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Abstract

Most existing Theory of Mind (ToM) bench-
marks for foundation models rely on variations
of the Sally-Anne test, offering only a very
limited perspective on ToM and neglecting the
complexity of human social interactions. To
address this gap, we propose ToM-SSI: a new
benchmark specifically designed to test ToM
capabilities in environments rich with social
interactions and spatial dynamics. While cur-
rent ToM benchmarks are limited to text-only
or dyadic interactions, ToM-SSI is multimodal
and includes group interactions of up to four
agents that communicate and move in situated
environments. This unique design allows us
to study, for the first time, mixed cooperative-
obstructive settings and reasoning about mul-
tiple agents’ mental state in parallel, thus cap-
turing a wider range of social cognition than
existing benchmarks. Our evaluations reveal
that the current models’ performance is still
severely limited, especially in these new tasks,
highlighting critical gaps for future research. 1

1 Introduction

Theory of Mind (ToM) is the ability to attribute
mental states to oneself and others, such as be-
liefs, intents, desires, or knowledge (Premack and
Woodruff, 1978). ToM is important in human so-
cial interactions as well as for empathy and effec-
tive communication, all of which are inherently
grounded in a physical environment.

Recent advances in large foundation models
(LFMs) have spurred the creation of benchmarks to
assess LFMs’ ToM abilities, but these benchmarks
suffer from important limitations. Many bench-
marks (Le et al., 2019; Sclar et al., 2023; Ma et al.,
2023a; Wu et al., 2023; Gandhi et al., 2023; Xu
et al., 2024; Zhou et al., 2023) are based on varia-
tions of the prototypical Sally-Anne test (Wimmer

1 Project web page: https://collaborative-ai.
org/publications/bortoletto25_emnlp/.

Figure 1: ToM-SSI is both physically and socially sit-
uated, introducing up to four agents moving and com-
municating in a grid world environment with the goal
of sharing and acquiring information. Since agents
possess asymmetric information and communication
is spatially constrained , ToM-SSI requires models to
take their perspective to reason about their perceptions,
beliefs, desires, and intentions.

and Perner, 1983), where Sally places an object in
a location, leaves, and Anne moves it. An observer
is then tested to see whether they can understand
that Sally will hold a false belief about the object’s
location upon her return. Despite its popularity, the
Sally-Anne test only offers a limited perspective on
ToM, and it neglects the complexity of social inter-
actions. While other benchmarks cover a broader
range of social interactions, they still only involve
textual input (Kim et al., 2023; Chen et al., 2024;
Hou et al., 2024a; Gu et al., 2024).

ToM evaluations must be both physically situ-
ated – requiring the interpretation of visual cues or
spatial relationships – and socially situated in inter-
actions between multiple agents (Ma et al., 2023b).
Most recent benchmarks try to address both limita-
tions by using simulated environments (Bara et al.,
2021, 2023; Bortoletto et al., 2024a; Jin et al., 2024;

32253

https://collaborative-ai.org/publications/bortoletto25_emnlp/
https://collaborative-ai.org/publications/bortoletto25_emnlp/


Shi et al., 2025), but they still only consider inter-
actions between two agents. As a result, they are
limited to simple cooperative or obstructive tasks
and require models to track the mental states of at
most two agents.

We introduce ToM-SSI, the first evaluation
benchmark that addresses all aforementioned lim-
itations by evaluating ToM abilities in Situated
Social Interactions:

1. ToM-SSI goes beyond the Sally-Anne test by
covering agents that move and communicate in
a rich social environment to share and acquire
different pieces of information.

2. ToM-SSI is formulated as a visual-text question
answering task (Chen and Wu, 2024) and is thus
inherently multimodal. Since agents possess
asymmetric knowledge and their communica-
tion is spatially constrained, ToM-SSI requires
LFMs to align spatial information in images
with textual descriptions and to take agents’ per-
spective to reason about their percepts, beliefs,
desires, and intentions (see Figure 1).

3. ToM-SSI supports triadic and tetradic social
interactions, allowing us to evaluate differ-
ent agent attitudes. It comprises five tasks
involving cooperative movement, cooperative
and obstructive communication, and mixed
cooperative-obstructive communication (see
Figure 2) – featuring 6,000 questions in total.

We report evaluations using ToM-SSI that reveal
several important and novel insights. We demon-
strate that current state-of-the-art LFMs perform
significantly worse than humans. For certain tasks,
they even perform worse than smaller models. We
further show that models struggle with two crit-
ical steps necessary for reasoning about agents’
percepts, beliefs, and intentions: (1) inferring the
percepts of a target agent, and (2) determining that
agent’s beliefs based on those percepts. We then
analyse error cases in two challenging ToM-SSI
tasks that reveal the limitations of models in track-
ing nested beliefs in multi-agent communication
and modelling mixed social interactions. Overall,
our evaluations show that current models’ ToM
abilities are still severely limited, particularly in
the new tasks introduced by ToM-SSI, highlighting
critical gaps for future research.

2 ToM-SSI

2.1 Designing Situated Social Interactions

Grid World As in prior work (Rabinowitz et al.,
2018; Sclar et al., 2022; Gandhi et al., 2021), we
opted for a grid world environment where all agent
interactions occur. A grid world allows us to study
the core abilities targeted by ToM-SSI, while min-
imising complexities that could compromise assess-
ment clarity – such as hallucinations (Sahoo et al.,
2024). We create different grid layouts by applying
geometric transformations (see A.2.2) to minimal
templates inspired by previous work in deep rein-
forcement learning (Sclar et al., 2022), where up to
four agents are placed in pre-defined locations. The
grid world is then rendered as an image. To be able
to evaluate models that only support text as input,
we also generate a character version of each grid,
as shown in Figure 6. Both grid versions retain the
same information required for performing the task.

Agents Each agent Aj , j ∈ [0, 3], occupies one
cell in the grid and starts with partial knowledge
IAj ⊆ I = {i0, i1, i2, i3}. Agents have two goals:
1) fill their knowledge gaps by learning missing
pieces of information from other agents, and 2)
share their knowledge with other agents who lack
that information. While agents know the initial po-
sitions, movements, and starting knowledge of oth-
ers, they cannot directly see new information that
other agents may acquire later. Instead, they must
infer it from events that they observe. Communica-
tion is spatially constrained: an agent Aj can lean
information that another agent Ak is communicat-
ing only if Aj is in one of the adjacent cells to Ak,
i.e. (xj , yj) ∈ {(x, y) : 1 ≤ |x− xk|+ |y− yk| ≤
2}, where (xj , yj) and (xk, yk) represent the grid
coordinates of agents Aj and Ak, respectively. For
example, in Figure 1, only can learn what is
communicating.

A key novelty of ToM-SSI is that it allows us
to study a wider range of agent desires than pre-
vious benchmarks. By default, agents have a col-
laborative attitude, i.e., they want to share their
knowledge with other agents. ToM-SSI also offers
to design agents with an obstructive attitude, who
aim to prevent other agents from learning new in-
formation (see Figure 2d). Moreover, given that
ToM-SSI supports more than two agents, we can
study mixed collaborative-obstructive scenarios in
triadic interactions in which one agent Aj is col-
laborative with Ak but obstructive towards Al (see
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Figure 2e).

Events Events dictate the flow of information and
change the state of the grid, creating dynamic op-
portunities for collaboration and inference. Events
can involve agents’ movement, communication of
information, or both. Agents can move up, down,
left, right, and/or communicate one piece of infor-
mation they possess. For example, the event in
Figure 1 is “Cook communicates ”.

Social Context Tasks in ToM-SSI are situated
in social contexts. For example, the social con-
text in Figure 1 could be “a restaurant’s kitchen
in which four chefs are preparing a dish” or “a
cooking class where four participants are learning
to make a new dish”. The four pieces of infor-
mation are assigned to different IDs according to
the context, for example, the ingredients needed to
make the dish: “bread” ( ), “salad” ( ), “tomato”
( ), and “meat” ( ). We generated a collection of
121 social contexts using GPT-4o (OpenAI, 2024a)
and randomly sampled from this collection while
generating ToM-SSI samples (details in A.3).

2.2 Question Types

Inspired by the Belief-Desire-Intention framework
(Bratman, 1987; Baker et al., 2011), samples in
ToM-SSI are paired with three questions, covering
agents’ percept, beliefs, and intentions, given their
desires, as shown in Figure 1. We do not include
questions about desires as they trigger all social
interactions and are already specified in the textual
prompt. Given the percept-belief-intention causal
structure shown in Figure 1, percept questions act
as a control for belief questions (Percept → Be-
lief), which in turn serve as a control for intention
questions (Belief → Intention). Therefore, a model
with strong ToM abilities must answer all three
questions correctly.

