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Abstract

Reasoning has long been viewed as an emer-
gent property of large language models (LLMs).
However, recent studies challenge this as-
sumption, showing that small language mod-
els (SLMs) can also achieve competitive rea-
soning performance. This paper introduces
THINKSLM, the first extensive benchmark to
systematically evaluate and study the reason-
ing abilities of SLMs trained from scratch or
derived from LLMs through quantization, prun-
ing, and distillation. We first establish a reli-
able evaluation criterion comparing available
methods and LLM judges against our human
evaluations. Then we present a study evalu-
ating 72 diverse SLMs from six major model
families across 17 reasoning benchmarks. We
repeat all our experiments three times to en-
sure a robust assessment. Our findings show
that: 1) reasoning ability in SLMs is strongly
influenced by training methods and data quality
rather than solely model scale; 2) quantization
preserves reasoning capability, while pruning
significantly disrupts it; 3) larger models consis-
tently exhibit higher robustness against adver-
sarial perturbations and intermediate reasoning,
but certain smaller models closely match or
exceed the larger models’ performance. Our
findings challenge the assumption that scaling
is the only way to achieve strong reasoning. In-
stead, we foresee a future where SLMs with
strong reasoning capabilities can be developed
through structured training or post-training
compression.  Our THINKSLM Leader-
board is publicly available at: https://ctrl-
gaurav.github.io/thinkslm.github.io/

1 Introduction

For a long time, reasoning in language models was
considered an emergent property of large language
models (LLMs), appearing at or above a certain
scale (~100B parameters). Early studies (Wei et al.,
2022b; Chowdhery et al., 2023; Brown et al., 2020)
suggested that multi-step reasoning only emerges
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in models exceeding 100B parameters, as shown by
models like GPT-4 (OpenAl et al., 2024) and Gem-
ini (Team et al., 2024). However, recent findings
challenge this assumption. Phi-3.5-mini (Abdin
et al., 2024a), with just 3.8B parameters, performs
comparably to GPT-3.5, which suggests that rea-
soning ability can be achieved in small language
models (SLMs) as well.

A more recent breakthrough, DeepSeek-R1
(DeepSeek-Al et al., 2025), has shown impressive
reasoning ability. While DeepSeek-R1 is a large
model (671B), its reasoning abilities were distilled
into smaller models (1.5B—70B parameters, Qwen
Family (Qwen et al., 2025)). This further chal-
lenges the assumption that reasoning ability only
comes from scaling and raises an important ques-
tion: Can SLMs also develop strong reasoning ca-
pabilities? Before answering this, we need first
to define what qualifies as an SLM. The definition
of SLM varies widely, depending on model size,
efficiency, and deployment constraints.

In this work, we define SLMs as models signifi-
cantly smaller than state-of-the-art LLMs, typ-
ically ranging from a few hundred million to
at most ~30 billion parameters, or models that
achieve similar computational efficiency through
compression (e.g., quantization, pruning).

There has been growing interest in SLMs due
to their lower inference costs, reduced latency, and
local deployment feasibility. Unlike LLMs that
rely on cloud APIs for deployment, SLMs can be
deployed locally (Wang et al., 2024), mitigating
data exposure risks. However, their reasoning capa-
bilities remain underexplored, particularly in com-
pressed (Zhu et al., 2024b) variants. For example,
can a quantized LLaMA-70B outperform an 8B
variant? This raises another question: Can SLMs
retain reasoning ability after undergoing compres-
sion (e.g., Quantization)? And to what extent?
Prior research has lacked a detailed benchmark-

32601

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 32601-32651
November 4-9, 2025 ©2025 Association for Computational Linguistics


gks@vt.edu
xuanw@vt.edu
shuxiang.cao@physics.ox.ac.uk
https://ctrl-gaurav.github.io/thinkslm.github.io/
https://ctrl-gaurav.github.io/thinkslm.github.io/
https://ctrl-gaurav.github.io/thinkslm.github.io/

ing effort that quantifies how different SLM strate-
gies impact reasoning. In this work, we aim to fill
this gap by systematically benchmarking SLMs’
reasoning ability and providing clear guidance for
researchers developing or deploying SLMs.

First, we establish a reliable evaluation metric
for assessing reasoning performance. Since rea-
soning is a generative task, defining an objective
evaluation metric is non-trivial. Different methods
often produce conflicting results compared to hu-
man evaluation, which makes it difficult to assess
the model’s actual reasoning ability. Manual evalu-
ation is impractical, whereas rule-based evaluation
expects the model to follow specific instructions
(Huang et al., 2024). Sometimes, it can be unfair
since we are testing the model’s "reasoning," not
"instructions following" ability. Studies (Wei et al.,
2022a) further show that this instruction follow-
ing ability appears when scaled to ~100B parame-
ters. To determine the best evaluation framework,
we systematically compare different parsing-based
methods, LLM-as-a-Judge, and widely used bench-
marks like Im-eval-harness to our human evalua-
tion. Our results show that GPT-4-Turbo and GPT-
40 align most closely with human judgment (98%
agreement), which we use as the main evaluation
metric to benchmark SLM reasoning.

Second, we conduct a comprehensive eval-
uation of 72 SLMs of six different families
(such as Llama and Qwen), including their quan-
tized, pruned, and distilled variants. We evaluate
across eight widely used reasoning benchmarks:
GSMS8K, MATH, MathQA ARC-C, ARC-E, Com-
monsenseQA, OpenBookQA, Hellaswag and six
sorting tasks: 8, 16, 32 numbers with only pos-
itive and mixed randomly generated numbers to
ensure that performance reflects the model’s actual
reasoning ability rather than memorization. We
observed that different models respond differently
to the same prompting strategies. Recent findings
(Plaat et al., 2024; Qwen et al., 2025; Yang et al.,
2024) suggest that some language models internally
generate step-by-step reasoning (Wei et al., 2022c),
even when prompted directly. So, on GSMS8K,
we tested SLMs prompt sensitivity using 5 differ-
ent prompting strategies: Direct I/O, COT, 5-Shot,
COT 5-Shot, and 8-Shot. All experiments were
done three times with mean and standard devia-
tion reported, ensuring a robust evaluation of the
models’ performance.

Finally, we test the robustness of SLM reason-
ing on three specialized benchmarks: MR-Ben,

which evaluates the ability to locate and analyze po-
tential errors in reasoning steps (Zeng et al., 2024b);
MR-GSMBS8K, which evaluates intermediate rea-
soning ability (Zeng et al., 2024a); and GSM-Plus,
which measures resilience to adversarial perturba-
tions (Li et al., 2024). To evaluate actual reasoning
and not memorization, we select these datasets, re-
leased after the models’ knowledge cut-off time,
to ensure no prior exposure. Our results indicate
that certain open-sourced SLMs like Qwen2.5-32B
rival proprietary LLMs like GPT-4-Turbo in inter-
mediate reasoning. This suggests that reasoning is
not solely a function of scale but also structured
training and optimization.

The remaining sections of this paper are struc-
tured as follows: Section 2 reviews the recent work
on SLMs’ reasoning and evaluation methodolo-
gies. Section 3 discusses our benchmarking setup,
evaluation process, and reasoning tasks. Section
4 presents experimental results and insights, ana-
lyzing reasoning performance and its robustness.
Finally, Section 5 concludes with key takeaways
and directions for future research.

2 Related Work

Recent Surveys on SLMs Recent surveys pro-
vide insights into SLM advancements. Some focus
on reasoning and task-specific improvements (Sub-
ramanian et al., 2025; Wang et al., 2024; Srivastava
et al., 2025a,b), while others survey SLM perfor-
mance across various applications (Lu et al., 2024;
Nguyen et al., 2024). These efforts highlight the
increasing viability of SLMs as efficient alterna-
tives to LLMs, particularly in resource-constrained
settings. However, existing surveys lack a system-
atic benchmarking of diverse SLMs to quantify
their performance across multiple reasoning bench-
marks.

SLM Reasoning Recent studies have explored
the reasoning abilities of SLMs, such as Hymba-
1.5B (Dong et al., 2025) and Llama-3-1B (Fedorov
et al., 2024), particularly for mathematical and
logical tasks. Some approaches train SLMs di-
rectly on reasoning tasks, such as rStar-Math (Guan
et al., 2025), which uses Monte Carlo Tree Search
(MCTS) and a process preference model. Special-
ization through fine-tuning on specific datasets also
enhances reasoning (Fu et al., 2023) but may re-
duce generalization.

Another line of research uses knowledge distilla-
tion (Gou et al., 2021; Phuong and Lampert, 2019)
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to transfer reasoning capabilities from LLMs to
SLMs (Zhu et al., 2024a). Similarly, distillation
strategies, like feedback-driven (Zhu et al., 2024c)
and counterfactual distillation (Feng et al., 2024),
refine reasoning abilities and improve generaliza-
tion to out-of-distribution tasks. Instruction-tuning-
CoT (Ranaldi and Freitas, 2024) and fine-tuning on
CoT-generated outputs (Magister et al., 2023) have
also shown improvements in multi-step reasoning.

Furthermore, structural modifications, such as
equation-only formats (Kim et al., 2024) and syn-
thetic data training (e.g., Orca-Math (Mitra et al.,
2024)), have also improved performance. Efficient
architectures like Phi-3-mini (Abdin et al., 2024a)
match the performance of larger models while be-
ing deployable on edge devices. Self-correction
mechanisms like SCORE (Zhang et al., 2024) en-
hance reasoning reliability, while models like Orca
2 (Mitra et al., 2023) and OpenELM (Mehta et al.,
2024) optimize efficiency through improved train-
ing strategies. In this paper, we evaluate a broad
spectrum of SLMs, including trained-from-scratch,
via different methods and their quantized, pruned,
and distilled variants.

Reasoning Evaluation Assessing reasoning in
language models is challenging due to the open-
ended, multi-step nature of responses. While rule-
based parsing offers precise scoring, it often pe-
nalizes correct answers due to formatting issues.
Human evaluation, though reliable, is costly and
subjective. Recently, LLM-as-a-Judge has emerged
as a scalable alternative, with models like GPT-4
Turbo and LLaMA-3.1 70B showing strong agree-
ment with human judgments across tasks such as
summarization, grammatical correction, and struc-
tured reasoning (Thakur et al., 2024; Chiang and
Lee, 2023; Sottana et al., 2023; Wang et al., 2023).
Surveys further support its reliability (Gu et al.,
2025; Chang et al., 2024). However, no prior work
systematically compares these methods for evaluat-
ing reasoning in SLMs. We fill this gap by bench-
marking SLMs across reasoning tasks using rule-
based parsing, human ratings, Im-eval-harness, and
LLM-as-a-Judge-identifying which metrics best
align with human judgment.

3 THINKSLM Setup

To study the reasoning capabilities of SLMs, we
design a systematic experimental setup based on
mutually exclusive and collectively exhaustive axes
that influence reasoning.

3.1 Dimensions Influencing SLM Reasoning

Our THINKSLM framework consists of six distinct
and interrelated dimensions to systematically study
and evaluate the reasoning capabilities of SLMs.
These dimensions are carefully selected, providing
an organized structure for our experiments. They
include: 1) model capacity and family (trained-
from-scratch, Qwen2.5, Llama-3, Mistral); 2) train-
ing and architecture choices (data scale, reinforce-
ment learning-based post-training, hybrid-head ar-
chitectures); 3) inference-time prompting strategies
(Direct I/0, Chain-of-Thought (CoT), few-shot sce-
narios); 4) post-compression methods (quantiza-
tion, pruning, distillation) 5) task domains (maths,
science, commonsense, algorithmic reasoning); 6)
robustness stressors (adversarial perturbations, in-
termediate reasoning steps, and error detection).

3.2 Tasks & Datasets

We curate an extensive collection of evaluation
tasks, grouped explicitly according to the domain
axis. Mathematical reasoning is assessed using
GSMBSK (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), and the MathQA (Amini et al., 2019)
dataset, covering diverse arithmetic and algebraic
reasoning challenges. Science reasoning capa-
bilities are evaluated via ARC-Easy and ARC-
Challenge (Clark et al., 2018) datasets, each pro-
viding distinct complexities in factual recall and
nuanced inference. Commonsense reasoning
tasks incorporate CommonsenseQA (Talmor et al.,
2019), OpenBookQA (Mihaylov et al., 2018a), and
HellaSwag (Zellers et al., 2019), presenting prob-
lems that test the model’s ability to reason about
everyday scenarios logically. For algorithmic rea-
soning, we introduce customized SORTING tasks
that systematically vary in complexity, length, and
numerical composition (including positive-only
and mixed positive-negative scenarios), designed
to test numerical and sequential reasoning.

3.3 Evaluation Protocol

Our first step was to select a reliable assess-
ment method. We define the evaluation problem
as finding a scoring function S : Y x Y* —
{0,1} that maps model output y and ground
truth y* to correctness scores. Given evaluation
methods M = {my,...,my}, we seek m* =
arg maxmmem P(Sm, Sp) where p measures agree-
ment with human judgment Sj,.
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| SmolLM2-1.7B-Instruct |

Llama-3.1-8B-Instruct | Statistical Analysis

Evaluation Method

| GSM8K  ARC-E  ARC-C CcSQ GSM+ | GSMS8K ~ ARC-E  ARC-C CsQ GSM+ | Avgp x? p-value  MAE 95% CI

Human Evaluation | 43 75 56 62 37 | 81 93 82 69 68 | 1.00 - - 0.00  [1.00, 1.00]
Im-eval-harness 18 70 37 50 15 22 82 51 76 19 0.51 913 <0001 032  [0.48,0.54]
Parsing 37 8 16 9 31 84 3 6 7 71 036 1457 <0001 049  [0.33,039]
Direct Answer 5 58 49 42 4 18 93 82 7 16 060 668 <0001 028  [0.57,0.63]
LLM-as-Judge Methods [Accuracy (Agreement %)]

gpt-3.5-turbo 49(94)  75(100)  55(99)  62(100) 42(95) | 83(98)  91(98) 81 (99  66(97)  70(99) 094 841 0.004 0.04  [0.92,0.96]
gpt-do-mini 41(98)  75(100)  55(99)  61(99)  35097) | 80(99)  93(100)  76(94) 69 (100) 67 (99) 096 417 0.041 0.03  [0.94,097]
gpt-do 41(98)  75(100)  56(100) 63 (97)  35(97) | 81(100) 93 (100) 82(100)  70(99)  68(100) | 0.98 2.01 0.156 0.02  [0.97,0.99]
gpt-4-turbo 42(99)  75(100)  56(100)  61(99)  36(98) | 81(100) 93 (100) 82(100) 69 (100) 68 (100) | 0.99 1.33 0.249 0.01  [0.98, 1.00]

Table 1: Comprehensive evaluation metrics comparison on 100 randomly sampled points per dataset. CSQ =
CommonsenseQA, GSM+ = GSM-Plus. For LLM judges, scores show accuracy with human agreement % in
parentheses. Statistical analysis: p = overall agreement with human judgment, x? = McNemar test statistic, MAE
= mean absolute error, CI = bootstrap confidence interval (B=1000). Highlighted row indicates selected evaluator.

Parsing Issues. Standard parsing techniques rely
on fixed patterns, which can be challenging for
generative models to follow consistently. We for-
malize this as Sparse(y, ¥*) = I[extract(y) = y*],
where extract(-) applies regex patterns. Smaller
models particularly struggle with strict output for-
mats, leading to cases where correct answers are
penalized for formatting deviations. Prior work
(Wei et al., 2022c¢) shows that instruction-following
capabilities improve with model scale (~100B),
making parsing an unfair metric for small models.

Empirical Validation. To establish a reliable
evaluation metric, we conducted human evaluation
on 1,000 samples from GSMS8K, ARC-E, ARC-
C, CommonsenseQA, GSM-Plus datasets using
SmolLM2-1.7B and Llama-3.1-8B. Three anno-
tators labeled each sample with majority voting:
Sh(yiyl) = ]I[Z?:l a;j > 2|, achieving inter-
annotator agreement x = (.87 (Fleiss’ kappa).

Statistical Significance Testing. To establish the
reliability of our chosen evaluator, we use McNe-
mar’s test for paired nominal data. For each evalu-
ation method m against human judgment, we con-
struct a 2 X 2 contingency table of agreements and
disagreements. The test statistic:

b— 2

where b and c represent discordant pairs (human-
yes/method-no and human-no/method-yes respec-
tively). Under the null hypothesis of equivalent
performance, x? follows a chi-squared distribution
with one degree of freedom.

Our results show that GPT-4-turbo achieves the
highest agreement with human evaluation (p =
0.99, p = 0.249), with no statistically significant
difference from human judgment (x> = 1.33).
GPT-40 performs comparably (p = 0.98, x? =

2.01, p = 0.156), while parsing methods show sig-
nificant disagreement (p < 0.40, p < 0.001 for all
parsing variants).

Cost-Performance Trade-off. We model the
evaluation cost as:

Ctotal =n- (Ctoken : lavg + Cbase) (2)

where n is the number of evaluations, Coken 1S
the per-token cost, layg is average prompt length,
and cpye 18 the fixed API cost. Given that GPT-40
achieves 98% of GPT-4-turbo’s accuracy at 50%
of the cost, we adopt a mixed strategy: GPT-4-
turbo for mathematical reasoning (GSM8K) where
precision is critical, and GPT-40 for commonsense
and scientific reasoning tasks.

Choosing the Best Judge. Based on the statis-
tical analysis and cost considerations, we evalu-
ated GPT models using: (1) agreement with human
assessment p(.Sy,, Sp), and (2) statistical signifi-
cance via McNemar’s test. Table 1 shows GPT-
4-turbo achieves highest agreement (p = 0.99)
with no significant difference from human judg-
ment (x?> = 1.33, p = 0.249). GPT-40 per-
forms comparably (p = 0.98, p = 0.156), while
parsing methods show significant disagreement
(p < 0.40, p < 0.001). Given the utility function
Utility = p— \-Cost (where A > 0 balances agree-
ment (p) and cost.), where GPT-40 achieves 98%
accuracy at 50% lower cost, we selected GPT-40 as
primary evaluator for ARC-Easy, ARC-Challenge,
and CommonsenseQA. For GSM8K, we opted for
GPT-4-turbo due to its slightly higher reliability in
mathematical reasoning tasks.

Bootstrap analysis (B=1000) confirms stability:
GPT-4-turbo maintains Clgsy(p) = [0.98,1.00].
This empirical validation, combined with statistical
significance testing, establishes LLM-as-judge as
the optimal evaluation method for reasoning tasks.
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Task-specific Evaluators. For SORTING tasks,
LLM judges struggle with exact sequence
matching, showing exponential error growth:
P(all correct) ~ e~*" where n is sequence length.
We implemented deterministic verification using
regex patterns covering 13 response formats (Ap-
pendix C.3).

Model Task Human Parser Agreement
SmolLM2-1.7B 8-num 31/100 33/100 98.0%
SmolLM2-1.7B 16-num 4/100 4/100 100.0%
Llama-3.1-8B 8-num 77/100 76/100 99.0%
Llama-3.1-8B 16-num 56/100 54/100 98.0%
Overall Combined  168/400  167/400 98.8%

Table 2: Sorting task parser validation on 400 manual
annotations.

Table 2 validates our parser on 400 manually
evaluated outputs, achieving 98.8% agreement with
human judgment. Unlike prior work (Besta et al.,
2024), we apply strict binary scoring without par-
tial credit. For ROBUSTNESS BENCHMARKS, we
use original evaluation scripts with GPT-4o.

3.4 Experimental Matrix

Our experimental matrix defines the interplay be-
tween key dimensions influencing reasoning. We
evaluate all models across tasks and prompting
strategies, applying compression methods (e.g.,
quantization) to both small and large models. This
allows us to assess how compression affects mod-
els across the size spectrum. We also include larger
LLM:s (e.g., 32B, 70B) as reference points to com-
pare with their compressed counterparts and eval-
uate how close post-compression SLMs approach
original LLM performance.

