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Abstract

Large language models (LLMs) frequently gen-
erate confident yet inaccurate responses, in-
troducing significant risks for deployment in
safety-critical domains. We present a novel,
test-time approach to detecting model halluci-
nation through systematic analysis of informa-
tion flow across model layers. We target cases
when LLMs process inputs with ambiguous or
insufficient context. Our investigation reveals
that hallucination manifests as usable informa-
tion deficiencies in inter-layer transmissions.
While existing approaches primarily focus on
final-layer output analysis, we demonstrate that
tracking cross-layer information dynamics (LI)
provides robust indicators of model reliability,
accounting for both information gain and loss
during computation. LI integrates easily with
pretrained LLMs without requiring additional
training or architectural modifications.

1 Introduction

Large language models (LLMs) have achieved un-
precedented success across diverse natural lan-
guage tasks, particularly in complex reasoning
ranging from commonsense to arithmetic knowl-
edge (Achiam et al., 2023; Touvron et al., 2023;
Abdin et al., 2024). However, these models face
a critical challenge known as hallucination, a phe-
nomenon where responses appear convincingly au-
thoritative despite being inaccurate (Ji et al., 2023;
Xu et al., 2024b; Liu et al., 2023). While numer-
ous empirical studies have investigated potential
sources of hallucination, recent theoretical work
by Xu et al. (2024a) demonstrates the fundamental
impossibility of eliminating this issue through any
computable function.

Following Xu et al. (2024a), hallucination can
be formally defined as the failure of LLMs to ac-
curately reproduce the desired output of a com-
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Figure 1: Distribution of V-information (VI) values
in first and last layers, and L-information (LI) values
(summation of VI scores across all layers), as a func-
tion of prompt ambiguity. Results compare two prompt
categories: (1) no instruction prompts and (2) binary
instruction prompts (’Is this answerable?’).

putable function. This theoretical framework estab-
lishes that hallucination is an inherent characteris-
tic of LLMs, persisting regardless of architectural
choices, learning algorithms, prompting strategies,
or training data composition. Building on this the-
oretical foundation, we hypothesize that hallucina-
tion emerges when LLLMs lack sufficient informa-
tion necessary for their computational functions to
transmit messages across their internal processing
systems effectively.

Prior research has focused primarily on analyz-
ing final outputs to assess LLM confidence (Osband
et al., 2023; Ahdritz et al., 2024; Lin et al., 2024)
or identifying inherent data ambiguities that lead
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Figure 2: V-usable information (VI; Xu et al. (2020)) across layers for CondaQA, CoQA, and QuAC. Solid
lines denote models without instruction prompts and dashed lines denote models with binary prompts ("Is this
answerable?"). The quantity of VI is not monotonically increased or decreased across depth. By the final layer (32),
the relative effect of prompts becomes inconsistent across datasets, highlighting the value of analyzing all layers.

to predictive uncertainty (Cole et al., 2023; Kuhn
et al., 2023a). However, the fundamental internal
mechanisms of LLMs remain under-explored. Our
analysis reveals that uncertainty estimation based
solely on output layers or final computations over-
looks critical insights into model self-confidence,
thereby limiting our ability to detect hallucinatory
behaviors.

To investigate LLM internal mechanisms, we
build upon recent information theory frameworks
proposed by Xu et al. (2020) and Ethayarajh et al.
(2022). Their work introduces the concept of V-
usable information—the quantity of information a
model family V can utilize to predict Y given X.
This metric indicates prediction difficulty: lower
V-usable information corresponds to more chal-
lenging predictions for V.

While these findings are significant, we em-
pirically demonstrate that V-usable information
provides sub-optimal insight into model self-
confidence because it only applies to the final layer.
We propose layer-wise usable information (L),
which quantifies the information changes within
certain layers and aggregates those information dy-
namics across all model layers. As shown in Fig. 1,
LI provides more reliable indicators of LLM perfor-
mance than final layer V-usable information (VI),
particularly in detecting subtle variations in instruc-
tion prompt effectiveness.

Prior work on V-usable information established
that computation can create usable information dur-
ing feature extraction, constituting a violation of
the data processing inequality (DPI) in information
theory (LeCun et al., 2015; Xu et al., 2020). Our re-
search extends this understanding by demonstrating
that LLMs both create and lose usable information

during layer-wise updates. As illustrated in Fig.2,
information flow is non-monotonic across layers,
highlighting the limitation of analyzing only the
final layer’s computation.

To evaluate our framework, we focus on scenar-
ios where LLLMs must respond to queries with in-
struction prompts of different ambiguities (i.e., am-
biguous prompts) and with constrained contextual
information (i.e., unanswerable questions), settings
particularly prone to hallucination. Our case study
in Table 1 demonstrates that LI strongly correlates
with the difficulty of the question, influenced by the
answerability and the clarity of the prompt, unlike
VI that shows no significant correlation with the
model prediction.

