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Abstract
Video-language models (Video-LLMs) excel
at understanding video content but struggle
with spatial relationships, temporal ordering,
and cross-frame continuity. To address these
limitations, we introduce VideoPASTA
(Preference Alignment with Spatio-Temporal-
Cross Frame Adversaries), a framework that
enhances Video-LLMs through targeted prefer-
ence optimization. VideoPASTA trains mod-
els to distinguish accurate video representa-
tions from carefully crafted adversarial exam-
ples that deliberately violate spatial, tempo-
ral, or cross-frame relationships. With only
7,020 preference pairs and Direct Preference
Optimization, VideoPASTA enables models to
learn robust representations that capture fine-
grained spatial details and long-range tempo-
ral dynamics. Experiments demonstrate that
VideoPASTA is model agnostic and signif-
icantly improves performance, for example,
achieving gains of up to +3.8 percentage points
on LongVideoBench, +4.1 on VideoMME,
and +4.0 on MVBench, when applied to vari-
ous state-of-the-art Video-LLMs. These results
demonstrate that targeted alignment, rather
than massive pretraining or architectural mod-
ifications, effectively addresses core video-
language challenges. Notably, VideoPASTA
achieves these improvements without any hu-
man annotation or captioning, relying solely
on 32-frame sampling. This efficiency makes
our approach a scalable plug-and-play solution
that seamlessly integrates with existing models
while preserving their original capabilities.

1 Introduction

Recent advances in video language models (Video-
LLMs) have enabled efficient video understanding
and reasoning, achieving strong performance on
tasks like captioning and question answering (Li
et al., 2025a; Wang et al., 2022, 2024d; Bai et al.,
2025; Chen et al., 2024c). However, these mod-
els typically rely on large, high-quality annotated
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Figure 1: With just 7k preference pairs, VideoPASTA
outperforms the Qwen2.5-VL (Bai et al., 2025) baseline,
LLaVA-Hound (Zhang et al., 2025), and TPO (Li et al.,
2025b) on MVBench, showing that targeted alignment
surpasses models trained on larger datasets.

datasets and significant computing resources for
training. Instruction tuning has emerged as a way
to reduce data requirements by fine-tuning models
on curated instruction-response pairs (Liu et al.,
2023; Zhang et al., 2024d; Lin et al., 2024; Chen
et al., 2024c; Wang et al., 2024b). While large in-
struction datasets have been generated using mod-
els like GPT-4V (Zhang et al., 2024d), improve-
ments from training on these datasets remain lim-
ited. Video-LLMs still struggle with spatial mis-
alignment, temporal incoherence, and cross-frame
disconnections (Choong et al., 2024; Huang et al.,
2025; Leng et al., 2024; Ma et al., 2024; Gunjal
et al., 2024). Addressing these issues through hu-
man annotation is expensive, as it requires identify-
ing examples with proper grounding and coherence.
This suggests that merely scaling models and data
alone is insufficient. Instead, the core challenge
lies in achieving faithful alignment between model
outputs and video content. Recent work has ap-
plied Direct Preference Optimization (DPO) to im-
prove video-language alignment (Ahn et al., 2024a;
Zhang et al., 2025; Li et al., 2025b; Rafailov et al.,
2023). However, these methods often reinforce
existing strengths through collecting more prefer-
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ence data instead of targeting core weaknesses in
Video-LLMs. They also rely on proprietary mod-
els (Zhang et al., 2025) or video captioning (Li
et al., 2025b), limiting scalability.

This raises a key question: How can we align
Video-LLMs to understand spatial, temporal, and
cross-frame relationships without human annota-
tions, captions, or proprietary models, while re-
maining computationally efficient? To address
this, we introduce VideoPASTA (Preference
Alignment with Spatio-Temporal-Cross Frame
Adversaries), a model-agnostic framework that im-
proves video-language alignment using targeted
preference pairs. VideoPASTA contrasts aligned
(“preferred”) responses with adversarial ones that
capture three common failure modes in video un-
derstanding: (1) spatial misalignment, where re-
sponses misrepresent object relationships and in-
teractions, (2) temporal incoherence, where re-
sponses violate the natural progression of events,
and (3) cross-frame disconnection, where re-
sponses violate object persistence, character consis-
tency, and narrative progression across more distant
parts of a video. By combining DPO with struc-
tured preference data, VideoPASTA directly tackles
these limitations in Video-LLMs. In summary, our
contributions are as follows:

1. We introduce VideoPASTA, a novel, model-
agnostic DPO framework that improves video-
language alignment by addressing spatial mis-
alignment, temporal incoherence, and cross-
frame disconnection, without human annota-
tions, captions, or proprietary models.

2. VideoPASTA sets a new efficiency bench-
mark, achieving strong results using just 7,020
preference pairs, far fewer than prior instruc-
tion tuning (1.3M) or preference datasets
(17k).

3. Extensive evaluations on seven benchmarks
show consistent, model-agnostic gains, with
improvements of up to +3.8 percentage points
on LongVideoBench, +4.1 on VideoMME,
and +4.0 on MVBench.

2 Related Work

Video-LLMs. Despite advances in Video-
LLMs (Li et al., 2024a; Wang et al., 2024b; Chen
et al., 2024c), evaluations (Fu et al., 2025; Zhou
et al., 2025; Liu et al., 2024b) reveal persistent
challenges in three key areas. First, temporal

reasoning, especially in long videos, remains
difficult. Approaches like longer context (Shen
et al., 2024; Zhang et al., 2024b), compression (Li
et al., 2024c; Wang et al., 2024c), and training-free
methods (Yang et al., 2025; Huang et al., 2025)
improve token efficiency but not core understand-
ing, while specialized methods (Chen et al., 2024b;
Ren et al., 2024) demand heavy computation.
Second, spatial misalignment leads to poor object
localization and occlusion handling (Ranasinghe
et al., 2024; Chen et al., 2024a). Third, cross-frame
disconnection disrupts continuity and narrative
coherence (Tan et al., 2024; Huang et al., 2024).
Most methods address only one issue or rely on
large-scale instruction tuning (Wang et al., 2024b;
Zhang et al., 2024d; Lin et al., 2024), which fails to
solve these core alignment problems. VideoPASTA
uses DPO-based training on structured preference
pairs to jointly address temporal, spatial, and
cross-frame failures. By challenging models
across all three dimensions, it achieves more
comprehensive video-language alignment than
conventional instruction tuning.
Video-Language Alignment. While reward mod-
eling (Sun et al., 2024; Ahn et al., 2024b; Wang
et al., 2024a) and self-training methods (Deng
et al., 2024; Zohar et al., 2025; Kulkarni and Fa-
zli, 2025b,a) aim to improve video-language align-
ment and reduce the need for manual annotations,
existing approaches still face major limitations.
Prior DPO applications, such as LLaVA-Hound-
DPO (Zhang et al., 2025) and i-SRT (Ahn et al.,
2024a), often depend on proprietary models to gen-
erate training data, require large-scale preference
datasets (e.g., 17k pairs), and focus mainly on text-
level alignment rather than visual grounding. Other
methods, like Temporal Preference Optimization
(TPO) (Li et al., 2025b), target only one dimen-
sion, such as temporal reasoning, using up to 10k
pairs and relying on intermediate captioning, while
overlooking spatial and cross-frame aspects. This
highlights the need for a unified framework that ef-
ficiently addresses all three key failure modes with-
out relying on costly dependencies. VideoPASTA
addresses this gap by generating just 7k carefully
designed preference pairs that explicitly challenge
a model’s spatial, temporal, and cross-frame under-
standing. This “quality over quantity” approach
avoids the need for human annotations, captions,
or proprietary models, delivering a stronger and
more efficient learning signal for comprehensive
Video-LLM alignment.
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Figure 2: Overview of VideoPASTA . For each aligned query, we generate three types of targeted adversarial
examples: (1) Spatial Misalignment, which intentionally distorts object positions or relationships (e.g., misplacing
the plants relative to the person); (2) Temporal Incoherence, which violates event order (e.g., describing sequential
actions as occurring simultaneously); and (3) Cross-Frame Disconnection, which introduces incorrect links across
distant frames (e.g., misrepresenting location changes). We filter these pairs using Qwen2.5-32B (Yang et al., 2024)
to ensure quality and use them to train the model via DPO, optimizing for a larger likelihood gap between aligned
and adversarial responses. → trainable, → frozen.

3 VideoPASTA

VideoPASTA is a DPO-based framework designed
to improve Video-LLM alignment by addressing
three key failure modes: spatial misalignment, tem-
poral incoherence, and cross-frame disconnection.
It optimizes over a structured preference dataset
𝐷 = {(𝑉, 𝑞, 𝑟+, 𝑟−)}, where 𝑉 is the input video, 𝑞
is a query, 𝑟+ is the aligned (preferred) response,
and 𝑟− is an adversarial (misleading) response that
introduces deliberate misalignment.