3.5 Implementation Details

Appendix C details all parsing scripts and prompt
templates, including those used for different
prompting strategies and GPT-based evaluations,
ensuring reproducibility and transparency in our
experimental setups. Unless stated otherwise, each
experiment was repeated three times, and we re-
ported the mean and standard deviation of model
performance across all datasets to ensure the relia-
bility of the results.

4 Results & Insights

This section explores the six key axes described in
Section 3. The reported accuracy differences (vari-
ance) across 3 evaluation runs are small (always

under 1.49%), making the trends reliable. Raw
scores are listed in Table 3.

4.1 Model Capacity & Family Effects

Our experiments reveal that the reasoning capa-
bility of SLMs is not simply determined by
their size but rather dependent on their family
and training methodology. Firstly, Models like
Qwen2.5 (7B) substantially outperform similarly-
sized counterparts from other families, such as
Mistral-7B, by margins exceeding 30% on com-
plex tasks like GSMS8K (Table 3). This differ-
ence primarily arises from Qwen2.5’s extensive
pre-training dataset (~18 trillion tokens) and its
strong alignment strategies involving multi-stage
reinforcement learning and supervised fine-tuning
(Qwen et al., 2025). Secondly, model performance
does not scale linearly with size. For example,
within the Qwen2.5 family, increasing from 0.5B
— 7B parameters improves GSM8K accuracy by
45%. But doubling again to 14B gives +3 % in-
crease. Beyond 14B, larger models improve more
in coverage across tasks than in single-task scores.
These insights underline that strategic training pro-
cedures significantly influence reasoning perfor-
mance, suggesting that robust training pipelines
could potentially mitigate the limitations typically
associated with smaller models.

4.2 Training Recipe & Architecture Effects

Instruction tuning, high-quality teacher-driven
distillation, and architecture-level innovations
significantly boost reasoning performance, of-
ten outweighing raw model size. Our analysis
reveals: ) instruction-tuned models substantially
outperform their base counterparts of the same ar-
chitecture. For instance, Qwen2.5-3B jumps from
77.91% (base) to 84.74% (instruction-tuned) on
GSMSK, and from 60.44% to 68.33% on GSMPlus
(Table 4). 2) Model architecture also plays a deci-
sive role. Hymba-1.5B, despite introducing hybrid-
head designs combining attention and SSMs (Dong
et al., 2025), achieves only 53.75% on GSMS8K-
far behind Qwen2.5-1.5B’s 70%. This gap reveals
that novel architecture alone cannot compensate
for weak reasoning-specific training. Hymba’s de-
sign, optimized for efficiency (via parallel mem-
ory heads and KV cache sharing) and throughput,
may under-optimize for deep reasoning, where rich
pretraining and supervised alignment are more im-
pactful (Qwen et al., 2025). 3) The impact of dis-
tillation quality is most evident in models like Phi,
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Models Computational Req. (GB) GSMSK ARC CommonsenseQA Sorting_Avg Overall Avg
Model Param. Quantization GPU Memory Disk Space (%) Easy (%) Challenge (%) (%) (%) (%)
QOwen2.5 Family
None 2.02 0.95 46.80+0.77 62.50+0.21 442841 .03 46.9041.49 2.61 40.62
0.5B GPTQ 8-bit 0.71 0.62 46.85+0.37  61.7410.84 4443 40.83 46.1941 .27 261 40.36
GPTQ 4-bit 1.12 0.45 34.6240.42 52.5840.60 37.6311.69 36.4210.50 1.50 32.55
None 6.68 29 70.0010.53  87.5840.21 73.8140.30 71.85+0.48 29.11 66.47
1.5B GPTQ 8-bit 2.54 1.7 70.3340.41 87.78+0.20 73.72+0.21 72.104+0.27 29.61 66.71
GPTQ 4-bit 1.81 1.1 64.92410.84  86.2540.05 70.25+0.16 69.1040.50 21.11 62.33
None 12.42 58 84.74 10,28 93.4940.07 83.7310.38 76.2540.29 39.89 75.62
Qwen2.5 3B GPTQ 8-bit 4.21 33 85.174+0.20  93.55+40.07 83.5340.30 76.77 +0.20 39.56 75.72
GPTQ 4-bit 2.88 2.0 81.78+0.54 92.1240.07 80.86+0.52 71.9640.49 29.44 71.23
None 30.05 15 91.76+0.20 96.0310.17 90.5340.12 82.6640.14 57.67 83.73
7B GPTQ 8-bit 9.63 8.3 91.8440.22 96.0340.10 90.6440.15 82.5840.32 58.78 83.97
GPTQ 4-bit 6.48 53 90.62+0.13  95.6240.00 89.1940.21 82.6940.28 33.89 78.40
None 57.04 28 942910.40 97.87+0.05 93.3740.22 84.08+0.54 74.61 88.84
14B GPTQ 8-bit 17.24 16 944940.25  97.9040.12 93.7140.24 84.2240.14 74.78 89.02
GPTQ 4-bit 10.65 9.4 94.7410.32  97.57+0.10 93.1740.21 83.10+0.19 69.56 87.63
None 125 62 95.404+0.20  98.2640.10 95.2510.18 87.114¢.37 87.39 92.64
32B GPTQ 8-bit 33.81 33 95.7310.19 98.3410.02 95.1640.40 86.6240.10 87.17 92.65
GPTQ 4-bit 5242 19 9573+0.00  98.0940.05 95.1940.11 87.06+0.58 87.28 92.67
Qwen2 Family
None 2.02 0.95 37.2510.58 56.414+0.22 40.4440.18 48.1341.33 1.72 36.79
GPTQ 8-bit 0.71 1.4 38.0840.60 56.1340.25 40.30+0.65 47.5040.29 1.33 36.67
GPTQ 4-bit 1.12 0.71 21514111 52.0540.42 37.0310.30 43.1141.28 0.33 30.81
0.5B W8-A16 1.38 0.61 37.6840.34  56.5140.88 39.8740.26 47.2340.89 2.00 36.66
W38-A8 1.38 0.87 37.60+0.79  55.3610.71 40.27 +0.62 47.4510.04 1.33 36.40
W4-A16 1.51 0.71 25421020  50.5640.40 36.6310.34 42424044 111 31.23
FP8 1.25 0.58 3520+1.10  56.6110.24 40.1310.60 46.76 £ 0.35 1.22 35.98
None 7.09 29 62.8340.44 84344 27 67.2940.36 69.7810.18 12.22 59.29
GPTQ 8-bit 2.54 3.1 62.8540.70 84.1940.07 66.5540.39 69.9710.14 12.17 59.15
Qwen2 GPTQ 4-bit 1.81 24 563110.62 82034015 63.9910.56 68.9940 51 8.22 55.91
1.5B WS8-Al6 251 1.7 62.9840.99 83.96+40.12 66.8440.53 70.1940.57 12.11 59.22
W8-A8 2.48 22 62451045  83.644017 66.8410.24 69.7240.25 12.11 58.95
W4-A16 3.14 1.6 57.9040.84 81.64+0.20 63.5140.45 66.4210.64 11.06 56.11
FP8 3.25 1.85 61.971+0.41 83.77+0.21 66.33+0.59 68.9310.51 11.44 58.49
None 30.05 15 87.1440.18 94.2140.12 85.5240.18 80.5440.15 44.50 78.23
GPTQ 8-bit 9.63 83 87.1610.28  94.2810.00 85.6410.11 80.0410.15 4372 78.32
GPTQ 4-bit 6.48 53 85.5440.46 93.4540.10 85.5240.29 78.9240.10 34.78 75.64
7B WS-A16 9.42 8.2 86.4010.64  939110.12 85.4740.11 80.1310.38 43.67 77.92
W38-A8 9.58 8.2 87.1140.06 94.0240.06 85.3840.43 79.6640.10 42.89 77.81
W4-A16 12.96 53 84.5310.65 94221 0.10 84.9510.18 78.9840.45 38.61 76.26
FP8 14.5 8.5 86.66+0.38 94.2640.07 85.4140.28 80.3240.10 42.72 77.87
Llama Family
None 473 24 36.3940.47 67.2341.40 47.5040.22 48.3840.45 7.83 41.47
1B W38-A8 1.53 1.9 36.87+0.68 67.4510.67 47.9040.63 48.1040.76 8.89 41.84
FP8 247 1.9 36.42+1.37  67.0310.26 48.014+0.98 48.48+1.05 7.44 41.48
Llama3.2 FP8-dynamic 247 2.0 36.214+0.83  67.0240.17 48.69+0.59 48.404+0.72 9.67 42.00
None 13.21 6.0 73.5410.06 87.8410.27 74.63+0.41 69.7240.01 47.22 70.59
3B W38-A8 3.66 4.2 72.584.0.25 87.2240.21 74.374+0.58 69.3140.97 40.11 68.72
FP$ 6.44 42 74.0710.43  88.03+0.34 74.0310.91 68.7441.02 39.33 68.84
FP8-dynamic 6.44 4.2 734941 .22 87.5340.04 73.5840.40 69.7540.51 40.11 68.89
None 30.65 15 83.454+0.41 92.07+0.28 79.5840.26 74.28 10.52 60.11 77.90
W8-A8 8.98 85 83.374+0.46  923310.14 79.98+0.11 73.63+0.20 58.33 77.53
SB W38-Al16 15.94 8.5 83.9540.42 92.3410.23 80.3240.44 73.87+0.00 60.83 78.26
W4-A16 12.6 5.4 82211040 90.4910.36 76.62+0.69 73.57+0.65 55.56 75.69
FP8 14.44 8.5 82.8910.40 92.1710.40 79.5210.61 73.9310.62 58.89 77.28
Llama3.1 FP8-dynamic 21.09 85 83.2740.04  923340.24 81.0040.50 74.09+0.56 58.94 77.93
None 269.17 132 95.1040.28 98.3410.05 94.4310.28 83.734+0.58 97.33 93.79
W38-A8 69.34 68 94.724.0.34 98.4310.22 94.6210.14 83.9210.28 96.89 93.72
708 WS-A16 138.64 68 92921013  97.59+0.10 92.8910.18 80.0410.40 95.89 91.87
W4-A16 107.34 38 951510 .33 98.2640.08 94.5140.26 82.77+0.19 95.28 93.19
FP8 107.32 68 94871008  983640.15 94.7140.07 83.8710.24 97.33 93.83
FP8-dynamic 176.63 68 94.6410.23  98.4640.07 94.5440.18 83.7040.18 97.44 93.76
Mistral Family
None 27.67 14 54.8410.56 88.9910.34 76.8210.29 69.8340.10 23.11 62.72
W38-A8 34.84 7.1 52114211 88.65+0.27 7597 +0.04 70.5240.37 18.50 61.15
Mistral v0.3 7B W8-A16 14.36 7.1 54264077  89.0740.28 76.6810.18 70.2240.04 22,67 62.58
W4-A16 11.17 39 53.9340.77 88.3340.14 7497 +0.32 69.8310.15 17.33 60.88
FP8 138 72 54.1310.64  88.6440.38 76.39+£0.20 69.4810.45 22.17 62.16
None 57.89 23 86.7640.57 92.79+0.07 83.7010.32 72.7840.78 60.89 79.38
Mistral Nemo 12B W4-A16 61.98 7.8 84.74 11 05 91.8240.29 81.80+0.65 71.334+1.01 60.22 77.98
FP8 289 11.8 87311040 92.1940.20 83.1640.31 734140.15 59.72 79.16
Others
Phi-3.5 3.8B None 14.6 72 85471047  95.0940.14 86.8940.16 76.1110.04 47.33 78.18
Phi-3-small 7B None 29.2 17.95 70.10+0.96  97.1210.11 91.3810.18 79.8510.35 53.72 78.43
SmolLM2 1.7B None 6.55 32 46.174+0.41 75.0410.18 54214107 53.1841.27 16.83 49.09
Hymba 1.5B None 5.8 29 53.7540.51 84.57+0.02 66.7810.04 64.7310.14 7.94 5565

Table 3: THINKSLM Leaderboard: Performance evaluation of Small Language Models across reasoning
benchmarks and their computational requirements. Performance measured on GSM8K (math), ARC-Easy and
ARC-Challenge (science), CommonsenseQA (commonsense), and Sorting tasks (algorithmic). The Overall
Average column shows mean performance across all benchmarks. Within each family, bold text highlights the

best-performing model across all variants, and underlined text shows the second-best performing model.
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Figure 1: (a) Overall performance on 4 common reasoning benchmarks. (b) Performance on Sorting Tasks. The
x-axis represents different models (with parameters in billions), the y-axis represents the mean accuracy, and the bar
represents variance (3-folds). Each line corresponds to different sorting tasks (8 +ve, 8 mixed, 16 +ve, 16 mixed,
32 +ve, and 32 mixed numbers). (c) Effect of Prompts on SLM Performance on the GSM8K. Each line corresponds
to different prompting strategies (Direct I/O, Chain-of-Thought (CoT), 5-shot, 5-shot CoT, and 8-shot).

which achieves an impressive 85.47% on GSM8K-
completely outperforming Minitron-4B (27.95%)
and even some larger open-weight LLMs. This dra-
matic difference arises from Phi’s teacher-forced
distillation using curated, reasoning-focused syn-
thetic data (Abdin et al., 2024b), whereas Mini-
tron’s structured pruning (Sreenivas et al., 2024)
with minimal adaptation leads to substantial perfor-
mance degradation despite similar model sizes.

4.3 Domain-Specific Performance

Performance across domains reveals that complex
reasoning tasks like sorting numbers remain
bottlenecks for both small and large models,
exposing a gap in genuine reasoning capabilities.
Our analysis shows that reasoning performance is
highly domain-sensitive. On simpler tasks such
as ARC-Easy, many models-regardless of size-
achieve near-saturation, with standard deviations as
low as 6.4%. These tasks largely depend on pattern
matching and factual recall, offering limited insight
into a model’s reasoning depth. In contrast, math-
focused benchmarks like GSM8K and GSM-Plus
expose sharp performance differences: the standard
deviation on GSMSK rises to 19.7%, indicating
that these tasks better discriminate between models
based on reasoning skill. The harder variant, GSM-
Plus, widens this gap further and provides a more
reliable stress test for true mathematical reasoning.

Sorting tasks also serve as an effective proxy for
symbolic manipulation. When sequence complex-
ity increases-through the introduction of negative
numbers or longer list lengths-even the strongest
models (e.g., LLaMA-3-70B) exhibit up to 12%
performance drops. These failures suggest brit-

tle reliance on shallow heuristics, rather than ro-
bust algorithmic reasoning. Notably, sorting per-
formance correlates strongly with GSM8K accu-
racy (r = 0.78), reinforcing the hypothesis that
both tasks share core cognitive demands related
to numerical abstraction and stepwise reasoning.
Together, these results reveal that current model
architectures still face scalability limits in com-
plex reasoning domains. This points to the need
for targeted improvements, such as task-specific
optimization or external tools, to close the gap in
algorithmic and symbolic reasoning performance.

4.4 Prompting Effects

Our results show that detailed prompting strategies,
such as Chain-of-Thought (CoT) or few-shot exam-
ples, do not always improve reasoning performance
(Figure 1. In fact, simpler prompts, such as direct
input/output formats, often perform just as well or
better. This is especially true for models released
after 2024, where adding multiple reasoning steps
leads to only minor gains (around 2% on GSMS8K).
In some cases, overly complex instructions may
even reduce accuracy, likely because the model fo-
cuses more on following the prompt format than
solving the task. These findings suggest that recent
models already learn strong reasoning abilities and
step-by-step reasoning during training, making tra-
ditional prompting strategies less effective. Instead,
simpler prompts may be more reliable, and future
improvements might come from domain-specific
approaches or external tools, rather than from in-
creasing prompt complexity.
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Figure 2: Impact of Quantization on Model Performance across Different Benchmarks. The figure shows the
performance of different models on GSM8K (Direct I/0), Average of ARC-E, and CommonsenseQA, and Average
of all sorting tasks with varying quantization levels. All results are from Qwen2.5 Family. The x-axis represents
the parameters size (in billions), and the y-axis represents the mean accuracy and bar represents variance (3-folds).

4.5 Compression Effects

We compare three common model compression
techniques and observe striking differences in how
they affect reasoning performance. Quantiza-
tion maintains reasoning capabilities remark-
ably well (Figure 2), even in large models, while
offering substantial memory and efficiency gains.
For instance, 8-bit quantization shows almost no ac-
curacy loss, and 4-bit GPTQ reduces performance
by less than one point on GSM8K for Qwen2.5-
14B, despite cutting memory usage by up to 80%.
Notably, a 4-bit quantized 14B model still outper-
forms its dense 7B counterpart, reinforcing the idea
that compressing a strong model is more effective
than training a smaller one.

In contrast, pruning significantly degrades rea-
soning, especially for complex tasks such as math-
ematical problem-solving and logical reasoning.
Pruned models often fail under stress, producing
empty or nonsensical answers. For example, re-
moving half the weights from Llama-8B causes a
32% accuracy drop on GSMS8K and complete fail-
ure on ARC-Challenge. Although knowledge distil-
lation can help recover some performance in math
tasks, it does little for broader reasoning or com-
monsense understanding. These findings suggest
that quantization is a safer and more effective com-
pression method for preserving reasoning ability,
while pruning carries higher risk of performance
loss and should be used with caution.

4.6 Robustness Under Stressors

Larger models show stronger robustness to ad-
versarial perturbations, such as those in GSM-

Plus, where accuracy typically drops by 11-17%
but model rankings remain stable. This indicates
that robustness scales with overall reasoning abil-
ity rather than being a separate trait. Quantiza-
tion has minimal impact on robustness. For ex-
ample, a quantized Qwen-32B matches the full-
precision version on MR-GSMS8K, scoring 55.6
(Zeng et al., 2024a), suggesting that preserving the
model’s structure is more important than numeri-
cal precision for complex reasoning. In contrast,
pruning significantly harms robustness and co-
herence. A pruned Llama-8B scores zero on the
same benchmark, underscoring the risks of struc-
tural sparsity in logic-intensive tasks.

The MR-Ben benchmark, which evaluates a
model’s ability to critique its own answers, further
illustrates domain-specific robustness. Models per-
form best in biology and basic math (median score:
22) but struggle with logic and programming (me-
dian score: 14), even at 70B scale. Interestingly,
well-aligned open-source models like Qwen-32B
can outperform proprietary systems such as GPT-
4-Turbo in step-by-step reasoning tasks, highlight-
ing the potential of transparent, targeted training.
These results emphasize that robustness and co-
herent reasoning depend heavily on model struc-
ture and training quality. While quantization sup-
ports efficient deployment without degrading per-
formance, pruning introduces critical vulnerabili-
ties that compromise reasoning under stress.