Contributions Our primary contributions are:

* We propose LI as a superior detector of unan-
swerable questions compared to existing base-
lines (Section 4.3), without requiring architec-
tural modifications or additional training.

* We demonstrate that LI effectively captures
model confidence across varying levels of
task difficulty induced by different instruction
prompts (Section 4.2).

* We interpret that comprehensive layer track-
ing provides better insights into model internal
confidence than single-layer analysis, using
either initial or final layer (Sections 3 and 4.4).

2 Related Work

Contextual vs Factual Hallucinations Large
language models (LLMs) often generate inaccurate
outputs despite having access to correct informa-
tion in their input context. This phenomenon is
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Context

Once there was a beautiful fish named Asta. Asta lived in the ocean. There were lots of other fish in the ocean where Asta lived. They played all day
long. One day, a bottle floated by over the heads of Asta and his friends. They looked up and saw the bottle. ... They took the note to Asta’s papa. "What
does it say?" they asked. Asta’s papa read the note. He told Asta and Sharkie, "This note is from a little girl. She wants to be your friend. If you want to be
her friend, we can write a note to her. But you have to find another bottle so we can send it to her." And that is what they did.

Instruction Prompt Question Ground-Truth Label  Prediction \Z4 LI
Binary: “Is this answerable?” ‘What was the name of the fish? Yes. v 0.3 0.2

Were they excited? No. v 0.3 -0.4
Open-ended Prompt: What was the name of the fish? Asta. v 0.3 -0.7
“Answer the question or say donf know” Were they excited? Don’t know. X -0.3 -14
No prompts ‘What was the name of the fish? Asta. v 1.2 -6.8

Were they excited? Unknown. X 0.2 =17

Table 1: The LI scores provide a more comprehensive overview of prompt ambiguity compared to V1. Prediction:
prediction generated by a language model — v": correct, X: incorrect. VI: V-usable information only applied to the
final layer (Xu et al., 2020). L£I: Layer-wise usable information accumulated across layers (our proposed method).

known as contextual hallucination (Chuang et al.,
2024). This issue is particularly concerning in high-
stakes domains such as medicine and law, where
acknowledging information gaps is preferable to
making unfounded assumptions.

Most prior studies, however, focus on fact-based
hallucination arising from parametric knowledge
without input context. These hallucinations may
result from inherent learning limitations or training
data deficiencies, making their root causes difficult
to isolate. Existing approaches have detected and
mitigated such errors by using substantial anno-
tated data to analyze various model components,
including hidden states (Burns et al., 2022; Azaria
and Mitchell, 2023), MLP and attention block out-
puts (Zhang et al., 2024; Simbhi et al., 2024), and
attention head outputs (Li et al., 2023; Simbhi et al.,
2024; Chen et al., 2024).

In contrast, contextual hallucination remains
comparatively understudied. Existing work in
this area has so far relied on annotated data-
points (Chuang et al., 2024) without probing the
model internal mechanisms. Our research ad-
dresses this gap by examining contextual hallu-
cination as an ideal setting to explore how LLMs
behave when faced with insufficient information.
We deliberately place models in situations where
they must respond despite clearly inadequate input
information, enabling us to study the fundamental
nature of LLM hallucination behavior.

Unanswerable Questions Existing work has an-
alyzed the model’s capability to detect unanswer-
able questions from three main perspectives. One
is self-evaluation which allows language models
to generate probabilistic scores of how much the
models believe their answers are trustworthy (Ka-

davath et al., 2022a; Yin et al., 2023) as we get
access to advanced, well-calibrated models that can
generate reliable results. The second perspective
involves identifying the subspace of the model that
is specifically responsible for answerability (Slo-
bodkin et al., 2023). The third approach uses la-
bel information to train LLMs on whether ques-
tions are answerable, employing methods such as
instruction-tuning or calibration (Jiang et al., 2021;
Kapoor et al., 2024). While these studies suggest
that LLMs can learn to express their confidence
in responses when provided with additional infor-
mation, they rely heavily on external calibration or
fine-tuning. The outcome depends on the quality of
the additional information or that of the annotation
work. Unlike prior work, our investigation does
not require label annotations to fine-tune classifiers
or calibration tools to detect model confidence in
their generated answers or ambiguous, unanswer-
able questions. We aim to obtain a computationally
feasible method that applies to universal large lan-
guage models.

Model Usable Information Our analysis builds
upon the information-theoretic framework intro-
duced by Xu et al. (2020) and expanded by Etha-
yarajh et al. (2022), focusing on quantifying the
"usable information" accessible to models. Given
a model family V that maps inputs X to outputs
Y, the concept of V-usable information measures
how effectively V can leverage input data to pre-
dict outputs. Lower usable information correlates
with increased prediction difficulty. For instance,
encrypted or linguistically complex inputs reduce
V-usable information, increasing predictive chal-
lenges within the same model family.