Percept Percepts are the observations an agent
makes about the environment, forming its under-
standing of the current world state. In ToM-SSI,
percepts include the agents’ positions, starting
knowledge, and movement. Percept questions
probe whether models can accurately attribute
agents to percepts based on the information pre-
sented in the image and text. This ability is called
perspective taking – a foundational ability in ToM
(Masangkay et al., 1974). For example, in Figure 1,
the percept question asks whether learns what

has communicated. To answer correctly, one

must observe that the two agents occupy adjacent
cells so can hear what communicates. Per-
cept questions are framed as yes/no questions in
the form “Is the statement [...] true/false?”.

Belief Beliefs are an agent’s internal representa-
tion of the world, derived from its percepts and
prior knowledge (Perner, 1993). Beliefs may in-
clude assumptions about hidden aspects of the
world, such as what another agent knows. Be-
lief questions evaluate whether models understand
what information an agent knows or is communi-
cating based on the agent’s percepts. For example,
in Figure 1, models must infer that because can
hear what communicates, will believe she is
missing only one piece of information ( ). Belief
questions are multiple-choice questions with the
information IDs as options.

Intention Intentions are the specific plans or ac-
tions that, given their beliefs and desires, an agent
commits to achieve their goals (Tomasello et al.,
2005). Intention questions focus on whether mod-
els can deduce the agents’ action – either commu-
nicative or motor. For example, in Figure 1, mod-
els must infer that, given her desires (learning and
sharing information) and her belief (missing ),

is more likely to approach . This is because
can communicate the last piece of information

that is missing ( ), and can communicate
the two pieces of information that is missing
( and ). In comparison, approaching would
be suboptimal, as could only share one piece of
information that lacks ( ). Intention questions
are multiple-choice questions, with options being
agent IDs in case of movement and information
IDs in case of communication.

2.3 Tasks
ToM-SSI comprises 6,000 questions, equally split
between five tasks. These tasks reflect different
aspects of everyday social interactions involving
agents with collaborative, obstructive, or mixed
attitudes. They require tracking multiple agents’
beliefs, interpreting various communication events,
and making inferences under uncertainty.

ToM tasks must satisfy two important crite-
ria (Quesque and Rossetti, 2020). First, they must
require models to differentiate between mental
states (in our case, knowledge) of different agents
(non-merging criterion). Second, it should be im-
possible to pass the tasks using low-level heuris-
tics (mentalising criterion). Tasks in ToM-SSI ful-
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Figure 2: Overview of ToM-SSI. ToM-SSI extends to triadic and tetradic social interactions, covering different
agent attitudes: cooperative, obstructive, and mixed settings. The dataset comprises five tasks involving cooperative
movement, cooperative communication, obstructive communication, and mixed cooperative-obstructive communi-
cation. Each sample is paired with three questions, covering agents’ percepts , beliefs , and intentions .

fil these criteria by requiring models to integrate
spatial information from the grid with events and
agents’ knowledge. Given that agents have par-
tial observability of communicative events, tasks
in ToM-SSI also require models to take agents’
perspectives when answering questions.

We discuss how to solve each task based on for-
mal utility functions in 2.4. For simplicity, in the
following task descriptions, all questions only tar-
get A0 and we use the cooking example of Figure 1
to label the information IDs. Figure 2 illustrates ex-
amples from the five tasks, where we show original
images from the dataset with overlapping knowl-
edge and attitude.

2.3.1 Cooperative Movement – Single
Communication (CMSC)

The CMSC task requires models to reason about
one agent’s mental state as that agent is involved
in a communicative action. The task includes four
agents, A0, A1, A2, and A3, as shown in Figure 2a.
During the event, agent A1 communicates a piece
of information ( ) that agent A0 is missing and
able to learn.

Desire A0 wants to learn new information from
other agents and share information that other agents
are missing.

Percept The percept question asks if, after the
event, A0 learns what A1 communicated. This
serves as a control to verify whether a model can
observe that A0 and A1 occupy adjacent cells on
the grid. Recognising adjacency is crucial for infer-
ring A0’s belief and intention.

Belief The belief question asks to identify which
information A0 believes she is still lacking. Ini-
tially, A0 knows and . Upon learning from
A1, the model must infer that the only remaining
missing information for A0 is .

Intention The intention question asks who is A0

most likely to approach next. After the event, A0

knows , , and . A model must correctly infer
that A0 will move toward A3, as A3 can provide the
last missing piece ( ), and A0 can share the two
pieces of information that A3 is missing. A model
that incorrectly infers that A0 does not learn
will likely predict that A0 would go to A2 instead
(since A2 knows both and , and A0 can still
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communicate ).

2.3.2 Cooperative Movement – Concurrent
Communication (CMCC)

The CMCC task differs from the CMSC task in that
it challenges models to reason about one agent’s
mental states while this agent observes two other
agents communicating with each other at the same
time (Figure 2b). However, the observing agent
cannot know for sure what is being communicated
because she is too far away to hear them. During
the event, agents A1 and A2, who occupy adjacent
cells, share the information that each is missing.

Desire A0 wants to learn new information from
other agents and share information that other agents
are missing.

Percept The percept question asks if, after the
event, A1 learns what A2 has communicated, and
vice versa. This serves as a control to verify
whether a model can observe that A1 and A2 oc-
cupy adjacent cells on the grid, and therefore can
learn from each other.

Belief The belief question asks to identify which
information A0 believes A1 and A2 are still lacking.
A model needs to infer that A0 will believe that
since A1 and A2 possess what the other is missing
and can communicate, after the event they will
possess all the information.

Intention The intention question asks who is A0

most likely to approach next. A model that cor-
rectly infers A0’s belief that after the event A1 and
A2 possess all the information will predict that the
only sensible agent that A0 can approach is A3, to
share the only piece of information A3 is missing
( ).

2.3.3 Probabilistic Cooperative
Communication (PCC)

Tasks in PCC are set in a probabilistic scenario, as
the target agent’s intention is subject to uncertainty.
The task includes three agents A0, A1, and A2,
as shown in Figure 2c. In the event, agent A2

communicates one of the two pieces of information
A1 is missing ( or , randomly chosen). Then,
A1 moves adjacent to A0.

Desire A0 wants to learn new information from
other agents and share information that other agents
are missing.

Percept The percept question asks if, during the
event, A1 learns what A2 has communicated. This
verifies whether a model can observe that A1 and
A2 occupy adjacent cells, and therefore A1 can
learn what A2 is communicating.

Belief The belief question asks which informa-
tion A0 believes A2 has communicated to A1 dur-
ing the event. Even if the event specifies which
information A2 is communicating, a model must
infer that A0 will not know which specific informa-
tion was communicated by A2. However, A0 will
rationally believe it to be one of the pieces that A1

is missing (either or ).

Intention The intention question asks which in-
formation A0 will most likely communicate after
the event. A model that correctly infers A0’s belief
that A2 is likely communicating one of the two
pieces of information A1 is missing will predict
that A0 will likely communicate one of these two,
aware of the uncertainty of potentially communi-
cating the same information that A1 has already
learnt from A2.

2.3.4 Obstructive Communication (OC)

The OC task is perceptually identical to PCC
(§2.3.3), but in this case, the target agent has an
obstructive attitude (Figure 2d). Percept and belief
questions are analogous to §2.3.3.

Desire A0 does not want other agents to learn
new information.

Intention The intention question asks which in-
formation A0 will most likely communicate after
the event. Given A0’s obstructive attitude, a model
must predict that A0 will likely communicate the
only piece of information that all the agents already
know ( ).

2.3.5 Mixed Cooperative-Obstructive
Communication (MC)

The MC task extends to mixed cooperative-
obstructive settings, as the target agent is collab-
orative towards one agent but obstructive towards
another. This task includes three agents A0, A1,
and A2, as shown in Figure 2e. In the event, agent
A2 moves one cell up.

Desire A0 wants A1 to gain new information
while preventing A2 from doing so.
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Percept The percept question asks if, after the
event, A1 and A2 can communicate. This serves
as a control to verify whether a model can com-
bine information from the grid (A1 and A2 are one
cell apart) with information from the event (A2

moving up). After the event, the two agents will
occupy adjacent cells and, therefore, will be able
to communicate.

Belief The belief question asks which informa-
tion A0 believes A2 is missing. A model must infer
that, based on A2’s initial knowledge and in the ab-
sence of further communications with other agents,
A0 will believe that A2 is missing .