4.7 Cross-axis Interactions

Comprehensive evaluations across training,
prompting, and compression reveal that reasoning
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Original  A(])

Models GSM-Plus

MR-GSMSK

Mr-Ben (MR-Score)

(GSM8K) (% drop) (MR Score) Bijo, Math Phy. Medicine Code. Chem. Logic Avg
Model Param. Compres-
sion
Qwen2.5 3B None (Base) 60.44 7791 17.47 8.1 7.8 10.3 9 6.1 0.2 8.5 6.8 6.9
wenzs. None 68.33 84.74 16.41 11 10.1 11.2 104 7.8 3.5 10.6 8.4 8.8
(Ins-tuned)
Mistral 7B pruned2.4 25.44 30.30 4.89 4 0 1.3 2.3 0 0 1.8 0.3 0.8
None 67.10 83.45 16.35 24.2 12.9 10.8 10.9 12.7 6 13.5 10 11
Llama-3.1 8B w8al6 66.78 83.95 17.17 233 127 119 11.2 13 6.6 12.8 9.3 11.1
pruned2of4 35.17 51.86 16.69 0 0 0 0 0 0 0 0 0
Qwen2.5 32B None 82.71 95.40 12.69 55.6 234 247 243 19.9 14.3 24.7 18.4 214
" GPTQ-8 82.78 95.73 12.95 55.6 235 247 239 19.9 14.3 243 18.4 21.3
Ll 3.1 70B None 83.65 95.10 11.45 40.6 22 19.8 19.3 19.9 13.3 25 17.8 19.6
ama->. w8al6 80.03 92.92 12.89 442 201 174 149 151 1.6 212 146 164

Table 4: Performance of various SLMs on reasoning robustness, including adversarial robustness (GSM-Plus),
intermediate reasoning (MR-GSMS8K), and identifying errors in reasoning (MR-Ben). The metrics reported include
accuracy scores, percentage drop in accuracy (A), and MR-Scores, covering various models with different parameter
sizes and optimizations. Detailed individual task results for MR-GSMSK is reported in Appendix A.5.

performance in SLMs is influenced by a combi-
nation of factors beyond just model size. Two
consistent patterns emerge: First, quantization is
most effective when applied to larger models. For
example, the 4-bit quantized Qwen-14B consis-
tently outperforms the full-precision Qwen-7B
across all tasks, while using the same memory.
This highlights that compressing a strong model
can be more effective than training a smaller
one from scratch. Second, instruction tuning
enhances the benefits of reflective prompting.
Self-reflection prompts yield a 14% gain on the
instruction-tuned Qwen-3B, compared to only
4% on its reinforcement-aligned version. This
suggests that models trained with human feedback
may already internalize some reflective behaviors,
reducing the added value of explicit prompting.

These results emphasize that model quality now
depends on more than parameter count. Training
data quality, alignment techniques, and smart com-
pression strategies, especially quantization, are crit-
ical to enhance reasoning. In contrast, pruning
consistently degrades performance, particularly on
complex tasks, and should be avoided for models
intended for reasoning under high-stakes or de-
manding conditions.

Effective reasoning in modern SLMs is shaped
by multi-dimensional design choices. The most
promising path involves training larger models on
high-quality, reasoning-rich data, aligning them
with human feedback, and then applying quan-
tization for efficient deployment. The focus has
shifted from pure scale to maximizing the quality-
to-size ratio.

5 Conclusions and Future Directions

In this work, we systematically evaluated the rea-
soning ability of 72 SLMs across 17 benchmarks.
Overall, we observed: 1) LLMs tend to outper-
form SLMs in reasoning, but certain SLMs,
such as the Qwen2.5 family, perform on par
with LLMs. This is primarily attributed to their
extensive pre-training (18T tokens, more than dou-
ble that of Qwen2’s 7T) and a robust post-training
recipe using supervised fine-tuning and multi-stage
reinforcement learning. 2) Among compression
techniques, quantization proves to be a safer ap-
proach, preserving reasoning capabilities with
minimal trade-offs. However, pruning drastically
degrades performance, often leading to nonsensical
or incomplete outputs. This suggests that com-
pressing pre-trained LLMs is more effective than
training SLMs from scratch. 3) LLMs exhibit
stronger robustness in adversarial settings and
intermediate reasoning tasks. However, quan-
tization does not significantly impact a model’s
resilience in these scenarios, reinforcing its prac-
ticality as a compression method. 4) SLMs lag
behind LLMs in instruction following, which
may limit their applicability in tasks requiring
precise adherence to input constraints. We hope
these insights provide practical guidance for re-
searchers in selecting an SLM.

Future research should focus on improving the
instruction-following capabilities of SLMs and ex-
ploring compression strategies that maintain rea-
soning performance while enhancing efficiency and
robustness.
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Limitations

In this work, we tried our best to ensure a rigor-
ous and fair evaluation, but we acknowledge that
some limitations should be considered when inter-
preting the results. First, our reliance on GPT-4
as an evaluator introduces potential biases and er-
rors. While GPT-4 is a strong baseline for eval-
uation, it is not 100% accurate and may misclas-
sify responses, especially in edge cases (shown in
D.8). We observed instances where models produc-
ing many nonsensical responses were sometimes
marked as correct by GPT-4, leading to potential
overestimations of performance. Although we tried
to mitigate this issue by limiting token generation
and applying pre-evaluation parsing, it was not fea-
sible to manually supervise the entire evaluation
process. Second, our sorting task evaluations re-
lied on regex-based parsing to assess correctness.
There could be cases where a model’s response
was correct but misclassified due to parsing er-
rors. Although we tried to account for most of
the variations in model outputs, ensuring 100% ac-
curacy in automatic parsing remains a challenge.
Lastly, our study focuses primarily on widely used
benchmarks. However, reasoning abilities could be
further assessed on more diverse datasets, includ-
ing real-world problem-solving tasks and domain-
specific reasoning benchmarks. Exploring these
additional settings could provide a more compre-
hensive understanding of how different compres-
sion techniques impact model performance.

Potential Risks Our work does not pose direct
risks, but reliance on LLM-based evaluation may
introduce biases, and model deployment in critical

applications should consider robustness issues.

Ethics Statement

This study evaluates small language models using
standardized benchmarks and publicly available
datasets, ensuring transparency and reproducibil-
ity. No private or sensitive data was used, and all
models were assessed under fair conditions. We
acknowledge potential biases in LLM-based evalua-
tions and encourage further research for mitigation.

AT Assistance: We used ChatGPT assistance
for parts of the Appendix, such as generating La-
TeX code for tables and refining text written by
the authors. All Al-generated content was care-
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A Detailed Results

A.l [Task 1] GSMSK

In Table 5, we detail the results of 70 different
SLMs with their compressed versions on GSM8K
dataset. We report results with 5 different prompts
and we also report their computational require-
ments: GPU Memory Usage and Disk Space re-
quirements.

Further Insights: Model size influences per-
formance, with larger models like Llama-3.1
(8B, 70B) outperforming smaller ones such as
SmolLM2 (1.7B), Minitron (4B), and Hymba
(1.5B). However, the performance gap between
Llama-3.2 and Qwen2.5 (3B) suggests that increas-
ing parameters alone does not guarantee propor-
tional improvements-architectural design and train-
ing data are also crucial factors.

Quantization, even with aggressive techniques
like W4-A16, has minimal impact on mathematical
reasoning. This suggests that compact models can
be effectively deployed in resource-constrained en-
vironments without significant performance degra-
dation. Notably, Llama-3.1-8B retains strong accu-
racy even with INT4/INT16 quantization. While
quantization strategies such as FP8 and dynamic
FP8 provide substantial memory savings, they
maintain competitive performance. Figure 3, 4,
5 shows an analysis of model performance across
various tasks and the impact of quantization.

A.2 [Task 2&3] ARC-E, ARC-C,

CommonsenseQA

In Table 6, we detail the results of 71 different
SLMs with their compressed versions on ARC-
Easy, ARC-Challenge, and CommonsenseQA
datasets. We report results with direct prompting
since COT or multi-shots does not help much here.

Further Insights: Findings from ARC-E, ARC-
C, and CommonsenseQA align with GSM8K re-
sults. Larger models, especially from the Qwen
and LLama family, demonstrate superior reason-
ing abilities in both scientific and commonsense
tasks. On ARC-Easy and ARC-Challenge, per-
formance scales predictably with model size, with
Llama-3.1-70B achieving near-optimal scores. FP8
quantization proves highly effective, maintaining
performance parity with full-precision models up
to 8B.

A.3 [Task 4] Sorting Numbers

In Table 6, we detail the results of 71 different
SLMs along with their compressed versions on 6
different sorting datasets. We report results with
direct prompting also here. Sorting tasks (positive-
only, mixed numbers, varying lengths of 8, 16,
32) serve as a strong benchmark for evaluating
algorithmic reasoning, as they are unlikely to have
been seen in pre-training. Unlike GSM8K and
ARC, which may contain learned patterns, sorting
purely tests a model’s ability to reason and execute
structured tasks.

Further Insights: Larger models like Llama-
3.1-70B achieve near-perfect accuracy on positive-
only sorting and maintain strong performance on
mixed datasets. In contrast, smaller models such
as SmolLM2 (1.7B) struggle, especially as input
length increases, with accuracy dropping to near
zero on mixed datasets.

Quantization effects vary: Llama-3.2-8B with
FP8 quantization closely matches its full-precision
counterpart in positive-only sorting but sees per-
formance degradation in mixed datasets. More
aggressive compression (W4-A16) slightly weak-
ens performance. This highlights that fine-grained
reasoning tasks are more sensitive to precision re-
duction. Smaller models like Qwen2.5-7B and
Mistral-7B suffer significant accuracy drops under
4-bit quantization.

Also, as task complexity increases, even large
models struggle with longer sequences in mixed
datasets. This reveals a fundamental bottleneck
in current architectures for algorithmic reasoning.
This suggests the need for specialized training tech-
niques or architectural modifications to improve
structured problem-solving in SLMs.

A.4 [Task 5.1] GSM-PLUS: Perturbation
Analysis

In section 4.6, we saw the performance of models
across adversarial samples. In Table 7, we detail
the analysis of SLMs across various perturbations.
Mostly, we see that models struggle most with crit-
ical thinking variation.

Larger models, such as Qwen2.5-32B and
Llama-3.1-70B, exhibit strong resilience, achiev-
ing over 85% accuracy across most variations, par-
ticularly in numerical substitution and digit ex-
pansion. However, they show a notable drop in
performance for critical thinking, suggesting that
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sheer scale does not entirely mitigate reasoning
challenges introduced by complex perturbations.

Smaller models, including Mistral-7B
(pruned2.4) and Llama-3.1-8B (20f4), strug-
gle significantly, especially in fraction conversions
and arithmetic operations, with performance
dropping below 40%. Quantized variants (GPTQ-8
and w8a16) show marginal degradation compared
to full-precision instruct models, suggesting
quantization has a limited impact on robustness for
well-trained models.

A.5 [Task 5.2] MR-GSMS8K: Intermediate

reasoning test

The MR-GSMS8K benchmark evaluates models’
ability to perform intermediate reasoning, focusing
on logical consistency across multi-step problems.
In Table 8, we detail the results of 10 selected
SLMs with their compressed versions on the MR-
GSMSK dataset.

About Metric: The MR-Score is a composite
metric used to evaluate the meta-reasoning abili-
ties of language models in the MR-GSMS8K bench-
mark. It combines the performance of LLMs
across three tasks: determining solution correct-
ness (measured by MCC), identifying the first error
step (ACC_step), and explaining the error reason
(ACC_reason). The final MR-Score is a weighted
combination of these three metrics, with weights
chosen empirically to balance the contribution of
each task. This comprehensive evaluation provides
a holistic assessment of LLMs’ meta-reasoning
capabilities, going beyond simply solving math
problems to assess their ability to reason about the
reasoning process itself.

Below are the different task descriptions, which
are shown in Table 8:

1. Task 1 TPR (k=0): This is the true positive
rate for Task 1 in a zero-shot setting (k=0).

Task 1 determines the correctness of a given
solution to a math problem. The true positive
rate measures the model’s ability to identify
incorrect solutions correctly.

2. Task 1 TNR (k=0): This is the true negative
rate for Task 1 in a zero-shot setting. It mea-
sures the model’s ability to identify correct
solutions correctly.

3. Task 1 MCC Score (k=0): This is the
Matthews Correlation Coefficient (MCC)
score for Task 1 in a zero-shot setting. MCC
assesses the overall performance of a binary
classification model, in this case, classifying
solutions as correct or incorrect.

4. Task 2 Accuracy (k=0): This represents the
model’s accuracy in Task 2 under a zero-shot
setting. Task 2 identifies the first error step in
an incorrect solution.

5. Task 3 Accuracy (k=0): This is the model’s
accuracy in Task 3 under a zero-shot setting.
Task 3 requires the model to provide a reason
for the error identified in Task 2.

6. MR-Score (k=0): This is a composite score
that combines the model’s performance across
all three tasks in a zero-shot setting. It pro-
vides a holistic evaluation of the model’s meta-
reasoning abilities.

Further Insights: Larger models, such as
Qwen2.5-32B and Llama-3.1-70B, consistently
outperform smaller counterparts. For example,
Qwen2.5-32B achieves an MR-Score of 55.6, sig-
nificantly higher than smaller models like Mistral-
7B (4.0), which struggle to perform intermedi-
ate reasoning steps. Based on reported results,
Qwen2.5-32B outperforms GPT-4-turbo (53.0) on
intermediate reasoning. Quantization has minimal
impact on intermediate reasoning for larger models.
For instance, Qwen2.5-32B and its GPTQ-INTS
variant achieve identical MR-Scores, retaining per-
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formance despite the precision reduction.

Interestingly, intermediate reasoning perfor-
mance is not purely scale-dependent but also highly
architecture-specific. For example, Llama-3.1-70B
slightly underperforms Qwen2.5-32B despite hav-
ing more parameters. These findings highlight
the critical importance of model design choices
in achieving superior intermediate reasoning per-
formance.

A.6 Pruned/Distilled Models

In Table 9 and 10, we detail the results of pruned
and distilled variants of SLMs on the GSM8K
dataset and sorting tasks. We skipped the evalu-
ation of ARC-E, ARC-C, and CommonsenseQA
since the outputs were nonsensical and accuracy
was nearly 0. CoT prompting significantly im-
proved performance in these models, boosting
scores by 10-20 points. However, multi-shot
prompts were less effective, with some models fail-
ing to generate any output.

These results highlight that pruning dispropor-
tionately affects reasoning-intensive tasks, reduc-
ing both logical consistency and robustness across
diverse datasets. This emphasize the need for im-
proved recovery strategies or alternative compres-
sion techniques when applying pruning to models
used for reasoning tasks.

B Complete Results with Im-eval-harness

Here, we present the evaluations of all models
using the open-sourced framework — Im-eval-
harness. Table 11 reports the results for GSM8K
(5-shot), ARC Easy, and ARC Challenge. Table
12 contains the results for CommonsenseQA, Hel-
laSwag, MathQA, and OpenBookQA. Similarly,
the results for the pruned models across these seven
datasets are provided in Table 13 and Table 14.
Additionally, we observed that results for small
models are generally not reported on hard MATH
datasets. So, we also evaluated some SLMs on the
MATH dataset (Table 15).

Lm-eval-harness is a standardized tool to bench-
mark language models across diverse tasks, in-
cluding reasoning, common sense, and question-
answering. All other tasks were assessed in a zero-
shot configuration except for GSM8K, which was
evaluated using a 5-shot prompting strategy (the
framework’s default setting).

A notable discrepancy was observed between the
results from Im-eval-harness and our evaluations
using GPT-4. While larger models performed well
in both, smaller models fared worse under Im-eval-
harness. This variation could be from differences
in evaluation metrics, task design, or prompt struc-
tures between the two frameworks.
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o GPU Disk .
Model Param. Quantization (GB) (GB) Direct I/0 coTt 5-shot 5-shot COT 8-shot

Llama-3.2 Family (evaluator=gpt-4-turbo) |

None 473 24 36.3940.47  389940.45 33.6940.66  327340.41  33.1340.87
B W: INT8 & A: INT8 1.53 1.9 36.8740.68  39634+1.03  320740.22  305840.70  32.8840.87
FP8 247 1.9 36421 1.37  396310.64 31.1610.63 308811.01  31.8710.54
Llama » FP8-dynamic 247 2.0 362110.83 40.8610.94 32931150 31241043  328340.75
- None 1321 6.0 T35810.06  518+1.14  #02+0.78  213+0.61  1261+0.40
B W: INT8 & A: INT8 3.66 42 725840.25  752310.47  7339+0.04  T3T4i0.44  T2.6840.68
FP8 6.44 42 740710.43  753110.6a  7291+0.50 T30410.36 71194012
FP8-dynamic 6.44 4.2 734941 22 75.134+0.62 72.714+0.84 73344 0.77 72.05+0.66
Llama-3.1 Family (evaluator=gpt-4-turbo) |
None 30.65 15 834540.41  852740.61  834540.18 84514040  83.5040.25
W: INT8 & A: INT8 8.98 8.5 833710.46 85274+0.37 8345:0.00 844lig.37  833240.31
B W: INT8 & A: INTI16  15.94 8.5 839510.42  848910.77  8378%0.16 8375+0.63  83.62+0.56
W: INT4 & A: INT16 12,6 54 822140.40 83801+0.31  821311.03 80741047 81.7010.36
FP8 14.44 8.5 82.8910.40 846310.10 834210.75 849410.75  83.8310.72
Liamag g FP8-dynamic 21.09 8.5 83.274+0.04 84.8640.41 82.9740.04 83.8810.52 84.6940.59
- None 269.17 132 9510+0.28  9527+0.50 9% 72+0.62  9%44+0.00  9464+0.19
W:INT8 & A: INT8 69.34 68 94724 0.34 95.004+0.06 94.524.0.09 94.6240.21 94541 0. 28
70B W: INT8 & A: INT16 138.64 68 929240.13 94.3640.07 93.9640.47 943940.51 93.5140.31
W: INT4 & A: INTI6 10734 38 95.1540.33  952040.00  948210.18  951240.32  949010.20
FP8 107.32 68 948740 28  954040.44 946740.37  945240.00 947440.44
FP8-dynamic 176.63 68 94.6440 23  953840.19  950040.55 95.1040.35 945240.19
Mistral-v0.3 and Nemo-2407 Family (evaluator=gpt-4-turbo) |
None 27.67 14 54.84410.56 5598+0.50 54.7640.29 57.90+0.99 5423 10.66
W:INT8 & A: INT8 34.84 7.1 521142 11 55.6041.31 53.8840.84 55.75+0.79 5279+41.15
Mistral 7B W:INTS8 & A: INT16 14.36 7.1 542640.77 55.85+0.56 54.1340.34 56.86+0.93 52.8240.53
V0.3 W:INT4 & A INT16  11.17 39 539310.77  560310.16 51914105 53474103 508741 46
FP8 - - 54.134+0.64 549941 .09 53.9640.56 57.67+1.00 53.8540.32
None 57.89 23 86.76+0.57 86.084+0.20 85.57+0.13 84.944 0 56 85.3440.26
Mistralnemo 12B W:INT4 & A: INT16 61.98 7.8 84.744 1 05 85.67+0.74 84.61+0.96 83.67+0.72 84.9940.22
FP8 - - 87.314+0.40 86.584+0.39 85.674+0.49 85.77+0.41 85.2940.79
Qwen2 Family (evaluator=gpt-4-turbo) |
None 2.02 0.95 372540.58 383141 .53 26.3841.12 28.4640.95 26.76+0.63
GPTQ 8-bit 0.71 1.4 38.08+0.60 379140.12 26.3340.31 27127+0.77 26.5940.65
GPTQ 4-bit 1.12 0.71 215141 .11 253240.11 14.3840.40 16.764.0.34 1423 +0.50
0.5B W: INT8 & A: INT16 1.38 0.61 37.684+0.34 38.1341 .29 2643 10,78 26.5410.22 26.8140.46
W:INT8 & A: INT8 1.38 0.87 37.60+0.79 37.504+0.70 26.2341.50 26.9940.33 25784+0.11
W:INT4 & A: INT16 1.51 0.71 254240.20 27.3240.62 18.094+0.56 18.3540.32 16.4040.76
FP8 - - 35.20+1.10 359440.67 23.17+0.81 25254+0.71 22.5240.43
None 7.09 2.9 62.834+0.44 64.8540.34 56.46+0.66 59.51+0.90 55.884+0.32
GPTQ 8-bit 2.54 3.1 62.8540.70 63.86+0.92 57.164+0.59 59.794+0.41 57244 0.190
GPTQ 4-bit 1.81 24 56.314+0.62 57.5440.11 49.4140.46 529941 .61 49.6640.65
Qweny 1.5B W:INT8 & A: INT16 251 1.7 6298+ 0.99 64.044+0.92 56.4140.86 59.7240.64 57.1940.34
W: INT8 & A: INT8 248 22 624540.48  630040.55 54134167  587341.33  5575+0.62
W: INT4 & A: INT16 3.14 1.6 579040.84  58554+0.46 48404041  53.1010.70  482940.11
FP8 - - 619710.41  633840.05 53884118  5727+1.36  542840.81
None 30.05 5 871410 18  S7341+0.11  8638+0.57 S582+0.12  8640+0.18
GPTQ 8-bit 9.63 83 87.1610.08 87.5410.36  86.561+0.47 865010.47  864010.64
GPTQ 4-bit 6.48 53 85541 0.46 86.35+0.16 85924 0.41 84.9610.29 85424 0.50
7B W: INT8 & A: INT8 9.58 8.2 87.114+0.06 87.314+0.74 86.63+0.20 86.584+0.51 86.56+ .29
W: INT8 & A: INT16 9.42 82 86.401+0.64 87.06+0.23 86.154+0.14 8597410.16 86.38+0.04
W:INT4 & A: INT16 12.96 53 84.5340.65 85.57+0.53 85.3240.50 849140.33 85.1940.13
FP8 - - 86.66+0.38 87.1410.66 86.05+0.63 86.56+0.59 86.13+0.70
Qwen2.5 Family (evaluator=gpt-4-turbo |
None 2.02 095  46.804(.77 46884157 42731048  43.1940.16  422840.46
0.5B GPTQ 8-bit 0.71 062 46854037 47.1840.99 422010.63 442040.34 422510.62
GPTQ 4-bit 1.12 045 346241042  328510.64  28.0541.11 275241.01  27.8040.46
None 6.68 29 70.0040.53 7020+ 0.65 69.7240.38 684640 .54 69.90+0.79
1.5B GPTQ 8-bit 2.54 1.7 70.3340.41 70.334+0.84 70.0340.31 68.994+0.27 69.5240.81
GPTQ 4-bit 1.81 1.1 64921 0.84 649210.50 624010.77  632840.62  624210.68
None 12.42 58 84.74+0.28 84.3840.39 85444 0.43 84.96+0.63 85444 0.38
3B GPTQ 8-bit 421 33 85.1740.20  849910.11  843810.11  8438%10.06 847140.50
Qwens s GPTQ 4-bit 2.88 2.0 817840.54 81604100 81.584p.10 819140.31  81.784¢.25
- None 30.05 15 91764020 92019+0.11  91.05+0.33  91.89+40.43 9133+0.31
7B GPTQ 8-bit 9.63 8.3 918440 20  922240.19 91.8l4g.34  91.5640.13  91.314g.18
GPTQ 4-bit 6.48 53 90.6240.13 91.2340.09 90.6540.26 90.734+0.58  90.8540.00
None 57.04 L 94294040  9457+0.07  940640.14 94541027  93.86+0.28
14B GPTQ 8-bit 17.24 16 944940 25  949510.04 937140.27  945940.04 941l4g.34
GPTQ 4-bit 10.65 9.4 947440 30  946940.34 940l41g.30 94314938  93.6310.51
None 125 62 954040.20  95.78+0.25  9520+0.07  9555+0.18  949210.41
2B GPTQ 8-bit 33.81 33 957340.19  958640.23  955010.25  956010.01  952540.13
GPTQ 4-bit 5242 19 957310.00 957310.26 949210.16 954310.56  95.1240.34
| Others (evaluator=gpt-4-turbo) |
SmolLM2 1.7B None 6.55 3.2 46.174+0.41 437541 .40 44231 0.66 41.474+0.71 44784 0.44
Minitron 4B None 16.01 7.9 27954 0.09 28.68+0.19 35414+0.80 34.804+0.79 34.07+1.01
Hymba 1.5B None - 2.9 53.7540.51 53.53411.66 52.87+0.60 52.9940.37 52744 0.68
Phi-3.5-mini 3.8B None 14.6 7.2 854740.47  87.1430.41 829740.07 807410.54  82.8940.72
Phi-3-small 7B None - 1795 70.1040.06 81.7340.50 83.1440.62  86.0210.36  83.6240.49

