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Abstract
With the rise of long-context language mod-
els (LMs) capable of processing tens of thou-
sands of tokens in a single context window,
do multi-stage retrieval-augmented generation
(RAG) pipelines still offer measurable ben-
efits over simpler, single-stage approaches?
To assess this question, we conduct a con-
trolled evaluation for QA tasks under system-
atically scaled token budgets, comparing two
recent multi-stage pipelines, ReadAgent and
RAPTOR, against three baselines, including
DOS RAG (Document’s Original Structure
RAG), a simple retrieve-then-read method that
preserves original passage order. Despite its
straightforward design, DOS RAG consistently
matches or outperforms more intricate meth-
ods on multiple long-context QA benchmarks.
We trace this strength to a combination of
maintaining source fidelity and document struc-
ture, prioritizing recall within effective context
windows, and favoring simplicity over added
pipeline complexity. We recommend establish-
ing DOS RAG as a simple yet strong baseline
for future RAG evaluations, paired with state-
of-the-art embedding and language models, and
benchmarked under matched token budgets, to
ensure that added pipeline complexity is jus-
tified by clear performance gains as models
continue to improve.1

1 Introduction

Recent advances in long-context language mod-
els (LMs) have expanded their token processing
capabilities, enabling them to handle tens of thou-
sands of tokens in a single context window. This
raises a pivotal question: Are complex, multi-stage
retrieval-augmented generation (RAG) pipelines
still necessary when simpler, single-stage methods
can now leverage these extended contexts effec-
tively?

1We release our code at https://github.com/
alex-laitenberger/stronger-baselines-rag.
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Figure 1: ∞Bench En.MC performance of various
multi-stage RAG systems and long-context baselines
(mean ± standard deviation over five runs). All methods
use GPT-4o as the underlying reader. For token budgets
greater than 5K, DOS RAG outperforms the complex
multi-stage methods (ReadAgent and RAPTOR) by 2–8
points.

RAG systems traditionally combine a retriever,
which selects passages from a large corpus relevant
to a given query, and a reader, typically an LM, to
generate a final answer (Lewis et al., 2020). Prior
work has proposed a variety of complex, multi-
stage retrieval strategies to circumvent the lim-
ited long-context reasoning ability of earlier reader
LMs. For example, abstractive preprocessing, it-
erative passage summarization, and agent-based
retrieval loops have been used to compress or rea-
son over documents that might otherwise exceed
the input limits of early LMs (Chen et al., 2023;
Sarthi et al., 2024; Lee et al., 2024; Sun et al., 2024,
inter alia). While effective, these pipelines often
introduce significant complexity and computational
overhead.

In contrast, modern long-context LMs can now
directly process substantial amounts of text, sug-
gesting that simpler retrieve-then-read strategies
might suffice in certain settings. To compare multi-
stage pipelines vs. simpler retrieve-then-read strate-
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Figure 2: Comparison of single-stage vs. multi-stage RAG pipelines. Vanilla RAG/DOS RAG use a minimal
retrieve-then-read setup, while RAPTOR and ReadAgent add additional preprocessing and LM-based steps (e.g.,
clustering, iterative summarization, pagination, gisting, lookup), increasing pipeline complexity and cost.

gies, we conduct a controlled evaluation in which
we systematically increase token budgets, analyz-
ing how effectively each approach leverages ex-
tended contexts using a representative modern long-
context LM (GPT-4o) as the downstream reader
(see §2). We compare two recent multi-stage
pipelines (ReadAgent and RAPTOR; Lee et al.,
2024; Sarthi et al., 2024) against three baselines, in-
cluding DOS RAG (Document’s Original Structure
RAG). DOS RAG maintains a simple retrieve-
then-read strategy and presents retrieved passages
in their original document order. Despite its sim-
plicity, our findings across three QA benchmarks
(∞Bench, QuALITY, NarrativeQA) indicate that
DOS RAG can match or even outperform more
complex multi-stage pipelines on all evaluated re-
trieval token budgets (see §3). Our analysis sug-
gests that DOS RAG’s strength lies in preserving
original passages and document structure, priori-
tizing recall within effective context windows, and
maintaining simplicity over added pipeline com-
plexity (see §4).