Intention The intention question asks which in-
formation A0 will most likely communicate after
the event. Here, a model needs to infer that A0

believes that if she communicates , A1 will learn
it and then potentially pass it on to A2. However,
this conflicts with A0’s obstructive attitude towards
A2. Instead, A0 is more likely to communicate ,
which A1 is missing and A2 already possesses.

2.4 Utility Functions

Each of our tasks has one (or in some cases two,
see Figure 2) correct answer(s) that can be formally
found as discussed in §2.1. It is also possible to in-
fer the correct answer by defining the target agent’s
utility function for each task and maximising it.
Following the notation introduced in §2.1, we can
define the utility function for movement actions of
agent Aj as:

UAj (ÎAk
) = U learn

Aj
(ÎAk

) + U share
Aj

(ÎAk
)

= |ÎAk
− IAj |+ |IAj − ÎAk

|

Where ÎAk
denotes the information that Aj believes

is known by Ak, |ÎAk
−IAj | is the number of pieces

of information that agent Aj can learn from agent
Ak, and |IAj − ÎAk

| is the number of pieces of
information that agent Aj can share with agent
Ak. For example, in Figure 1: U ( ) = 3 and
U ( ) = 2. For communicative actions, we have
three different cases:

• Cooperative: UAj (ÎAk
) = IAj − ÎAk

• Obstructive: UAj (ÎAk
) = IAj ∩ ÎAk

• Mixed, e.g. cooperative towards Ak and ob-
structive towards Al:
UAj (ÎAk

, ÎAl
) = (IAj − ÎAk

) ∩ (IAj ∩ ÎAl
)

Note that, in ToM-SSI, the spatial relationships are
important to understand who is able to learn what,
but we designed the tasks such that the number of
steps required to reach another agent does not mat-
ter. Future versions of the benchmark could include
rational movement as an additional complexity.

2.5 Dataset Generation

ToM-SSI is entirely generated by code (see Algo-
rithm 1). Each minimal template is paired with
agents’ initial knowledge and the correct answer,
which is determined as discussed in §2.3 and 2.4.
Starting from a minimal grid template, our genera-
tion pipeline applies random geometric transforma-
tions to the grid (see A.2.2) and samples one social
context from our database to populate the prompt
template corresponding to the task. To further
avoid bias, agent and information IDs are randomly
permuted. We show the structure of prompts in
ToM-SSI in Figure 7. The prompt first introduces
the social context and information about agents. It
then presents the grid with the agents in their ini-
tial position as an image (for VLMs) or text (for
LMs), as shown in Figure 6. Following the grid,
the prompt lists the information initially known by
the agents, the attitude of the target agent, and the
event(s) that trigger a change in the environment.
The prompt ends with the question and multiple-
choice answers for the model to select from. To
avoid bias, questions can have different formats
(see A.4). Complete examples of prompts are in-
cluded in A.4.

3 Experiments

3.1 Experimental Setup

Baseline Models We tested 15 baseline mod-
els: GPT (4o and 4o-mini; OpenAI, 2024a), o4-
mini (OpenAI, 2024b), Claude 3.5 (Sonnet and
Haiku; Anthropic, 2024), Gemini 1.5 (Pro and
Flash; Anil et al., 2023), Gemini 2.5 Flash (Co-
manici et al., 2025), Llama 3.2 Instruct (1B, 3B,
11B, and 90B; Dubey et al., 2024), Qwen2-VL In-
struct (7B, 72B; Wang et al., 2024), Molmo 7B
(Deitke et al., 2025), Mistral 7B Instruct (Jiang
et al., 2023), and Gemma 2 9B Instruct (Mesnard
et al., 2024). Language models (LM) were eval-
uated using the text-only version of the prompts,
and vision language models (VLMs) were evalu-
ated both with images and text-only prompts. We
provide additional details in A.5.
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Figure 3: PBI performance for the top five models for the multimodal (left) and text-only (right) versions of
ToM-SSI. Human scores are included in both plots for comparison; however, humans were evaluated exclusively in
the multimodal setting.
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Figure 4: Change in performance across P, PB, and PBI accuracy for both humans and the top five VLMs on
ToM-SSI. Performance declines from percepts to beliefs to intentions.

Human Study We recruited 20 human partic-
ipants and asked them to answer 45 questions,
equally split between tasks. Participants were
shown the same prompt as the models. Further
details are provided in A.6.

Metrics For each task, we measured models’ ac-
curacy on percept (P), belief (B), and intention (I)
questions. We then computed two scores: the PB
score, which requires correctly answering percept
and belief questions (P ∧ B), and the PBI score,
which requires correctly answering all three ques-
tion types (P ∧ B ∧ I).

3.2 Results

Figure 3 reports the PBI accuracy of models on
the five tasks in ToM-SSI, as well as their average
(Avg). We focus on the PBI accuracy because it
reflects a model’s ability to handle the full spectrum
of reasoning required to comprehensively solve all
tasks in ToM-SSI. For clarity, the figure includes
only the best five models, selected based on their
Avg score on the multimodal (Figure 3, left) and
text-only versions of ToM-SSI (Figure 3, right).
Detailed results for every combination of task and
question type can be found in A.7.
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Figure 5: Difference in accuracy of VLMs when evalu-
ated on the multimodal version of the ToM-SSI versus
the text-only version.

Figure 3 shows that models’ performance sig-
nificantly lags behind human performance, espe-
cially in the multimodal setting. While human
performance on the tasks ranges from 73% to 85%,
models generally perform below 30% (for detailed
scores, see Table 1). No model performs best across
all tasks. In the multimodal setting, o4-mini is the
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best model on average (Avg), achieving the highest
performance on CMCC, OC, and MC. Qwen2-7B
is the best model on PCC. PBI scores are higher
in the text-only setting, where Claude 3.5 Sonnet
performs the best (Figure 3, right).

P, PB, and PBI Inference Accurately represent-
ing the complete percept-belief-intention causal
graph involves three key steps: inferring the per-
cepts of the target agent, determining the agent’s
beliefs based on those percepts, and inferring the
agent’s intentions based on their beliefs (Jung et al.,
2024). Figure 4 shows that while models generally
perform well in percept inference, their accuracy
drops significantly when progressing to PB, and fur-
ther when moving forward to PBI. While humans
outperform these models, their accuracy also drops
from PB to PBI, albeit less pronounced. o4-mini,
GPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro
are more consistent across all three steps but are
limited by lower percept inference accuracy, which
also caps their overall performance. These findings
highlight percept inference as a key foundation for
advancing ToM in multimodal models. Further-
more, our results reveal that even when models
achieve reasonable PB inference, they still struggle
to transition from PB to PBI. We provide additional
results in A.8.

3.3 Error Analysis
Figure 3 shows that even state-of-the-art models
struggle with ToM-SSI, indicating a notable gap in
their reasoning abilities. To gain deeper insights
into these shortcomings, we conducted an error
analysis by manually inspecting the models’ gen-
erated outputs. In particular, we focus on CMCC
and MC – which are the most challenging tasks.

Modelling Multi-Agent Communication is Chal-
lenging Compared to CMSC, CMCC is more
challenging for models as it involves a communica-
tive event where the target agent is unsure of what
has been communicated. Despite this, it should be
relatively straightforward to infer what has been
communicated, given the agents’ cooperative in-
tent and their observable initial knowledge (A1:

, A2: ). By inspecting the out-
put generated by Llama 3.2 11B2, we observe that
most errors arise from ignoring that agents can
observe each other’s initial knowledge – although
this is made explicit in the prompt. This oversight

2The best-performing VLM for percept questions on
CMCC, see Table 1.

leads the model to incorrectly assume that the tar-
get agent will believe that if one agent does not ex-
plicitly communicate a piece of information, they
do not possess it (Example 4). Next, we exam-
ined error cases in the intention questions where
both percepts and beliefs were correctly inferred.
In these instances, we found that errors typically
stemmed from incorrect recall of the target agent’s
knowledge (Example 5).

Successes and Shortcomings in Modelling Mixed
Social Interactions We repeated the previous
analysis for the MC task. While examining the
output generated by Llama 3.2 11B3, we found that
it accurately considers the agents’ attitudes in most
cases. In successful cases, the model infers that
A0 prefers not to share information that A2 could
learn next (Example 7). In failure cases, the model
overlooks the fact that if A0 communicates a piece
of information that both A1 and A2 are missing,
A1 is likely to share it with A2 (Example 6).