For each input video, we generate an aligned
query 𝑞. We then produce a aligned response 𝑟+

using densely sampled frames (32fps) and an adver-
sarial response 𝑟− using sparsely sampled frames
(1fps), elicited by a deliberately flawed adversar-
ial query. This adversarial query is only a data
generation tool; the final training triplet remains
(𝑉, 𝑞, 𝑟+, 𝑟−), pairing the adversarial response with
the original aligned query. The 32:1 sampling ra-
tio is a design choice to ensure factual accuracy
in aligned responses while inducing errors in ad-

versarial ones. Training on these pairs via DPO
improves the model’s video-language alignment.
Figure 2 shows the full pipeline. All prompts are
provided in the Appendix (Figures 9, 10, 11, and
12).

3.1 Spatial Misalignment

We create targeted preference pairs that focus on
spatial alignment.
Query Generation. We generate a variety of spa-
tial queries covering key aspects of spatial under-
standing, including occlusion (e.g., “Which ob-
ject is partially hidden?”), depth perception (e.g.,
“Which item appears closest to the camera?”), rel-
ative positioning (e.g., “How many objects are
present in the left third vs. the right third of
the frame?”), foreground-background relationships,
and frame layout (e.g., “Which objects are near the
top edge vs. the bottom edge?”).
Response Generation. We generate aligned re-
sponses from videos sampled at their native frame
rate to capture fine-grained spatial details. This
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ensures that the generated aligned responses accu-
rately reflect the true spatial relationships in the
video. Corresponding adversarial responses are
generated using prompts specifically designed to
induce spatial errors (e.g., describing occluded ob-
jects as fully visible or ignoring depth cues).

3.2 Temporal Incoherence
To enhance temporal reasoning, we create pref-
erence pairs that focus on the model’s temporal
coherence.
Query Generation. We generate queries focused
on key temporal aspects, including event ordering
(e.g., “What occurs first?”), action boundaries (e.g.,
“Does the person complete one task before starting
the next?”), transition points (e.g., “When does the
subject switch activities?”), and causality (e.g., “Is
the second event a direct result of the first?”).
Response Generation. We generate aligned re-
sponses that accurately describe the sequence of
events, effectively capturing transitions, dependen-
cies, and causal relationships. Corresponding ad-
versarial responses are generated using prompts
that induce temporal distortions (e.g., describing
sequential actions as simultaneous or merging dis-
tinct events).

3.3 Cross-Frame Disconnection
Robust video understanding requires capturing
long-range cross-frame relationships. We create
targeted preference pairs that focus on these depen-
dencies.
Query Generation. We generate queries focused
on cross-frame dependencies, including object con-
tinuity (e.g., “Does the same object reappear in
both the opening and closing scenes?”) and narra-
tive links (e.g., “Do early events foreshadow later
developments?”).
Response Generation. We generate aligned re-
sponses that accurately reflect object transforma-
tions, character continuity, setting changes, and
narrative flow. Adversarial responses are generated
using prompts that intentionally break these con-
tinuities (e.g., describing “a new red car appears”
when it is the same vehicle from a different angle).

3.4 Preference Data Filtering
We generate three adversarial examples for each
failure mode per query and use an open-source
LLM, Qwen2.5-32B (Yang et al., 2024) as a
lightweight verification step to ensure the adversar-
ial examples are genuinely incorrect. We prompt

Qwen2.5-32B with a textual comparison task to
verify that each adversarial example introduces a
deliberate misalignment rather than simply rephras-
ing the correct answer. Adversaries that are too
similar to the aligned samples or lack clear contra-
dictions are discarded and regenerated. Similarly,
we perform a “sanity check” on aligned responses
to ensure they correctly align with the queries with-
out errors. This filtering process creates preference
pairs that accurately represent the targeted failure
modes, enabling more precise alignment during
DPO.

3.5 Training Process
VideoPASTA leverages structured preference pairs
to address distinct failure modes in video under-
standing through DPO. We begin by partitioning
the preference dataset D = {(𝑉, 𝑞, 𝑟+, 𝑟−)} into
three subsets: D𝑠, D𝑡 , and D𝑐, corresponding to
spatial, temporal, and cross-frame alignment, re-
spectively. For a video-language model 𝑀𝜃 , we
define the DPO loss for a single preference pair as:

Δ(𝑉, 𝑞, 𝑟+, 𝑟−) = log 𝑝𝜃 (𝑟+ | 𝑉, 𝑞)
− log 𝑝𝜃 (𝑟− | 𝑉, 𝑞),

LDPO(𝑉, 𝑞, 𝑟+, 𝑟−) = − log𝜎
(
𝜆Δ(𝑉, 𝑞, 𝑟+, 𝑟−)

)
,

(1)
where 𝜎 is the sigmoid function and 𝜆 is a scaling
factor. We then compute the DPO loss for each
subset of preference pairs, weighted by 𝛼, 𝛽, and
𝛾 for spatial, temporal, and cross-frame alignment,
respectively. The overall training objective is:

L = 𝛼 ED𝑠

[LDPO
] + 𝛽 ED𝑡

[LDPO
]

+ 𝛾 ED𝑐

[LDPO
]
.

(2)

This formulation allows us to adjust the model’s
focus on different aspects of video-language align-
ment during training.

4 Experiments and Evaluation

For training, we sample 3,000 videos from Ac-
tivityNet (Yu et al., 2019), whose diversity of
203 complex activities provides a strong founda-
tion for learning the fundamental reasoning skills
our framework targets. This dataset is not part
of our evaluation benchmarks, ensuring our re-
sults reflect true generalization. We use a large
model (InternVL2.5-38B) to generate queries but
all aligned and adversarial responses are gener-
ated by the smaller target models themselves. This
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Model TempCompass
(Avg.)

PerceptionTest
(val_mc)

NeXTQA
(mc_test) MVBench MLVU

(dev)
LongVideoBench

(val_v)
VideoMME

(w/o sub)

State-of-the-Art Models
VideoLLaMA2† (Cheng et al., 2024) 43.4 51.4 - 54.6 35.5 - 47.9
Kangaroo† (Liu et al., 2024a) - - - 61.0 61.0 54.8 56.0
LLaVA-NeXT-Video† (Zhang et al., 2024c) 53.0 48.8 53.5 53.1 - 49.1 46.5
LongVA† (Zhang et al., 2024b) - - - - 58.8 51.3 52.6
Qwen2-VL (Wang et al., 2024b) 68.9 62.3 75.7 64.9 57.5 55.6 55.3
LLaVA-Video (Zhang et al., 2024d) 66.4 67.9 74.2 58.6 66.5 58.2 62.4

Off-the-Shelf Preference-Optimized Models
LLaVA-Hound-DPO (Zhang et al., 2025) 55.5 45.1 61.6 36.6 41.1 36.7 34.2
i-SRT (Ahn et al., 2024a) 56.0 47.0 63.0 36.3 39.9 38.2 34.7
LLaVA-Video-TPO (Li et al., 2025b) 66.6 66.3 77.8 56.7 66.3 58.3 62.4

Model-Agnostic Preference Optimization using VideoPASTA
LLaVA-NeXT-Interleave (Baseline) 54.1 51.2 67.0 46.5 52.5 44.8 48.3

+ SFT 54.3 51.5 67.4 46.8 52.7 45.0 48.5
+ Hound-DPO (Zhang et al., 2025) 51.7 (−2.4) 49.5 (−1.7) 65.8 (−1.2) 44.3 (−2.2) 50.2 (−2.3) 42.5 (−2.3) 46.7 (−1.6)
+ TPO (Li et al., 2025b) 54.3 (+0.2) 52.4 (+1.2) 68.5 (+1.5) 47.9 (+1.4) 53.6 (+1.1) 46.5 (+1.7) 49.6 (+1.3)
+ VideoPASTA 56.4 (+2.3) 53.8 (+2.6) 70.1 (+3.1) 49.0 (+2.5) 55.8 (+3.3) 47.9 (+3.1) 51.4 (+3.1)

LLaVA-OneVision (Baseline) 64.5 57.1 79.3 56.7 64.9 56.3 58.2
+ SFT 64.6 57.4 79.3 56.9 65.1 56.5 58.1
+ Hound-DPO (Zhang et al., 2025) 63.2 (−1.3) 55.8 (−1.3) 78.1 (−1.2) 55.3 (−1.4) 63.2 (−1.7) 54.8 (−1.5) 56.9 (−1.3)
+ TPO (Li et al., 2025b) 65.6 (+1.1) 58.4 (+1.3) 80.6 (+1.3) 57.9 (+1.2) 65.8 (+0.9) 57.5 (+1.2) 59.2 (+1.0)
+ VideoPASTA 67.2 (+2.7) 60.3 (+3.2) 81.8 (+2.5) 59.1 (+2.4) 67.5 (+2.6) 58.5 (+2.2) 60.1 (+1.9)