This work advocates for establishing DOS RAG
as a simple yet strong baseline for RAG evalua-
tions, paired with state-of-the-art embedding and
language models and benchmarked under matched
token budgets, so that added pipeline complexity
is justified only when it delivers clear performance
gains as model capabilities continue to evolve.

2 Experimental Setup

We compare the performance of two recent multi-
stage RAG pipelines (ReadAgent and RAPTOR)
against three baselines (Vanilla RAG, the full-

document baseline, and DOS RAG) on three
long-context question-answering tasks (∞Bench,
QuALITY and NarrativeQA). See Figure 2 for a vi-
sual method overview and Appendix A for further
details about experimental setup, implementation,
and used prompts.

2.1 Benchmarks

∞Bench. We evaluate systems on the En-
glish multiple-choice (En.MC) subset of ∞Bench
(Zhang et al., 2024). The benchmark contains 229
multiple-choice questions on 58 documents (aver-
age length of 184K tokens).

QuALITY. We use the QuALITY benchmark
(Pang et al., 2022), a multiple-choice question-
answering dataset over English context passages
containing between 2K to 8K tokens. We evaluate
systems on the development set, which contains
115 documents and 2,086 questions.

NarrativeQA. The NarrativeQA benchmark is a
long-document question-answering dataset in En-
glish that challenges models to answer questions
about stories by reading entire books or movie
scripts (Kočiský et al., 2018). We evaluate on the
test set, which contains 355 stories (avg. 57K to-
kens, up to 404K) and 10,557 questions. Each
story’s questions are constructed such that high per-
formance requires understanding the underlying
narrative, versus relying on shallow pattern match-
ing.
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Figure 3: QuALITY performance of various multi-stage
RAG systems and long-context baselines. All methods
use GPT-4o as the underlying reader. Prompting long-
context language models with entire documents (the full-
document baseline) outperforms retrieval-augmented
approaches, while DOS RAG performs the best under
token budget constraints.

2.2 Multi-Stage RAG Pipelines

ReadAgent. ReadAgent handles long input con-
texts with a method inspired by human reading
strategies (Lee et al., 2024). Concretely, Read-
Agent prompts the LM with three steps: (1) episode
pagination, where the LM forms a sequence of
pages by identifying natural breakpoints in the text;
(2) memory gisting, which compresses the con-
tent of each page into shorter “gist” summaries;
and (3) interactive look-up, where the LM uses the
query and the gists to identify pages to re-read and
use to solve the final query. This approach extends
the language model’s context window by offloading
the document’s full detail into a page-wise gisted
memory, retrieving original text only when needed.

RAPTOR. RAPTOR handles long documents
by recursively organizing the text into a tree of
hierarchical summaries (Sarthi et al., 2024). Con-
cretely, it partitions the text into sentence-level pas-
sages, clusters related passages, and uses a lan-
guage model to summarize each cluster. This pro-
cess repeats, generating higher-level summaries
until a final set of root nodes represents the entire
document. At inference time, RAPTOR retrieves
from different levels of the summary tree, balanc-
ing broad coverage against local detail.

2.3 Baselines

Our three baselines are designed to benefit from
and scale with stronger language models with im-
proved long-context reasoning abilities.

Vanilla RAG. In our implementation the docu-
ment is first split into passages capped at 100 to-
kens, while preserving sentence boundaries where
possible. We use neural retrieval with a sentence
embedding model (Snowflake Arctic-embed-m 1.5
by Merrick, 2024) to encode both the query and the
resulting passages into a shared embedding space.
At inference time, passages are ranked by cosine
similarity to the query embedding, with the top-
ranked passages retrieved until a fixed input token
budget (e.g., 10K tokens) is reached. The selected
passages, ordered by decreasing similarity, are then
concatenated with the query to construct the input
to the language model.

