.09 at entity level), suggesting
that speech features maintain similar attribution

patterns in both unimodal and bimodal settings.
These contrasting behaviors reveal complemen-

tary cross-modal patterns. In English, text features’
reduced NE reliance is balanced by speech fea-
tures shifting away from non-NE focus, creating
more distributed attribution. In Chinese, where
text changes are minimal, speech features maintain
their non-NE emphasis. This suggests that the mag-
nitude of change in text modality influences the
balancing behavior in speech features, resulting in
different strategies for bimodal feature utilization.
The bimodal model can potentially learn to adap-
tively balance feature attribution between modali-
ties, moderating overemphasis on specific feature
types.

5 Conclusion

We examine how machine translationese classifiers
process NEs across text, speech, and bimodal ap-
proaches, revealing distinct and robust patterns that
remain consistent across different attribution aggre-
gation methods. Text-based models show stronger
entity-level than word-level attribution, with NE
masking effects more pronounced in English than
Chinese. Speech models exhibit contrasting behav-
ior between parameter settings: unfrozen models
emphasize NEs while frozen models favor non-
NEs. Crucially, our bimodal analysis reveals that
multimodal integration leads to more balanced attri-
bution patterns - moderating text’s reliance on NEs
while also balancing the tendency of frozen speech
features to overemphasize either NE or non-NE
information. These findings suggest that multi-
modal approaches not only improve classification
performance but also lead to more robust feature
utilization.

Limitations

Our work presents several opportunities for fu-
ture research. First, while our analysis provides
valuable insights using one widely-used transla-
tion system, investigating additional NMT archi-
tectures could reveal interesting variations in fea-
ture utilization patterns across different systems.
Second, our speech synthesis methodology em-
ploys specific TTS voices (male voices for both
languages); exploring a spectrum of voices with
varied accents, genders, and emotions might of-
fer additional perspectives on how speech features
interact with named entities in translationese detec-
tion. Alternative data sources like audio books and
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dubbed movies with their accompanying transcripts
could provide naturalistic speech-text pairs for ex-
tending this analysis. Third, expanding beyond
German-to-English and German-to-Chinese trans-
lation directions could enhance our understanding
of how attribution patterns manifest across more di-
verse language pairs and typological relationships.
These extensions would complement our current
findings and potentially reveal additional nuances
in multimodal translationese classification.
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A Appendix

A.1 Attribution Score Analysis Methodology
This appendix details the mathematical formulation
used to analyze attribution patterns between named
entities (NEs) and non-NEs across our experimen-
tal conditions.

For each model, we analyze the distribution of
attribution scores between NE and non-NE spans
by computing their respective means. Specifically,
we group the attribution scores based on whether
each span is identified as an NE or not, then calcu-
late the mean attribution score for each group. This

yields two key metrics per model: the NE mean
µNE (average attribution score for NE spans) and
the non-NE mean µnon−NE (average attribution
score for non-NE spans).

To compare between NEs vs non-NEs, we first
define a normalized difference score δ for each
model:

δ =
µNE − µnon−NE

µnon−NE
(1)

We then compute the difference in these normal-
ized scores between experimental conditions:

For text modality experiments (standard vs. NE-
masked fine-tuning):

∆text = δstandard − δmasked (2)

where δstandard and δmasked correspond to stan-
dard fine-tuning and NE-masked fine-tuning condi-
tions respectively.

For speech modality experiments (unfrozen vs.
frozen parameters):

∆speech = δunfrozen − δfrozen (3)

where δunfrozen and δfrozen correspond to un-
frozen and frozen parameter settings respectively.

For bimodal comparison experiments:

∆bimodal =

{
δtext−unimodal − δtext−bimodal

δspeech−unimodal − δspeech−bimodal

(4)
where δtext−unimodal and δspeech−unimodal are
the δ values from the NE-masked text model
and frozen speech model respectively, and
δtext−bimodal and δspeech−bimodal are the corre-
sponding δ values from the bimodal model.

These metrics allow us to quantify how different
training approaches and modality combinations af-
fect the model’s reliance on named entities versus
other textual elements.