InternVL2.5 (Baseline) 68.3 62.2 77.0 69.8 59.5 52.9 57.9
+ SFT 68.2 62.3 77.4 70.4 59.4 53.0 58.1
+ Hound-DPO (Zhang et al., 2025) 66.8 (−1.5) 61.0 (−1.2) 74.8 (−2.2) 64.2 (−5.6) 60.2 (+0.7) 54.3 (+1.4) 54.6 (−3.3)
+ TPO (Li et al., 2025b) 68.2 (−0.1) 62.0 (−0.2) 77.2 (+0.2) 68.8 (−1.0) 61.5 (+2.0) 58.1 (+5.2) 60.0 (+2.1)
+ VideoPASTA 71.9 (+3.6) 66.1 (+3.9) 80.7 (+3.7) 73.8 (+4.0) 63.4 (+3.9) 58.1 (+5.2) 62.0 (+4.1)

Qwen2.5-VL (Baseline) 71.7 68.6 75.8 65.2 68.7 60.7 62.2
+ SFT 71.8 69.1 77.2 65.5 68.8 60.9 62.5
+ Hound-DPO (Zhang et al., 2025) 70.3 (−1.4) 67.6 (−1.0) 76.1 (+0.3) 65.7 (+0.5) 66.4 (−2.3) 56.3 (−4.4) 63.2 (+1.0)
+ TPO (Li et al., 2025b) 71.5 (−0.2) 69.0 (+0.4) 77.6 (+1.8) 65.3 (+0.1) 68.9 (+0.2) 59.2 (−1.5) 64.2 (+2.0)
+ VideoPASTA 72.3 (+0.6) 69.4 (+0.8) 77.3 (+1.5) 66.3 (+1.1) 69.2 (+0.5) 61.5 (+0.8) 64.1 (+1.9)

Table 1: Comprehensive evaluation of VideoPASTA against leading (7B) video understanding models. The
best scores are in bold, and the second-best scores are underlined. Results marked with † are from the original
papers; all other results are reproduced using LMMs-Eval (Zhang et al., 2024a).

setup ensures models learn to refine their own out-
puts rather than simply distilling knowledge from
a more capable model. Our structured adversarial
sampling pipeline initially generates 90,000 prefer-
ence pairs, which after rigorous filtering (details in
Appendix §E.1), are reduced to 7,020 high-quality
pairs. We fine-tune models using the SWIFT (Zhao
et al., 2025) framework for efficient adaptation.
All training and evaluations are performed on four
NVIDIA L40S GPUs (48GB each), with a maxi-
mum input of 32 frames per video to prevent CUDA
out-of-memory errors. We employ LoRA (Hu et al.,
2022) with rank 𝑟 = 8 and 𝛼𝐿𝑜𝑅𝐴 = 8. For DPO,
we set the scaling factor 𝜆 to 0.1. The overall train-
ing loss (Eq.2) combines three components: spatial
(𝛼𝑆 = 0.4), temporal (𝛽𝑇 = 0.4), and cross-frame
(𝛾𝐶 = 0.2) alignment. We apply VideoPASTA
to four diverse foundation models: Qwen2.5-VL
(7B) (Bai et al., 2025), LLaVA-NeXT-Interleave
(7B) (Li et al., 2025a), LLaVA-OneVision (7B) (Li
et al., 2024a), and InternVL2.5 (8B) (Chen et al.,

2024c). To ensure fair model-agnostic compar-
isons, we limit training data to 7,020 high-quality
preference pairs for all models. This corresponds
to the smallest filtered set (from LLaVA-NeXT-
Interleave), with larger sets from other models
subsampled accordingly to maintain consistency
in data quantity. Evaluation is conducted using
LMMs-Eval (Zhang et al., 2024a) to ensure fair
comparisons with prior work.

The Appendix contains additional experiments
and information, including: DPO training dy-
namics (§A), preference learning on smaller
(1B-3B) models (§B), adversarial robustness of
VideoPASTA (§C), Qwen2.5-VL-specific ablations
(§D), full dataset statistics and adversarial samples
(§E), qualitative examples (§F), and all prompt tem-
plates (§G).
Benchmarks. We evaluate on general video un-
derstanding benchmarks: TempCompass (Liu
et al., 2024b) (temporal understanding), Percep-
tionTest (Patraucean et al., 2024) (visual percep-
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Query: What is the spatial relationship between the person and the aircraft during takeoff?

Qwen2.5-VL: The person is leaving the aircraft by jumping from the door.

VideoPASTA : : The person is clinging to the aircraft by gripping the doorframe, with the runway below them.

Query: What action occurs after the green icing has been applied as a base layer but before the white icing?

Qwen2.5-VL: After green icing is applied, the next action is to smooth out the icing with white icing.

VideoPASTA : After adding icing to base layer, the next action performed is to add additional details to the green icing.

Query: How does the initial disclaimer about physics being gross relate to the illustrations of stick figures under a rain cloud, one confused and another sweating, 

and the final depiction of distress?

Qwen2.5-VL: The disclaimer is unrelated to the illustrations. The scenes are disconnected, showing no coherent narrative or progression.

VideoPASTA : The disclaimer sets up an explanation of unpleasant physical phenomena. The illustrations show a progression from confusion to sweating due

to heat stress, culminating in distress. This implies the narrative explains the severe effects of heat exposure.

Figure 3: Qualitative comparison of VideoPASTA against Qwen2.5-VL (Bai et al., 2025). Examples show
VideoPASTA improves (1) Spatial reasoning (aircraft interaction), (2) Temporal understanding (icing sequence),
and (3) Cross-frame reasoning (narrative connection in stick figures), where the baseline fails.

tion), NeXTQA (Xiao et al., 2021) (compositional
reasoning), and MVBench (Li et al., 2024b) (multi-
task reasoning). For long-form evaluation, we
use LongVideoBench (Wu et al., 2024) (hour-long
videos), MLVU (Zhou et al., 2025) (multi-task, 3-
minute to 2-hour videos), and VideoMME (Fu et al.,
2025) (6 visual domains, 30 subfields, 11-second
to 1-hour videos).

4.1 Results

We compare VideoPASTA with (1) the original
foundation models listed above, (2) other state-
of-the-art models, and (3) off-the-shelf models
enhanced via preference optimization. Table 1
presents the evaluation results. Figure 3 shows qual-
itative examples of how VideoPASTA improves
spatial, temporal, and cross-frame reasoning.
VideoPASTA enhances all foundation models.
VideoPASTA performs well across various foun-
dation models, showing strong generalizability
and consistent performance improvements. For
instance, VideoPASTA combined with Qwen2.5-
VL achieves top scores on TempCompass, Per-
ceptionTest, MLVU, and LongVideoBench. Sim-
ilarly, VideoPASTA with LLaVA-OneVision at-
tains the highest score on NeXTQA. In addition,
VideoPASTA with InternVL2.5 achieves the best
result on MVBench and improves the VideoMME
score by +4.1 percentage points. These results

show that VideoPASTA’s targeted alignment helps
a wide range of Video-LLMs. In contrast, simple
supervised fine-tuning (SFT) using only aligned
responses leads to only small improvements. This
highlights the importance of training with adversar-
ial preferences through DPO.
Comparison with State-of-the-Art. Compared to
other state-of-the-art models listed in Table 1,
VideoPASTA combined with Qwen2.5VL outper-
forms all models on all benchmarks, surpass-
ing strong baselines like Qwen2-VL and LLaVA-
Video. Key improvements include a +5.9 percent-
age point gain in temporal reasoning on Temp-
Compass and a +1.5 increase on PerceptionTest
over LLaVA-Video, which is instruction-tuned on
1.3M SFT pairs. VideoPASTA also shows strong
performance on long-form video tasks, achieving
+3.3 percentage point gain on LongVideoBench,
+2.7 on MLVU, and +1.7 on VideoMME compared
to LLaVA-Video. Similarly, when paired with
the other three foundation models, VideoPASTA
outperforms SOTA models on several, though
not all, benchmarks. These results highlight
VideoPASTA’s ability to elevate smaller models
to SOTA performance through targeted and data-
efficient training.
Outperforming Preference-Optimized Mod-
els. Compared to preference-optimized models,
VideoPASTA combined with Qwen2.5VL outper-
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Figure 4: Performance vs. # of Preference Pairs across six benchmarks. VideoPASTA achieves superior results
with only 7k pairs compared to TPO (Li et al., 2025b) (10k pairs) and Hound-DPO (Zhang et al., 2025) (17k pairs).
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Figure 5: Information gain analysis across three representative benchmarks. Each bar represents performance
improvement per 1k preference pairs, calculated as (final score - baseline score) / # of pairs in thousands.

forms LLaVA-Hound-DPO (Zhang et al., 2025)
and i-SRT (Ahn et al., 2024a) on all seven bench-
marks and surpasses LLaVA-Video-TPO (Li et al.,
2025b) on six out of seven benchmarks (except
NeXTQA) by a significant margin. On the other
hand, VideoPASTA paired with LLaVA-OneVision
and InternVL2.5 outperforms LLaVA-Video-TPO
on NeXTQA. These improvements highlight that
our multi-dimensional approach, which tackles crit-
ical failure modes in Video-LLMs, addresses fun-
damental challenges in prior work while requiring
minimal resources.