Full-Document Baseline. Standard RAG
pipelines do not preserve the narrative structure
within documents, as passages are concatenated
solely by retrieval rank. Moreover, retrieval errors
can propagate to the downstream language model,
which must then reason over potentially missing
and disjoint content. To better understand how
long-context LMs handle such challenges, we
compare against a full-document baseline that
simply prompts the model with all available
text—eliminating the need to filter passages. We
evaluate this baseline only on the QuALITY
benchmark, where all documents fit within the
language model’s context window.

Using the Document’s Original Structure
(DOS RAG). DOS RAG follows the same re-
trieval and embedding process as Vanilla RAG, but
with one key difference: retrieved passages are
reordered to match their original order in the docu-
ment, not sorted by similarity score. This reorder-
ing, achieved by tracking passage positions, pre-
serves original passage order like the full-document
baseline while still filtering irrelevant content like
Vanilla RAG.

Formally, given a query q and a document d seg-
mented into passages (p1, p2, . . . , pn), let sim(q, p)
denote the similarity score between q and passage
p. Vanilla RAG retrieves and orders a subset of
passages as

(pi1 , pi2 , . . . , pik) where

sim(q, pi1) ≥ sim(q, pi2) ≥ · · · ≥ sim(q, pik).

In contrast, DOS RAG reorders the same retrieved
passages by their original position in the document
as

(pj1 , pj2 , . . . , pjk) where j1 < j2 < · · · < jk.
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Figure 4: NarrativeQA performance of various multi-
stage RAG systems and long-context baselines. All
methods use GPT-4o-mini as the underlying reader. At
each evaluated token budget, DOS RAG outperforms
multi-stage retrieval systems and Vanilla RAG.

3 Results

On all of ∞Bench, QuALITY, and NarrativeQA
we find that DOS RAG performance consistently
surpasses or matches complex multi-stage systems.
See Appendix C for full results tables for all evalu-
ated methods and benchmarks.

∞Bench. Figure 1 summarizes performance un-
der varying retrieval token budgets (from 1.5K to
40K tokens) when using GPT-4o as the reader.

At 30K tokens, DOS RAG achieves 93.1%, out-
performing Vanilla RAG (87.8%) and both multi-
stage methods by 2–8 points. Despite consuming
more tokens (86K on average), ReadAgent under-
performs DOS RAG at moderate budgets (20K),
highlighting the diminishing returns of multi-stage
complexity when a single-pass prompt can already
incorporate the relevant context.

Finally, we see that DOS RAG performance be-
gins to plateau as the retrieval budget grows beyond
30K tokens, while Vanilla RAG and RAPTOR also
saturate at lower accuracies.

QuALITY. Figure 3 shows performance on the
QuALITY benchmark, again with GPT-4o as the
reader model. In this setting, we see that all ap-
proaches show a steady rise in accuracy as the re-
trieval budget grows. In particular, full-document
baseline with GPT-4o achieves 91.2%, outperform-
ing the best retrieval-augmented systems. Among
the retrieval-augmented methods, DOS RAG again
achieves the highest performance for token budgets
of up to 8K.

NarrativeQA. Figure 4 presents the results for
NarrativeQA across retrieval token budgets ranging
from 1.5K to 40K, with GPT-4o-mini as the reader.
Once again, we find that ReadAgent and RAPTOR
consistently underperform DOS RAG. In particular,
DOS RAG achieves superior results while using
only one third of the tokens required by ReadAgent.
These trends remain consistent across five different
evaluation metrics (see Table 5 in Appendix C for
detailed results).