Table 5: Performance and Resource Usage of SLMs on GSMS8K. The table reports the parameters size, quantization
type (if any), GPU memory and disk space usage (in GB), and accuracy scores for each prompt type.
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Model Param. Quantiza- ARC-E ARC-C Common- Sort-8 Sort-8 Sort-16 Sort-16 Sort-32 Sort-32
tion senseQA (+ve) (mixed) (+ve) (mixed) (+ve) (mixed)

Llama-3.3 Family (evaluator=gpt-4o and parsing for sorting tasks)

None 672341 40 47.5040.202 48384045 44674564 1334130 1004113 00040.00 00040.00 0.00+0.00
1B W8-A8 674510.67 479040.63 48.10+0.76 50334567 16741.45 1331130 00040.00  00040.00 0.00+0.00
FP8 67.0310.26 480l40.98 48484705 42674561 1334130 06740.92 0.0040.00  00040.00 0.004+0.00
Llama FP8-D 67.0240.17 486940.59 484040.72 4567+5.65 2004159 26741.83 00040.00  00040.00  00040.00
3.2 None 878410.07 746310.41 09721+0.01 96.67+2 03 5533+5.64 7333+5.01 1733+4.20 17001426 0.0010.00
3B W38-A8 87.224.0.21 74374+0.58 6093140.97 95.67+2.31 49.6745. 67 62674548 173344 29 15.0044.05 0.0040.00
FP8 880340 54 74031001 68744102 96004200 41334558 61671551 18004435 190044 45 00010 00
FP8-D 875340 04 73581040 69754051 94001260 52331566 60331555 160044 16 180044 35 0.0010 00
Llama-3.1 Family (evaluator=gpt-4o and parsing for sorting tasks)
None 92.074+0.28 79.5840.26 7428+0.52 86.0043.93 78.674+4.64 746744 93 563345 62 59.674+5.56 35.334+2.55
WS-AS 92331014 79984011 73631020 82331432 77001477 70674516 58004550 62331540 46712 30
oB WS-AI6 92344003 80321044 73874000 863341380 790014 62 73671490 56001563 65.0015 41 5671262
W4-Al6 904940 36 76.6210.60 T3.5740.65 82674420 66674534 69671501 52001566 56671562 6671283
FP$ 92.1740.40 7952+0.61 7393+0.62 81004445 81331440 72001500 51674566 61004553 60042 6o
Liama FP$-D 92331004 81001050 74091056  81.6744.30 74671403 74331405 53004566 65334539 50040 47
3.1 None 98341005 94341028 83734055 100001000 1000010.00 990041 13 97.00+1.93 100001000 880015 .68
WS-A8 984310 00 94621014 83921008 1000040 00 1000010 00 993310.92 96674203 1000041000 853314 01
708 WS-Al6 97591019 92894018 80.0410.40 1000041000 99004113 980011 59 95004047 99.0041.13 853314 01
W4-Al6  982610.08 94514026 827710.19 1000041000 1000010 00 98.6741.30 97.0041.93 99.6740.65 763314 82
FP8 98361015 947140.07 83.8710.24 10000410 00 1000010 00 98.6741.30 96334013 100001000 86.6713 85
FPS-D 984610 07 94541018 83701015  100.0040.00 100001000 98674130 97674171 1000010 00 86.00%3 03

Mistral-v0.3 and Nemo-2407 Family (evaluator=gpt-4o and parsing for sorting tasks)
None 88.9940.34 76.8240.29 69.8310.10 60334555 48331566 2133+4.64 56742.62 2004159 1.0040.00
WS-A8 88.6510 27 759740.04 705240.37 55331564 38671552 14671401 5004247  06740.92 10040 00
W8-A16  89.071¢.28 76.6840.18 70.2210.04 62004550 45004564 24004484 5334255 2001150 0004000

Mistralyos 7B W4-Al6  883340.14 749710.32 69834015 54001565 25004491 16004416 3004193 4004292 00010 00

FP8 88641038 76394020 69484045 58334550 45674565 21004462 5334255 2674183 0004000
None 92.79+0.07 8.70+0.32 72.78+0.78 95004247 81334442 78334467 54671564 49334567 0674283
Mistralyemo  12B W4-Al6 918240 29 81801065 713341.01  97.0041.03 79004462 77334475 42334560 59674556 7331205
FP8 92.1940.20 83.1610.31 7341t0.15 95004247 78671464 77331a75 50334567 48331566 9004324

Qwen2 Family (evaluator=gpt-4o and parsing for sorting tasks)
None 564140.22 40444018 48.1347 .33 10334345 00040.00 00040.00 0.0040.00  00040.00 0.004+0.00
GPTQ-8 56.1310.25 403040.65 47.50+0.29 767+3.02 033t0.65 00040.00 0.00+0.00  00040.00 0.004+0.00
GPTQ-4 52.0540.42 37.03+0.30 43.11471.28 2004159 00040.00 0.0040.00 000+0.00  0.0040.00 0.00+0.00
0.5B W38-Al16 56.514+0.88 39.87+0.26 47.23+0.89 11.67+3.64 03340.65 0.004+0.00 0.0040.00 0.004+0.00 0.004-0.00
W8-A8 55.3640.71 40.2740.62 4745+0.04 73342.95 03330.65 00010.00 0.00+0.00  0.0040.00 0.004+0.00
W4-Al6 50.5640.40 36.6310.34 424240.44 5674262 06740.92  00040.00 0004+0.00 000t0.00 0.0040.00
FP8 56.6110.24 40.1340.60 46.7640.35 6334276 06740.92  0.0040.00 00040.00  00040.00 0.0040.00
None 84.344 9.27 6072940.36 09.78+0.18 44.67+5.64 21331464 7334295 0.00+0.00 0.0040.00  0.00+0.00
GPTQ-8 84.1940.07 665540.39 09.97+0.14 46334565 200044538 7334295 0.00+0.00  000tp.00 0.00+0.00
GPTQ-4 82.0340.15 63.9940.56 6899+0.51 33.0045.33 13.0043.81 3.3342.03 000tp.00  00040.00 0.0010.00
Qweny 1.5B W8-A16 83.9610.12 66844+0.53 70.1940 57 47.67+5.66 21.3344.64 5674262 0.00+0.00 0.00+0.00 0.0040.00
W8-A8 83.6410.17 668440.24 69.7240.25 46334565 21331464 5674262 0.00+0.00 0.0040.00 0.00+0.00
W4-Al6 81.6440.20 63.5140.45 064240.64 43004561 17674432 6004269 03340.65  000t0.00 0.0040.00
FP8 83.7740.21 66.3340.59 689340.51 42334560 193344.48 7004289 000+p.00  00049.00  0.00+0.00
None 94214012 95524018 805440 15 83334422 80331451 450045.64 3633+545 15004405 267+1.83
GPTQ-8  942840.00 856410 11 80041015 84333412 82674400 44004563 32334530 14671401 30011 o3
GPTQ4 93454010 85524020 789240.10 80671445 72001500 33334534 23334470 4334231 0334065
78 WS-AI6 93914012 85471011 80.1340.38 84004416 80671448 43671562 35004541 143343097 1674145
W8-A8 94.0240.06 85384+0.43 79.66+0.10 79334459 83674419 40334556 31674527 17.0044.26 0.6740.92
WA4-AI6 94221010 84954018 78984045 79671456 770044 77 43004561 26671501 533+2.55 00040 00
FP8 9426 10.07 854140 25 80321010 81001445 83001426 47.0015 66 29004514 13334385 10017113

Qwen2.5 Family (evaluator=gpt-4o and parsing for sorting tasks) \
None 62.5040.21 44284103 46.9041 49 116743 64 3.6742.13 0334+0.65 0.0040.00 0.004+0.00 0.004-0.00
0.5B GPTQ-8 61.74 10,84 4443410 .83 46.1941 27 12674377 3.0041 93 0.00+0.00 0.0040.00 0.0040.00 0.0040.00
GPTQ-4 5258 4+0.60 37.63+1.69 364240.50 53349255 3334203 0334+0.65 0.0040.00 0.00+0.00 0.004+0.00
None 87.584+0.21 73.81+0.30 71.8540.48 663345 36 05334539 34334538 73342095 133411.30 0.0040.00
1.5B GPTQ-8 87.7840.20 73.724+0.21 721040 27 68.3345 97 05334539 36674546 8.00+43 08 1.3341.30 0.004+0.00
GPTQ-4 86.2540.05 70.254+0.16 69.1040.50 60.004+5 55 46.674565 126743 77 7334295 0.00+0.00 0.0040.00

None 93491 0.07 83734038 71625+0.20  7833+4.67 15334480 41674566 34331538 267+1.83 10011 13
3B GPTQ-8  935510.07 83.5310.30 7677+0.20 80331451 750014 91 47674566 32671532 2004159 1.00471 13

Qwen GPTQ-4 921210 07 80861052 71964049 72671505 65674538 17674432 19674451 0004000 100471 13
2.5 None 96031017 905340 12 826610 14 94334262 900013 40 09674521 4704566 39334554 5074262

7B GPTQ-8 960310 10 90.641015 82581032 94001269 92001308 71334513 490045 67 41331558 5671262

GPTQ-4 95.6240.00 89-1940.21 82.6940.28 80.67+4.48 15004405 58334559 156744.12 31674597 1004513

None 9787 10.05 933740 22 S40840 54 96334213 95331230 S40014.16 72004500 61334550 38671552

14B GPTQ-8 979010 12 93711024 84224014 96331215 95004047 84001416 72001500 650015 41 363345 45

GPTQ-4  975740.10 93.17+0.21 831041019 9500413 47 95674231 82334432 64004544 54334565 260044 97

None 98264+0.10 9525+0.18 871l40.37  990041.13 993310.92 933342.83 92334302 79004462 0600045 .55

328 GPTQ-8  983440.02 951640 40 86621010 99001113 99.00471 15 93334083 92334302 79674456 61001553

GPTQ4  980910.05 95.1910.11 87061058 100001000 1000010.00 98334145 91674315 77334475 563315 6o
Others (evaluator=gpt-4o and parsing for sorting tasks ‘

SmolLM2  1.7B None 75.0440.18 54214107 53184127 55334564 28004500 14674401 2674183  033+0.65 0.004+0.00
Hymba 158 None 845740.02 667840 04 64734014 34671530 12004368 1004113 0004000  00010.00 0.00%0.00
Phi35m  3.8B None 95094014 86891016 761110 04 90334335 77334475 686745 06 18331430 29004514 033%0.65
Phi-3-s 7B None 97.1240.11 91.3840.18 7985+0.35 98.0041.59 93334283 690045024 52004566 933+43.30 0.6740.92

Table 6: Performance of Various Language Models on ARC-E, ARC-C, CommonsenseQA, and Sorting Tasks. The
table reports the model size (in billions of parameters), optimization type (if any), and accuracy scores for each
benchmark.
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Figure 3: Performance of different models on GSM8K (Direct I/0), ARC, CommonsenseQA, and sorting tasks.
The x-axis represents the parameters size (in billions), and the y-axis represents the mean accuracy, with error bars
indicating the variance (3-folds).

Numerical Variations Arithmetic Variation

Models
Numerical Digit Ime%.:;::?oc;mal' Adding Reversing Problem  Distractor  Critical
Substitution Expansion . Operation  Operation Understanding Insertion  Thinking
Conversion
Model Param. Optimiza-
tion
None 70.1140.63 74.1142.31 64.8910.57 54.67+1.52 60.4442 04 76.8941.34 60.7810.83 21.67+2.16
Qwen2.5 3B (Base)
None 78.11i1_13 82-44:t0.68 75.78:{:1_66 66~33j:1.89 72-00i1.96 84~11j:1.66 71.78i2,79 16.11i2_35
(Instruct)
Mistral 7B pruned2.4 32.56i1_34 31-44j:1.26 20.89:{:2_18 19-22i0.96 26-00j:2.16 40.67i1_19 28.44:(:0,57 4.33i0_27
None 75.67:(:2_05 75-11:!:1.85 70.56;{:2.47 64~89j:0.87 68.33;{:0.54 81.00;{:1.25 68.33:(:0_98 32.89:&1_23
Llama-3.1 8B w8al6 76.11j:2_44 74.783:3_25 71.00j;0.27 62.113:0_79 66.003:0.94 82.3310.47 68.3310_27 33-56j:0.96
pruned20f4 44‘11:&1‘55 44‘78:&2‘06 38.11:&0‘96 30‘22:&0‘42 33‘78:&1‘50 51‘22:&0‘57 36‘00:&0‘98 3.11:&1‘03
Qwen2.5 32B None 89.00+£0.47 90.5610.16 90.67+0.54  80.67+223 87.1110.42 95.3310.27 90.89+1 29 37.4441.03
- GPTQ-8 89.67+0.27 90.33+0.82 90.44410.68 79.784+1.26 86.00+0.98 95.67+0.47 92.1140.31 38.2242.69
Llama-3.1 70B None 87.784+0.96 88.2240.31 88.56+0.42  80.564+0.42 85.0040.72 94.67+0.27 89.67+1.25 54.78+1.03
. w8al6 85.78+0.63 86.56+1.03 84.1140.16 77.2240.42 80.89+1.10 93.224+1.13 88.1140.42 44.3310.72

Table 7: Performance of SLMs on 8 different Adversarial Perturbations of GSM-Plus dataset. Lower scores indicate
greater vulnerability to the specific perturbation.
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Figure 4: Impact of Quantization on Model Performance across Different Benchmarks.
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Figure 5: Impact of Quantization on Model Performance across Sorting Tasks.
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Task 1

Task 1

Task 1

Task 2

Task 3

Models TPR TNR MCC Score  Accuracy  Accuracy MI({k-ic);)re
(k=0) (k=0) (k=0) (k=0) (k=0) -
Model Param. Optimization
None (Base) 61.5 51 12.6 13.4 3.1 8.1
Qwen2.5 3B None (Instruct)  86.8 39.7 29.7 10 4 11
Mistral 7B pruned2.4 59.8 44.8 4.6 8.6 1 4
None 16.8 94.8 18.7 34.6 20 242
Llama-3.1 8B w8al6 16.5 95.2 19.3 33.7 18.8 23.3
pruned2of4 0 0 -100 0 0 0
None 85.8 84.9 70.6 55.7 49.6 55.6
Qwen2.5 32B GPTQ-8 85.5 84.9 70.3 55.9 49.6 55.6
None 79.3 87.3 66.9 36.5 325 40.6
Llama-3.1 708 w8al6 86.5 77.4 63.9 425 373 44.2

Table 8: Detailed results on MR-GSMS8K dataset with all the individual task scores as discussed in Section A.5.