4.2 Ablation Studies

How efficient is VideoPASTA compared to other
preference optimization approaches? As shown
in Figure 4, VideoPASTA outperforms TPO (Li
et al., 2025b) (10k pairs, 96 frame sampling) and
LLaVA-Hound-DPO (Zhang et al., 2025) (17k
pairs) using only 7k preference pairs, highlight-
ing its significantly higher efficiency. In addition,
VideoPASTA maintains stable performance as the

number of training pairs increases, whereas other
methods occasionally show performance drops
on certain benchmarks with more data. This fo-
cus on “quality over quantity” is further high-
lighted by the information gain per 1k pairs,
shown in Figure 5. For instance, on MVBench,
VideoPASTA is about 16× more efficient than TPO
and 5.3× more efficient than Hound-DPO. These
efficiency gains translate into tangible performance
improvements: when paired with InternVL2.5,
VideoPASTA boosts MVBench score by +4.0 per-
centage points, while Hound-DPO leads to a sub-
stantial -5.6 drop, and TPO results in a -1.0 de-
crease. These results show that our structured ad-
versarial examples targeting specific failure modes
create a more robust learning signal than larger,
more generic, or proprietary model-dependent pref-
erence datasets.

Can VideoPASTA enable self-improvement us-
ing queries and responses generated by the
target model itself? Table 2(a) shows that
VideoPASTA enables self-improvement even with-
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Target Model TempCompass Perception Test NeXTQA MVBench MLVU LongVideoBench VideoMME

(a) VideoPASTA with Self-Generated Preferences

Qwen2.5-VL-7B 71.2 (−0.5) 68.9 (+0.3) 76.2 (+0.4) 65.6 (+0.4) 68.8 (+0.1) 60.9 (+0.2) 63.0 (+0.8)
InternVL2.5-8B 69.2 (+0.9) 63.4 (+1.2) 77.5 (+0.5) 70.1 (+0.3) 60.0 (+0.5) 53.7 (+0.8) 58.5 (+0.6)

(b) VideoPASTA with Preferences from Auxiliary Models

Qwen2.5-VL-7B
Query: InternVL2.5-38B
Response: InternVL2.5-8B

71.9 (+0.2) 69.1 (+0.5) 76.7 (+0.9) 65.9 (+0.7) 69.0 (+0.3) 61.2 (+0.5) 63.5 (+1.3)

InternVL2.5-8B
Query: InternVL2.5-38B
Response: Qwen2.5-VL-7B

70.2 (+1.9) 64.5 (+2.3) 78.4 (+1.4) 71.5 (+1.7) 62.3 (+2.8) 55.6 (+2.7) 60.8 (+2.9)

Table 2: Impact of the source of preference generation. (a) The target model generates preference pairs without
relying on any external auxiliary models. (b) Two auxiliary models are used to generate query-response (preference)
pairs for DPO training the target model. Performance changes (+ / −) are relative to respective DPO target model
baselines in Table 1.

Method # of Pref. Temporal Spatial Action Object

Baseline Performance
Qwen2.5-VL - 35.0 63.6 54.0 55.9

Baseline Preference Datasets
w/ TPO 10k 47.5 (+12.5) 65.1 (+1.5) 54.3 (+0.3) 54.8 (−1.1)
w/ Hound-DPO 17k 42.2 (+7.2) 61.7 (−1.9) 52.1 (−1.9) 55.5 (−0.4)

VideoPASTA: Targeting Single Failure Modes
VideoPASTA (Temporal Only) 2.3k 44.0 (+9.0) 67.1 (+3.5) 49.2 (−4.8) 51.3 (−4.6)
VideoPASTA (Spatial Only) 2.3k 40.1 (+5.1) 74.8 (+11.2) 55.0 (+1.0) 55.4 (−0.5)
VideoPASTA (Cross-Frame Only) 2.3k 43.3 (+8.3) 66.8 (+3.2) 54.9 (+0.9) 57.2 (+1.3)

VideoPASTA 7k 45.2 (+10.2) 78.6 (+15.0) 56.1 (+2.1) 58.4 (+2.5)

Table 3: Effect of targeted failure modes on
VideoMME tasks. Gains/losses relative to baseline
Qwen2.5-VL.

out an external auxiliary model. When target mod-
els like Qwen2.5-VL-7B or InternVL2.5-8B gener-
ate their own query-response (preference) pairs for
DPO alignment, they still achieve consistent per-
formance improvements. For example, Qwen2.5-
VL using self-generated queries and responses im-
proves by +0.4 percentage points on MVBench
and +0.8 on VideoMME compared to its baseline.
This result is significant as it demonstrates a fully
self-improving loop where no external ‘teacher’
model is used. The consistent gains (e.g., +0.8
on VideoMME for Qwen2.5-VL) confirm that the
framework’s effectiveness stems from our targeted
alignment methodology itself, proving that the
model is learning to correct its own failures rather
than merely distilling knowledge.
Can VideoPASTA’s preference signals gener-
alize when the query-response generators and
the DPO target model are different? Table 2(b)
shows that VideoPASTA’s preference signals gen-
eralize well, even when the query-response gener-
ators differ from the target model. For instance,
InternVL2.5-8B improves by +2.9 percentage

points on VideoMME and +2.8 on MLVU when
trained on preferences generated by InternVL-38B
and Qwen2.5-VL-7B. This suggests that the target
model does not rely on the generation style of any
specific model, proving it learns transferable rules
about video understanding rather than simply mem-
orizing the patterns of one particular preference
generator.
What is the advantage of VideoPASTA’s three-
dimensional adversarial preferences compared
to narrower or more generic preference data
generation approaches? Table 3 shows that each
failure mode (spatial, temporal, and cross-frame)
in our adversarial sampling pipeline provides dis-
tinct benefits. Training only with temporal samples
greatly improves temporal reasoning (+9.0 percent-
age points) but harms action (-4.8) and object (-4.6)
reasoning. Similarly, training exclusively on spatial
samples boosts spatial reasoning the most (+11.2)
but reduces object reasoning. Combining all three
failure modes delivers the best overall performance,
with substantial improvements in temporal (+10.2),
spatial (+15.0), action (+2.1), and object (+2.5) rea-
soning. In contrast, applying existing preference
data from TPO or LLaVA-Hound-DPO shows sub-
optimal effects. TPO improves temporal reasoning
(+12.5) but worsens object reasoning, while Hound-
DPO’s data significantly reduces spatial and ac-
tion scores. These results confirm that adversarial
sampling targeting multiple failure modes provides
complementary benefits, leading to more compre-
hensive video-language alignment than relying on
any single mode or generic preference data alone.
How well does VideoPASTA generalize to un-
seen and challenging video domains? To validate
the generalization of our adversarial alignment,
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Model MovieChat EgoSchema

LLaVA-NeXT-Interleave
Baseline 40.0 51.0
+ VideoPASTA 41.1 (+1.1) 51.9 (+0.9)

LLaVA-OneVision
Baseline 44.0 64.0
+ VideoPASTA 45.6 (+1.6) 65.0 (+1.0)

InternVL2.5
Baseline 46.8 52.0
+ VideoPASTA 47.4 (+0.6) 53.6 (+1.6)

Qwen2.5-VL
Baseline 44.2 57.6
+ VideoPASTA 46.1 (+1.9) 58.1 (+0.5)

Table 4: Cross-Domain Generalization to Unseen
Domains. VideoPASTA demonstrates consistent per-
formance gains on movie and egocentric video bench-
marks.

we evaluate VideoPASTA on challenging, unseen
video domains. As shown in Table 4, VideoPASTA
consistently improves performance across all foun-
dation models, boosting scores by up to +1.9 per-
centage points on MovieChat (Song et al., 2024)
and +1.6 on EgoSchema (Mangalam et al., 2023).
Notably, these gains are achieved even though train-
ing occurs exclusively on ActivityNet. This result
shows that by addressing fundamental reasoning
failures in spatial, temporal, and cross-frame di-
mensions, we foster more robust generalization,
allowing the model to adapt to diverse video types
without domain-specific fine-tuning.
How does improving high-level reasoning affect
lower-level perception? A core design choice of
VideoPASTA is to target three high-level reason-
ing failures, hypothesizing that this will also en-
hance lower-level perceptual abilities. We validate
this by analyzing performance on the sub-tasks of
the MVBench (Li et al., 2024b) benchmark. As
shown in Table 5, our approach improves perfor-
mance on 8 out of 9 action and attribute sub-tasks.
VideoPASTA achieves substantial gains of +12.0
percentage points in Action Localization and +7.0
in Action Count. These results provide strong em-
pirical evidence that our strategy of correcting fun-
damental reasoning failures leads to a more holistic
alignment, enhancing not just abstract understand-
ing but also the model’s core perceptual capabilities.