4 Analysis

Why is DOS RAG effective? We identify four
key factors that underlie DOS RAG’s performance
and are supported by empirical findings from our
evaluation:

1. Retrieving from original passages rather than
generated summaries, thereby preserving source in-
formation, as in Vanilla RAG and the full-document
baseline: We implemented Vanilla RAG as an ex-
act ablation of RAPTOR that excludes generated
summaries from the retrieval process. Vanilla RAG
consistently outperforms RAPTOR across datasets
and retrieval sizes, reinforcing our hypothesis that
retrieving directly from original passages results
in more robust QA, particularly as long-context
LMs reduce the need for intermediate abstraction.
While RAPTOR demonstrated superiority in the
original paper, its key ablation used UnifiedQA-
3B (Khashabi et al., 2020) as the reader model,
restricted to a 400-token input. Such a setting high-
lights RAPTOR’s benefits under constrained con-
text and model capacity, but does not generalize
to today’s stronger long-context LMs. Our results
with GPT-4o show that, once stronger models and
larger context windows are available, retrieving
directly from original passages tends to be more
robust. This illustrates how advances in model
capacity and context length can shift the relative
effectiveness of different pipeline designs.

2. Prioritizing retrieval recall over precision
while staying within the LM’s effective context size:
DOS RAG’s performance increases consistently as
the retrieval budget expands up to 30K tokens, after
which it plateaus and declines, aligning with prior
findings that LMs’ effective context length remains
limited (Liu et al., 2024). For shorter documents
(6K–8K tokens), the full-document baseline out-
performs all methods, indicating that maximizing
recall, by including critical information anywhere
in the input, can be more effective than precision
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filtering. However, beyond the effective context
window, eliminating irrelevant passages remains
essential to maintain performance.

3. Reordering retrieved passages to maintain
narrative and argument continuity: Vanilla RAG
serves as an exact ablation of DOS RAG, exclud-
ing the reordering step. Across all benchmarks and
retrieval budgets, DOS RAG consistently outper-
forms Vanilla RAG, underscoring the benefits of
preserving passage order. Performance gain is es-
pecially high when the retrieval budget is expanded
to tens of thousands of tokens. Retrieving more
passages brings us closer to the original document,
but without order, the input becomes a disjointed,
shuffled version.

4. Favoring simple over complex pipelines:
Multi-stage, agentic approaches like ReadAgent
decompose QA into multiple LM calls, increas-
ing token usage and latency. However, our eval-
uation shows that this added complexity does not
necessarily improve performance. ReadAgent un-
derperforms compared to DOS RAG at lower token
budgets, highlighting the effectiveness of simpler
RAG pipelines that use strong embedding models
and long-context LMs.

5 Related Work

Our results contribute to a growing body of work
on comparing and combining retrieval-augmented
methods against and with long-context LMs.

In particular, a variety of past work has studied
whether retrieval remains necessary in the retrieve-
then-read setting as language models gain better
long-context reasoning capabilities. However, con-
clusions differ over time depending on the long-
context abilities of the specific LMs used in ex-
periments. For example, Xu et al. (2024) show
that a 4K-context LM (Llama2-70B) with simple
retrieval augmentation matches the performance
of a context-extended 16K-context Llama2-70B
model prompted with the full document, while
using far less computation. Li et al. (2024) re-
visit this question with a stronger long-context lan-
guage model (GPT-4, with 32K token context) and
find that directly prompting it with entire docu-
ments outperforms retrieval-augmented methods
on several benchmarks, but at the cost of requiring
substantially higher input token budgets. Finally,
work by Yu et al. (2024) shows that preserving the
original document order when prompting (i.e., as
done in our DOS RAG baseline) improves retrieval-

augmented performance beyond the long-context
full-document baseline.

In contrast, rather than debating the merits of re-
trieval vs. long-context language models, our work
compares the combination of retrieval and long-
context language models (e.g., DOS RAG) against
more-complex multi-stage retrieval systems (i.e.,
ReadAgent and RAPTOR) to draw conclusions
about design priorities for next-generation RAG
systems. We believe that retrieval and long-context
LMs are complementary in a variety of real-world
applications.

6 Conclusion

This work examined whether complex multi-stage
retrieval pipelines still justify their added complex-
ity given the emergence of long-context LMs capa-
ble of processing tens of thousands of tokens. Our
controlled evaluation under systematically scaled
token budgets shows that simpler methods like
DOS RAG can effectively match or even outper-
form multi-stage pipelines such as ReadAgent and
RAPTOR in QA tasks, without intermediate sum-
marization or agentic processing.