A.2 Complete Attribution Analysis Results
Tables 4, 5, 6 and 7 show the complete attribution
results for the text-based classifiers (unimodal text
modality), the speech-based classifiers (unimodal
speech modality), the text-based classifiers (com-
paring the unimodal and bimodal settings) and the
speech-based classifiers (comparing the unimodal
and bimodal settings), respectively.
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Level Method ZH EN
δstd δmask ∆text δstd δmask ∆text

Word

m-mean 0.13 0.06 0.07 0.90 0.34 0.56
m-L1 0.35 0.29 0.06 0.54 0.37 0.18
m-L2 0.33 0.26 0.07 0.48 0.31 0.16
s-max-m 0.51 0.35 0.16 1.13 0.37 0.75
s-max-L1 0.51 0.35 0.16 1.11 0.38 0.72
s-max-L2 0.63 0.57 0.06 0.67 0.47 0.20

Entity

m-mean 0.23 0.09 0.14 1.28 0.47 0.81
m-L1 0.34 0.25 0.09 1.47 0.40 1.07
m-L2 0.30 0.21 0.09 0.52 0.31 0.21
s-max-m 0.92 0.68 0.25 2.48 1.15 1.32
s-max-L1 0.93 0.68 0.25 2.45 1.17 1.29
s-max-L2 0.93 0.84 0.09 1.30 1.00 0.30

Table 4: Comparison of standard (δstd) and masked
(δmask) text-based classifiers’ normalized difference
scores, and their differences (∆text) across different ag-
gregation methods and span levels. (m = mean, s-max =
signed-max.)

Level Method ZH EN
δu δf ∆speech δu δf ∆speech

Word
mean 3.84 -0.11 3.95 0.78 -0.59 1.37
L1 -0.03 -0.28 0.24 0.09 -0.10 0.19
L2 -0.04 -0.28 0.23 0.09 -0.10 0.19

Entity
mean 3.29 -0.48 3.77 0.85 -0.69 1.54
L1 0.01 -0.28 0.29 0.16 -0.07 0.23
L2 0.01 -0.26 0.27 0.18 -0.05 0.24

Table 5: Comparison of unfrozen (δu) and frozen (δf )
speech-based classifiers’ normalized difference scores,
and their differences (∆speech) across different aggrega-
tion methods and span levels.

Level Method ZH EN
δm-uni δm-bi ∆t-bi δm-uni δm-bi ∆t-bi

Word

m-mean 0.06 -0.01 0.07 0.34 0.14 0.21
m-l1 0.29 0.26 0.03 0.37 0.34 0.02
m-l2 0.26 0.23 0.03 0.31 0.29 0.02
s-max-m 0.35 0.27 0.08 0.37 0.23 0.14
s-max-l1 0.35 0.27 0.08 0.38 0.23 0.15
s-max-l2 0.57 0.57 0.01 0.47 0.46 0.01

Entity

m-mean 0.09 0.02 0.07 0.47 0.20 0.26
m-l1 0.25 0.21 0.04 0.40 0.36 0.04
m-l2 0.21 0.17 0.04 0.31 0.27 0.04
s-max-m 0.68 0.57 0.11 1.15 0.88 0.27
s-max-l1 0.68 0.57 0.11 1.17 0.88 0.28
s-max-l2 0.84 0.83 0.004 1.00 0.98 0.03

Table 6: Comparison of unimodal (δm-uni) and bimodal
masked text modality’s (δm-bi) normalized difference
scores, and their differences (∆t-bi) across ZH and EN
languages.

Level Method ZH EN
δuni δbi ∆s-bi δuni δbi ∆s-bi

Word
mean -0.11 -0.44 0.33 -0.59 0.67 -1.26
L1 -0.28 -0.22 -0.06 -0.10 0.09 -0.19
L2 -0.28 -0.23 -0.05 -0.10 0.11 -0.21

Entity
mean -0.48 -0.39 -0.09 -0.69 0.53 -1.21
L1 -0.28 -0.21 -0.07 -0.07 0.11 -0.17
L2 -0.26 -0.20 -0.06 -0.05 0.14 -0.19

Table 7: Comparison of unimodal (δfroz-uni) and bimodal
(δfroz-bi) frozen speech modality’s normalized difference
scores, and their differences (∆speech-bi).
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