How well do adversarial examples target their
intended failure modes? We validate the accuracy
of our adversarial data generation using GPT-4o
(prompt in Appendix, Figure 15) to judge whether
200 randomly sampled adversarial examples cor-

MVBench Task Qwen2.5-VL Qwen2.5-VL + VideoPASTA Improvement

Action-Related Tasks
Action Sequence 79.5 80.5 +1.0
Action Prediction 67.5 67.0 -0.5
Action Antonym 87.0 89.5 +2.5
Fine-grained Action 49.5 52.5 +3.0
Unexpected Action 80.5 82.5 +2.0
Action Localization 55.0 67.0 +12.0
Action Count 46.5 53.5 +7.0

Attribute-Related Tasks
State Change 58.0 62.0 +4.0
Moving Attribute 90.5 92.0 +1.5

Table 5: MVBench Sub-task Performance Break-
down. Improvements on lower-level perceptual tasks
support our design rationale of targeting high-level rea-
soning failures.

Failure Mode Targeting Accuracy (%)

Spatial Misalignment 96.1
Temporal Incoherence 92.4
Cross-Frame Disconnection 88.3

Average 92.3

Table 6: Failure Mode Targeting Accuracy by Cate-
gory.

rectly induced their intended failure mode. As de-
tailed in Table 6, our method achieves high tar-
geting accuracy: 96.1% for spatial misalignment,
92.4% for temporal incoherence, and 88.3% for
cross-frame disconnection. This result confirms
that our prompt-based strategy effectively gener-
ates varied and targeted examples that provide a
strong learning signal for DPO.

5 Conclusion

We introduce VideoPASTA, a DPO-based frame-
work that improves Video-LLMs via structured ad-
versarial sampling targeting spatial, temporal, and
cross-frame misalignments. Using just 7,020 pref-
erence pairs, without human supervision or video
captions, our model-agnostic approach achieves
significant gains across seven benchmarks with ef-
ficient 32-frame sampling. VideoPASTA demon-
strates that targeted adversarial examples enable
more effective learning than generic instruction
tuning. While individual failure modes enhance
specific capabilities, combining all three leads
to broader and more comprehensive video under-
standing. This strategy reduces reliance on large-
scale datasets, promoting resource-efficient video-
language alignment. Future work can explore better
evaluation metrics for model reasoning.
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Limitations

While VideoPASTA demonstrates significant ad-
vancements, certain aspects warrant future explo-
ration. The quality and diversity of the generated
preference pairs depend on the capabilities of the
models used in our pipeline (i.e., query generator,
response generator, and verifier). Potential biases
or limitations in these foundational models could
subtly affect the preference dataset.
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Appendix

A DPO Training Dynamics

Figure 6 shows the DPO training process for
Qwen2.5-VL. The model quickly learns to distin-
guish between aligned responses (𝑟+) and adversar-
ial ones (𝑟−), as shown by the growing gap between
the chosen rewards (green, increasing) and the re-
jected rewards (red, generally decreasing). At the
same time, reward accuracy (blue) rises rapidly and
stabilizes around 70-75%, indicating a consistent
preference for well-grounded responses over those
with targeted misalignments. This demonstrates
the effectiveness of our DPO-based alignment ap-
proach.

B Preference Learning with VideoPASTA
on Small Models

To further assess the broad applicability and ef-
ficiency of VideoPASTA, we evaluate its perfor-
mance on a range of smaller foundational mod-
els, with parameters varying from 1B to 3B. The
results, presented in Table 7, demonstrate that
VideoPASTA consistently provides performance
uplifts even for these more compact architectures.
For instance, when applied to Qwen2-VL (2B),
VideoPASTA improves scores across all seven
benchmarks, such as a +1.7 percentage point gain
on MVBench (from 60.8 to 62.5) and +1.1 on
VideoMME (from 50.1 to 51.2). Similarly, In-
ternVL (1B) + VideoPASTA sees gains like +1.3
on MVBench and +0.5 on VideoMME.

These consistent improvements on smaller mod-
els highlight several advantages of VideoPASTA’s
targeted adversarial alignment. Firstly, it highlights
that our novel data curation strategy, focusing on
specific failure modes (spatial, temporal, cross-
frame), provides a learning signal that is effective
even for models with lower capacity. Secondly,
the ability to boost these smaller models demon-
strates that VideoPASTA is not solely reliant on
the extensive pre-existing knowledge of very large
foundation models to achieve its gains but can in-
still more robust visual reasoning directly. This
reinforces the idea that the 7k targeted preference
pairs efficiently address core weaknesses, offering
a resource-friendly path to enhancing Video-LLMs,
making video understanding capabilities more ac-
cessible.
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Figure 6: DPO training converges on well-grounded
responses.

C Adversarial Robustness

To evaluate VideoPASTA’s robustness against fail-
ure modes, we test 100 videos from LLaVA-
Video (Zhang et al., 2024d) using GPT-4o (OpenAI,
2024) (prompt provided in Appendix, Figure 13) to
generate both adversarial questions (unanswerable
queries) and adversarial options (where “None of
the Above” is correct) per failure mode. As shown
in Table 8, VideoPASTA significantly outperforms
baselines across all categories, with the most sub-
stantial gains in temporal reasoning (+14.5 per-
centage points). This improved robustness stems
directly from our training approach, by exposing
the model to targeted adversarial examples during
preference optimization, VideoPASTA learns to
recognize and reject similar misleading inputs dur-
ing inference. Unlike generic preference optimiza-
tion, our structured adversarial sampling creates
a more discriminative model capable of identify-
ing spatial inconsistencies, temporal contradictions,
and cross-frame disconnections. GPT-4o was also
used to evaluate model responses (prompt provided
in Appendix, Figure 14), specifically identifying
rejection phrases like “cannot be answered" and
“insufficient information" when models correctly
recognized adversarial inputs.

D Qwen2.5-VL Specific Ablations

The following ablations are performed using
Qwen2.5-VL as the target model to understand the
impact of specific hyperparameter choices within
the VideoPASTA framework when applied to this
backbone:

D.1 DPO Weight Ratio Analysis

We explore the impact of different weighting
schemes for the DPO loss components (spatial:𝛼,
temporal:𝛽, cross-frame:𝛾) on Qwen2.5-VL, de-
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Model TempCompass PerceptionTest NeXTQA MVBench MLVU LongVideoBench VideoMME

Qwen2-VL (2B) 62.0 53.0 69.1 60.8 51.3 46.6 50.1
+ VideoPASTA 63.6 (+1.6) 54.4 (+1.4) 70.6 (+1.5) 62.5 (+1.7) 51.9 (+0.6) 47.7 (+1.1) 51.2 (+1.1)

Qwen2.5-VL (3B) 66.6 63.1 74.9 63.5 65.9 55.8 61.2
+ VideoPASTA 67.3 (+0.7) 63.9 (+0.8) 75.6 (+0.7) 64.5 (+1.0) 66.7 (+0.8) 56.0 (+0.2) 61.8 (+0.6)

InternVL2.5 (1B) 41.6 55.0 65.3 63.5 55.5 45.4 49.5
+ VideoPASTA 42.5 (+0.9) 55.7 (+0.7) 66.4 (+1.1) 64.8 (+1.3) 56.1 (+0.6) 45.7 (+0.3) 50.0 (+0.5)

InternVL2.5 (2B) 47.0 57.3 68.4 65.9 56.2 48.0 53.0
+ VideoPASTA 48.2 (+1.2) 58.1 (+0.8) 69.4 (+1.0) 67.3 (+1.4) 56.9 (+0.7) 48.5 (+0.5) 54.3 (+1.3)

Table 7: Preference Learning with VideoPASTA on small models.