We identified four key strategies that contributed
to DOS RAG’s performance:

1. Retrieving from original passages rather than
generated summaries, maintaining source fidelity
and minimizing information loss.

2. Prioritizing retrieval recall over precision,
ensuring critical information is included within the
effective context window, even at the cost of some
less relevant content.

3. Reordering retrieved passages to preserve
original passage order, which proved particularly
beneficial when dealing with large retrieval bud-
gets.

4. Favoring simple over complex pipelines, while
leveraging strong embedding and language models
for robustness.

Based on these findings, we recommend estab-
lishing DOS RAG as a simple yet strong baseline
for future RAG evaluations, paired with state-of-
the-art embedding and language models and bench-
marked under matched token budgets, to ensure
that any added complexity is justified by clear per-
formance improvements as models continue to ad-
vance.
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Limitations

Although our results indicate that simpler retrieve-
then-read approaches can match or outperform
more intricate multi-stage RAG pipelines when
paired with long-context language models, our
study has several limitations that qualify the gener-
ality of these findings.

Our experiments focus on multiple-choice and
short-answer reading comprehension tasks over sin-
gle long documents. We used GPT-4o and GPT-4o-
mini as readers and Snowflake’s Arctic-Embed as
the embedding model for neural retrieval. While
these settings provide useful testbeds for long-
context reasoning, it is unclear whether the trends
hold for more diverse tasks such as open-ended
generation, tasks that require reasoning over multi-
ple documents, or complex reasoning that requires
specialized domain knowledge (e.g., in scientific
or legal domains). It also remains open whether
the findings generalize to other reader LMs (pro-
prietary or open-weight), or alternative retrieval
setups with different embedding models. Future
work should investigate whether the benefits of
simply preserving document continuity extend to
these settings, or whether specialized retrieval or
summarization steps prove more valuable.

Efficiency is also a key factor in practice. While
our comparisons matched token budgets for infer-
ence and show DOS RAG competitive across both
smaller and larger retrieval windows, we did not
measure end-to-end costs of embedding and pre-
processing. We estimate that more complex pre-
processing, as in RAPTOR and ReadAgent, incurs
additional cost, but future work should provide full
cost analyses, especially for high-throughput or
resource-limited scenarios.
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A Experimental Setup Details

A.1 Models and Computational Resources

Throughout our experiments, we use the Snowflake
Arctic-embed-m 1.5 model to embed queries and
documents for retrieval, which has a size of 109M
parameters (Merrick, 2024).

To better understand the effect of reader ca-
pability, we conduct experiments with GPT-4o-
mini ("gpt-4o-mini-2024-07-18") and GPT-4o
("gpt-4o-2024-11-20") as the reader language
models. OpenAI does not publicly disclose the
number of parameters for these models.

All experiments use greedy decoding for re-
sponse generation. Our computational budget pri-
marily consisted of API calls to OpenAI, with an
estimated total token usage of 2 billion tokens (2B)
across all experiments. Since inference was con-
ducted via API, no local GPUs were used for model
execution.

For retrieval and preprocessing, we used a local
MacBook. The total compute time for retrieval and
data preparation was approximately 12 CPU hours.

A.2 Benchmark Licensing and Usage

The benchmarks used in this study have the follow-
ing license terms:

• ∞Bench: MIT License

• QuALITY: CC BY 4.0

• NarrativeQA: Apache-2.0 License

These datasets have been used strictly in accor-
dance with their intended research purposes, as
specified by their respective licenses. No modifica-
tions were made that would alter their intended
scope or permitted usage. All evaluations con-
ducted in this study fall within standard research
practices, and no dataset derivatives have been de-
ployed outside of a research context.