GPU Disk .
Models (GB) (GB) Direct I/O CcoT 5-shot 5-shot COT 8-shot
Model Param. Pruning type,
Method
| No Knowledge Distillation ‘
phi-2 - SparseGPT - - 36.52% 40 .73% 40.38%40.50% 30.22% 0. 599 32.47%40.90% 22.21%+0.77%
TinyLlama 1.1B SparseGPT 42 - 0.48%40.10% 0.51%+40.07% 1.01%40.20% 1.09% g 229 1.09%40. 38%
| Retrained by Cerebras with 50B tokens from SlimPajama \
Llama-2 7B SparseGPT (70%) - - 2'38%i0.25% 4-60%j:0.28% 4-14%ﬂ:0.25% 3'18%i0.12% 4'37%i0.35%
\ Knowledge Distillation for 13B tokens using SquareHead Approach \
Llama-3.1 8B 20f4 Sparsity, 30.65 15 51.86%40.34% 60.27%+0.66% 9-68%+0.31% 1.95%+0.36% 8.77%+0.50%
SparseGPT
‘ Fine-tuned on GSMSK ‘
No Pruning - 26 37.78% 10 .93% 34.34% 1. 21% 10.31%40.80% 10.84% 10 65% 9.17%+0.45%
Llama-2 7B SparseGPT (50%) - 13 39.85%4-0.07% 36.42%+0.50% 24.01%40.36% 29.34%40. 90% 24.51%+1.00%
SparseGPT (70%) - 13 38.41%4.0.70% 36.34%+0.20% 34.27%+0.65% 33.43%40.92% 35.03%+0.60%
pruned»20f4 - 15 37-25%i0,39% 61~97%i0.28% O-OO%iO.UO% OAOO%iU.OO% 0-00%10.00%
Sparse-Llama-3.1 8B pruned-20f4, INT4 - 4.5 39.93%40.36% 00.58%+0.40% 8.06%+0.46% 8.09%40.749% 5.64%+0.60%
Quant.
pruned-2of4, FP8 - 8.5 37.45% 1.0 65% 61.36% 1 219 0.00%+0.00% 0.00%40.00% 0.00%+0.00%
Quant.
| Mistral Fine-tuned \
OpenHermes- 7B SparseGPT 27.65 14 30.30%4-0.94% 40.79%+0.819% 35.63%+0.04% 36.04% 10 629 35.71%+1.07%
2.5

Table 9: Performance and Resource Usage of Various Pruned and Distilled Models on GSMS8K. The table reports
the model size (in billions of parameters), compression type, GPU memory and disk space usage (in GB), and
accuracy scores for each prompt type.
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Models Sorting-8 Sorting-8 Sorting-16 Sorting-16 Sorting-32 Sorting-32
(+ve) (mixed) (+ve) (mixed) (+ve) (mixed)
Model Param. Optimization
\ No Knowledge Distillation \
phi-2 - SparseGPT 19.67%+4.51% 6.67%+2.83% 0.67%10.029% 0.00%+0.00% 0.00%+0.00% 0-00%+0.00%
TinyLlama 1.1B SparseGPT 0.00%+0.00% 0.00%40.00% 0.00%40.00% 0.00%+0.00% 0.00%40.009% 0.00%+0.00%
| Retrained by Cerebras with 50B tokens from SlimPajama \
Llama-2 7B SparseGPT (70%) 7.67%+3.029% 0.33%+0.65% 0.33%+0.65% 0.00%+0.00% 0.00%+0.00% 0.00%+0.00%
\ Knowledge Distillation for 13B tokens using SquareHead Approach \
Llama-3.1 8B 20f4 Sparsity, 47.33%+5.66% 15.33%+4.08% 20.00% 44 53% 9.33%+3.30% 1.67%+1.45% 0.00%+0.00%
SparseGPT
‘ Fine-tuned on GSMSK \
No Pruning 0.00%+0.00% 0.00%+0.00% 0.00%40.00% 0.00%+0.00% 0.00%+0.00% 0.00%+0.00%
Llama-2 7B SparseGPT (50%) 0.0o%io‘oo% O»OO%iO.Oo% 0.0o%io‘o(]% O'OO%iO.OO% 0.0o%ioloo% O-OO%iO,OO%

SparseGPT (70%) 0.00%+0.00% 0.00%+0.00% 0.00%+0.00% 0.00%+0.00%

0.00%-+0.00%

0.00%+0.00%

Sparse-Llama-3.1 8B

0.00%+0.00%
0.00%-+0.00%

0.00%-+0.00%

0.00%+0.00%
0.00%-+0.00%

0.00%-+0.00%

OpenHermes- 7B
2.5

pruned—20f4 28-33%i5,11% 17467%:&4_32% O-OO%iO,OO% OOO%iO.OO%
pruned-20f4, INT4 50.67%45.67% 23.33%+4.79% 0.00%40.00% 1.67%+1.45%
Quant.
pruned-2of4, FP8 32.67%45.30% 16.33%44.10% 0.00%+0.00% 0.00%+0.00%
Quant.
Mistral Fine-tuned
SparseGPT 37'00%i5.47% 2200%1:4.70% 0'67%i0.92% 0~00%i0.00%

0.00%+0.00%

0.00%-0.00%

Table 10: Performance of Various Pruned and Distilled Models on ARC-E, ARC-C, CommonsenseQA, and Sorting
Tasks. The table reports the model size (in billions of parameters), optimization type (if any), and accuracy scores

for each benchmark.
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gsm8Kk (exact_match) arc_easy arc_challenge

Models

(strict-match) (flexible-extract) (acc) (acc_norm) (acc) (acc_norm)

Model Param. Quantization
None(Base) 2987:‘:1‘26 3()‘02:‘:1‘26 77-78:‘:085 73.36:‘:0‘91 44.11:‘:1‘45 47-27:‘:146
HE/Smoll.M2 LB None(Instruct)  03040.15 0.3010.15 689840 05 62921000 38311140 438641 45
- None (Base) 171341 04 17.5941.05 76.604+0.87 77.154+0.86 453941 45 499111 .46
nvidia/Hymba 158 None (Instruct) 44.28i1, 37 47.31i 138 76.52;‘ 87 76.01i0,88 44.621%1‘45 49.06i1 46
nvidia/Minitron 4B None (Base) 241141 18 235841.17 75934 0.88 75974 0.88 39.764 1 .43 44.881 45
0.5B None 347241.31 353341 .32 64.654+0.98 58.214+1.01 29.2741 .33 323441 37
QwenZ.S (Base) 1.5B None 62432i1A33 62462i1 .33 75-38:t0A88 71.63i0_92 4130;{:1‘44 44.97i1 .45
3B None 70.744 1 25 761941 17 77.364-0.86 73.1540.91 445441 45 470141 46
Llama-3.2 (Base) 1B None 6.37+0.67 6.60+0.68 65.3240.98 60.614+1 00 31.2341 .35 36.0141.40
None 33.3641.30 33.3641.30 68.484+0.95 63.344 .99 35.6741.40 38.0541.42
1B w8a8 335141.30 33.5941.30 68.7340.95 63.304-0.99 354941 .40 378041, 42
FP8 315441 28 30.8641.27 67.80+0.96 62.5040.99 35.0741.39 37.8841.42
FP8-dynamic 33.36+1.30 332141.30 67.6310.96 629640 .99 354941 .40 382341 42
Llama-3.2-Instruct None 64‘9711431 65.7311,31 73914:—:0,90 679710,96 43.7711445 45904:—:1'46
3B w8a8 64.0641 32 64.824 1 32 73.8640.90 67.804+0.96 433441 45 46.2541 .46
FP8 57.624+1 .36 57.5441 .36 68.90+0.95 63.01+0.99 409641 44 433441.45
FP8-dynamic 62.8541.33 63.4641 33 73.4840.91 67.0940.96 424941 44 45.0541 .45
None 747541 20 77.2641.15 81.7840.79 79.5040.83 51.5441 46 554641.45
w8a8 75.5141.18 77.9441.14 81.6540.79 79.634+0.83 51.9641.46 55.1241.45
SB w8al6 755141 .18 777941 .14 82.0340.79 79.8840.82 51.7941 .46 55.2041.45
w4al6 70.58 41 .26 70.58 41 .26 78.704+0.84 75.8840.88 472741 46 51.7141.46
FP8 T1.57T4£1.24 73.164.1 .22 80.724.0.81 78494 0.84 51.3741.46 53.674+1.46
Llama-3.1 FP8-dynamic 752141 .19 77.5641 .15 81.1040.80 80.134.0.82 521341 .46 544441 46
. Instruct 88.324 .88 92.1940.74 86.781+0.69 83.634+0.76 624641 42 63.574+1.41
w8a8 88.3240.88 92.3440.73 86.574+0.70 83.5940.76 62.3741.42 63.0541.41
70B w8al6 87.4940.91 88.024+0.89 80.8140.81 79924 0.82 52.6541.46 56.2341.45
w4al6 89.2340.85 91.814+0.76 86.4940.70 83.7140.76 61.6041 42 63.8241.40
FP8 89.3140.85 90.60+0.80 85.024.0.73 832140.77 59.304-1.44 61.864-1.42
FP8-dynamic 88.1740.89 92.1240.74 86.4140.70 83.5040.76 62.2041 .42 627141 41
None 49.36+1.38 49.66+1 .38 84224 0.75 82.6640.78 57174145 58.3641.44
Mistral 7B w8a8 492041 .38 494341 38 84.1840.75 82.8310.77 57.0041 .45 58.3641.44
v0.3 w8al6 504241 38 504941 38 84.3040.75 82.704+0.78 57.6841.44 59.0441 44
w4al6 440541 37 441241 37 82.5340.78 814440 80 53.9241 .46 56.9141.45
Mistraly, 12B None 74.0741 .21 75824118 82.5810.78 80.01+0.82 56.2311.45 58.87+1.44
emo wéal6 70.8141 25 72.6341 .23 81.7840.79 79.0040.84 54.5241 .46 581141, 44
None 33413i1A30 33474i1A30 58.63:{:1A01 54488i1A02 26.62i1_29 29.86i1(34
GPTQ-Int8 32.6841.29 33.3641.30 58.2541.01 54.8841.02 26.194 1 28 301241 .34
0.58 GPTQ-Int4 18.1241 06 214641 13 574141 .01 55.1841.02 267141 .29 294441 33
! wgal6 37984 1.34 38.2141.34 584641 .01 549241 .02 26.2841.29 30.2941.34
w8a8 324541 .29 33.2841.30 58.7141.01 548441 .02 27.3041.30 30.5541.35
wdal6 277541 23 288141 25 52.864+1 02 48.86+1 .03 26.7141 29 27.8241.31
None 542141 37 551941 .37 69.914+0.94 66.964+0.97 37.204-1.41 40.104+1 .43
GPTQ-Int8 548941 .37 559541 .37 69.74 10,94 66.7540.97 371241 .41 40.0241 .43
Qwen 15B GPTQ-Int4 4973411 .38 50.8041 .38 68.60+0.95 65.1140.98 358441 .40 38.9941.43
2 ) wgal6 57.854+1.36 584541 .36 69.65+0.94 66.584+0.97 37.1241.41 39.8541.43
w8a8 542841 .37 55.0441 .37 69.4040.95 66.41 40 .97 372041 .41 39.8541.43
wdal6 54.6641 37 54.8941 37 68.27+0.96 64.98 10 .98 34.5641 .39 38.0541.42
None 63.5341 .33 72.3341 .23 80.2240.82 7647 +0.87 50.944 1 46 54.0141.46
GPTQ-Int8 63.4641 .33 734641 22 80.3540.82 76.3540.87 511141 46 543541 .46
7B GPTQ-Int4 578541 .36 70.0541 .26 80.684+0.81 77.1940.86 51.6241 .46 54.6941.45
w8al6 68.394 1 28 75744118 80.4340.81 76.1840.87 51.0241 .46 54.0141.46
w8a8 642941 32 73.6241 .21 80.1840.82 76.5240.87 50.6041 46 542741 46
wdal6 66.1941 .30 747541 20 79.7640.82 75.8840.88 52.0541.46 54.3541.46
None 21.6841.14 32.7541.29 65.534+0.98 58.8441 .01 30.2941.34 33.2841.38
0.5B GPTQ-Int8 19.034+1 .08 31.8441 28 659140.97 59.7241.01 307241 .35 342244 39
GPTQ-Int4 2274+0.41 17.5941.05 61.4941 00 61.704+1 00 283341 32 30.974+1.35
None 30448i127 50<87i1A38 76-60iOA87 76'01j:0.88 43.86:{:1A45 46-84i1A46
1.5B GPTQ-Int8 31.1641 28 519341 .38 76.8140.87 759740.88 433441 45 46.1641 .46
GPTQ-Int4 32.7541.29 49.0541 38 75.9340.88 75.67+0.88 42.58 41 44 453941 .45
None 10<99i0A8G 63468i1A32 77<06i0A86 72.94i0_91 45.73:&1‘46 48-04i1A46
3B GPTQ-Int8 10.08 +0.83 64.444 1 392 77.1040.86 73.1540.91 46.1641 46 48.124 1 .46
Qwen2.5 GPTQ-Int4 10.24 40 .83 59.4441 35 78.07+0.85 74.1640.90 46.2541 46 494941 46
" None 76.0441 .18 81.804+1.06 81.5249.80 81.4040.80 52.904+1.46 55.2041.45
7B GPTQ-Int8 761241 .17 82.7141.04 81.574+0.80 81.06+0.80 523041 .46 54.6941 .45
GPTQ-Int4 714941 24 79.3041.12 81.444 0 .80 80.0540.82 51.6241 46 54.354 1. 46
None 80.0641.10 455641 .37 85.734+0.72 81.6140.79 604141 43 622941 .42
14B GPTQ-Int8 796141 .11 464741 .37 86.1540.71 81.86+0.79 609241 43 623741 .42
GPTQ-Int4 0.61+0.21 1.06+0.28 39.774+1.00 37.2940.99 21.5941 20 23.3841.24
None 751341 .19 69.604+1 .27 82241 9.78 77.3140.86 577641 .44 58794 1.44
32B GPTQ-Int8 75214119 69.7541 27 82.1540.79 77.1940.86 581141 .44 587941, 44
GPTQ-Int4 749141 19 81.2741.07 81.5240.80 76.1440.87 56.7441 .45 57.6841.44

Table 11: Performance Comparison on GSM8K, ARC-Easy, and ARC-Challenge with Im-eval-harness framework.
GSMBSK is evaluated using exact match and flexible-extract string matching. ARC-Easy and ARC-Challenge are
evaluated using accuracy (acc) and normalized accuracy (acc_norm).
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hellaswag mathqa openbookqa

_qa
Models

(acc) (acc) (acc_norm) (acc) (acc_norm) (acc) (acc_norm)

Model Param. Quantization
None (Base) 41.8541.41 53.3640.50 71.4340.45 34471 0.87 34.07+0.87 32.20+2.09 43.804+2.22
HE/SmolLM2 L7B None(nstruct) 50531143 53481050 71.80x0.45 311210.85 319610.85 33801212 45801223
- None (Base) 63.3141.38 53.4940.50 71.494+0.45 28.9410.83 27.97+0.82 32.4042.10 41.604+2 21
nvidia/Hymba 1.5B None (Instruct) 63.5511.38 5357+0.50  71.0640.45  29.1810.83  29.2540.83  31.00+2.07  42.00+2.21
nvidia/Minitron 4B None (Base) 71.014+1.30 53.89+0.50 72.29+0.45 31.4940.85 31.3640.85 30.80+2.07 42,6042 21
0.5B None 54.7941.42 40.5340.49 52.2040.50 28.8810.83 29.4540.83 24.8041.93 354042.14
Qwen2.5 (Base) 1.5B None 74.61+1 25 50.20+0.50 67.864+0.47 34.5740.87 35.3440.88 31.80+2.08 40.404+2 20
3B None 77.07+1.20 55.0210.50 73.684+0.44 37.2210.88 37.4210.89 29.4042 04 42,8015 21
Llama-3.2 (Base) 1B None 46.9341.43 47.69+0.50 63.784.0.48 29.1140.83 29.2140.83 26.0041.96 36.8042.16
None 55.4541.42 45.1540.50 60.764+0.49 33.304.0.86 32.8640.56 24.2041.92 34.8042.13
1B w8a8 55.3641.42 45.154+0.50 60.6140.49 33.1340.86 32.56+0.86 242041.92 34.80+2.13
FP8 54.6311.43 44884050 60.0710.49  32.6610.86 32464086  23.60£1.90  33.8042.12
Llama-3.2 (Instruct) FP8-dynamic 554541 .42 45.0040.50 60.6810.49 32.9310.86 32.6340.86 24.80+1.93 35.004+2.14
None 67.7341.34 52294+0.50  70.55+0.45 34.7110.87 34441087  27.60+£2.00 36.20+2.15
3B w8a8 674941 .34 52.2540.50 70.5340.45 34.8140.87 347140.87 28.20+2.01 36.40+2.15
FP8 62.1641.39 50.4040.50 68.8740.46 35.2840.87 34.7140.87 27.4042.00 37.2042.16
FP8-dynamic 67.7341.34 52.1640.50 70.25+0.46 34.8440.87 34.77+0.87 28.60+2.02 37.604+2.17
None 77.404+1.20 59.1340.49 79.17+0.41 39.4340.89 39.5340.90 33.2042.11 43.2042 22
w8a8 76.9941.21 58.9840.49 79.2840.40 39.97+0.90 39.97+0.90 33.00+2.10 42.80+2.21
SB w8al6 76.9941.21 59.1440.49  792140.40 39.77+0.90 39.77+0.90 332042.11 43.2042.22
wial6 683911 33 58031040 77791041 38021080 37964080 31804208 42401001
FP8 76.58+1.21 58.9140.49 78.1240.41 38.8640.89 39.1640.89 32.80+2.10 444045 20
Llama-3.1 (Instruct) FP8-dynamic 771541 .20 50071040 79101041 39871000 39774000 34404215  43.6010.20
None 80.9241 13 65224045 84661036 56051001 546740.01 37204216 47404224
w8a8 80.5941.13 65.1040.48 84.5940.36 56.0140.91 54.67+0.91 36.60+2.16 46.404 5 23
70B wgal6 69.044 1 .32 64.564+0.48 84.0640.37 44924 0.91 44.96+0.91 32.2042.09 44.004+2 22
wdal6 79934115 64.5540.48 84.044+0.37 54.974+0.01 54.2440.01 35404214 454045 93
FP8 78.79+1.17 63.0340.48 83.1640.37 51.8940.01 50.9940.92 37.00+2.16 474045 204
FP8-dynamic 80.5141.13 65.1140.48 84.5440.36 55.7840.91 54.5440.91 36.0042.15 472042 23
69.2941.32 64.9140.48 82.8640.38 37.3940.89 38.5640.89 36.00+2.15 472042 23
. w8a8 69.6241.32 64.7040.48 82.8840.38 37.6240.89 38.3240.89 35404214 47.0042 .23
Mistraly3 (Instruct) B wgal6 699441 .31 64.7810.48  83.0110.37  38.1610.80  39.2610.89  35.80t2.15  46.6012.23
wdal6 62.4941.39 62.6940.48 81.464.0.39 37.2540.89 37.5940.89 33.6042.11 43.00£5 92
. None 70.5241.31 63.274+0.48 82.3540.38 39.3640.89 39.90+0.90 37.4042.17 46.4042 23
Mistralyemo (Instruct) 128 w4al6 69.124 1 32 62.0040.48  81.3740.30  383610.89 38.7610.89 36.8012.16 46204223

None 527441 43 39.01+0.49 49794050 25931080 268310.81 24.00+1.91 33401211

GPTQ-Int8 529941 43 39074040 49921050 25634080 26431081 24001101 338012 12

058 GPTQ-Int4 477511 .43 38331040 48051050 25761080 26131080 20604181 332042 11
: wgal6 532441 43 39.0840.49 49.77+0.50 25.70+0.80 26.50+0.81 24.4041.92 33.60+2.11
wBa8 53.1541.43 39.1940.49  4995t0.50 25.7610.80  26.6710.81  24.0011.91  32.6012.10

w4al6 464411 43 37.8640.48 48.141.0.50 25.2640.80 25.5340.80 21.00+1.82 32.80+2.10

None 70.1941 .31 49.28+0.50 66.0310.47 32.90+0.86 32.80+0.86  27.80+2.01 37204216

GPTQ-Int8 701941 .31 49.284+0.50 65.894.0.47 33.1040.86 32.9640.86 28.0042.01 37.0042.16