This approach extends traditional information
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theory, particularly Shannon’s mutual informa-
tion (Shannon, 1948) and the data processing in-
equality (DPI; Pippenger, 1988). Mutual informa-
tion quantifies the theoretical information shared
between inputs and outputs, while DPI states that
this quantity cannot increase as data passes through
further transformations. Although these measures
describe theoretical information flow, they do not
capture how much of that information is practi-
cally usable by a given model family. In practice,
usable information can diverge from the classical
measures for two reasons: (1) computational con-
straints limit the extent to which models can realize
the ideal mapping from X to Y (Xu et al., 2020);
and (2) deep representation learning not only re-
structures inputs across layers to extract features
from incomplete or noisy data, but also leverages
prior knowledge stored in pretrained weights (Le-
Cun et al., 2015; Goldfeld and Greenewald, 2021).
These considerations motivate the notion of V-
usable information, which explicitly quantifies the
information that is practically available to a given
model family. The two frameworks leveraging -
usable information are:

Predictive V-information quantifies aggregate
informativeness or dataset difficulty given model
family constraints, expressed as [y(X — YY) (Xu
et al., 2020).

Pointwise V-information evaluates the informa-
tion usability of individual instances relative to a
specific dataset distribution, denoted as PVI(z —
y) (Ethayarajh et al., 2022).

Formally, predictive V-information is defined as:

Definition 2.1 (Predictive )V-information, Xu
et al. 2020). Given predictive conditional entropy

Hy(Y|X):
(X =Y)=Hy(Y|o) - Hy(Y|X). (1)

Traditionally, the model family V has been in-
stantiated as supervised models such as BERT (De-
vlin et al., 2019), trained to minimize expected
log-loss risk on labeled datasets (x,y) ~ pp. This
yields the following definitions of conditional pre-
dictive entropy:

Hy(Y|X) = E(ay)~pp [~ 108 p(y]2)]
Hy(Y|@) = E(x,y)NpD [_ log, p(y|@)] .
In contrast to these supervised approaches, our
proposed LI does not require training. In the next
section, we will explain our proposed methodology.

Detailed background on V-usable information is
provided in Appendix A.

Algorithm 1 Computing layer-wise usable infor-
mation (L) without fine-tuning

Input: dataset D = {(ci,q;)}iv:, pretrained model with
layers £
Output: LI(C — Q)
1: @ < empty context (null string)
2: for each example (c;,q;) € D do
for each layer ¢ € £ do
Compute token log-probs pe(q: | g<t, )
Compute token log-probs pe(q: | g<¢, ¢;)

3
4
5:
6:  H(Q|o)« £ X7, —log, pe(ar | g<t, @)
7
8

H(Q | C) & 7 S, —logy pe(ge | g<es i)
D 1) HPQ o) - HY Q| C)
9:  end for
10: end for @
11: LI(C = Q) + # doini 2eer I

For each
(ci» q:)

Path A:
No Context

plg | 2)

He(Q | @)
= —El[log
p(qt | a<¢, D))

Path B:
With Context

p(q | i)

He(Q | ©)
= —Ellog
’ p(qe | g<t, ci)]

Io(ci — qi)
= He(Q | 2)
- H,(Q | C)

Figure 3: Illustration of computing layer-wise usable
information for an example (¢;, ¢;) at a single layer (.

3 Layer-Wise Usable Information

We extend the V-usable information framework
to quantify information at the layer level in genera-
tive language models. Layer-wise usable informa-
tion (L1) measures how much a context C' changes
the predictive entropy of a question () at each layer
{. The per-layer contribution is Iy, and the total
LI =3, 1, aggregates these differences across
all layers.

Concretely, given a context C, the model gen-
erates a free-form answer to a question (). Let £
denote the set of layers in a pre-trained language
model. Each layer ¢ € £ produces hidden represen-
tations. Projected through the pretrained language
model head, the hidden states at layer £ induce a
conditional distribution

. cu{z} - P(Q),

where Q is the token vocabulary. For a given ques-
tion prefix g« and context ¢ € C (or @), this dis-
tribution specifies probabilities ps(q: | g<, ¢) over
the next token ¢; € Q.
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This formulation allows us to measure usable
information both at the level of individual layers,
Iy, and in aggregate across the model, £1. Unlike
prior work, we do not fine-tune f() on labeled
data, but instead directly use the pretrained model
outputs.

Definition 3.1 (Predictive conditional /-entropy).
Let g; denote the ¢-th token in a question sequence

q € Q. The predictive conditional entropy at layer
lis

Hy(QIC) = Eq~Q[— logy pe(qt | q<t,0)}, (2)

and, similarly for the null context,

Hy(Q|o) = E4uq [ —logy pe(q: | Q<t>®)]

These quantities represent the predictive uncer-
tainty of the distributions derived from layer /, ei-
ther conditioned on the context C' or without it.
In practice, we report per-token entropies by av-
eraging these values across all positions ¢ in the
question sequence.