We did not conduct separate checks for person-
ally identifiable information (PII) or offensive con-
tent beyond the dataset providers’ original curation
efforts. The responsibility for anonymization and
content moderation lies with the original dataset
creators. However, we relied on the fact that these
benchmarks are widely used in research and re-
leased under established licenses, which include
ethical considerations in their curation.

No personal data was stored, processed, or col-
lected as part of this work. Additionally, no dataset

derivatives were created, ensuring that any poten-
tial privacy risks remain within the scope of the
original dataset publication.

A.3 Hyperparameters

In this study, we analyze the impact of retrieval
hyperparameters on RAG performance. Unlike
prior work, we do not train new models but instead
evaluate how different retrieval depth, input token
length, and chunking strategies influence final per-
formance.

The primary hyperparameters studied include
the maximum input length to the reader model. It
varied from 500, 1K, 1.5K, 2K, 4K, 6K, 8K, 10K,
20K, 30K, 40K tokens.

A.4 Parameters for Packages

For sentence segmentation, we use NLTK with its
default model. For evaluation, we use the ’evalu-
ate’ package (evaluate.load()), computing the
following metrics with default parameters:

• F1-score

• BLEU-1, BLEU-4

• METEOR

• ROUGE-L

All implementations are taken from the Hug-
ging Face evaluate library, using the latest
available version at the time of the experiments
(evaluate==0.4.3). No modifications were made
to the implementations.

A.5 Use of AI Assistance

During this research, we used ChatGPT to assist
with coding, debugging, and editing. Specifically:

• Coding and Debugging: ChatGPT was used
as a coding assistant for troubleshooting er-
rors, generating boilerplate code, and refining
scripts.

• Paper Writing and Editing: ChatGPT was
used for grammar suggestions, phrasing im-
provements, and structural refinements of the
paper. All technical content and research con-
tributions were fully authored by the authors.

The final decisions on all implementations and
manuscript edits were made by the authors.
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A.6 ReadAgent

In our experiments, we adapt ReadAgent from
its official public demo notebook with minimal
changes. Since many of the documents in our
benchmarks do not contain reliable paragraph
boundaries, we use individual sentences as the
smallest unit for pre-processing and building Read-
Agent’s “pages”. Following Lee et al. (2024), we
allow ReadAgent to look up between 1 and 6 pages
during inference (the best-performing range in the
original paper). In rare cases where the shortened
pages plus gists still exceeded the token limit, we
omitted those queries from evaluation (for instance,
one document in ∞Bench was dropped).

A.7 RAPTOR

We implement RAPTOR using the official repos-
itory. To match our other systems, we use the
NLTK library for sentence segmentation and the
Snowflake Arctic-embed-m 1.5 embedding model
(Merrick, 2024) to embed and cluster passages. In
all experiments, we use GPT-4o-mini to build the
tree of hierarchical summaries to reduce API costs
(though note that we experiment with both GPT-4o-
mini and GPT-4o as the downstream reader).

A.8 Prompting

Prompt A.1: multiple-choice QA

[Start of Context]:
{context}
[End of Context]
[Start of Question]:
{questionAndOptions}
[End of Question]
[Instructions:] Based on the context provided, select the
most accurate answer to the question from the given op-
tions. Start with a short explanation and then provide your
answer as [[1]] or [[2]] or [[3]] or [[4]]. For example, if you
think the most accurate answer is the first option, respond
with [[1]].

Prompt A.2: QA generation

[Start of Context]:
{context}
[End of Context]
[Start of Question]:
{question}
[End of Question]
[Instructions:] - Answer the question **only** based on
the provided context.
- Keep the answer **short and factual** (preferably be-
tween 1-20 words).
- Do **not** provide explanations or additional details
beyond what is necessary.
- If the answer is **not explicitly stated** in the context,
respond with: "Not found in context."

B Comparing GPT-4o-mini to GPT-4o

Figure 5 provides a side-by-side comparison of
GPT-4o-mini and GPT-4o for the ∞Bench results.

C Full Results

∞Bench Results. Table 1 presents the ∞Bench
results for various systems and baselines using
GPT-4o-mini. Table 2 reports the same results with
GPT-4o.