3.4 Do VLMs Benefit From Images?
We finally compared the performance of VLMs
when evaluated on the multimodal version of ToM-
SSI versus the text-only version. Our analysis re-
veals that different models exhibit different pat-
terns to the inclusion of image inputs. For exam-
ple, GPT-4o does not benefit from the addition
of images but performs significantly better on the
text-only version of ToM-SSI (Figure 5, top). This
effect is most pronounced for percept questions.
In contrast, Qwen2-VL 7B shows a clear benefit
from the image input, particularly on percept ques-
tions (Figure 5, bottom). We provide comparisons
for all the other evaluated models in A.9. While
Claude 3.5 Sonnet and Gemini Pro 1.5 show sim-
ilar patterns to GPT-4o, results for other models
are mixed, with some benefiting from image inputs
on specific tasks and others showing little to no
advantage.

4 Related Work

Theory of Mind in AI has been studied for more
than a decade (Baker et al., 2011; Eysenbach et al.,
2016; Rabinowitz et al., 2018; Jara-Ettinger, 2019;
Liu et al., 2023; Bortoletto et al., 2024a,c,d; Ruh-
dorfer et al., 2025). Recent advances in LFMs have
sparked interest in evaluating their ToM capabilities
(Achiam et al., 2023; Ullman, 2023). While several

3The best-performing VLM for percept questions on MC,
see Table 1.
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benchmarks are based on textual variations of the
classic Sally-Anne task (Le et al., 2019; Sclar et al.,
2023; Ma et al., 2023a; Wu et al., 2023; Gandhi
et al., 2023; Xu et al., 2024; Zhou et al., 2023), oth-
ers aim to cover a broader range of scenarios (Kim
et al., 2023; Chen et al., 2024; Hou et al., 2024a; Gu
et al., 2024), including multimodal settings (Bara
et al., 2021, 2023; Jin et al., 2024; Shi et al., 2025).
Additionally, efforts have been made to enhance
LMs’ ToM through prompting techniques (Zhou
et al., 2023; Moghaddam and Honey, 2023; Wilf
et al., 2024) or activation steering (Zhu et al., 2024;
Bortoletto et al., 2024b).

5 Discussion and Conclusion

We introduced ToM-SSI, a multimodal benchmark
that tests ToM capabilities in environments rich
with social interactions and spatial dynamics. Fea-
turing up to four agents communicating and mov-
ing, it enables the study of cooperative, obstructive,
and mixed interactions. Our evaluations on ToM-
SSI revealed several important and novel insights.
First, current models perform significantly worse
than humans, both on the multimodal and text-
only version of ToM-SSI (§3.2, Figure 3). Second,
we show that models struggle with the critical
steps necessary for ToM reasoning (§3.3, Fig-
ure 4). Notably, even when models perform rea-
sonably well on PB inference, they still struggle to
transition to PBI. Third, our analyses of error cases
revealed that models are still limited in modelling
agent perception, multi-agent communication,
and mixed social interactions (§3.3). This means
they may misinterpret or oversimplify human be-
haviour in real-world settings, especially in group
interactions. Finally, we found that most of the
evaluated VLMs do not benefit from visual in-
put – highlighting a critical disparity in how mod-
els leverage multimodal information to perform
ToM tasks (§3.4, Figure 5). This suggests a gap
in how models understand and integrate context,
which is vital for interpreting visual cues during
social interactions.

Limitations

One limitation of ToM-SSI lies in its synthetic grid
world environment, which is simpler than the real
world. However, this simplicity does not impair
the core abilities that ToM-SSI targets – reasoning
about agents’ mental states in spatially grounded
interactions. There is a clear advantage that makes

synthetic benchmarks well suited for studying ToM,
at least at the current state of research: real-world
tasks often require common sense reasoning skills
that models do not fully have yet, and that will func-
tion as a confounder making models’ performance
on ToM inference hard to judge (see Gandhi et al.
(2023)’s discussion about (Shapira et al., 2024)).
Synthetic benchmarks like ToM-SSI allow us to
reduce these factors and to design tasks that bet-
ter focus on evaluating core ToM abilities. Our
setup also makes the environment less prone to hal-
lucinations, which can hinder the performance of
current vision-language models in complex simula-
tions (Jin et al., 2024), while also making halluci-
nations easier to identify if they occur. In addition,
using images instead of videos avoids sampling
issues or additional processing steps that might ex-
clude important video frames.

A second limitation is that, while our work cov-
ers a broader set of interactions compared to pre-
vious work, it still does not cover all possible so-
cial scenarios. Future work could consider, for
example, exploitative interactions, where an agent
uses the other’s resources or efforts for their own
gain. Moreover, while ToM-SSI presents scenarios
about a single group of interacting agents, future
work could extend it to multiple social groups with
agents in the same social group sharing common
goals. This can be achieved by extending ToM-
SSI’s generation pipeline with suitable templates.

Finally, while studying inference-time methods
to improve performance goes beyond the scope
of our current work, exploring the effects of CoT
(Wei et al., 2022) or other methods (e.g. SimToM
(Wilf et al., 2024), TimeToM (Hou et al., 2024b),
or PercepToM (Jung et al., 2024)) is an interesting
research direction for future work.
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A Appendix

A.1 Societal Impact

While our work is foundational and remains dis-
tant from specific applications with direct societal
impact, it’s important to recognise the ethical impli-
cations of modelling and predicting mental states.
Handling sensitive aspects of individuals’ inner ex-
periences requires careful consideration to avoid
reinforcing biases or misunderstanding psychologi-
cal nuances.

A.2 Gridworld

A.2.1 Gridworld Representations

Figure 6 represents the two different representation
of the grid included in the standard, multimodal
version of ToM-SSI and in the text-only version.

A.2.2 Gridworld Transformations

ToM-SSI builds grid world environments starting
from minial templates where agents are placed in
pre-defined cells. Our generation pipeline then
uniformly increases the distance between agents
by a random value δ ∈ {0, 1, 2, 3} and applies
one random transformation. We present the formal
definitions of transformations applied to our grid
world templates, represented as a two-dimensional
matrix T ∈ Rm×n, where m is the number of rows
and n is the number of columns (in our specific
case, n = m). Transformations include rotations,
mirroring, and transposition, which are defined as
follows.

90° Rotation The 90° clockwise rotation of T
produces a new matrix T ′ of size n×m such that:

T ′
i,j = Tm−j+1,i, ∀i ∈ [1, n], j ∈ [1,m]. (1)

Operationally, this is equivalent to reversing the
row order of T and transposing:

T ′ = Transpose(ReverseRows(T )). (2)

180° Rotation The 180° rotation produces a ma-
trix T ′ such that:

T ′
i,j = Tm−i+1,n−j+1, ∀i ∈ [1,m], j ∈ [1, n].

(3)
This operation reverses both the rows and columns:

T ′ = ReverseRows(ReverseColumns(T )). (4)

Figure 6: By using grid world environments as a ground
for social interactions, ToM-SSI allows us to evaluate
large language and vision-and-language models by pro-
viding equivalent grid representations.

Task:
[SYSTEM PROMPT]

Setup:
[SOCIAL CONTEXT]

Rules:
[RULES]

Initial position of the [WORD_FOR_AGENTS] in the
[ENV]:
[GRID]
The initial position of the [WORD_FOR_AGENTS] in
the [ENV] is shown in the provided image.

Information initially known by the designers:
- A0: [A0_INFO]
- [...]

[AGENT ID]'s Attitude:
[ATTITUDE] 

Event:
[EVENT]

Question:
[QUESTION]

Based on the information above and on the image,
choose one of the following answers:
[OPTIONS]

Provide your final answer within the tags
<Answer>[answer]</Answer> (e.g.
<Answer>A</Answer>).

Text-only Text + Image

Figure 7: Structure of prompts in ToM-SSI.