Model Spatial Misalignment Temporal Incoherence Cross-Frame Disconnection

Adv. Question (%) Adv. Options (%) Adv. Question (%) Adv. Options (%) Adv. Question (%) Adv. Options (%)

Qwen2.5-VL (Bai et al., 2025) 38.4 42.6 35.2 39.5 31.8 36.7
LLaVA-Hound-DPO (Zhang et al., 2025) 39.2 (+0.8) 43.1 (+0.5) 36.5 (+1.3) 39.8 (+0.3) 31.9 (+0.1) 37.2 (+0.5)
TPO (Li et al., 2025b) 41.3 (+2.9) 44.5 (+1.9) 48.2 (+13.0) 51.4 (+11.9) 32.4 (+0.6) 37.5 (+0.8)

VideoPASTA 46.8 (+8.4) 51.1 (+8.5) 49.7 (+14.5) 52.8 (+13.3) 33.1 (+1.3) 38.2 (+1.5)

Table 8: Performance on Adversarial QA Samples Across Different Failure Modes. “Adv. Question”: Unan-
swerable queries (higher rejection rate is better). “Adv. Options”: Questions where “None of the Above” is correct
(higher NOTA selection is better). Each cell shows correct handling (%).

tailed in Table 9. While focusing on a single di-
mension (e.g., a 0.6:0.2:0.2 spatial focus) shows
some targeted benefits, a more balanced distribu-
tion proves superior for overall performance. Our
chosen configuration of 𝛼 = 0.4, 𝛽 = 0.4, 𝛾 = 0.2
(“0.4:0.4:0.2 (Ours)”) consistently yielded the best
results across all seven benchmarks, indicating that
while spatial and temporal aspects are crucial, a
non-negligible weight for cross-frame reasoning is
also important for comprehensive alignment.

D.2 Number of Adversarial Examples per
Aligned Sample

Table 9 shows that performance is optimal with
three adversarial examples corresponding to our
three targeted failure modes. Using fewer examples
leaves certain aspects of video understanding in-
sufficiently challenged, while more examples lead
to diminishing returns. This confirms that pairing
each aligned response with exactly three adver-
sarial responses, one for each failure mode, best
reinforces alignment across spatial, temporal, and
cross-frame reasoning.

D.3 Frame Sampling

Our analysis of sampling rates (Table 9) shows that
using uniformly dense sampling for both aligned
and adversarial examples lowers performance as
models struggle to detect subtle alignment errors.
The optimal configuration (32:1) strikes a balance:
dense aligned sampling captures temporal details,

while sparse adversarial sampling creates clear mis-
alignment patterns. This result is consistent across
benchmarks, highlighting the importance of a well-
designed sampling strategy in model training.

D.4 Image and Video Resolution Settings

Ablations on image and video resolution for
Qwen2.5-VL (Table 9) confirm that higher reso-
lutions generally contribute to better performance,
with our selected settings (MAX image resolution
128 × 28 × 28 and VID_MAX video resolution
64 × 28 × 28) providing a strong balance for our
experiments. It is worth noting that score discrep-
ancies with the original Qwen2.5-VL paper may
arise because the Qwen team utilized substantially
higher input parameters (e.g., video_max_pixels
up to 768×28×28, max_frames up to 768), which,
while potentially beneficial, are often impractical
for typical computing environments and our focus
on resource-efficient alignment.

E Dataset Overview

E.1 Dataset Statistics

Starting with 3000 videos from ActivityNet (Yu
et al., 2019), we systematically generate preference
pairs through structured adversarial sampling. For
each video 𝑉 , we generate 10 queries 𝑄 target-
ing different aspects of video understanding. Each
query 𝑞 ∈ 𝑄 is paired with three targeted adver-
sarial responses 𝑟spatial, 𝑟temporal, and 𝑟crossframe, rep-
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Configuration TempCompass Perception Test NeXTQA MVBench MLVU LongVideoBench VideoMME

DPO Weight Ratio (𝛼:𝛽:𝛾)

0.33:0.33:0.33 (Equal Weights) 71.5 68.2 76.8 65.7 68.5 60.6 63.4
0.6:0.2:0.2 (Spatial Focus) 71.6 69.3 76.5 65.5 68.1 60.3 63.1
0.2:0.6:0.2 (Temporal Focus) 72.2 68.1 76.3 65.4 68.7 60.8 63.2
0.2:0.2:0.6 (Cross-Frame Focus) 71.2 67.8 76.9 65.8 68.9 61.2 63.5
0.4:0.4:0.2 (Ours) 72.3 69.4 77.3 66.3 69.2 61.5 64.1

Adversarial Examples per Aligned Sample

1 71.5 68.2 76.2 65.0 67.5 58.8 62.3
2 72.0 68.9 76.9 65.8 68.4 60.2 63.2
3 (Ours) 72.3 69.4 77.3 66.3 69.2 61.5 64.1
4 72.1 69.2 77.0 66.0 68.9 61.2 63.8
5 71.9 69.0 76.8 65.9 68.7 61.0 63.6

Frame Sampling (Aligned:Adversarial)

32:32 71.6 68.5 76.7 65.6 68.7 60.8 62.4
16:16 71.5 68.4 76.6 65.5 68.6 60.7 62.3
32:8 72.0 69.0 77.1 66.0 69.0 61.2 63.5
16:4 71.9 68.9 77.0 65.9 68.9 61.0 63.2
32:1 (Ours) 72.3 69.4 77.3 66.3 69.2 61.5 64.1
16:1 72.1 69.2 77.2 66.1 69.0 61.3 63.7

Image Resolution Ablation

MIN=4×28×28, MAX=64×28×28 70.1 67.2 75.2 64.1 67.3 59.4 62.0
MIN=4×28×28, MAX=96×28×28 71.4 68.5 76.4 65.4 68.5 60.6 63.2
MIN=4×28×28, MAX=128×28×28 72.3 69.4 77.3 66.3 69.2 61.5 64.1

Video Resolution Ablation

VID_MIN=32×28×28, VID_MAX=32×28×28 70.5 67.6 75.4 64.5 67.6 59.8 62.3
VID_MIN=48×28×28, VID_MAX=48×28×28 71.6 68.7 76.5 65.6 68.6 60.8 63.5
VID_MIN=64×28×28, VID_MAX=64×28×28 72.3 69.4 77.3 66.3 69.2 61.5 64.1

Table 9: Comprehensive Ablation Studies for VideoPASTA on Qwen2.5-VL. This table details the impact of
DPO weight ratios (𝛼 : 𝛽 : 𝛾), the number of adversarial examples per aligned sample, frame sampling strategies
(aligned:adversarial frames), and Qwen specific image/video resolutions. Our chosen configurations are in bold.

resenting spatial, temporal, and cross-frame fail-
ure modes, respectively. Theoretically, this setup
yields:

𝑁potential = |𝑉 | × |𝑄 | × |𝑅− |
= 3000 × 10 × 3 = 90, 000

(3)

potential preference pairs, where |𝑉 | is the number
of videos, |𝑄 | is the number of queries per video,
and |𝑅− | is the number of adversarial responses per
query.

However, to ensure dataset quality, we employ
rigorous filtering using Qwen2.5-32B (Yang et al.,
2024) verification using the prompt template given
in Figure 12. Each preference pair must satisfy
three criteria:

1. The aligned response should accurately reflect
the video content relative to the query.

2. The adversarial response must introduce a
clear, deliberate misalignment.

3. The misalignment must be specific to its tar-
geted failure mode.

This verification process retains approximately
7.8% of the potential pairs (on LLaVA-NeXT-
Interleave):

𝑁final = 𝑁potential × 𝑟retention

≈ 90000 × 0.078 ≈ 7, 020.
(4)

where 𝑟retention is the retention rate after quality fil-
tering. This filtered dataset provides a balanced
representation across failure modes while maintain-
ing high standards for preference pair quality. The
strict filtering ensures that each adversarial example
presents a genuine challenge for video-language
alignment rather than simple errors or rephrasing.

E.2 Adversarial Sample Diversity

Figure 7 illustrates the diversity of adversarial ex-
amples demonstrating how VideoPASTA targets
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Figure 7: Adversarial example diversity. Each row shows a video sequence with its corresponding query and
aligned and adversarial responses. The adversarial samples cover spatial misalignment (counting objects in scenes),
temporal incoherence (order of actions in cooking/preparation), and cross-frame disconnection (scene transitions
and contextual shifts). Adversarial responses deliberately introduce specific misalignments by either negating
obvious visual elements, confusing sequential ordering, or collapsing distinct temporal phases into simultaneous
events, while aligned responses maintain accurate spatial-temporal alignment with the video content.

specific failure modes. These examples were care-
fully curated to challenge different aspects of video
comprehension while maintaining clear distinc-
tions between aligned and adversarial responses.

Spatial Misalignment. The boat counting exam-
ple demonstrates our approach to spatial reason-

ing. While the adversarial response completely
negates the presence of obvious visual elements
(“no boats”), the challenge lies not in the simple
presence/absence but in the precise spatial relation-
ships (“positioned near the shore, with one slightly
further out”). This forces the model to develop fine-
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Query: What is the narrative progression of this video, and what key transformation occurs between the initial indoor camera moments and the final outdoor 

scenes?