QuALITY Results. Table 3 presents the QuAL-
ITY results for various systems and baselines us-
ing GPT-4o-mini. Figure 6 illustrates the accuracy
progression as LM input tokens increase. Table 4
reports the same results but with GPT-4o as the
reader.

NarrativeQA Results. Table 5 presents the re-
sults for the NarrativeQA test set across various
systems and baselines, using GPT-4o-mini as the
reader. Some documents contain up to 404K to-
kens, far exceeding the 128K context size, which
is why we do not report a full-document baseline.
Due to issues with the original NarrativeQA down-
load script, three out of 355 stories from the test
set were inaccessible, as their document files were
empty. Consequently, our results are reported for
352 documents and 10,391 questions for all meth-
ods.
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Figure 5: ∞Bench En.MC performance of various multi-stage RAG systems and long-context baselines (mean
± standard deviation over five runs). Comparison between GPT-4o-mini (left) and GPT-4o (right) as the reader.
GPT-4o generally achieves higher accuracy, with DOS RAG peaking at a higher LM input token count, suggesting a
larger effective context size. The ReadAgent results further indicate that GPT-4o can better utilize large context
sizes, reaching performance levels generally comparable to the DOS RAG results despite using an excessive number
of input tokens.

Maximum Retrieval Token Budget

Method 1.5K 5K 10K 20K 30K 40K

Vanilla RAG 69.9% ± 1.2% 73.9% ± 0.6% 76.0% ± 0.5% 77.0% ± 1.0% 77.8% ± 0.4% 77.2% ± 0.4%
DOS RAG 68.9% ± 1.0% 78.9% ± 1.0% 84.1% ± 0.8% 83.6% ± 0.7% 82.5% ± 0.4% 81.6% ± 0.7%

RAPTOR 65.6% ± 1.2% 71.6% ± 1.1% 75.0% ± 1.1% 75.2% ± 0.8% 75.6% ± 0.7% 75.3% ± 1.2%

ReadAgent 76.2% ± 1.0% (Avg. Tokens: 86K)

Table 1: ∞Bench En.MC performance of various systems with GPT-4o-mini (mean ± standard deviation over
five runs). ReadAgent uses its default configuration, and its average tokens-per-query is shown for comparison.
DOS RAG consistently outperforms all other methods for retrieval budgets of 5K tokens and above being the
preferred choice in terms of both performance and efficiency.
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Figure 6: Accuracy progression with increasing LM
input tokens for the QuALITY development set with
GPT-4o-mini (mean ± standard deviation over five runs)
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Maximum Retrieval Token Budget

Method 1.5K 5K 10K 20K 30K 40K

Vanilla RAG 76.2% ± 0.6% 82.6% ± 0.8% 86.0% ± 0.7% 86.9% ± 0.5% 87.8% ± 0.4% 86.6% ± 0.4%
DOS RAG 75.6% ± 0.2% 85.9% ± 0.6% 90.0% ± 0.5% 91.4% ± 0.2% 93.1% ± 0.5% 91.9% ± 0.7%

RAPTOR 73.8% ± 0.3% 79.0% ± 0.4% 82.4% ± 0.5% 84.4% ± 0.6% 85.0% ± 0.2% 85.9% ± 0.4%

ReadAgent 90.3% ± 0.9% (Avg. Tokens: 86K)

Table 2: ∞Bench En.MC performance of various systems with GPT-4o (mean ± standard deviation over five runs).
ReadAgent uses its default configuration, and its average tokens-per-query is shown for comparison. DOS RAG
consistently outperforms all other methods for retrieval budgets of 5K tokens and above being the preferred choice
in terms of both performance and efficiency.