Definition 3.2 (Predictive L-information). The
layer-wise usable information from C to () is de-
fined as

LI(c—q) =) Ilc—q),
teL 3)

Iy(c — q) = Ho(Q|2) — Hy(Q|C).

Here, Iy(c — ¢) measures the change in entropy
due to the presence of context at layer ¢, and
LI(c — q) aggregates these contributions across
all layers. Algorithm 1 and Figure 3 illustrate this
computation.

3.1 Implications

Using layer-wise usable information (LI), we con-
tribute to the following accomplishments:

* Detection for unanswerable questions by com-
puting £I(c — ¢q) in datasets {c € C,q € Q}
for the same L: we classify questions that
lack sufficient usable information as unan-
swerable, likely to be inaccurate responses
(Fig. 5 and 6).

 Evaluation on different prompts with @) for
L by estimating LI(C — Q’). We quantify
how different instruction prompt @’ influences
usable information (Figs. 4 and Table 2).

* Analysis of importance of all layer informa-
tion estimating LI(C — Q). Aggregating
across layers shows that full £I provides
stronger separation between answerable and
unanswerable questions than any single layer
alone (Figs. 4 and 7 and Table 4).

4 Experiments

We demonstrate that layer-wise usable information
(LI) is an effective way to capture the ambiguity
of prompts and detect unanswerable questions for
large language models.

4.1 Experimental Setup

Evaluation Metric. We classify unanswerable
questions based on uncertainty scores. The ground-
truth labels of the unanswerability based on the
contextual information are provided by the origi-
nal benchmark datasets (Reddy et al., 2019; Choi
et al., 2018; Ravichander et al., 2022). We evaluate
uncertainty under the assumption that we assess
whether to trust a model’s generated response in a
given context, i.e., deciding whether to accept an
answer to a question. Our primary metric for this
assessment is the area under the receiver operat-
ing characteristic curve (AUROC). The AUROC
measures the discrimination ability of a scoring
function—how well it separates correct from incor-
rect predictions. In our setting, this corresponds to
distinguishing answerable from unanswerable ques-
tions using the uncertainty score provided by L1.
Higher AUROC scores indicate better performance,
with a perfect score of 1 representing optimal un-
certainty estimation, while a score of 0.5 represents
random uncertainty.

We choose to use the AUROC as it suits well for
evaluating uncertainty in free-form text responses,
as opposed to calibration measures like the Brier
score, frequently used in classification tasks or
multiple-choice question answering. The Brier
score requires calculating the total probability mass
assigned to all possible tokens of a correct answer
sequences. This causes the task to be intractable
in free-form text settings where probabilities with
respect to meanings are unavailable. Therefore we
use the AUROC to capture the uncertainty asso-
ciated with the model’s outputs more accurately,
and classify the unanswerable questions. One ex-
ception is model answers that we simply match
the lexical words by instructing models to gener-
ate "Yes" or "No" to additional question prompts
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(a) LI Values Across Prompt Types

LI Score

T T T
No Prompts Open-ended Prompts Binary Prompts
| ] (correct) ble (incorrect) [l U (correct)

Unanswerable (incorrect)  —— Mean LI score

(b) Final Layer Entropy Differences

Final Layer Entropy Differences

T T T
No Prompts Open-ended Prompts Binary Prompts
M Answerable (correct)

Unanswerable (incorrect)  —— Mean Entropy Difference

Answerable (incorrect) [l Unanswerable (correct)

Figure 4: Impact of instruction prompts on layer information in QuAC. (a) LI: scores increase systematically as
prompts become more explicit (no prompt — open-ended — binary). Within each prompt type, correct answers
have higher scores than incorrect ones (answerable-correct > answerable-incorrect; unanswerable-correct >
unanswerable-incorrect). (b) Final-layer VI: scores show no consistent progression and correct—incorrect separation.

asking if they can answer the question based on the
context.

Baselines. We evaluate our method against sev-
eral benchmarks, including model-generated an-
swers, P(TRUE) (Kadavath et al., 2022b), predic-
tive token entropy and normalized entropy (Malinin
and Gales, 2020), semantic entropy (Farquhar et al.,
2024), and pointwise V-information (PVI) (Etha-
yarajh et al., 2022) on the first and the last layers
respectively. Model-generated answers are raw
responses by models. P(TRUE) measures the prob-
ability that a LLMs predict the next token as ‘True’
when provided with few-shot prompts that compare
a primary answer to various alternative answers.
Predictive entropy is calculated by conditional en-
tropy over the output distribution. Predictive nor-
malized entropy is obtained by dividing the total
sequence-level entropy, computed as the negative
log-likelihood, by the sequence length. We use a
single model to meausre the normalized entropy,
following the setups by (Kuhn et al., 2023b). Se-
mantic entropy follows the confabulation mecha-
nism to classify unanswerable questions. PVI is
to measure difficult datapoints. We assume that
difficult instances for language models are likely
to be unanswerable questions.