Qwen2.5VL: This is a travel documentary showing unrelated clips of someone looking at a camera, randomly followed by tourist spots and tunnel visits.

VideoPASTA : This is a Nikon camera advertisement that shows the journey from photographer to photograph, beginning with camera handling moments that

result into the resulting landscape and adventure photography.

Query: What is the progression of emotional states and actions shown in the muscular character's response to Bugs Bunny's basketball challenge?

Qwen2.5VL: The character becomes enraged immediately after seeing Bugs Bunny, then starts grunting while exercising with weights, followed by his jumping

attempt, with the steam effects appearing in the video as a result of his physical workout.

VideoPASTA : The character first shows irritation during the basketball game, which escalates into visible anger with grunting, then transitions to explosive

rage, and finally concludes in an airborne leap of fury after Bugs Bunny's taunt.

Query: In what order are the green chilies prepared and coated before frying?

Qwen2.5VL: The chilies are first dipped in egg wash, then slit and cleaned, followed by coating in breadcrumbs, and then dipped in flour before being fried 

until golden brown.

VideoPASTA : The chilies are first cleaned and slit, then coated in the flour mixture, followed by dipping in the egg wash, and finally covered in breadcrumbs

before being deep fried until golden brown.

Query: What is the sequence of the athlete's emotional and physical reactions from the moment he completes his jump until the final result?

Qwen2.5VL: After landing, he immediately jumps up celebrating, then waits for the measurement, followed by lying down in the sand to rest, before finally

showing disappointment at his result.

VideoPASTA : The athlete first lies motionless in the sand pit, then slowly sits up, followed by a knowing smile at his performance, which is confirmed by his

celebration when seeing the 8.58m measurement displayed.

Query: What visual changes are shown in the sky during the total solar eclipse footage?

Qwen2.5VL: The sun is suddenly blocked by the moon, showing only a bright ring around the edges, while the sky remains partially lit throughout the event.

VideoPASTA : The bright sun is gradually covered by the moon, creating a dark circular shadow with a glowing white ring around it, and stars become visible in

the darkened sky.

Query: How does the girl assist the boy in levitating the feather, and what evidence supports this assistance?

Qwen2.5VL: The girl assists the boy by simply watching him attempt the spell. There is no clear evidence of her providing specific guidance or help with the wand 

movement.

VideoPASTA : The girl assists the boy by demonstrating the correct wand movement. Evidence includes her focused expression and the feather's subsequent

levitation after her guidance.

Figure 8: Qualitative comparison of VideoPASTA against Qwen2.5-VL across key failure modes. The examples
demonstrate how our method addresses three critical challenges in video understanding: (1) Spatial misalignment
(correctly describing the gradual progression of a solar eclipse and identifying spatial evidence in the Harry Potter
scene), (2) Temporal incoherence (accurately capturing sequential emotional progressions in the athlete’s reactions
and proper cooking preparation steps), and (3) Cross-frame disconnection (maintaining narrative coherence from
camera handling to photography outcomes and character emotions). Qwen2.5-VL responses exhibit typical failure
patterns: misrepresenting spatial relationships, incorrectly sequencing temporal events, and failing to establish
meaningful connections across frames. VideoPASTA responses demonstrate robust video-language alignment across
all three dimensions.

grained spatial awareness rather than just object
detection capabilities.
Temporal Incoherence. Two examples highlight
our approach to temporal understanding. The cook-

ing sequence tests precise transitional timing be-
tween steps, where the adversarial response arti-
ficially collapses distinct preparation phases into
simultaneous actions. Similarly, the equipment

32359



preparation example challenges the model’s ability
to distinguish between sequential and concurrent
actions. These adversarial samples are particularly
effective because they present plausible but incor-
rect temporal relationships.
Cross-Frame Disconnection. The scene transition
example illustrates how we assess long-range com-
prehension. The adversarial response mistakenly
interprets superficial visual changes, such as a
close-up of a face, as significant narrative shifts,
whereas the aligned response accurately identifies
meaningful context transitions, like an external
threat leading to an internal response. This evalu-
ates the model’s ability to track narrative progres-
sion across distant frames.

Each example undergoes thorough validation us-
ing Qwen2.5-32B (Yang et al., 2024) to ensure
that adversarial responses reflect genuine misunder-
standings rather than simple errors or rephrasings.
This systematic approach to adversarial example
generation reinforces robust video-language align-
ment across multiple dimensions of video under-
standing.

F Qualitative Examples

We present several representative examples that
demonstrate how VideoPASTA improves video un-
derstanding across various scenarios. Figure 8 illus-
trates three key aspects of our model’s capabilities
in handling complex video content.

First, in the camera advertisement sequence,
while Qwen2.5-VL (Bai et al., 2025) fails to rec-
ognize the narrative structure and describes it as
“unrelated clips” VideoPASTA successfully cap-
tures the purposeful progression from technical
camera operation to creative photography. This
demonstrates how our cross-frame adversarial sam-
pling helps the model develop a more coherent
understanding of extended narratives. Next, the
animated sequence with Bugs Bunny showcases
VideoPASTA’s enhanced ability to track emotional
progression. Instead of merely detecting imme-
diate reactions, our model recognizes the esca-
lation from initial irritation to visible anger and,
ultimately, to explosive rage. This improvement
stems from our temporal incoherence adversarial
sampling, which teaches the model to distinguish
between simultaneous and sequential emotional
states. The cooking demonstration particularly
highlights the benefits of our local spatial align-
ment strategy. While the baseline model confuses

the order of preparation steps, VideoPASTA cor-
rectly identifies the precise sequence of cleaning,
coating, and frying the chilies. This accuracy in
tracking procedural steps is crucial for practical
applications like instructional video understanding.
The competition example shows how our model
can parse complex sequences of physical and emo-
tional reactions, maintaining temporal coherence
even in dynamic scenes. The eclipse footage ex-
ample reveals VideoPASTA’s ability to describe
gradual visual transformations accurately, avoiding
the baseline’s tendency to oversimplify temporal
transitions. Finally, the instruction scene identify-
ing magic demonstrates our model’s capability to
establish clear causal relationships between actions
and their outcomes, supported by specific visual
evidence.

These qualitative results align with our quanti-
tative findings, showing that VideoPASTA’s struc-
tured approach to adversarial sampling leads to
more precise and accurate video understanding
across multiple dimensions. The improvements are
especially evident in scenarios requiring temporal
coherence, causal reasoning, and the integration of
information across extended sequences. The results
validate that our adversarial generation approach
produces highly targeted examples that specifically
challenge the intended aspects of video understand-
ing, creating a focused and efficient learning signal
for the model during preference optimization.

G Prompt Templates

The effectiveness of VideoPASTA depends heavily
on the careful design of prompts that elicit targeted
behaviors from generative models. Our prompt
approach focuses on creating a framework that en-
ables the consistent generation of high-quality pref-
erence pairs. Rather than using generic prompts
that could lead to superficial or inconsistent re-
sponses, we develop a hierarchical strategy with
explicit constraints and clear objectives. Each tem-
plate (Figures 9–12) serves a distinct purpose in
our pipeline while sharing a common structure that
ensures consistency. The spatial misalignment tem-
plate emphasizes physical relations that remain
constant within local temporal windows. The tem-
poral incoherence template focuses on capturing
dynamic changes while maintaining causality. The
cross-frame disconnection template bridges dis-
tant temporal connections without losing local con-
text. Finally, the preference data filtering template
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acts as a quality control mechanism, ensuring that
our generated pairs maintain sufficient contrast
while avoiding trivial differences. A key novelty in
our method is the explicit incorporation of failure
modes into the prompt design itself. Rather than
hoping that models will naturally generate useful
adversarial examples, we directly encode common
pitfalls and misunderstandings into our adversar-
ial prompt variants. The templates are designed
to be model-agnostic, allowing them to work with
different foundation models while maintaining con-
sistent output quality.
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Spatial Misalignment Prompt

You have a single video input. We want to test the model’s spatial reasoning according to the
following guidelines:

1. Aligned Query Generation:

• Leverage world principles for spatial reasoning to produce 10 queries covering:
– Occlusion (e.g., “Which object is partially hidden behind another?”)
– Depth perception (e.g., “Which item appears closest to the camera?”)
– Relative positioning (“How many objects occupy the left vs. right third of the

frame?”)
– Foreground-background distinctions
– Overall frame layout (top vs. bottom edges, etc.)