270° Rotation The 270° clockwise rotation pro-
duces a matrix T ′ of size n×m such that:

T ′
i,j = Tj,n−i+1, ∀i ∈ [1, n], j ∈ [1,m]. (5)

Operationally, this is equivalent to transposing T
and then reversing the rows:

T ′ = ReverseRows(Transpose(T )). (6)

Horizontal Mirroring Horizontal mirroring re-
flects T across its horizontal axis, producing a ma-
trix T ′ such that:

T ′
i,j = Tm−i+1,j , ∀i ∈ [1,m], j ∈ [1, n]. (7)
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Model Vision CMSC CMCC PCC OC MC
P B I PBI P B I PBI P B I PBI P B I PBI P B I PBI

Human ✓ 98.3 98.3 85.0 85.0 98.3 88.3 85.0 78.3 96.7 98.3 86.7 83.3 98.3 98.3 81.7 81.7 100.0 96.7 73.3 73.3
Llama-3.2-11B-Vision-Instruct 82.5 22.5 13.5 2.2 64.2 0.0 17.2 0.0 55.5 60.5 59.5 20.2 55.5 60.5 33.5 10.2 65.8 35.5 22.0 5.2
Llama-3.2-11B-Vision-Instruct ✓ 87.8 25.2 5.2 1.0 65.2 1.0 10.8 0.0 73.8 56.2 67.8 27.3 73.8 56.2 21.5 8.0 61.5 40.2 20.2 5.0
Llama-3.2-1B-Instruct 50.2 23.8 30.2 3.0 48.2 24.5 28.5 4.5 51.0 36.2 51.0 11.2 51.0 36.2 27.0 6.2 53.8 22.2 23.2 3.0
Llama-3.2-3B-Instruct 63.7 18.2 20.8 2.5 65.2 0.0 18.0 0.0 63.5 63.0 80.2 31.8 63.5 63.0 20.0 8.8 46.2 30.0 22.8 3.5
Mistral-7B-Instruct-v0.3 72.8 24.5 16.0 4.0 46.2 0.0 15.8 0.0 60.5 61.3 66.8 22.2 60.5 61.3 26.0 8.2 25.0 46.5 22.2 2.2
Molmo-7B-D-0924 56.0 23.8 38.8 5.2 59.2 4.8 34.2 1.0 44.5 44.0 37.5 7.2 44.5 44.0 17.8 2.8 51.0 36.8 10.2 1.2
Molmo-7B-D-0924 ✓ 43.5 29.8 33.0 5.0 51.0 4.0 28.0 0.2 41.5 44.0 41.0 6.8 41.5 44.0 16.0 3.8 51.0 39.0 14.8 2.2
Qwen2-VL-7B-Instruct 35.8 17.0 1.8 0.0 12.8 0.0 4.2 0.0 32.2 66.8 67.2 14.5 32.2 66.8 39.2 8.2 0.0 42.2 10.2 0.0
Qwen2-VL-7B-Instruct ✓ 84.5 16.0 0.8 0.0 55.0 0.0 5.5 0.0 85.0 71.0 65.8 41.5 85.0 71.0 38.8 23.0 32.2 39.0 10.2 1.2
claude-3.5-haiku-20241022 68.8 84.2 26.0 16.5 69.2 3.2 76.2 2.5 11.2 92.2 76.5 7.8 11.2 92.2 23.5 2.0 72.8 100.0 4.2 3.5
claude-3.5-haiku-20241022 ✓ 5.2 75.8 23.2 0.5 12.0 3.0 70.0 0.0 4.8 91.8 81.2 4.2 4.8 91.8 17.5 0.2 46.5 100.0 3.0 1.5
claude-3.5-sonnet 85.2 100.0 49.0 42.5 75.2 21.2 75.5 13.2 64.5 99.8 95.5 61.8 64.5 99.8 95.2 61.3 84.5 100.0 85.2 71.8
claude-3.5-sonnet ✓ 16.5 91.0 20.5 6.2 18.2 13.0 75.2 3.5 18.8 99.8 97.8 18.2 18.8 99.8 97.8 18.8 24.8 98.8 49.8 11.8
gemini-2.5-flash 8.2 7.2 0.0 0.0 10.0 0.2 2.0 0.0 14.8 4.0 0.2 0.0 14.8 4.0 0.2 0.0 13.0 2.0 0.2 0.0
gemini-2.5-flash ✓ 6.0 10.0 1.8 0.2 6.8 2.8 6.2 0.0 20.8 24.0 14.5 1.2 20.8 24.0 4.2 0.2 12.2 12.8 6.5 0.0
gemini-flash-1.5 45.0 100.0 16.5 7.5 15.2 1.8 57.5 0.0 15.5 78.8 35.8 4.5 15.5 78.8 29.5 4.2 41.5 99.8 6.2 2.8
gemini-flash-1.5 ✓ 21.0 93.2 26.0 5.5 12.2 1.8 46.8 0.0 30.0 84.2 43.2 8.8 30.0 84.2 39.5 9.8 29.2 100.0 10.0 3.5
gemini-pro-1.5 71.8 100.0 48.5 34.5 44.2 75.8 70.0 24.8 12.8 92.5 86.5 10.2 12.8 92.5 76.2 9.0 54.5 100.0 30.8 17.8
gemini-pro-1.5 ✓ 30.2 99.2 29.2 11.5 19.5 21.2 55.5 2.8 21.0 90.2 88.5 15.5 21.0 90.2 78.5 14.8 35.8 100.0 18.0 6.8
gemma-2-9b-it 99.0 81.2 1.5 1.2 38.8 32.5 24.5 3.2 69.2 74.8 42.0 22.0 69.2 74.8 39.0 18.5 99.2 96.5 24.2 22.5
gpt-4o-2024-11-20 98.0 98.8 41.2 39.8 88.0 19.8 54.8 11.2 60.0 99.8 97.2 58.5 60.0 99.8 74.2 45.8 93.2 99.8 55.5 51.7
gpt-4o-2024-11-20 ✓ 14.2 35.5 26.2 9.5 16.8 10.5 32.0 1.0 27.5 99.2 90.2 25.8 27.5 99.2 86.2 22.2 0.0 100.0 0.0 0.0
gpt-4o-mini-2024-07-18 65.5 100.0 35.8 23.8 58.8 25.8 47.5 7.8 16.0 86.2 57.2 9.8 16.0 86.2 10.0 2.2 60.0 99.8 6.8 4.2
gpt-4o-mini-2024-07-18 ✓ 23.0 98.8 34.0 7.8 33.8 9.0 59.8 1.8 16.8 86.5 64.0 10.8 16.8 86.5 11.2 2.0 25.2 100.0 6.8 2.0
llama-3.2-90b-vision-instruct 30.2 75.8 26.2 6.2 6.5 0.0 43.2 0.0 8.2 91.2 66.0 4.2 8.2 91.2 16.5 2.2 52.2 100.0 3.2 1.0
llama-3.2-90b-vision-instruct ✓ 9.2 55.8 23.0 0.8 1.8 4.8 78.8 0.0 14.0 72.5 82.8 8.5 14.0 72.5 42.5 3.5 25.8 66.8 17.8 3.2
o4-mini-2025-04-16 ✓ 14.8 69.0 25.2 8.8 15.5 17.0 34.2 4.0 33.5 100.0 95.5 32.8 33.5 100.0 86.8 25.5 33.5 100.0 74.2 25.5
qwen-2-vl-72b-instruct 59.2 91.0 3.2 2.5 7.8 0.2 21.2 0.0 50.0 76.2 52.2 17.8 50.0 76.2 50.5 18.8 36.2 99.5 8.5 2.2
qwen-2-vl-72b-instruct ✓ 21.2 89.5 7.8 1.8 0.8 6.5 26.8 0.0 49.5 78.5 50.7 17.0 49.5 78.5 51.7 21.8 13.2 99.8 7.5 1.0

Table 1: Models’ accuracy across the three question types (P: Perception, B: Belief, I: Intent) for each task in
ToM-SSI.

This operation reverses the row order:

T ′ = ReverseRows(T ). (8)

Vertical Mirroring Vertical mirroring reflects T
across its vertical axis, producing a matrix T ′ such
that:

T ′
i,j = Ti,n−j+1, ∀i ∈ [1,m], j ∈ [1, n]. (9)

This operation reverses the column order:

T ′ = ReverseColumns(T ). (10)

Transposition Transposition exchanges the rows
and columns of T , producing a matrix T ′ of size
n×m such that:

T ′
i,j = Tj,i, ∀i ∈ [1, n], j ∈ [1,m]. (11)

Operationally:

T ′ = Transpose(T ). (12)

A.3 Social Context Generation
To generate the social contexts used in our prompts,
we employed a few-shot learning approach. We
started by manually crafting five example social
contexts, such as: a design studio where
four graphic designers are working on a
project. Social contexts are paired with four in-
formation IDs to use as agents’ knowledge, for

Task Question Type
Percept Belief Intent

CMSC 2132± 71 2188± 81 2126± 73
CMCC 2266± 86 2567± 102 2241± 87
PC 2134± 71 2240± 86 2188± 80
OC 2134± 71 2240± 85 2134± 79
MC 2114± 68 2175± 77 2172± 77

Table 2: Average length and standard deviation of
prompts across different tasks and question types.

example Feedback Loop, Color Scheme, Font
Choice, and Design Concept. These examples
were provided as input prompts to GPT-4o (Ope-
nAI, 2024a), which we used iteratively to generate
115 additional social contexts. To ensure quality,
we manually checked all generated contexts for
consistency, meaningfulness, and to eliminate du-
plicates. Three people (native speakers or high
proficiency) manually checked each social context.
Additionally, we ran two rounds of a pilot study
before finalising the dataset. To compute the dis-
tribution of the generated social contexts, we ini-
tially asked two annotators to label them. We then
measured the inter-annotator agreement using the
Cohen’s kappa, which was on the border between
moderate and substantial agreement (κ = 0.605).
Finally, the annotators proceeded to resolve dis-
agreements. We report the final distribution of the
social context topics in Figure 10.
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(a) VLMs evaluated on ToM-SSI.
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(b) LMs evaluated on the text-only version of ToM-SSI.