Models. We use Llama3 (Dubey et al., 2024)
and Phi3 models (Abdin et al., 2024). We vary the
size of the models between 3.8B, 8B, and 14B pa-
rameters. We report our headline results using the
most computationally efficient model, with 3.8B
parameters unless we notify otherwise. In all cases
we use only a single unmodified model since recent
foundation models are not practical to modify the
architectures and are often too costly to fine-tune
them on datasets. Above all, we are interested in
investigating internal language model behaviors

Prompt Ans. Unans. A (Ans.-Unans.)
Binary (“Is this question answerable?”) 0.322 0.321 0.001
Always answer YES. 0.329 0.295 0.033
Always answer NO. 0.316 0.287 0.029
Is this question interesting? 0.031 -0.008 0.039
Did your family like cappuccino? 0.180 0.155 0.025
Can you give the wrong answer? 0.134 0.089 0.044
Can you give the correct answer? 0.180 0.117 0.064
Do you like your answer? 0.161 -0.023 0.184

Table 2: LI scores on QuAC (100 examples averaged).
Task-relevant binary prompts yield the highest scores
on question examples, while irrelevant prompts reduce
them. Larger deltas (A) indicate stronger separation of
(un)answerability, which remains detectable even under
irrelevant prompts.

than simply achieving optimal performance results.
Hence we use them in their pre-trained form.
Datasets. We use Conversational Question
Answering Challenge dataset (CoQA) (Reddy
et al., 2019) and Question Answering In Context
(QuAC) (Choi et al., 2018) as question-answering
tasks, where the model responds to questions using
information from a supporting context paragraph.
Our experiments are conducted on the development
set, which contains approximately 8,000 questions.
We also use CondaQA (Ravichander et al., 2022)
which features 14,182 question-answer pairs with
over 200 unique negation cues in addition to CoQA
and QuAC to evaluate how trustworthy the LI is to
detect unanswerable questions. Given that goal, we
employ a 1-to-1 ratio of answerable to unanswer-
able questions for a clear performance evaluation.

4.2 Do LI scores indicate the ambiguity of
prompts?

Figure 4 compares how instruction prompts influ-
ence LI and final-layer V1. Without prompts, LI
scores remain strongly negative (—4 to —5), in-
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dicating high uncertainty. As prompts become
more explicit, scores increase systematically: open-
ended prompts yield intermediate values (—0.5
to 0), while binary prompts produce the highest
(slightly positive) scores. This progression shows
that L1 is sensitive to the specificity of instructions,
reliably reflecting prompt ambiguity. In contrast,
final-layer VI (Figure 4b) shows no consistent pro-
gression across prompt types. Because VI was orig-
inally defined only for the final layer, such analyses
obscure the consistent benefits of explicit prompts
that are visible in intermediate representations.

Table 2 further illustrates how prompt relevance
affects L1. With binary prompts, scores are around
0.32, higher than most random prompts. Answer-
forcing prompts such as “Always answer YES/NO”
also yield relatively high LI values, since these
responses are easy for the model to generate. How-
ever, their scores remain below those of task-
aligned prompts, reflecting that outputs are pro-
duced mechanically rather than through correct
reasoning. Irrelevant prompts (“Is this question in-
teresting?”, “Did your family like cappuccino?”)
push scores substantially lower, showing how off-
task instructions increase ambiguity. Misdirect-
ing prompts (“Can you give the wrong answer?”)
reduce scores even further, consistent with the
uncertainty introduced by conflicting instructions.
By contrast, task-aligned prompts (“Can you give
the correct answer?”) partially restore LI, while
meta-reflective prompts (“Do you like your an-
swer?”) cause the strongest shifts, showing that
self-assessment language accentuates the effect of
prompt relevance.

Overall, these patterns demonstrate that LI is
sensitive not only to the presence of an instruction
but also to its relevance and quality. Irrelevant or
adversarial prompts depress LI, while task-relevant
or self-reflective prompts elevate it, confirming that
L1 provides a robust signal of prompt ambiguity.

4.3 Do LI scores capture unanswerable
questions?

Beyond prompt ambiguity, LI also serves as a re-
liable signal for unanswerable questions. Across
CoQA, QuAC, and CondaQA, LI consistently out-
performs baseline methods in distinguishing an-
swerable from unanswerable questions (Figure 5).
The advantage holds across different models and
parameter sizes (Figure 6), whereas semantic en-
tropy (SE) performs poorly on this task despite
strong results elsewhere. This highlights that LI is

Model Answers = P(True) - Semantic Entropy - Predictive Entropy - Normalized Entropy =LI
=Ll (10%) =Ll (20%) =LI (30%)
80

50
20

CoQA QuAC

AUROC

CondaQA

Figure 5: Performance of (un)answerability detection
across datasets, comparing LI with other baselines.
LI(10%), L£1(20%), and LI1(30%) shows the rejection
rate based on low scores.