2. Adversarial Query Generation:

• For each query, create an adversarial version.
• Here, the video will be undersampled at 1 fps.
• The adversarial query should actively induce spatial errors.
• Example prompts:

– If the query is about occlusion, force the model to claim everything is fully visible
– if the query is about depth, insist all objects are equidistant

Hence, generate:

• “Straightforward Spatial Questions”: 10 questions (as if asked under the normal sampling
scenario)

• “Adversarial Variants”: 3 matching adversarial instructions (3 per query) that lead the model
to produce misaligned/spatially flawed responses.

Figure 9: Prompt template for generating aligned and adversarial spatial queries.
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Temporal Incoherence Prompt

You have a single video input. We want to test the model’s temporal reasoning according to the
following guidelines:

1. Aligned Query Generation:

• Leverage world principles for temporal reasoning ability on long videos to produce 10
queries covering:

– Event ordering (e.g., “Which major action occurs first, and which follows?”)
– Action boundaries (e.g., “Does the person finish one task before starting the next?”)
– Transition points (e.g., “When does the subject switch activities?”)
– Causality (e.g., “Is the second event a direct result of the first?”)
– Concurrent actions (e.g., “Are there any simultaneous events, and how do they

overlap?”)

2. Adversarial Query Generation:

• For each query, create an adversarial version.
• Here, the video will be undersampled to induce temporal confusion.
• The adversarial query should actively misrepresent event order, action boundaries, or

causal links.
• Example prompts:

– Claim all actions occur at once, ignoring clear time gaps.
– Collapse multiple sequential events into a single continuous action.

Hence, generate:

• “Straightforward Temporal Questions”: 10 questions (as if asked under dense sampling and
normal temporal clarity)

• “Adversarial Variants”: 3 matching adversarial instructions (3 per query) that lead the model
to produce temporally flawed or misaligned responses.

Figure 10: Prompt template for generating aligned and adversarial temporal queries.
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Cross-Frame Disconnection Prompt

You have a single video input. We want to test the model’s cross-frame (long-range) understanding
according to the following guidelines:

1. Aligned Query Generation:

• Please produce 10 queries covering:
– Object continuity (e.g., does the same object appear in the opening and closing

scenes?)
– Character persistence (e.g., which participants return in later segments, and are they

consistent with earlier roles?)
– Setting evolution (e.g., does the location or environment change over time?)
– Repeated actions (e.g., are certain actions performed in distant parts of the video,

creating a parallel?)
– Foreshadowing (e.g., do early events hint at outcomes shown near the end?)

2. Adversarial Query Generation:

• For each query, create an adversarial version.
• Deliberately break cross-frame connections by forcing the model to ignore continuity or

treat identical objects/characters as unrelated.
• Example prompts:

– Insist that objects recurring in different scenes are completely different
– Claim that characters present at both the start and end have no connection

Hence, generate:

• “Straightforward Cross-Frame Questions”: 10 questions (as if the model respects full continu-
ity across frames)

• “Adversarial Variants”: 3 matching adversarial instructions (3 per query) that lead the model
to produce disjointed or inconsistent responses across frames.

Figure 11: Prompt template for generating aligned and adversarial queries focusing on cross-frame video under-
standing.
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Preference Data Filtering Prompt

You have a single video input and a set of four responses for each query:

1. One aligned response that is claimed to be well-aligned with the video content.

2. Three adversarial responses, each intentionally introducing spatial, temporal, or cross-frame
errors.

The goal is to validate that:

• The aligned response truly aligns with the query (no unintended contradictions or inaccura-
cies).

• Each adversarial response introduces a clear misalignment without merely restating or slightly
rephrasing the aligned response.

For each query and its four responses:

1. Sanity-check the aligned response.

• Confirm that it accurately reflects the video’s content in relation to the query.
• If any errors or contradictions are detected, discard them.

2. Examine each adversarial response.

• Identify whether it deliberately contradicts or distorts the query/video content (e.g.,
reversed sequence, false spatial claims).

• If it is too similar to the aligned response or fails to demonstrate a clear misalignment,
discard it.

Figure 12: Prompt template for validating one aligned and three adversarial responses to ensure robust preference
pairs.
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Adversarial QA Generation Prompt

You are tasked with generating adversarial video question-answering examples to test video language models’ robustness.
Based on the provided video, create:

1. Adversarial Questions:

• Generate exactly 1 question per failure mode that cannot be reasonably answered from the video content.
• These should appear legitimate but contain logical impossibilities or request information that is explicitly

not present.
• Target the following specific failure modes:

(a) Spatial Misalignment: Request object relationships that don’t exist (e.g., “How many people are
standing behind the blue car?” when no blue car exists).

(b) Temporal Incoherence: Ask about event sequences that violate the timeline (e.g., “What happens after
the person leaves the room?” when no one leaves).

(c) Cross-Frame Disconnection: Request connections between unrelated frames (e.g., “How does the
opening scene connect to the dancing sequence?” when no dancing occurs).

2. Adversarial Options:

• Create exactly 1 multiple-choice question per failure mode where all provided options are incorrect.
• Questions should appear legitimate but all options should be misleading.
• Include 4 plausible but incorrect options for each question.
• The correct answer should always be “None of the Above” (not included in the options).
• Target the same three failure modes as above.

Format each output as:

• Adversarial Question [Spatial Misalignment]: [Question text].

• Adversarial Question [Temporal Incoherence]: [Question text].

• Adversarial Question [Cross-Frame Disconnection]: [Question text].

• Adversarial Options [Spatial Misalignment]:
Question: [Question text].
Options:
A. [Option 1].
B. [Option 2].
C. [Option 3].
D. [Option 4].
Correct Answer: None of the Above.

• Adversarial Options [Temporal Incoherence]:
Question: [Question text].
Options:
A. [Option 1].
B. [Option 2].
C. [Option 3].
D. [Option 4].
Correct Answer: None of the Above.

• Adversarial Options [Cross-Frame Disconnection]:
Question: [Question text].
Options:
A. [Option 1].
B. [Option 2].
C. [Option 3].
D. [Option 4].
Correct Answer: None of the Above.

Figure 13: Prompt template for generating adversarial questions and options across different failure modes.

32366



Adversarial Question Evaluation Prompt

You are an expert evaluator for video question-answering systems. Your task is to determine
whether a model correctly identifies unanswerable questions about a video.
Input:

1. Video context (description provided).

2. Adversarial question (deliberately unanswerable).

3. Model response to the question.

Evaluation criteria:

1. A correct response must identify that the question cannot be answered from the video.

2. Look for specific rejection patterns:

(a) Explicit rejection phrases: “cannot be answered,” “not possible to determine,” “not
shown in the video.”

(b) Identification of missing elements: “no such [object/action] appears,” “insufficient
information.”

(c) Recognition of logical impossibility: “the premise of the question is incorrect,” “this
scenario does not occur.”

3. Incorrect responses attempt to answer the question by:

(a) Hallucinating non-existent objects, actions, or relationships.
(b) Making definitive statements about information not present in the video.
(c) Failing to identify the adversarial nature of the question.

Output format:

1. Judgment: [CORRECT/INCORRECT].

2. Reasoning: Brief justification for your evaluation (1-2 sentences).

3. Rejection Keywords Identified: List specific rejection phrases used by the model.

Provide a binary decision (CORRECT/INCORRECT) based strictly on whether the model appro-
priately identified the question as unanswerable.

Figure 14: Prompt template for evaluating model responses to adversarial questions.
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Adversarial Example Evaluation Prompt

Task: Evaluate whether the provided adversarial example correctly targets its intended failure
mode in video understanding.
Query: [Original question asked about the video]
Aligned Response: [The correct/preferred response to the query]
Adversarial Example: [The adversarial example to be evaluated]
Claimed Failure Mode: [One of: “Spatial Misalignment”, “Temporal Incoherence”, or “Cross-
Frame Disconnection”]
Failure Mode Definitions:

• Spatial Misalignment: Incorrectly describing spatial relations, object positions, occlusion
patterns, depth, or relative positioning within a single frame.

• Temporal Incoherence: Violating the natural ordering of events, describing sequential
actions as simultaneous, merging distinct events, or misordering the sequence of activities
shown in the video.

• Cross-Frame Disconnection: Breaking object persistence across frames, describing the same
object as different entities across scenes, failing to maintain character/object consistency, or
incorrectly describing changes between distant frames.

Evaluation Instructions:

1. Carefully analyze the adversarial example in relation to the aligned response.

2. Determine if the adversarial example genuinely induces the claimed failure mode.

3. Your evaluation should be based solely on the definitions provided above.

4. Provide a binary judgment: “Yes” if the adversarial example correctly targets the claimed
failure mode, “No” if it does not.

5. Briefly explain your reasoning (2-3 sentences).

Output Format:
Judgment: [Yes/No]
Reasoning: [Your brief explanation]

Figure 15: Prompt used for evaluating whether adversarial examples correctly target their claimed failure modes.
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