Qwen; (Instruct) LsB GPTQ-Int4 69.6211 39 48151050 6483404s 31264085 32191085 26801108 36601216
- w8al6 69.7841.31 49.2940.50 66.024+0.47 33.0040.86 33.004+0.86 28.0042.01 37.004+2.16
w8a8 70.114+1.31 49.3940.50 66.014+0.47 33.0340.86 32.8340.86 27.80+2.01 36.40+2.15

wdal6 68.3941.33 48.15+0.50 64.4610.48 32.6310.86 33.1040.86 264041 .97 38.0042.17

None 80.7541.13 61.0540.49 80.67+0.39 44.1540.91 41.98+0.90 35404214 46.204+2 .23

GPTQ-Int8 81.004£1.12 61.0410.49  80.7540.30 44291001 42211090 35204214 46604223

7B GPTQ-Int4 79.0341.17 60.2140.49 79.3440.40 43.4810.91 42,48 +0.90 34.8042.13 43.6045 22
w8al6 80.8441.13 61.0440.49 80.5340.40 44.1540.91 42.28+0.90 34404213 46.4045 23

w8a8 80.67+1.13 61.0840.49 80.55+0.39 43.584+0.01 41.51+0.90 34.804+2.13 46.2042 23

wdal6 794411 16 59.9310.49  79.79+0.40 43.3240.01 42.38+0.90 33404211 464042023

None 56.9241 42 40.5340.49 52.5340.50 28.9840.83 29.6540.84 23.80+1.91 34404213

0.5B GPTQ-Int8 57.0841. 42 40.5340.49 52.3940.50 28.78+0.83 29.8540.84 24.00+1.91 34.60+2.13
GPTQ-Int4 472611 43 38914040 49331050 27914082 28271082 23.8011.91 33204211

None 74.5341.25 50.8940.50 68.2840.46  33.6310.86 34.0710.87 31.6012.0s  41.0042.20

1.5B GPTQ-Int8 75.5141.23 50.8640.50 68.371+0.46 33.2310.86 33.8410.87 31.80+2.08 40.2042 19
GPTQ-Int4 714241 29 49381050 65934047 31264085 32531086 31204207  40.6012 20

None 787941 17 56354040 74941043 35184087 35284087 32601210 42004251

Qwenys (Instruct) 3B GPTQ-Int8 78.794+1.17 56.3440.49 75.0240.43 35.5840.88 35.7840.88 32.80+2.10 41.8042 21
GPTQ-Int4 767411 21 55241050 73271044 3678:0ss 37394080 29404204 42001201

None 82.6441.08 62.044.0.48 80.5040.40 40.57 +0.90 40.13+0.90 34.6042.13 48.804+2 24

7B GPTQ-Int8 82.6441.08 62.0040.45 80.524+0.40 40.57+0.90 40.17+0.90 34.604+2.13 484042 24
GPTQ-Int4 81.8241.10 60.984+0.49 79.734+0.40 40.30+0.90 39.80+0.90 35404214 472042 23

None 84.0341.05 65.5640.47 8438410.36 49.7810.92  484110.01 36.2042.15  47.804+2.24

14B GPTQ-Int8 83.87+1.05 65.67+0.47 84.50+0.36 48.9410.92 47.67+0.91 37.2042.16 472042 23
GPTQ-Int4 19414113 314610.46 369410.48 21981076 22481076  14.60+1.58  27.60+2.00

None 86.731+0.97 66.88+0.47 85.2240.35 57.0240.91 54.67+0.91 35.60+2.14 45.604+2 23

32B GPTQ-Int8 87.06+0.96 66.77 +-0.47 85241 ¢.35 57.1540.91 549140.091 354042.14 454015 23
GPTQ-Int4 86.49 10 o8 664010 47 84741086 54271001 52764001 36004215 46001205

Table 12: Performance Comparison on CommonsenseQA, HellaSwag, MATHQA, and OpenBookQA with Im-eval-
harness framework. CommonsenseQA is evaluated using accuracy (acc). HellaSwag, OpenBookQA, and MATHQA
are evaluated using both accuracy (acc) and normalized accuracy (acc_norm).
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gsm8k (exact_match) arc_easy arc_challenge

Models (strict-match)  (flexible-extract) (ace) (acc_norm) (acc) (acc_norm)
Model Param. Pruning type, Method

| No Knowledge Distillation ‘
phi-2 - SparseGPT 43.9741.37 44.0541.37 77.31+0.86 75.08+0.89 47.1041.46 48.63+1.46
TinyLlama 1.1B SparseGPT 0.764+0.24 1.9740.38 45.6641 .02 42.0041 .01 221041 21 256011 28

| Retrained by Cerebras with 50B tokens from SlimPajama ‘
Llama-2 7B SparseGPT (70%) 7.8840.74 8.1940.76 725241092 69.74 10 .94 38.5741.42 41.2141 44

\ Knowledge Distillation for 13B tokens using SquareHead Approach \
Llama-3.1 8B 20f4 Sparsity, SparseGPT 61.4941.34 61.5641.34 77.2310.86  66.8810.97 45561146  47.9511.46

| Fine-tuned on GSM8SK \
No Pruning 37.304+1.33 37.53+1.33 74.58+0.89 70.62+0.93 414741 44 43.77+1.a5
Llama-2 7B SparseGPT (50%) 36.5411.33 36.54+1.33 73.06+0.91 69.1510.95 36.69+1.41 40.27 41 .43
SparseGPT (70%) 341941 .31 341941 .31 70.71+0.93 66.1240.97 35.58+1.40 377141 .42
Sprellmadl 8B . G255 G0iian  Tlbiees  6109iees US2eit 1Siii

| Mistral Fine-tuned ‘
OpenHermes-2.5 7B SparseGPT 19.79+1.10 341941 .31 73.86+0.90 73.02+0.91 41.8141.44 442841 45

Table 13: Performance Comparison of Pruned and Distilled models on GSM8K, ARC-Easy, and ARC-Challenge
with Im-eval-harness framework.

hellaswag mathqa openbookqa

Models b -aa
(ace) (acc) (acc_norm) (ace) (acc_norm) (acc) (acc_norm)

Model Param. Pruning type, Method

| No Knowledge Distillation |

phi-2 - SparseGPT 59.2141 .41 48.7540.50 65.71+0.47 30.7940.85 30.15+40.84 36.6042.16 46.2042.23
TinyLlama 1.1B SparseGPT 18.9241 12 33.0010.47 40431040 23.8240.78 23.2810.77 16.6011.67  29.8042.05

| Retrained by Cerebras with 50B tokens from SlimPajama |
Llama-2 7B SparseGPT (70%) 24.2441 23 53.69+0.50 72.2540.45 27.74+0.82 27.2740.82 31.60+2.08 40.2042.19

\ Knowledge Distillation for 13B tokens using SquareHead Approach \
Llama-3.1 8B 20f4 Sparsity, SparseGPT 74.4541 .25 58.8440.49 77.60+0.42 38.09+0.89 37.8240.89 34.8042.13 45.4042.23

‘ Fine-tuned on GSM8SK \
No Pruning 41.4441 41 57.56+0.49 75.3140.43 26.06+0.80 25.86+0.80 31.2042.07 43.6042.22
Llama-2 7B SparseGPT (50%) 32.1941.34 56.07+0.50 71.0240.45 26.33+0.81 26.03+0.80 29.2042.04 39.4042.19
SparseGPT (70%) 30.3841.32 54.40+40.50 68.47+0.46 24.9940.79 24.9940.79 29.0042.03 40.8042.20
pruned-2of4 39.7241.40 60.244+0.49 78.8440.41 26.73+10.81 27.8740.82 36.0045.15 46.0042 23
Sparse-Llama-3.1 8B pruned-20f4, FP8 Quant. 40.704£1.41 60.0440.49 78.6340.41 26.57+0.81 27.6040.82 36.2042.15 45.8042.23

| Mistral Fine-tuned |
OpenHermes-2.5 7B SparseGPT 64.5441.37 46.78+0.50  62.36+0.48 32.1310.85 32.7310.86 23.40+1.90 36.00+2.15

Table 14: Performance Comparison of Pruned and Distilled models on CommonsenseQA, HellaSwag, MATHQA,
and OpenBookQA with Im-eval-harness framework.
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MATH Dataset

Models C ;
Pre- Number ounting Intermediate Pre-
algebra Algebra Theor & Geometry Algebra calculus Average
g Y Probability &
Model Param. Optimiza-
tion
SmolLM2 178 None (Base) ~ 8.27+0.93 53lto0.65 4.8lto.92 6.1241.10 3.1340.80 4.7640.71 275+0.70 5.2640.32
None 17240.44 1.10+0.30 0.7410.37 08410.42 0.00+0.00 1.77+0.44 0.734+0.37 1.1240.15
(Instruct)
Minitron 4B None 0.00;&0,00 0.00;&0400 0.00;&0,00 0.00io,oo 0.00;&0.00 0.00io,oo 0.00;&0,00 0.00io,oo
(Base)
Qwen2.5 (Base) 0.5B None l.49i0.41 0.84:&0‘27 0.19;&0,19 0.42:&0,30 1-04:&0446 0.66i0,27 1.47:&0,51 O.90i0.13
3B None 1.95:(:0_47 185;&0_39 0-93:{:0.41 084:{:0.42 1.25;(:0_51 1.22:{:0_37 1.28:{:0_43 1.44:(:0_17
None 02310.16 0.17+0.12 0.1910.19 0.0010.00 0.00+0.00 0.00+0.00 0.00+0.00 0.10+0.04
1B w8a8 0.1140.11 0.004£0.00 0.1940.19 0.0040.00 0.00+0.00 0.00+0.00 0.00£0.00 0.0410.03
FP8 0.461+0.23 0.08+0.08 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.10+0.04
Llama-3.2
None 0231+0.16 0.3410.17 0.00+0.00 02lt0.21 0.00+£0.00 0.00+0.00  0.00+0.00 0.1410.05
3B w8a8 0.2310.16 02540.15 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.10+0.04
FP8 0231+0.16 0.1710.12 0.19%0.19 0.00+0.00 0.00£0.00 0.00+0.00  0.00+0.00 0.10+0.04
Llama-3.1 SB None 0.69+0.28 0.0810.08 0.00£0.00 0.00+0.00 0.00+0.00 0.1140.11 0.1840.18  0.18+0.06
FP8 1.1540.36  0.1710.12 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.37+0.26 0.28+0.07
None 344:{:0.62 0-93i0.28 1411:(:0_45 0-63j:0.36 1.46i0_55 0.55i0_25 0.18i0_1g 1-26j:0.16
Mistral-v0.3 7B w8a8 3.67:&0.54 0-93i0,28 1.11i0.45 0-63i0.36 1.25i0451 O.44i0,22 0.00io,oo 1-24i0,16
w8al6 33340.61 0.7640.25 1.3040.49 0.63+0.36 1464055 0.55+0.25 0.00+0.00 1.20+0.15
None 0.694+0.28 0.67+0.24 0.1940.19 0214021  02lt0.21 02240.16 0.18+0.18 0.40+0.09
GPTQ-8 1.0340.34 0.7640.25 037+0.26 0.00+0.00 0.63+0.36 0.1140.11 0.00+0.00 0.484+0.10
0.5B GPTQ-4 0341020 04240.19 0.00+0.00 021t0.21 0.00+0.00 0.00+0.00 0.184+0.18 0.20+0.06
w8al6 1.0340.34 0841027 0.0040.00 148+0.55 02140.21 0.2240.16 0.00+0.00 0.58+0.11
w8a8 0.69+0.28 0841027 03710.26 0841042 0631036 022+0.16 0.184+0.18 0.56+0.11
w4al6 0.80:{:0_30 0.17;{:0.12 0.19;(:0_19 042:{:0_30 0.00:(:0_00 0.00:{;0_00 OAOOio_oo 0.24:(:0_07
Qwen2
None 09210.32 0.671£0.24 0.191+0.10 0211021 0421029 0.00+0.00 0.1840.18 0.4210.09
GPTQ-8 1.0340.34 059+0.22 0.1940.19 0211021 0211021 O0.1110.11 0.1840.18 04210.09
158 GPTQ-4 1.0310.34 05l4p.21 05640.32 02l+p.21 0.00£0.00 0.0040.00 0.184+0.18 0.40+0.09
w8al6 0.6940.28 0.081£0.08 0.5640.32 0211021 0001000 0.11+0.11 0.1840.18 0.26+0.07
waa8 1.15t0.36 0.59+0.22 037+0.26 0.00+0.00 04210.20 0.0010.00 0.00+0.00 04210.09
wdal6 057+0.26 025+0.15 037+0.26 04210.30 0.00+£0.00 0.11x0.11  055t0.32 0.3210.08
7B None 1.954+0.47 1524035 0564032 1.69+0.59 0.00+0.00 0.00+0.00 0.37+0.26 0.96+0.14
None 0.80+0.30 0.6740.24 0.004+0.00 0.84+0.42 0214021 02240.16 1.65+0.55 0.62+0.11
0.5B GPTQ-8 0.69+0.28 0.5940.22 0.00t0.00 0.63+0.36 0211021 02240.16 1.10+0.45 0.50+0.10
GPTQ-4 0.57+0.26 03410.17 037t0.26 0.00+0.00 0.00+0.00 0.2240.16 0.37+0.26  0.30+o0.08
None 1.03+0.34  0.5940.22 0.56+0.32 0421030 3.1310.80 144+0.40 238+0.65 1.24410.16
Qwen2.5 15B GPTQ-8 0921032 0394022 0371026 0631036 292+077 144040 1651055 1121015
GPTQ-4 046+0.23 042+0.10 0.19+0.10 1481055 04210.20 0551025  1.65+0.55 0.66+0.11
3B None 1.954+0.47 1431035 0.19+t0.19 1271051 1461055 0.3310.19 0.55+0.32 1.081+0.15
7B None 023:{:0.16 0.25i0_15 0400:(:0_00 0-63i0.36 0.42i0_29 0.33i0_19 0-37i0.26 0-30i0.08
14B None 2.41;&0,52 2.27:&0443 259:&0.68 3.16:&0,80 6.26;&1,11 3.88i0,54 7.()9:&1414 3.68;&0,27
32B None 1.95i0_47 2-61j:0.46 2422:(:0.63 3A80i0_ss 4-38j:0.94 2.55j;0_52 2.75i0_70 2.74i0_23

Table 15: Performance Comparison on MATH dataset with Im-eval-harness framework. MATH is evaluated using
exact match.
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C Prompts and Scripts

In this section we provide all the prompts template
we used in this work.

C.1 Model Prompts (1-9)

Here, we provide the complete prompts to elicit
model responses from Prompt 1 to Prompt 9. We
used several prompts, including direct I/O, COT,
and few-shot, to encourage reasoning responses
from the models. These nine carefully designed
prompts aimed to elicit diverse reasoning behav-
iors, ranging from simple questions to multi-step
reasoning tasks. This ensures a thorough evalua-
tion of the models’ reasoning capabilities across
different datasets.

Prompt 1: Direct I/O

Prompt Template
< question >

Prompt 2: Direct I/O + ####

Prompt Template
< question >

Please solve the following question step-by-step
and provide the final numerical answer after
Wi

Prompt 3: Direct I/O + Final Answer

Prompt Template
< question >

Provide only the final numerical answer to this
question without any explanation.

Prompt 4: Chain-of-thought (COT)

Prompt Template
< question >

Let’s think step by step.

Prompt 5: COT + ####

Prompt Template
< question >

Let’s think step by step. In the end, please pro-
vide the final numerical answer after *####’.

Prompt 6: 5-Shot

Prompt Template
Question: < question; >
Answer: < answery >
Question: < questiony >
Answer: < answerg >
Question: < questions >
Answer: < answersg >
Question: < questiong >
Answer: < answery >
Question: < questions >
Answer: < answers >

Solve the following question using the provided
examples for reference

Question: < question >

Can you solve this question?

Prompt 7: Complex Reasoning

Prompt Template
< question >

To solve this problem, follow these instructions
step by step:

1. Break the problem into smaller parts.

2. Solve each part logically and explain your
reasoning in detail.

3. Combine the results to arrive at the final an-
SWer.

4. Double-check your solution to ensure its ac-
curacy.

Please provide your solution with detailed rea-
soning and clarity."
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Prompt 8: COT + 5-Shot

Prompt Template
Question: < question; >
Answer: < answery >
Question: < questiony >
Answer: < answero >
Question: < questions >
Answer: < answers >
Question: < questiony >
Answer: < answery >
Question: < questions >
Answer: < answers >

Let’s think step by step. Solve the following
question using step-by-step reasoning as

demonstrated in the above examples.

Question: < question >

Can you solve this question?

Prompt 9: 8-Shot

Prompt Template
Question: < question; >
Answer: < answery >
Question: < questiong >
Answer: < answery >
Question: < questions >
Answer: < answers >
Question: < questiony >
Answer: < answery >
Question: < questions >
Answer: < answers >
Question: < questiong >
Answer: < answerg >
Question: < questiony >
Answer: < answery >
Question: < questiong >
Answer: < answerg >

Solve the following question using the provided
examples for reference:

Question: < question >

Can you solve this question?

C.2 GPT-4 Evaluation Prompts

In this section, we provide the prompt used for
our judge (GPT). We used GPT-4 as the LLM-as-a-
judge, using carefully designed prompts to guide its

evaluation of responses generated by SLMs. These
prompts were chosen to ensure consistency and
minimize potential biases in the evaluation process.

Prompt 10: Evaluation Prompt for GSM8K

Prompt Template

Your role is to compare the student’s answer to
the provided ground truth answer and determine
its correctness. Carefully read both the ground
truth answer and the student’s answer. Provide
your assessment using one of the following
responses:

- ’Correct’: If the student’s final answer matches
the ground truth answer.

- ’Incorrect’: If the student’s final answer
contradicts the ground truth answer.

Focus solely on the final answer or conclusion,
disregarding any reasoning or intermediate
student’s steps. Be aware that the ground truth
and student answers may be preceded by ####
symbols. Respond with exactly one word
’Correct’ or ’Incorrect’.

Question: < question >
Ground truth answer: < ground_truth >
Student answer: < model_response >
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Prompt 11: Evaluation Prompt for ARC

Prompt Template

Your role is to evaluate the student’s multiple-
choice answer compared to the ground truth
answer and determine its correctness. Carefully
read the question, the answer choices, the
ground truth answer, and the student’s answer.
Provide your assessment using one of the
following responses:

- ’Correct’: If the student’s chosen answer
matches the ground truth answer.

- "Incorrect’: If the student’s chosen answer does
not match the ground truth answer.

Focus on whether the student’s final answer
aligns with the intent and content of the ground
truth answer.  Disregard minor variations
in wording or format and any reasoning or
explanation. Respond with exactly one word:
"Correct’ or ’Incorrect’.

Question: < question >
Ground truth answer: < ground_truth >
Student answer: < model_response >

. J

C.3 Sorting Parsing Script: 13 Variations

Here’s a list of scenarios that Parsing Script is de-
signed to handle, categorized by the parsing strat-
egy employed:

Bracketed Lists (High Confidence)

1. [1, 2, 3, 41]: Standard, comma-separated list
within square brackets.

2. [ 1, 2, 3,47: List with extra spaces between
elements and brackets.

3. [-1, @, 2, 5]: List containing negative num-
bers.

4. [1,2,3,4]: List with no spaces between ele-
ments.

5.L 1, 2, 3, 4 1:List with spaces before
and after the brackets.

Textual Lists (Medium Confidence)

6. "The sorted list is: 3, 5, 9,
Standard textual list with commas and spaces.
7. "The sorted list is: 3,5,9,12": Textual
list with commas but no spaces.