Figure 8: Change in performance across P, PB, and PBI accuracy for both humans and models on ToM-SSI.

A.4 Dataset Generation

ToM-SSI is entirely generated by code. The start-
ing minimal template for each task is shown in
Figure 11. Each minimal template is paired with
agents’ initial knowledge and the correct answer,
which is determined as discussed in §2.1 and 2.4.
We show ToM-SSI’s generation pipeline in detail
in Algorithm 1,

The structure of prompts in ToM-SSI is illus-
trated in Figure 7, where we highlight the differ-
ences between the prompt used for VLMs (where
the text representation of the grid is substituted by
the image) and LLMs. The prompt first introduces
the social context and information about agents. It
then presents the grid with the agents in their ini-
tial position as an image (for VLMs) or text (for
LMs), as shown in Figure 6. Following the grid,
the prompt lists the information initially known by
the agents, the attitude of the target agent, and the
event(s) that trigger a change in the environment.
The prompt ends with the question and multiple-
choice answers for the model to select from.

ToM-SSI allows to define different formats for
each question, as shown in Figure 12. During the
dataset generation, the format is chosen randomly
to avoid bias and make questions more diverse. The
correct answer to a question depends on multiple
factors: the specific task being evaluated, the social

context, the spatial setup of the environment, the
attitude of the target agent, and the format of the
question. The format of the question alone is not
sufficient to answer the question. Previous work
has often used just one single question format (Le
et al., 2019; Wu et al., 2023; Gandhi et al., 2023;
Chan et al., 2024). In the dataset version included
with this submission, questions appear in two dif-
ferent formats.

We report the average number of characters per
prompt for each task in Table 2. Examples of
prompts for the three questions are reported in Ex-
ample 1 (percept), Example 2 (belief), and Exam-
ple 3 (intent).

A.5 Baseline Models

We evaluate the following models:

• Llama-3.2-1B-Instruct (unimodal)

• Llama-3.2-3B-Instruct (unimodal)

• Llama-3.2-11B-Vision-Instruct (uni- and
multimodal settings)

• Llama-3.2-90B-Vision-Instruct (uni- and
multimodal settings)

• Mistral-7B-Instruct-v0.3 (unimodal)

• Molmo-7B-D-0924 (uni- and multimodal)
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Figure 9: Difference in accuracy of VLMs when evaluated on the multimodal version of the ToM-SSI versus the
text-only version.

• Qwen2-VL-7B-Instruct (uni- and multi-
modal)

• Qwen2-VL-72B-Instruct (uni- and multi-
modal)

• gemma-2-9b-it (unimodal)

• claude-3.5-sonnet-20241022 (uni- and mul-
timodal settings)

• claude-3.5-haiku-20241022 (uni- and mul-
timodal settings)

• gemini-pro-1.5 (uni- and multimodal set-
tings)

• gemini-flash-1.5 (uni- and multimodal set-
tings)

• gemini-2.5-flash (uni- and multimodal set-
tings)

• gpt-4o-2024-11-20 (uni- and multimodal set-
tings)

• gpt-4o-mini-2024-07-18 (uni- and multi-
modal settings)

• o4-mini-2025-04-16 (multimodal settings)

All models are used with a temperature of 0, to
make them as deterministic as possible.
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Figure 10: Distribution of the social contexts used in ToM-SSI.

[2 , None, None, None, None, None, None]
[1 , None, None, 0   , None, None,  3  ]

[ 3  , None, None, None]
[None, None, None, None]
[None, None, None, None]
[ 0  , None, None, 2   ]
[ 1  , None, None, None]

[None, None,  2  , None]
[None,  1  , None, None]
[None, None, None, None]
[ 0  , None, None, None]

[ 0  , None]
[ 1  , None]
[None, None]
[ 2  , None]

CMSC

CMCC

PCC and OC

MC

Figure 11: Minimal templates for each task. Agent IDs
are denoted as integers (1, 2, 3, 4) while None denotes
an empty cell.

A.6 Human Study

We recruited 20 human participants (8 female, 12
male, aged between 21 and 40 years old) and asked
them to answer 45 questions, equally split between
tasks. The study was approved by the institutional
ethics committee. Some participants were uni-
versity students who received course credits as
compensation, in accordance with university reg-
ulations. The remaining participants voluntarily
joined the study, without receiving any form of

Algorithm 1 Generation pipeline

Require: Set of agents A ∋ Aj , |A| = NA. Set
of agents’ initial knowledge IA ∋ IAj , j ∈
[0, NA − 1]. Minimal grid template T of size
s × s. Set of grid transformations T . Set of
social contexts C. Prompt template P

Require: isMultimodal ∈ {0, 1}
1: A′ = RandomShuffle(A)
2: Sample δ ∼ Uniform(0, 3)
3: T ′ = IncreaseSize(T, s′), where s′ = s+ δ
4: T ′′ = f(T ′), where f ∼ T
5: if isMultimodal then
6: GridRepr = RenderImage(T ′′)
7: else
8: GridRepr = RenderText(T ′′)
9: end if

10: Sample c ∼ C
11: I ′A = RandomShuffle(IA)
12: Prompt =

MakePrompt(P,A′, c, I ′A,GridRepr)
13: Prompt′ = ShuffleAnswers(Prompt)
14: return Prompt′, GridRepr

compensation. Human participants were shown the
same prompt used for evaluating models. At the
beginning of the study, participants were informed
about their task, the duration of the experiment, and
that their responses would be kept anonymous and
used solely for research purposes. They then went
through a guided example that explains the rules
of social interactions, so that they could optionally
skip the first part of the prompt, which contains the
same rules for each sample. Between tasks, par-
ticipants had to answer additional attention-check
questions to ensure their attentiveness.
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Is the statement 'After the Event, A0 learns what
A1 communicated' true? Yes

Is the statement 'After the Event, A0 learns what
A1 communicated' false? No

Is the statement 'After the Event, A0 does NOT
learn what A1 communicated' false? Yes

Is the statement 'After the Event, A0 does NOT
learn what A1 communicated' true? No

Is the statement 'When the Event happens, A0 and
A1 are in adjacent cells' true? Yes

Is the statement 'When the Event happens, A0 and
A1 are in adjacent cells' false? No

Is the statement 'When the Event happens, A0 and
A1 are NOT in adjacent cells' false? Yes

Is the statement 'When the Event happens, A0 and
A1 are NOT in adjacent cells' true? No

Figure 12: Example of question variants for the CMSC
task.

A.7 Task Accuracy

Table 1 contains the accuracy achieved by the base-
line models on each question type – Percept (P),
Belief (B), Intention (I) – and on PBI (P ∧ B ∧ I)
for the five tasks in ToM-SSI.

Overall, models perform well—and in some
cases even perfectly—when answering individual
question types (P, B, or I). However, their perfor-
mance drops when evaluated on the full PBI score,
suggesting a lack of consistency across the different
types of inference required to understand percepts,
beliefs, and intentions.

In the text-only setting, Claude 3.5 Sonnet is
the top-performing model across all tasks, except
for CMCC, where Gemini Pro 1.5 performs bet-
ter. When looking at the average PBI scores across
models, the most challenging task is CMCC (4.6),
followed by CMSC (12.8), MC (12.8), OC (13.9),
and finally PCC (20.3). Notably, there is a sig-
nificant performance gap between CMCC and the
other tasks. As shown in Table 1, this is largely due
to low performance on Belief questions, which are
especially challenging as they require second-order
ToM reasoning.

In the multimodal setting, the best-performing
models vary across tasks: Gemini Pro 1.5 leads on
CMSC, Claude 3.5 Sonnet excels on CMCC and
MC, and Qwen2-VL Instruct 7B performs best on
PCC and OC. The trend in difficulty remains simi-
lar to the text-only setting, with CMCC again being
the most challenging task by far (0.93). Table 1
shows again that this is due to a poor performance

in Belief questions. The main difference in the mul-
timodal setting is that MC becomes more difficult
than CMSC, while PCC and OC continue to yield
the highest average PBI scores across models.