§ Model Answers - P(True) -Normalized Entropy =Ll
S 80
<
40
° CondaQA QuAC CoQA
(a) Phi3 medium (14B)
§ Model Answers - P(True) -Normalized Entropy =Ll
2 80

CondaQA QuAC CoQA

(b) Llama3 (8B)

Figure 6: Performance of (un)answerability detection,
compared to selected competitive baselines.

‘ Answerable ‘ Unanswerable
Correct | 0.4668 \ 0.5088
‘ (e.g., Yes, there were clues...) ‘ (e.g., I cannot provide ...)
Incorrect | 0.0189 \ -0.0578
‘ (e.g.,In 1983,...) ‘ (e.g., Yes, she had...)
0.0932 \

Unsure ‘

(e.g., I cannot provide...) (LLMs are correct in this case.)

Table 3: LI scores for answerable and unanswerable
questions with an instruction prompt: Are you certain
about the answer? on QuAC (100 examples averaged).
Unsure indicates that models express the uncertainty.

especially suited for (un)answerability detection,
while other existing methods are not. Rejection
analysis strengthens this conclusion. Filtering out
predictions with the lowest LI values steadily im-
proves AUROC (Figure 5), confirming that low LI
reliably flags unanswerable cases.

This trend extends more broadly across different
prompt types in Table 2. With task-relevant bi-
nary prompts, unanswerable questions tend to have
slightly lower scores, indicating sensitivity to unan-
swerability. This pattern persists under random,
irrelevant, or misleading prompts. Though the ab-
solute values vary, unanswerable questions remain
associated with relatively small LI scores. This
consistency demonstrates that £I distinguishes an-
swerable from unanswerable questions not only un-
der optimal instructions, but also when the prompt-
ing conditions are weak or noisy.

Another noteworthy role of LI appears in Ta-
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SQuAD NQ

NA  Binary | NA  Binary

|
|
LI (e, alllayers) | 74.78
|
|
|

7642 | 5593 57.26

Slobodkin et al. (2023)
(1st layer) 2614 3101 | 1704 2112
(last layer) SL78 5942 | 5523 56.26

Table 4: Fact-based hallucination detection results (clas-
sification accuracy, %). NA: no instruction prompt. Bi-
nary: binary instruction prompt “Is this answerable?”.

ble 3, where the explicit certainty prompt (“Are
you certain about the answer?”) elicits a different
pattern from the binary prompt (“Is this question
answerable?”). Correct unanswerable responses
achieve the highest LI scores (0.509), even higher
than correct answerable ones (0.467), reflecting
that the model is appropriately certain about its own
uncertainty. Incorrect answers, by contrast, yield
the lowest values (0.019 for answerable, —0.058
for unanswerable), as expected from clear mis-
matches. Answerable questions where the model
expressed uncertainty (“unsure”) obtain a modest
score (0.093), higher than incorrect responses but
far lower than correct ones. This gradient indicates
that L1 distinguishes not only correctness but also
the appropriateness of expressed uncertainty: it
assigns high values to justified abstentions while
assigning low values to hallucinations and unwar-
ranted hesitation. These overall results show that
L1 serves as a consistent and practical indicator of
how models handle ambiguous or unanswerable
questions, remaining robust across datasets, model
families, and diverse prompt formulations.

4.4 Do we really need to consider all layers
instead of the final layer?

A critical question is whether it is sufficient to
probe a single layer or a subset of layers, or whether
information must be accumulated across the entire
model depth. Our experiments suggest that this
choice is non-trivial. For example, we observed
that intermediate layers such as layer 6 already
exhibit strong separation between answerable and
unanswerable questions, raising the possibility that
probing one such layer—or even aggregating only
the first k£ layers—might capture the relevant infor-
mation without requiring the full £I computation.
However, Figure 7 shows that signals at individual
layers are not stable: while some intermediate lay-
ers appear informative, others lose or distort infor-
mation before it reaches the final layer. As a result,
relying on any single layer or partial accumulation

risks missing critical dynamics. By contrast, LI ac-
cumulated across all layers consistently provides a
clearer and more reliable distinction, demonstrating
that usable information must be tracked throughout
the full network depth.

To further test whether aggregating across all
layers is necessary, we evaluate fact-based hallu-
cination detection using the probing framework
of Slobodkin et al. (2023). As shown in Table 4,
L1, which accumulates information across the full
model depth, consistently outperforms single-layer
methods. On SQuAD (Rajpurkar et al., 2018), it
achieves 74.78% and 76.42% accuracy under no-
prompt and binary-prompt settings, respectively,
compared to 51.78% and 59.42% for last-layer
probing and only 26.14% and 31.01% for first-layer
probing. On NQ (Kwiatkowski et al., 2019), the ad-
vantage of all-layer accumulation remains, though
the margins are narrower (55.93% and 57.26% vs.
55.23% and 56.26% for the last layer). Binary
prompts improve performance across all methods,
confirming the value of explicit guidance, but the
gains are most pronounced for the all-layers LI
approach. This reinforces that aggregating usable
information across all layers provides a more ro-
bust signal for hallucination detection than relying
on any single layer.