8. "The Sorted List Is: -1, 0, 4, 7":
Case-insensitive matching of the key phrase.

9. "The sorted list is:3, 5, 9": Handles
missing space immediately after the colon.

12"

Numbered Lists (Medium Confidence)

10. 1. 9

2. 13

3. 29: Standard numbered list format. (Note:
Represented with line breaks using \\)

11.1. 9

2. 13

3. 29: Numbered list with extra spaces after the
numbering. (Note: Represented with line breaks).
12.1.9

2.13

3.29: Numbered List with no space. (Less robust,
covered by Fallback) (Note: Represented with line
breaks).

Fallback (Lowest Confidence)

13. If none of the above formats are found, the
script extracts all numbers present in the response
after removing potential numbered list prefixes. Ex-
ample: If the response is "The initial list was
5, 1, 4. The sorted version, however, is
1, 4, 5.", this fallback would extract [5, 1, 4,
1, 4, 5].
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Prompt 12: Parsing Script for Sorting Responses

def parse_sorted_list(response):

try:

# Step 1: Extract bracketed list if present

bracketed_list_match = re.search(r'\[.*x?\]"', response)

if bracketed_list_match:
# Extract numbers from the bracketed content
bracket_content = bracketed_list_match.group (@)
numbers = [int(num) for num in re.findall(r'-?\d+', bracket_content)]
return numbers

# Step 2: Clean up numbered list prefixes (e.g., "1. 9", "2. 13")

cleaned_response = re.sub(r'*\s*x\d+\.\s*', '' response, flags=re.
MULTILINE)

# Step 3: Extract the textual list (e.g., "9, 13, 29...")

textual_list_match = re.search(r'(?<=\bThe sorted list is:)[*\n]x"',

cleaned_response, re.IGNORECASE)
if textual_list_match:
textual_content = textual_list_match.group(0)
numbers = [int(num) for num in re.findall(r'-?\d+"', textual_content)]
return numbers

# Step 4: Fallback - Extract all numbers in order from the cleaned
response

numbers = [int(num) for num in re.findall(r'-?\d+', cleaned_response)]

return numbers

except Exception as e:
print(f"Error parsing response: {response}. Error: {e}")
return []
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D Further Analysis/Insights

D.1 Why explicit chain-of-thought does not
Elicit Reasoning?

We observed that COT prompting does not sig-
nificantly improve the reasoning performance of
SLMs. Recent models often generate intermediate
reasoning steps even when presented with direct
questions. For instance, models frequently pref-
ace their responses with phrases like, "Let’s break
this down into steps” or "Here’s how we solve this
step-by-step.” This behavior implies that CoT-like
reasoning processes are already internalized dur-
ing pretraining, reducing the explicit need for CoT
prompting.

While the original CoT paper demonstrated clear
benefits, the marginal gains observed here likely
reflect advancements in training corpora and model
architectures, which incorporate reasoning capabil-
ities intrinsically. These findings suggest that for
modern SLMs, CoT prompting may offer diminish-
ing returns, as they already employ such techniques
implicitly during reasoning tasks. These response
demonstrates how CoT-style reasoning emerges or-
ganically, even without explicit prompting.
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Qwen2.5-7B: Direct I/O

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

Ground Truth: It takes 2/2 =<< 2/2 =1 >> 1 bolt of white fiber. So the total amount of fabric
1524 1=<<2+4+1=3>> 3 bolts of fabric.
H#H#H# 3

Model Response: To determine the total number of bolts of fiber needed for the robe, let’s break it
down step by step.

1. **Blue Fiber:** The robe requires 2 bolts of blue fiber.

2. **White Fiber:** The problem states that the robe requires half as much white fiber as blue fiber.
Therefore, we need to calculate half of 2 bolts:

White fiber = % x 2 =1 bolt

3. **Total Fiber:** To find the total number of bolts of fiber needed, we add the bolts of blue fiber
and white fiber together:

Total bolts = 2 (blue) 4 1 (white) = 3 bolts

| So, the total number of bolts of fiber needed for the robe is **3 bolts**.

Figure 6: Example of Direct (I/O) Reasoning with Qwen2.5-7B-Instruct. We can observe model is generating
reasoning step with no explicit chain-of-thought prompting.
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Qwen2.5-7B: COT

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

Let’s think step by step.

Ground Truth: It takes 2/2 =<< 2/2 =1 >> 1 bolt of white fiber. So the total amount of fabric
1524 1=<<2+1=3>> 3 bolts of fabric.
H#H#H# 3

Model Response: Certainly! Let’s break down the problem step by step.

1. **Identify the amount of blue fiber needed:** - The problem states that the robe takes 2 bolts of
blue fiber.

2. **Determine the amount of white fiber needed:** - The problem also states that the robe takes half
as much white fiber as blue fiber. - Since 2 bolts of blue fiber are needed, half of that amount would

be:
2 bolts

2

3. **Calculate the total amount of fiber needed:** - To find the total amount of fiber, we add the bolts
of blue fiber and the bolts of white fiber:

=1 bolt

2 bolts (blue) + 1 bolt (white) = 3 bolts

So, in total, it takes 3 bolts of fiber to make the robe.

Figure 7: Example of Chain-of-thought Prompt with Qwen2.5-7B-Instruct.
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D.2 Poor Performance of Pruned Models

Pruned models exhibit significant performance
degradation on reasoning-intensive datasets like
ARC-E, ARC-C, and CommonsenseQA. Their re-
sponses often lack coherence and logic, with out-
puts like "Let me know in the comments" or "Sure,
I can solve this problem." This was mostly evident
in multi-shots prompting in Pruned Model. We
hypothesize that pruning disrupts the internal rep-
resentations responsible for reasoning, particularly
in tasks requiring complex thought processes.

Additionally, many pruned models are fine-tuned
on datasets like GSMS8K to recover lost accuracy,
which may limit their generalization to other do-
mains. This recovery strategy prioritizes mathe-
matical reasoning tasks but does not address the
broader reasoning challenges posed by datasets like
ARC-C and CommonsenseQA. These results un-
derscore the importance of using diverse recovery
datasets during fine-tuning to preserve performance
across varied tasks.
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Sparse-Llama-3.1-8B-20f4: 5-shot

Question: Kelian has two recipes for preparing dishes, one having 20 instructions and the second one
having twice as many instructions as the first one. How many instructions does Kelian have to read to
prepare the two dishes?

Ground Truth: The second recipe has 2 * 20 instructions = << 2% 20 = 40 >> 40 instructions. The
total for the two dishes is 40 instructions + 20 instructions = << 40 + 20 = 60 >> 60 instructions.
#i## 60

Input Prompt: Question: After scoring 14 points, Erin now has three times more points than Sara,
who scored 8. How many points did Erin have before?

Answer: Erin now has three times more points than Sara, which is 3 X 8 = 24 more points than Sara.
This means Erin has a total of 8 + 24 = 32 points now. Before, Erin had 32 — 14 = 18 points. ####
18

Question: Maggie spent a quarter of her money, while Riza spent one-third of her money. They each
had $60. How much money do the two of them have left?

Answer: Maggie spent $60/4 = $15. So, Maggie is left with $60 — $15 = $45. Riza spent
$60/3 = $20. So, Riza is left with $60 — $20 = $40. Thus, they have a total of $45 4+ $40 = $85
left. ###3# 85

Question: Johnny is picking up the toys on the floor of his room. He’d dumped a lego boxed set with
500 pieces on the floor, and another one that had 3 times more pieces than the 500 piece one, and
another one that had 1/4 the number of pieces. How many blocks does Johnny pick up if he picks up
all the legos?

Answer: The first set had 500 pieces, and the second set had 3 times as many as the first set, so the
second set has 500 x 3 = 1500 pieces. The third set had one-quarter of the 500 pieces, so that means
it had 500 x 0.25 = 125 pieces. In total, that means Johnny picked up 500 + 1500 + 125 = 2125
blocks. #### 2,125

Question: A DVD can be played 1000 times before it breaks. There are two DVDs in the public
library, one has been played 356 times and the other has been played 135 times. How many total
times can both DVDs be played before they break?

Answer: 1000 — 356 = 644 times. 1000 — 135 = 865 times. 644 4 865 = 1509 times. #### 1509
Question: On Easter Sunday Cindy went to the city park to participate in the Easter Egg Hunt, and
ended up with a basket full of eggs. She had 5 green ones, twice as many blue ones as green ones,
one fewer pink eggs than blue eggs, and one-third as many yellow eggs as pink eggs. How many eggs
did Cindy have altogether?

Answer: She has twice as many blue eggs as green eggs, so she has 5 x 2 = 10 blue eggs. She has
one fewer pink eggs than blue eggs, so she has 10 — 1 = 9 pink eggs. And finally, she has a third as
many yellow eggs as pink eggs, so she has 9/3 = 3 yellow eggs. Added all together, she has 5 green
+ 10 blue + 9 pink + 3 yellow = 27 eggs. ##i## 27

Solve the following question using the provided examples for reference:

Question: Kelian has two recipes for preparing dishes, one having 20 instructions and the second one
having twice as many instructions as the first one. How many instructions does Kelian have to read to
prepare the two dishes?

Can you solve this question?

Model Response: "Let me know in the comments below!"

Figure 8: Pruned model "Sparse-Llama-3.1-8B-20f4" providing Nonsensical response when prompted with 5-shots
on GSMSK
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Sparse-Llama-3.1-8B-20f4: 5-shot

Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many
total meters does he run a week?

Ground Truth: He sprints 3*3=<< 3 %3 =9 >> 9 times So he runs 9*60=<< 9 % 60 = 540 >>
540 meters #### 540

Input Prompt: Question: A 76-star flag has three rows of 8 stars, two rows of 6 stars and the rest are
5-star rows. How many rows of 5 stars are there altogether on the flag?

Answer: The rows of 8 stars have a total of: 3 rows * 8 stars/row = << 3 * 8 = 24 >> 24 stars. The
rows of 6 stars have a total of: 2 rows * 6 stars/row = << 2 % 6 = 12 >> 12 stars. Including the
rows of 8 and 6 stars, we have 24 stars + 12 stars = << 24 + 12 = 36 >> 36 stars. Now we need
to know how many stars are missing, 76 stars - 36 stars = << 76 — 36 = 40 >> 40 stars. Now we
need to distribute the missing stars in rows of 5 stars, 40 stars/5 rows = << 40/5 = 8 >> 8 rows of
5 stars. #### 8

Question: A pen costs as much as a pencil and eraser combined. A pencil costs $1.20 and an eraser
costs $0.30. How much will 8 pens cost?

Answer: A pen costs $1.20 + $0.30 = << 1.20 4+ 0.30 = 1.50 >> 1.50. So, 8 pens cost $1.50 x 8 =
<< 8% 1.0 =12 >> 12. #### 12

Question: A farm has 10 2-legged animals and 15 4-legged animals. If all animals are healthy, how
many pairs of animal legs in total are on the farm?

Answer: 2-legged animals have 2 legs. Therefore 10 2-legged animals will have 10*2=<< 10 *
2 = 20 >> 20 legs 4-legged animals have 4 legs. Therefore 15 4-legged animals will have
15#%4=<< 15 % 4 = 60 >> 60 legs In total there are 20+60= << 20 4 60 = 80 >> 80 legs A pair
of legs equals 2 legs. If there are 80 legs on the farm, there will be 80/2= << 80/2 = 40 >> 40
pairs of legs #it## 40

Question: A house and a lot cost $120,000. If the house cost three times as much as the lot, how
much did the house cost?

Answer: Since the house costs 3 times as much as the lot, the ratio of lot price to the house priceis 1 : 3.
This also means 1/4 of the cost is for the lot and 3/4 of the cost is for the house. The cost of the house
is 3/4 of the total cost, which is $120,000. 3/4 * $120,000 = << 3/4 % 120000 = 90000 >> 90, 000.
#### 90000

Question: An apple orchard sells apples in bags of 10. The orchard sold a total of 2000 apples one
day. How much did an orchard earn for selling this at $5 per bag?

Answer: There were 2000/10 = << 2000/10 = 200 >> 200 bags of apples sold. Therefore, the
orchard earned 200 x $5 = << 200 * 5 = 1000 >> 1000. #### 1000

Solve the following question using the provided examples for reference:

Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many
total meters does he run a week?

Can you solve this question?

Model Response: "Yes, I can solve this question."

Figure 9: Pruned model "Sparse-Llama-3.1-8B-20f4" providing Nonsensical response when prompted with 5-shots
on GSMSK
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D.3 Pruned Models: No response or
Nonsensical response

A recurring issue with pruned models is their ten-
dency to produce nonsensical or empty responses.
Even for simple questions like "What is 2+2?"
pruned models may respond with irrelevant state-
ments or fail to provide an answer altogether. This
indicates that pruning can disrupt key reasoning
pathways, rendering models unreliable in generat-
ing meaningful outputs.

The instability of pruned models emphasizes the
need for post-pruning fine-tuning strategies that pri-
oritize reasoning tasks. By using more diverse and
challenging datasets, it may be possible to mitigate
these issues and improve the robustness of pruned
models.
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Sparse-Llama-3.1-8B-20f4: 5-shot

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?
Ground Truth: Janet sells 16 -3 -4=<< 16 —3 —4 =9 >> 9 duck eggs a day. She makes 9 * 2
= << 92 =18 >> 18 every day at the farmer’s market. #### 18

Input Prompt: Question: Carson lives in an old house where the pipes will freeze if the temperature
inside the house falls below 32 degrees. Every log of wood Carson burns heats the house up by 5
degrees. If it was 45 degrees during the day, and it’s 33 degrees colder during the night compared to
the day, how many logs does Carson need to burn to prevent the pipes from freezing?

Answer: First find the night-time temperature: 45 degrees - 33 degrees = << 45 — 33 = 12 >> 12
degrees Then find how much Carson needs to heat his house to avoid the pipes freezing: 32 degrees -
12 degrees = << 32 — 12 = 20 >> 20 degrees Then divide the amount of heat Carson needs by the
amount of heat each log produces: 20 degrees / 5 degrees/log = << 20/5 = 4 >> 4 logs ###i# 4
Question: Every hour, Paige can bake 2 banana bread loaves in the oven. Each banana bread loaf is
cut into 8 slices and wrapped individually for sale. Each slice is sold for 50 cents for a fundraiser. If
she baked from 1:00 PM - 6:00 PM straight, and sold all the slices, how much did she raise in dollars?
Answer: From 1pm - 6pm, there are 6 - 1 = << 6 — 1 = 5 >> 5 hours. In 5 hours, Paige baked
5x2=<< 5%x2 =10 >> 10 banana bread loaves. When they are sliced, there are 10 x 8 =
<< 10 * 8 = 80 >> 80 banana bread slices. By selling all the slices, Paige has raised 80 x 0.50 =
<< 80 % 0.50 = 40 >> 40. #H## 40

Question: Dan plants 3 rose bushes. Each rose bush has 25 roses. Each rose has 8 thorns. How many
thorns are there total?

Answer: First find the total number of roses: 3 bushes * 25 roses/bush = << 3 %25 = 75 >> 75
roses Then multiply the number of roses by the number of thorns per rose: 75 roses * 8 thorns/rose =
<< 75 %8 =600 >> 600 thorns #### 600

Question: 48 people are riding a bus. On the first stop, 8 passengers get off, and 5 times as many
people as the number who got off from the bus get into the bus. On the second stop 21, passengers
get off and 3 times fewer passengers get on. How many passengers are riding the bus after the second
stop?

Answer: At the first stop, 5 * 8 = << 5 * 8 = 40 >> 40 passengers get on the bus. After the first
stop the bus has (48 - 8 ) + 40 = << 48 — 8 4 40 = 80 >> 80 passengers. At the second stop, 21 /
3=<<21/3=7>> T passengers get on the bus. After the second stop there are (80 -21)+7 =
<< 80 — 21 4 7 =66 >> 66 passengers. #### 66

Question: Ben bought a car for $20000 in 2007. The price of the car depreciates at a constant rate of
21% per year. Find the price of the car in the year 2010.

Answer: The price of the car depreciates of 20000 * 21Ben had the car for 2010 - 2007
= << 2010 — 2007 = 3 >> 3 years. The price of the car depreciates 4200 * 3 =
<< 4200 « 3 = 12600 >> 12600 from 2007 to 2010. So the price of the car in the year
2010 is $20000 - $12600 = << 20000 — 12600 = 7400 >> 7400. ##i## 7400

Solve the following question using the provided examples for reference:

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes
muffins for her friends every day with four. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?

Can you solve this question?

nn

Model Response:

Figure 10: Pruned model "Sparse-Llama-3.1" providing No response when prompted with 5-shots on GSM8K
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Sparse-Llama-3.1-8B-20f4: 5-shot

Input Prompt: Question: An astronomer observes that a planet rotates faster after a meteorite impact.
Which is the most likely effect of this increase in rotation?

Choices:

A: Planetary density will decrease.

B: Planetary years will become longer.

C: Planetary days will become shorter.

D: Planetary gravity will become stronger.

Answer the question by selecting the best choice (e.g., A, B, C, etc.).

Ground Truth: Planetary days will become shorter.

Model Response:

= input_ids.to_list()

for id in input_ids:
print(id) # Outputs: @, 1, 2,
3

Output:

N = o ™

3

In this code, we first convert the input_ids variable to a list using the to_list() method. Then,
we iterate over each element in the list using a for loop. Within the loop, we print each element
to the console using the print() function. The output will be a list of all the unique values in the
input_ids variable.

Figure 11: Pruned model "Sparse-Llama-3.1-8B-20f4" providing Nonsensical response on ARC dataset.
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Llama-3.1 (8B)  SmolLM2 (1.7B)

Total Responses 100 100
Correct Answers 18 5
Incorrect Answers 82 95
Instruction Not Followed 54 23
Unable to Follow Instruction 17 3
but Correct N
Unable to Follow Instruction 37 20
and Incorrect

Accuracy 18.00% 5.00%

Table 16: Instruction Following Capability of SLMs

D.4 Instructions following capability of SLMs

SLMs exhibit variability in their ability to follow
instructions, particularly when the instructions are
complex or lengthy. When instructions are pre-
sented before the question, models often fail to
comply, whereas placing the instructions after the
question improves adherence in most cases. How-
ever, this improvement is inconsistent, especially
in smaller models.

Interestingly, when models are given an exces-
sive number of instructions, they occasionally solve
previously unsolved problems, possibly due to trig-
gering alternative reasoning pathways. Conversely,
this can also lead to more mistakes. These obser-
vations highlight the importance of designing clear
and concise instruction templates that align with
the model’s processing capabilities to improve per-
formance and reliability.

We did a small experiment to see how good an
SLM is in following instructions. As shown in
Table 16, we can see that although large models
are good at following instructions, sometimes they
provide unnecessary extra information than asked
for.

D.5 Sorting Incorrect Examples

In this section, we present cases where the models
occasionally include extra numbers, exclude exist-
ing numbers, output the exact same list, or produce
the correct sorting but with different numbers.
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Llama-3.1-8B: 32-Mixed

Generated Numbers: 30, -17, -87, -81, -88, -25, -24, 81, -91, -57, -73, -5, -10, -28, 91, 16, 68, 9,
-52, 66, -38, -77, -69, 6, -60, 27, 51, 32, 85, 38, 34, -55

Ground Truth (Merge Sort): 91, -88, -87, -81, -77, -73, -69, -60, -57, -55, -52, -38, -28, -25, -24,
-17,-10, -5, 6,9, 16, 27, 30, 32, 34, 38, 51, 66, 68, 81, 85, 91

Prompt: Sort the following list of numbers in ascending order:

[30,-17, -87, -81, -88, -25, -24, 81, -91, -57, -73, -5, -10, -28, 91, 16, 68, 9, -52, 66, -38, -77, -69, 6,
-60, 27, 51, 32, 85, 38, 34, -55]

Provide the sorted list.