A.8 P, PB, and PBI Inference

Figure 8a shows the change in performance across
P, PB, and PBI accuracy for all the VLMs we eval-
uated on ToM-SSI. Similarly, Figure 8b shows
the performance of LMs on the text-only version
of ToM-SSI. Overall, model performance gener-
ally declines from percepts to beliefs to inten-
tions. However, LMs evaluated on text demon-
strate greater robustness in PB inference across
most tasks (CMSC, PCC, OC, MC). Among them,
the top-performing models, Claude 3.5 Sonnet and
GPT-4o, achieve PB accuracy comparable to hu-
man levels in CMSC and MC.

A.9 Multimodal vs Unimodal Performance

In §3.2 we show that GPT-4o does not benefit from
the addition of images (Figure 5, top), while Qwen2
shows a clear benefit from the image input, par-
ticularly on percept questions (Figure 5, bottom).
Figure 9 shows additional comparisons of VLMs’
performance when evaluated on the multimodal
version ToM-SSI versus the text-only version. In
general, models do not particularly benefit from
images, especially Claude 3.5 Sonnet, Gemini-1.5-
Pro, and GPT-4o. For other models like Llama 3.2
and Molmo, performance does not change much
between modalities. Figure 9 presents additional
comparisons of VLM performance on the multi-
modal version of ToM-SSI versus the text-only
version. Overall, state-of-the-art models – Claude,
Gemini and GPT – do not benefit from images and
show stronger performance on text. Other models,
like Llama 3.2 and Molmo, show some (but not
consistent) improvements when evaluated in the
multimodal setting. Gemini 2.5 Flash also bene-
fits from multimodal inputs, especially for Belief
questions in PCC, OC, and to a lesser extent in MC.

The Strange Case of GPT-4o’s Coordinate Sys-
tem As discussed in §3.2, §A.9, and shown in
detail in Table 1, GPT-4o’s performance on mul-
timodal percept questions is poor across all tasks,
which in turn results in a low PBI accuracy. To
gain more insight, we examined GPT-4o’s gener-
ated output and found that the model often attempts
to answer percept questions by defining a coordi-
nate system for the grid world. In such cases, two
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issues arise: first, the coordinate system defined by
GPT-4o changes across different samples. Second,
even within a single sample and using its own co-
ordinate system, the model often fails to correctly
position agents on the grid. In contrast, GPT-4o
demonstrates higher accuracy when it reasons in
terms of relative positions, such as “Aj is to the
right of Ak”.

A.10 Compute resources
We ran open-source models of size below 15B on a
server running Ubuntu 22.04, equipped with eight
NVIDIA Tesla V100-SXM2 GPUs with 32GB of
memory and Intel Xeon Platinum 8260 CPUs. Pro-
prietary models are used through API.

A.11 Code
Our code is public under the MIT license at
https://git.hcics.simtech.uni-stuttgart.
de/public-projects/tom-ssi.
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Example 1: Percept prompt

Task:
You are a helpful AI assistant tasked to answer a question about a designer in a design studio.

Setup:
You are observing a gridworld that represents a design studio where 4 graphic designers are working

on a project.

Rules:
1. The design studio is represented as a grid of size 6x6 with 4 designers: A0, A1 , A2 , and A3. Each

designer occupies one cell.
2. Each designer starts out knowing a subset of 4 pieces of information: ['Feedback Loop ', 'Color

Scheme ', 'Font Choice ', 'Design Concept '].
3. By default , designers have two goals: (1) learning information they are missing from other

designers , and (2) communicating information that other designers are missing. Setting a
designer 's Attitude can influence their goals.

4. Each designer can see the positions , movements , and initial information of other designers.
However , they cannot see any new information other designers learn later , so they must infer it.

5. Event(s) change the state of the design studio and include: movement of designers (up , down , left
, right) or communication of information. Aside from what is specified in the Event(s), no other
movement or communication happens.

6. If a designer shares a piece of information during the Event(s), only the designers in the
adjacent cells (up , down , left , right , and diagonally neighboring cells) will learn it.

Initial position of the designers in the design studio:
+----+----+----+----+----+----+
| | | | | A1 | |
+----+----+----+----+----+----+
| A3 | | | | A2 | |
+----+----+----+----+----+----+
| | | | | | |
+----+----+----+----+----+----+
| | | | | | |
+----+----+----+----+----+----+
| | | | | | |
+----+----+----+----+----+----+
| | | | | A0 | |
+----+----+----+----+----+----+

Information initially known by the designers:
- A0: ['Font Choice ', 'Design Concept ']
- A1: ['Feedback Loop ', 'Design Concept ']
- A2: ['Color Scheme ', 'Design Concept ']
- A3: ['Feedback Loop ', 'Color Scheme ', 'Font Choice ']

A2's Attitude:
Collaborative: A2 wants to learn new information from other designers and share information that

other designers don 't know.

Event:
Designer A1 communicates 'Feedback Loop '.

Question:
Is the statement 'After the Event , A2 learns what A1 communicated ' true?

Based on the information above , choose one of the following answers:
A) No
B) Yes

Provide your final answer within the tags <Answer >[ answer]</Answer > (e.g. <Answer >A</Answer >).
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Example 2: Belief prompt

Task:
You are a helpful AI assistant tasked to answer a question about a designer in a design studio.

Setup:
You are observing a gridworld that represents a design studio where 4 graphic designers are working

on a project.

Rules:
1. The design studio is represented as a grid of size 6x6 with 4 designers: A0, A1 , A2 , and A3. Each

designer occupies one cell.
2. Each designer starts out knowing a subset of 4 pieces of information: ['Feedback Loop ', 'Color

Scheme ', 'Font Choice ', 'Design Concept '].
3. By default , designers have two goals: (1) learning information they are missing from other

designers , and (2) communicating information that other designers are missing. Setting a
designer 's Attitude can influence their goals.

4. Each designer can see the positions , movements , and initial information of other designers.
However , they cannot see any new information other designers learn later , so they must infer it.

5. Event(s) change the state of the design studio and include: movement of designers (up , down , left
, right) or communication of information. Aside from what is specified in the Event(s), no other
movement or communication happens.

6. If a designer shares a piece of information during the Event(s), only the designers in the
adjacent cells (up , down , left , right , and diagonally neighboring cells) will learn it.

Initial position of the designers in the design studio:
+----+----+----+----+----+----+
| | | | | A1 | |
+----+----+----+----+----+----+
| A3 | | | | A2 | |
+----+----+----+----+----+----+
| | | | | | |
+----+----+----+----+----+----+
| | | | | | |
+----+----+----+----+----+----+
| | | | | | |
+----+----+----+----+----+----+
| | | | | A0 | |
+----+----+----+----+----+----+

Information initially known by the designers:
- A0: ['Font Choice ', 'Design Concept ']
- A1: ['Feedback Loop ', 'Design Concept ']
- A2: ['Color Scheme ', 'Design Concept ']
- A3: ['Feedback Loop ', 'Color Scheme ', 'Font Choice ']

A2's Attitude:
Collaborative: A2 wants to learn new information from other designers and share information that

other designers don 't know.

Event:
Designer A1 communicates 'Feedback Loop '.

Question:
After the Event , what information does A2 believe she is still missing?

Based on the information above , choose one of the following answers:
A) Design Concept
B) Feedback Loop
C) Font Choice
D) Color Scheme

Provide your final answer within the tags <Answer >[ answer]</Answer > (e.g. <Answer >A</Answer >).
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Example 3: Intention prompt

Task:
You are a helpful AI assistant tasked to answer a question about a designer in a design studio.

Setup:
You are observing a gridworld that represents a design studio where 4 graphic designers are working

on a project.

Rules:
1. The design studio is represented as a grid of size 6x6 with 4 designers: A0, A1 , A2 , and A3. Each

designer occupies one cell.
2. Each designer starts out knowing a subset of 4 pieces of information: ['Feedback Loop ', 'Color

Scheme ', 'Font Choice ', 'Design Concept '].
3. By default , designers have two goals: (1) learning information they are missing from other

designers , and (2) communicating information that other designers are missing. Setting a
designer 's Attitude can influence their goals.

4. Each designer can see the positions , movements , and initial information of other designers.
However , they cannot see any new information other designers learn later , so they must infer it.

5. Event(s) change the state of the design studio and include: movement of designers (up , down , left
, right) or communication of information. Aside from what is specified in the Event(s), no other
movement or communication happens.

6. If a designer shares a piece of information during the Event(s), only the designers in the
adjacent cells (up , down , left , right , and diagonally neighboring cells) will learn it.