4.5 Are LI scores computationally
inexpensive?

L1 scores are computationally inexpensive com-
pared to other baseline methods. The approach
requires two forward passes, one with context
and one without. However, because the second
pass involves only the short question sequence, the
marginal cost is negligible (Table 5). According
to dataset statistics, CoQA averages 271 context
words and 5.5 question words (Reddy et al., 2019),
QuAC averages 401 context tokens and 6.5 ques-
tion tokens (Choi et al., 2018), and CondaQA aver-
ages 131 context tokens and 24.4 question tokens
(Ravichander et al., 2022). As a result, the actual
overhead is close to a single forward pass: 1.02x
on CoQA, 1.01x on QuAC, and 1.16x on Con-
daQA.

In contrast, competing methods are far more
computationally demanding. P(TRUE) incurs
about 11x cost because each test query is paired
with k& demonstrations plus the target input, yield-
ing (k+1)x forward passes (with £ = 10, reduced
from 20 in Kadavath et al. (2022b)). Semantic En-
tropy (SE) is even more expensive. It estimates
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Figure 7: Cumulative VI, accumulating from the beginning to the layer ¢. (a) CondaQA, (b) CoQA, (c¢) QuAC.
The LI scores accumulated from the beginning to the last layers (red vertical line) show the apparent, accurate
differences between answerable and unanswerable questions in both settings with and without instruction prompts.

Dataset Context Question L Teontext + question L Tguestion LIt P(TRUE) Semantic Entropy
CoQA 271 words 5.5 words 1.00 0.02 1.02x 11x 100x
QuAC 401 tokens 6.5 tokens 1.00 0.01 1.01x 11x 100 x
CondaQA 131 tokens 24.4 tokens 1.00 0.16 1.16x 11x 100 x

Table 5: Computational overhead of LI compared to P(TRUE) and Semantic Entropy (SE). Unlike P(TRUE) (11 x
overhead) or SE (100x overhead), LI requires a lightweight question-only pass, 1.01-1.18 x overhead in practice.

uncertainty by generating 50 samples for each in-
put, each conditioned on a 20-shot prompt (Far-
quhar et al., 2024), which results in roughly 100 x
overhead.

4.6 Can calibration metrics such as ECE
apply to LI?

While AUROC is our primary evaluation metric,
one may ask whether calibration metrics such as
Expected Calibration Error (ECE) are also applica-
ble and provide meaningful insights in this setting.
Since LI produces scalar confidence values, they fit
a logistic regression model to map them into [0, 1],
following standard practice for ECE. Calibration is
performed on a small held-out subset of the training
data, separate from the evaluation set. We examine
this on QuAC dataset with binary classification in
two settings: question (un)answerability (Table 6)
and instruction-prompt ambiguity (Table 7).

The results show consistent trends with AUROC.
First, LI achieves lower ECE than verbalized base-
lines across all conditions, indicating that its scores
are inherently better calibrated. One exception is
under the binary instruction prompt with 10 cali-
bration examples (LI 0.343 vs. Verbalized 0.312)
to capture uanswerability, but it goes back to the
consistent when it is trained with 100 examples. As
expected, LI shows stronger with binary than with-
out prompt. In ambiguity detection, £I maintains
an advantage, reaching an ECE as low as 0.039.
Although AUROC remains the primary evaluation

Prompt #Trainset Method ECE |
No instruction Prompt 10 L1 0.365
Verbalized 0.451

100 L1 0.187

Verbalized 0.398

Binary (yes/no) 10 LI 0.343
Verbalized 0.312

100 L1 0.177

Verbalized 0.276

Table 6: ECE for question (un)answerability.

#Trainset Method ECE |
10 LI 0.052
Verbalized 0.062
100 LI 0.039
Verbalized 0.054

Table 7: ECE for instruction-prompt ambiguity (binary
Vs. no instruction prompt).

metric given the advantage of LI as parameter-free
answerability signal, the ECE results highlight its
reliable calibration across tasks and prompt types.

5 Conclusion

We propose layer-wise usable information (£I) to
detect ambiguous or unanswerable questions. Be-
cause prior methods exclusively rely on final layers
or output spaces to estimate model confidence, we
argue that tracking usable information all across
the layers is critical to comprehensively understand
model behaviors.