Model Response: To sort the list in ascending order, I will arrange the numbers from smallest to
largest: 1. -91 2. -88 3. -87 4. -855. -81 6. -777.-73 8. -69 9. -60 10. -57 11. -55 12. -52 13. -38 14.
-34 15. -28 16. -2517. -24 18. -17 19. -10 20. -5 21. 6 22. 9 23. 16 24. 27 25. 30 26. 32 27. 34 28.
3829. 51 30. 66 31. 68 32. 81 33. 85 34. 91

The sorted list in ascending order is:

-91, -88, -87, -85, -81, -77, -73, -69, -60, -57, -55, -52, -38, -34, -28, -25, -24, -17, -10, -5, 6, 9, 16, 27,
30, 32, 34, 38, 51, 66, 68, 81, 85,91

Parsed Sorted List: -91, -88, -87, -85, -81, -77, -73, -69, -60, -57, -55, -52, -38, -34, -28, -25, -24,
-17,-10, -5, 6, 9, 16, 27, 30, 32, 34, 38, 51, 66, 68, 81, 85, 91,

| Accuracy: 0

Figure 12: Incorrect Sorting Example: Model sometimes include extra numbers (-91 and -85 here).

Llama-3.1-8B: 32-Mixed

Generated Numbers: 81, 33,91, -47, 59, -33, -12, -38, 0, 94, 38, -4, -18, -16, 70, 11, 3, -26, -41, 65,
37,79, -73,-29, -79, -13, 17, -63, 80, 24, 39, 76

Ground Truth (Merge Sort): -79, -73, -63, -47, -41, -38, -33, -29, -26, -18, -16, -13,-12, -4, 0, 3,
11, 17, 24, 33, 37, 38, 39, 59, 65, 70, 76, 79, 80, 81, 91, 94

Prompt: Sort the following list of numbers in ascending order:

[81, 33,91, -47, 59, -33, -12, -38, 0, 94, 38, -4, -18, -16, 70, 11, 3, -26, -41, 65, 37, 79, -73, -29, -79,
-13, 17, -63, 80, 24, 39, 76]

Provide the sorted list.

Model Response: To sort the list in ascending order, I will arrange the numbers from smallest to
largest. Here’s the sorted list:

-79, -79, -73, -63, -47, -41, -38, -33, -33, -26, -18, -16, -13, -4, 0, 3, 11, 17, 24, 33, 37, 38, 39, 59, 65,
70, 76, 80, 81, 91, 94

Alternatively, you can use a computer algorithm to sort the list, but in this case, it’s easier to do it
manually.

Parsed Sorted List: -79, -79, -73, -63, -47, -41, -38, -33, -33, -26, -18, -16, -13, -4, 0, 3, 11, 17, 24,
33,37, 38, 39, 59, 65, 70, 76, 80, 81, 91, 94
Accuracy: 0

Figure 13: Incorrect Sorting Example: Model exclude existing numbers (repeated -79 two times and skipped -29
and -12)
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Llama-3.1-8B: 32-Mixed

Generated Numbers: -83, 79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30,
55, 88, -96, -67, 93, -41, 84, 8, 99, 51, 82, -11, -81, -48

Ground Truth (Merge Sort): -96, -92, -83, -81, -79, -78, -76, -67, -53, -52, -48, -41, -38, -35, -31,
-25,-23,-11, 8, 11, 30, 46, 51, 55, 70, 79, 82, 84, 88, 90, 93, 99

Prompt: Sort the following list of numbers in ascending order:

[-83,79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30, 55, 88, -96, -67, 93,
-41, 84, 8,99, 51, 82, -11, -81, -48]

Provide the sorted list.

Model Response: To sort the given list of numbers in ascending order, we need to first remove the
negative sign from the numbers and then sort them. Here’s the step-by-step process:

1. Remove the negative sign from the numbers:-83 -> 83 -25 -> 25 -53 -> 53 -31 -> 31 -38 -> 38 -78
->78-76 ->76-52 ->52-92 ->92-23 ->23-35->35-79->79-11 -> 11 -81 -> 81 -48 -> 48 -67 ->
67 -96 -> 96

The list becomes: [83, 25, 53, 31, 38, 78, 76, 52, 92, 23, 35, 79, 11, 81, 48, 67, 96, 90, 70, 46, 30, 55,
8,99, 84, 51, 82, 93, 88]

2. Sort the numbers in ascending order:

8, 23,25, 30, 31, 35, 38, 46, 48, 51, 52, 53, 55, 67, 70, 76, 78, 79, 81, 82, 83, 84, 88, 90, 92, 93, 96, 99
The sorted list is: [-83, 79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30, 55,
88, -96, -67, 93, -41, 84, 8, 99, 51, 82, -11, -81, -48]

Parsed Sorted List: -83, 79, -25, -53, -31, 90, -38, 70, -78, -76, 46, -52, -92, -23, 11, -35, -79, 30, 55,
88, -96, -67, 93, -41, 84, 8, 99, 51, 82, -11, -81, -48
Accuracy: 0

Figure 14: Incorrect Sorting Example: Model sometimes outputs exact same list
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D.6 LILM-as-a-judge: TPR and TNR

In Table 17, we present the True Positive Rate
(TPR) and True Negative Rate (TNR) for our LLM-
as-a-judge evaluation. TPR measures the propor-
tion of cases where both the GPT model and human
judge agree on a correct decision. TNR reflects the
cases where both agree on a correct rejection of an
incorrect decision. These rates help better evaluate
the model’s accuracy in aligning with human judg-
ment, considering both when the LLM correctly
matches human decisions and when it diverges.
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gpt-3.5-turbo gpt-4-turbo gpt-40 gpt-4o-mini
Dataset Model
Agree- TPR TNR Agree- TPR TNR Agree- TPR TNR Agree- TPR TNR
ment ment ment ment
asm8k Llama-3.1- 98.00 100.00  89.47 100.00 100.00  100.00  100.00 100.00  100.00 99.00 98.77  100.00
" 8B
SmolLM2- 94.00 100.00  89.47 98.00 95.35  100.00 98.00 95.35  100.00 98.00 95.35  100.00
1.7B
arc-e Llama-3.1- 98.00 97.85  100.00  100.00 100.00  100.00  100.00 100.00  100.00  100.00 100.00  100.00
8B
SmolLM2- 100.00 100.00  100.00  100.00 100.00  100.00  100.00 100.00 100.00  100.00 100.00  100.00
1.7B
arc-c Llama-3.1- 99.00 98.78  100.00  100.00 100.00  100.00  100.00 100.00  100.00 94.00 92.68  100.00
) 8B
SmolLM2- 99.00 98.21  100.00  100.00 100.00  100.00  100.00 100.00  100.00 99.00 98.21  100.00
1.7B
Llama-3.1- 97.00 95.65 100.00  100.00 100.00  100.00 99.00 100.00  96.77 100.00 100.00  100.00
commonsenseqa gy
SmolLM2- 100.00 100.00  100.00  99.00 98.39  100.00 97.00 98.39 9474 99.00 98.39  100.00
1.7B

Table 17: LLM-as-a-judge Agreement with human as well as True positive rate (TPR) and True Negative Rate

(TNR) for different Models and Datasets

D.7 Sorting Incorrect Evaluations

Here, we provide instances where we were unable
to accurately parse the sorted lists produced by the
models, resulting in incorrect evaluations.
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Llama-3.1-8B: 32-Mixed

Generated Numbers: -96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61,
-69, 97, -2, 24, 80, -56, -19, 26, -94, 95, -51, -21, -16, 50

Ground Truth (Merge Sort): -96, -94, -88, -77, -73, -70, -69, -61, -58, -56, -51, -42, -40, -35, -21,
-19, -18, -16, -10, -2, 5, 24, 25, 26, 36, 47, 50, 80, 91, 95, 97, 98

Prompt:

Sort the following list of numbers in ascending order:

[-96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61, -69, 97, -2, 24, 80, -56,
-19, 26, -94, 95, -51, -21, -16, 50]

Provide the sorted list.

Model Response: To sort the list of numbers in ascending order, I’ll use the following steps:

1. Start with the original list:

[-96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61, -69, 97, -2, 24, 80, -56,
-19, 26, -94, 95, -51, -21, -16, 50]

2. Arrange the numbers in ascending order:

- First, place the smallest numbers first. The smallest numbers are -96, -94, -88, -77, -73, -70, -69, -71
is not in the list, -69 is, -69 is smaller than -70, -73, -77, -88, -94, and -96, so we place them first.

- Next, we look at the remaining numbers. The next smallest numbers are -58, -56, -51, -42, -40, -35,
-34 is not in the list, -35 is, -35 is smaller than -42, -40, -51, -56, and -58, so we place them next.

- Next, we look at the remaining numbers. The next smallest numbers are -21, -19, -18, -16, -10, -2,
-2 is smaller than -10, -16, -18, -19, and -21, so we place them next.

- Next, we look at the remaining numbers. The next smallest numbers are 5, 24, 25, 26, 36, 47, 50, 80,
95, 97, 98, so we place them next.

- Finally, we look at the remaining number, which is 91.

The sorted list in ascending order is:

-96, -94, -88, -77, -73, -70, -69, -58, -56, -51, -42, -40, -35, -21, -19, -18, -16, -10, -2, 5, 24, 25, 26,
36, 47, 50, 80, 91, 95, 97, 98

Parsed Sorted List: -96, -35, -77, -73, -40, 36, 91, 47, -18, -42, -58, 25, 5, -70, -10, -88, 98, -61, -69,
97, -2, 24, 80, -56, -19, 26, -94, 95, -51, -21, -16, 50

Accuracy: 0

Figure 15: Example of Incorrect parsing/sorting evaluations: Here, although final answer is incorrect (-61 is missing).
But our parsing script did not work properly here.
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D.8 GPT-4 Incorrect Evaluations

In this section, we present instances where GPT-4’s
evaluations were incorrect. For example, in one
case, the ground truth was "stand in line," but the
model chose option B, "get in line," and GPT-4
incorrectly labeled the evaluation as correct instead
of incorrect.

Additionally, most incorrect evaluations by GPT-
4 were observed when model responses were non-
sensical or excessively long. In these cases, GPT-4
sometimes classified incorrect answers as correct,
likely due to the presence of partially correct rea-
soning in the responses.

To mitigate this, we parsed the model’s re-
sponses before sending them to GPT-4 for evalua-
tion, especially when the responses were lengthy.
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Llama-3.1-8B: CQA 33

Prompt:

Ground Truth: stand in line
Model Response: B: get in line

Evaluation: Correct

Question: Where would a person be doing when having to wait their turn?
Choices: A: have patience B: get in line C: sing D: stand in line E: turn left
Answer the question by selecting the best choice (e.g., A, B, C, etc.).

Figure 16: GPT-40 Incorrect Evaluation on CommonsenseQA dataset where it got confused between Model response

("get in line") and ground truth ("stand in line").

E Model Compression Techniques
Explained

Deep learning models, particularly large-scale lan-
guage models, require significant computational
resources. To make these models more efficient,
various model compression techniques are used,
including quantization, pruning, and distillation.
These methods reduce model size and computa-
tional requirements while attempting to preserve
accuracy. This section provides an in-depth expla-
nation of these techniques.

E.1 Quantization

Quantization reduces the precision of model pa-
rameters (weights and activations) to lower-bit rep-
resentations, thereby reducing memory footprint
and accelerating inference. Instead of using full-
precision floating-point numbers (e.g., FP32), quan-
tization represents values using lower-bit formats
such as INTS, INT4, or FPS.

Mathematically, given a full-precision weight
matrix W € R™*™  quantization maps each
weight w € W to a lower-precision representa-
tion w:

. w
w =S - round (g) , 3)

where S is a scaling factor that determines how
real-valued weights are mapped to discrete levels.

There are various quantization schemes used in
our experiments:

Here, FP8-Dynamic refers to an adaptive
floating-point scheme where scaling factors change
dynamically based on tensor statistics. GPTQ
(Generalized Post-Training Quantization) applies

quantization-aware optimization post-training to
minimize performance loss.

E.2 Pruning

Pruning eliminates less significant parameters from
the model to reduce its size while preserving essen-
tial computations. Formally, given a weight matrix
W, pruning removes elements below a threshold T,
setting them to zero:

% Wz j 5
WiJ = { "
0,

Different types of pruning exist:

if |Wi,j| Z T

otherwise

“)

* Unstructured Pruning: Individual weights
below 7 are removed.

* Structured Pruning: Entire rows, columns,
or channels are removed, leading to more
hardware-efficient reductions.

* Magnitude Pruning: Weights with the small-
est magnitudes are pruned first.

* Gradient-Based Pruning: Pruning is based
on the impact of removing a weight on the
loss function.

Pruning helps in reducing memory usage and im-
proving inference speed, especially for deployment
on edge devices. However, aggressive pruning can
degrade model accuracy, requiring fine-tuning to
recover performance.

E.3 Distillation

Distillation compresses a large, pre-trained model
(teacher) into a smaller model (student) by transfer-
ring knowledge. The student model learns not only

32649



Scheme

Weight Precision

Activation Precision

8-bit activations
16-bit activations
16-bit activations
8-bit floating point activations
8-bit floating point activations

WEAS 8-bit weights
WE8A16 8-bit weights
W4A16 4-bit weights
FP8 8-bit floating point weights
FP8-Dynamic 8-bit floating point (dynamic scaling)
GPTQ 8-bit  8-bit quantization using GPTQ (post-training) -
GPTQ 4-bit  4-bit quantization using GPTQ (post-training) -

Table 18: Quantization Schemes referred in this paper.

from ground-truth labels but also from the teacher’s
softened output probabilities.

Given a teacher model output z” and a student
model output z°, distillation minimizes the loss:

L=aLlce(z%,y)+ (1 - a)Lkp(z®,27), (5)

where Lcg is the standard cross-entropy loss,
Lxp is the knowledge distillation loss:

Lxp =Y _p} logp}, 6)

7

and p!, p? are the softened class probabilities

from the teacher and student, respectively. The
temperature parameter ' controls how much the
logits are softened before computing probabilities:

pi = exp(z;/T) 7
b exn(z/T)

Distillation enables smaller models to achieve
near-state-of-the-art performance with significantly
fewer parameters, making them ideal for deploy-
ment in resource-constrained environments.

F Implementation Details

We ran all our experiments using different types
of GPUs including NVIDIA H100-80GB, A100-
80GB, L40-48GB, and A40-48GB. To make the
inference faster and more efficient, we used the
vLLM library (Kwon et al., 2023)!. We automati-
cally adjusted how many GPUs each model needed
based on its size. For models that needed more
than one GPU, we used Hugging Face Accelerate”
to split the model across multiple GPUs and speed
up the process.

"https://docs.vllm.ai/en/latest/
2https://github.com/huggingface/accelerate

To keep our comparisons fair, we stuck with the
default settings provided in each model’s Hugging
Face repository. The only change we made was
setting the maximum input tokens to 4096 when
using multi-shot prompts. All the GPU memory us-
age numbers we report were measured on NVIDIA
A100-80GB GPUs. The total compute time across
all experiments was approximately 24000 GPU
hours. We used quantized and pruned model ver-
sions from Neural Magic? and Qwen” repositories
on Hugging Face. All the models we tested are
freely available and open-sourced under Apache
2.0, MIT, or similar permissive licenses that allow
research use. These models can be found on Hug-
ging Face’.

For evaluation, we used two main tools. First,
we used GPT-4 through the OpenAl API for cer-
tain assessments. Second, we used the open-source
Im-eval-harness framework® with its default evalua-
tion settings to test the small language models. We
did not modify any evaluation metrics or scoring
functions from their original implementations. The
specific package versions used were: vLLM v0.7.3,
transformers v4.38.0, and Im-eval-harness v0.4.7.
Our use of all models and tools follows their in-
tended research purposes. The benchmark datasets
we used are standard evaluation sets in NLP re-
search, designed specifically for testing language
models. We did not create any new datasets or
collect any personal data. All experiments were re-
producible using the settings and code we provide
in our repository (leaderboard website).

3https://huggingface.co/collections/
neuralmagic/

*https://huggingface.co/collections/Qwen/

5https://huggingface.co/models

https://github.com/EleutherAl/
1Im-evaluation-harness
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G Human Evaluation Details

The human evaluation part of our study was done
by a graduate student in computer science at Vir-
ginia Tech in the USA. This evaluator has been
working with NLP and large language models for
over three years, so they understand the techni-
cal aspects well. No external annotators, crowd-
workers, or other participants were involved in this
study. To make sure our human evaluations were re-
liable, the evaluator went through each assessment
three separate times. This triple-checking helped
us catch any mistakes or inconsistencies. After the
evaluator finished, the paper authors reviewed all
the results to double-check everything was correct.
Since this was an internal evaluation done by a
team member as part of regular research activities,
no payment was needed or provided.

The evaluation process was straightforward. The
evaluator looked at model outputs and scored them
based on clear criteria we defined beforehand. They
checked things like whether the model’s answer
was correct, if it made sense, and if it was relevant
to the question asked. The evaluator worked with
publicly available benchmark data only - no new
data was collected from people, and no personal
or sensitive information was handled. Because this
evaluation was done internally by our research team
using only public benchmarks and model outputs,
we did not need approval from an ethics review
board. The work did not involve human subjects
research in the traditional sense - we were only
evaluating computer-generated text, not collecting
data from or about people. No consent forms were
needed since we did not collect any data from hu-
man participants.

H Datasets Statistics

We evaluate our approach on seven benchmarks
of different reasoning. In the following we briefly
describe each dataset along with their splits. In this
paper, we use test split to evaluate all SLMs. Table
19 summarizes the splits for each datasets.

GSMS8K (Cobbe et al., 2021) is a collection of
high-quality grade school math word problems that
require multi-step reasoning. In the main configura-
tion, the dataset contains a total of 8,790 examples,
with 7,473 examples in the training split and 1,319
examples in the test split.

ARC (Clark et al., 2018) comprises two subsets
of multiple-choice science questions:

Dataset Train  Validation Test

GSM8K 7,473 - 1,319
ARC-Easy 2,251 570 2,376
ARC-Challenge 1,119 299 1,172
CommonsenseQA 9,741 1,221 1,140
HellaSwag 39,905 10,042 10,003
MathQA 29,837 4,475 2,985
OpenBookQA 4,957 500 500

MATH 10,000 - 5,000

Table 19: Dataset splits and example counts. Note that
GSMSK and MATH are provided with only training and
test splits.

* ARC-Easy: Contains 2251 train, 570 valida-
tion, and 2376 test splits.

* ARC-Challenge: Contains 1119 train, 299
validation, and 1172 test splits.

CommonsenseQA (Talmor et al., 2019) requires
using commonsense reasoning to answer multiple-
choice questions. It has 9,741 training examples,
1,221 validation examples, and 1,140 test exam-
ples.

HellaSwag (Zellers et al., 2019) is designed to
evaluate commonsense inference by selecting the
most plausible continuation of a given context. The
default split comprises 39,905 for training, 10,042
for validation, and 10,003 for testing.

MathQA (Amini et al., 2019) focuses on in-
terpretable math word problem solving using
operation-based formalism. The default split com-
prises 29,837 for training, 4475 for validation, and
2985 for testing.

OpenBookQA (Mihaylov et al., 2018b) tests the
ability to combine a small “open book™ of core sci-
ence facts with additional commonsense reasoning.
The default split comprises 4957 for training, 500
for validation, and 500 for testing.

MATH (Hendrycks et al., 2021) is a challeng-
ing dataset of competition-level math problems de-
signed to measure advanced mathematical problem
solving. It contains a total of 12,500 examples,
split into 10,000 training, 5,000 test problems.
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