Maximum Retrieval Token Budget

Method 500 1K 1.5K 2K 4K 8K

Vanilla RAG 66.5% ± 0.2% 71.3% ± 0.2% 73.7% ± 0.3% 74.7% ± 0.2% 75.9% ± 0.2% 76.6% ± 0.3%
DOS RAG 68.2% ± 0.3% 73.1% ± 0.3% 75.9% ± 0.4% 77.1% ± 0.4% 79.0% ± 0.1% 81.2% ± 0.2%

RAPTOR 63.9% ± 0.3% 69.7% ± 0.3% 71.0% ± 0.2% 72.9% ± 0.3% 75.3% ± 0.2% 76.3% ± 0.4%

ReadAgent 79.7% ± 0.2% (Avg. Tokens: 4.8K)

Full Document 81.0% ± 0.3% (Avg. Tokens: 5.8K)

Table 3: QuALITY development set performance of various systems with GPT-4o-mini (mean ± standard deviation
over five runs). ReadAgent uses its default configuration, and its average tokens-per-query is shown for comparison.
On QuALITY, prompting with entire documents gives the best accuracy. At 8K tokens, DOS RAG effectively
recovers the full document content and matches that performance; under tighter token budgets, DOS RAG is the
strongest method.

Maximum Retrieval Token Budget

Method 500 1K 1.5K 2K 4K 8K

Vanilla RAG 73.0% ± 0.2% 79.4% ± 0.1% 82.0% ± 0.1% 82.8% ± 0.2% 85.0% ± 0.2% 85.9% ± 0.1%
DOS RAG 74.1% ± 0.3% 81.7% ± 0.3% 84.8% ± 0.1% 86.4% ± 0.1% 88.9% ± 0.2% 90.4% ± 0.3%

RAPTOR 71.8% ± 0.2% 77.0% ± 0.2% 79.6% ± 0.3% 80.9% ± 0.2% 83.7% ± 0.2% 84.9% ± 0.2%

ReadAgent 87.4% ± 0.3% (Avg. Tokens: 4.2K)

Full Document 91.2% ± 0.2% (Avg. Tokens: 5.8K)

Table 4: QuALITY development set performance of various systems with GPT-4o (mean ± standard deviation over
five runs). ReadAgent uses its default configuration, and its average tokens-per-query is shown for comparison.
On QuALITY, prompting with entire documents gives the best accuracy. Under token budgets, DOS RAG is the
strongest method.

32557



Method Token Metric

Avg Spent / Budget F1 BLEU-1 BLEU-4 ROUGE-L METEOR

Vanilla RAG 1.5K / 1.5K 15.1 20.0 3.7 15.6 21.3
5K / 5K 17.9 21.1 4.3 18.4 24.5

10K / 10K 18.8 21.3 4.4 19.3 25.7
19K / 20K 19.2 21.4 4.5 19.8 26.3
28K / 30K 19.4 21.5 4.5 19.9 26.6
35K / 40K 19.5 21.6 4.6 19.9 26.6

DOS RAG 1.5K / 1.5K 16.3 20.4 3.9 16.8 22.5
5K / 5K 20.1 21.7 4.5 20.6 27.0

10K / 10K 21.2 22.2 4.8 21.7 28.5
19K / 20K 22.1 22.6 5.0 22.5 29.6
28K / 30K 22.1 22.7 5.0 22.5 29.8
35K / 40K 22.0 22.7 5.1 22.3 29.6

RAPTOR 1.5K / 1.5K 10.5 18.1 2.9 10.7 16.4
5K / 5K 14.2 19.6 3.5 14.5 20.3

10K / 10K 15.9 20.2 3.9 16.2 22.3
19K / 20K 17.3 20.8 4.2 17.6 23.8
28K / 30K 17.8 20.9 4.3 18.1 24.5
37K / 40K 17.9 21.1 4.4 18.2 24.7

ReadAgent 34K / — 21.0 22.2 4.8 21.4 28.7

Table 5: NarrativeQA test set performance of various systems and metrics with GPT-4o-mini as the reader. For each
method, the token budget and the actual average tokens used per question are shown; actual usage may fall below
the budget when documents are shorter. DOS RAG, with budgets of 20–40K tokens, outperforms all other methods
across all metrics.
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