32307



Limitations

One limitation of our method may come from its un-
supervised nature. When comparing our approach
to supervised methods, it may be less optimal.
While supervised techniques benefit from labeled
data, enabling them to learn from specific examples,
our approach targets to understand large pre-trained
language models in in-context question-answering
tasks. Depending on their use cases and specific
purposes, some may prefer supervised methods
despite the associated computational costs.
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A Background in Usable Information

In this section, we explain the information-theoretic
foundations for measuring model-usable informa-
tion, established by Xu et al. (2020) and Ethayarajh
et al. (2022). Consider a model family V that maps
text input X to output Y. The V-usable informa-
tion quantifies the amount of information a model
family can extract to predict Y given X. This met-
ric inversely correlates with prediction difficulty.
The lower the V-usable information, the harder the
dataset is for V. Consider text that is encrypted
or translated into a language with more complex
grammatical structures. Such transformations de-
crease V-usable information, making the prediction
of Y given X more challenging within the same
model family V.

This concept challenges traditional information
theory principles, notably Shannon’s mutual infor-
mation (Shannon, 1948) and the data processing

inequality (DPI) (Pippenger, 1988). Shannon’s the-
ory fails to account for scenarios where X contains
less usable information than the mutual information
I(X;Y) due to encryption. Similarly, DPI cannot
explain how model family V acquires additional
information through computational constraints or
advanced representation learning. Two key factors
demonstrate this limitation; (1) computational con-
straints prevent input data from fully representing
ideal world knowledge (Xu et al., 2020); (2) ad-
vanced language models can extract meaningful
features from incomplete representations, achiev-
ing progressive information gains during computa-
tion (LeCun et al., 2015; Goldfeld and Greenewald,
2021).

Recent work has introduced two frameworks
adopting V-usable information to capture these
phenomena. The first framework to capture
the V-usable information is called predictive )-
information (Xu et al., 2020). The predictive V-
information measures how much information can
be extracted from X about Y when constrained
to model family V, written as Iyy(X — Y). The
greater the Iy)(X — Y), the easier the dataset is
for V. While predictive V-information provides an
aggregate measure of informativeness of compu-
tational functions or dataset difficulty, pointwise
V-information (Ethayarajh et al., 2022) measures
usable information in individual instances with re-
spect to a given dataset distribution, written as
PVI(z — y). The higher the PVI, the easier the
instance is for V), under the given distribution.

We first define predictive conditional V-entropy
to introduce the predictive V-information. We
follow the formal notations, defined in Xu et al.
(2020):

Definition 2.1 (Xu et al., 2020) Let predictive
family V C Q = {f : X U@ — P())}, where
X and Y are random variables with sample space
X and Y, and P(Y) be the set of all probability
measures on Y over the Borel algebra on X. The
predictive conditional V-entropy is defined as

Hy(Y|X) = infreypEq yox vy [—logs fIX](Y)].
“)
The conditional V-entropy is given a random
variable X as side information, so the function
fIX](Y) produces probability distributions over
the output Y based on the side information X. Sup-
pose @ denote a null input that provides no infor-
mation about Y. Note that @ ¢ X. The predictive
family V is a subset of all possible mappings from

32310


https://openreview.net/forum?id=r1eBeyHFDH
https://openreview.net/forum?id=r1eBeyHFDH
https://doi.org/10.48550/ARXIV.2401.11817
https://doi.org/10.48550/ARXIV.2401.11817
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.551
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.551

X to P(Y) that satisfies optional ignorance; when-
ever the P predicts the outcome of Y, it has the
option to ignore side information, X. That is,

Hy(Y|@) = infreyE, oy [ log, f[@](Y)].

This is identical to the classic V-entropy, denoted
as Hy(Y'). We additionally specify the notation &
because the conditional V-information given null
input is crucial to measure how the existence of X
affect V to obtain the relevant information. The
entropy estimation specifies the infinite functions
farein V as Xu et al. (2020) illustrate that the pre-
dictive family in theory does not take into account
the computational constraints.

Definition 2.2 (Xu et al., 2020) Let X, Y denote
random variables with sample space X X Y, and V
be a predictive model or function family. Then the
predictive V-information from X to 'Y is defined
as

(X =Y)=Hy(Y|2) - H)(Y|X). (&)

Definition 2.3  (Ethayarajh et al., 2022) Given
random variables X,Y and a predictive family V,
the pointwise V-information (PVI) of an instance

(x,y) is

Iy(z = y) = —logy f'[@](y) + logy f'[z](y)-

(6)
Ethayarajh et al. (2022) have extended the Equa-
tion A to estimate the difficulty of point-wise in-
stances for the predictive family V. Most neural
networks fine-tuned to fit label information Y meet
the definition of the predictive family V here. If
V were, for instance, the BERT function family,
f'[X] and f’[@] would be the models after finetun-
ing BERT with and without the input X respec-
tively. Higher PVI means that the instance is easy
for V while lower PVI means difficult among the
given distribution. This comes from the intuition
that predicting minority instances expects V to re-
quire more side information of X to understand the
instances.
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