Initial position of the designers in the design studio:
+----+----+----+----+----+----+
| | | | | A1 | |
+----+----+----+----+----+----+
| A3 | | | | A2 | |
+----+----+----+----+----+----+
| | | | | | |
+----+----+----+----+----+----+
| | | | | | |
+----+----+----+----+----+----+
| | | | | | |
+----+----+----+----+----+----+
| | | | | A0 | |
+----+----+----+----+----+----+

Information initially known by the designers:
- A0: ['Font Choice ', 'Design Concept ']
- A1: ['Feedback Loop ', 'Design Concept ']
- A2: ['Color Scheme ', 'Design Concept ']
- A3: ['Feedback Loop ', 'Color Scheme ', 'Font Choice ']

A2's Attitude:
Collaborative: A2 wants to learn new information from other designers and share information that

other designers don 't know.

Event:
Designer A1 communicates 'Feedback Loop '.

Question:
After the Event , which designer is A2 most likely to approach?

Based on the information above , choose one of the following answers:
A) A3
B) A0
C) A1

Provide your final answer within the tags <Answer >[ answer]</Answer > (e.g. <Answer >A</Answer >).
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Example 4: PB Error Case in CMSC – Llama-3.2-11B-Vision

Task:
You are a helpful AI assistant tasked to answer a question about a reporter in a newsroom.

Setup:
You are observing a gridworld that represents a newsroom where 4 reporters are gathering information

for breaking news.

Rules:
1. The newsroom is represented as a grid of size 11x11 with 4 reporters: A0 , A1 , A2 , and A3. Each

reporter occupies one cell.
2. Each reporter starts out knowing a subset of 4 pieces of information: ['Breaking News ', 'Press

Release ', 'Eyewitness Account ', 'Photograph '].
3. By default , reporters have two goals: (1) learning information they are missing from other

reporters , and (2) communicating information that other reporters are missing. Setting a
reporter 's Attitude can influence their goals.

4. Each reporter can see the positions , movements , and initial information of other reporters.
However , they cannot see any new information other reporters learn later , so they must infer it.

5. Event(s) change the state of the newsroom and include: movement of reporters (up , down , left ,
right) or communication of information. Aside from what is specified in the Event(s), no other
movement or communication happens.

6. If a reporter shares a piece of information during the Event(s), only the reporters in the
adjacent cells (up , down , left , right , and diagonally neighboring cells) will learn it.

The initial position of the reporters in the newsroom is shown in the provided image.

Information initially known by the reporters:
- A0: ['Breaking News ', 'Press Release ', 'Eyewitness Account ']
- A1: ['Breaking News ', 'Press Release ', 'Eyewitness Account ']
- A2: ['Breaking News ', 'Press Release ', 'Eyewitness Account ', 'Photograph ']
- A3: ['Breaking News ', 'Eyewitness Account ', 'Photograph ']

A2's Attitude:
Collaborative: A2 wants to learn new information from other reporters and share information that

other reporters don 't know.

Events:
Reporter A3 communicates 'Photograph '.
Reporter A1 communicates 'Press Release '.

Question:
After the Event , which information does A2 believe A3 and A1 are likely still missing , respectively?

Based on the information above and on the image , choose one of the following answers:
A) A2 believes that A3 is missing Breaking News and A1 is missing Press Release
B) A2 believes that A3 and A1 are not missing any information
C) A2 believes that A3 is missing Eyewitness Account and A1 is missing Photograph
D) A2 believes that A3 is missing Press Release and A1 is missing Photograph

Provide your final answer within the tags <Answer >[ answer]</Answer > (e.g. <Answer >A</Answer >).

To determine which information A2 believes A3 and A1 are likely still missing, we need to analyze the events that have
occurred and the initial information known by each reporter.

Initially, A2 knows all four pieces of information: [’Breaking News’, ’Press Release’, ’Eyewitness Account’,
’Photograph’]. A3 knows [’Breaking News’, ’Eyewitness Account’, ’Photograph’], and A1 knows [’Breaking News’, ’Press
Release’, ’Eyewitness Account’].

During the events, Reporter A3 communicates ’Photograph’ and Reporter A1 communicates ’Press Release’.

After these events, A2 will update its beliefs about what A3 and A1 are likely still missing.

A2 believes that A3 is missing Press Release because A3 did not communicate it, and A2 knows that A3 knows ’Photograph’
but not ’Press Release’. A2 believes that A1 is missing Photograph because A1 did not communicate it, and A2 knows
that A1 knows ’Press Release’ but not ’Photograph’.

Therefore, the correct answer is:

<Answer>D</Answer>

Correct answer: B
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Example 5: PBI Error Case in CMSC – Llama-3.2-11B-Vision

Task:
You are a helpful AI assistant tasked to answer a question about a baker in a bake sale.

Setup:
You are observing a gridworld that represents a charity bake sale where 4 bakers are collaborating

to raise funds.

Rules:
1. The bake sale is represented as a grid of size 7x7 with 4 bakers: A0, A1 , A2 , and A3. Each baker

occupies one cell.
2. Each baker starts out knowing a subset of 4 pieces of information: ['Special Ingredient ', '

Customer Feedback ', 'Baked Good Description ', 'Price Tag '].
3. By default , bakers have two goals: (1) learning information they are missing from other bakers ,

and (2) communicating information that other bakers are missing. Setting a baker 's Attitude can
influence their goals.

4. Each baker can see the positions , movements , and initial information of other bakers. However ,
they cannot see any new information other bakers learn later , so they must infer it.

5. Event(s) change the state of the bake sale and include: movement of bakers (up, down , left , right
) or communication of information. Aside from what is specified in the Event(s), no other
movement or communication happens.

6. If a baker shares a piece of information during the Event(s), only the bakers in the adjacent
cells (up , down , left , right , and diagonally neighboring cells) will learn it.

The initial position of the bakers in the bake sale is shown in the provided image.

Information initially known by the bakers:
- A0: ['Special Ingredient ', 'Customer Feedback ', 'Baked Good Description ']
- A1: ['Special Ingredient ', 'Baked Good Description ', 'Price Tag ']
- A2: ['Special Ingredient ', 'Customer Feedback ', 'Baked Good Description ', 'Price Tag ']
- A3: ['Special Ingredient ', 'Customer Feedback ', 'Baked Good Description ']

A2's Attitude:
Collaborative: A2 wants to learn new information from other bakers and share information that other

bakers don 't know.

Events:
Baker A1 communicates 'Price Tag '.
Baker A3 communicates 'Customer Feedback '.

Question:
After the Events , which baker is A2 most likely to approach?

Based on the information above and on the image , choose one of the following answers:
A) A0
B) A1
C) A3

Provide your final answer within the tags <Answer >[ answer]</Answer > (e.g. <Answer >A</Answer >).

To determine which baker A2 is most likely to approach after the events, we need to analyze the information shared by A1
and A3.

Initially, A2 knows ’Special Ingredient’, ’Customer Feedback’, and ’Baked Good Description’. After the events, A1
communicates ’Price Tag’, and A3 communicates ’Customer Feedback’. Since A2 already knows ’Customer Feedback’, the
new information shared by A3 is not relevant to A2’s current knowledge.

However, A1’s communication of ’Price Tag’ is new information for A2. As A2 has a collaborative attitude, she wants to
learn new information from other bakers. Therefore, A2 is most likely to approach A1 to learn the ’Price Tag’
information.

**Answer:** B) A1

Correct answer: A
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Example 6: PBI Error Case in MC – Llama-3.2-11B-Vision

Task:
You are a helpful AI assistant tasked to answer a question about an artist in a art gallery.

Setup:
You are observing a gridworld that represents a local art gallery opening where 3 artists are

showcasing their work.

Rules:
1. The art gallery is represented as a grid of size 7x7 with 3 artists: A0, A1, and A2. Each artist

occupies one cell.
2. Each artist starts out knowing a subset of 4 pieces of information: ['Material Source ', 'Art

Piece Title ', 'Technique Explanation ', 'Inspiration Story '].
3. By default , artists have two goals: (1) learning information they are missing from other artists ,

and (2) communicating information that other artists are missing. Setting an artist 's Attitude
can influence their goals.

4. Each artist can see the positions , movements , and initial information of other artists. However ,
they cannot see any new information other artists learn later , so they must infer it.

5. Event(s) change the state of the art gallery and include: movement of artists (up, down , left ,
right) or communication of information. Aside from what is specified in the Event(s), no other
movement or communication happens.

6. If an artist shares a piece of information during the Event(s), only the artists in the adjacent
cells (up , down , left , right , and diagonally neighboring cells) will learn it.

The initial position of the artists in the art gallery is shown in the provided image.

Information initially known by the artists:
- A0: ['Art Piece Title ', 'Technique Explanation ', 'Inspiration Story ']
- A1: ['Technique Explanation ', 'Inspiration Story ']
- A2: ['Material Source ', 'Art Piece Title ', 'Technique Explanation ', 'Inspiration Story ']

A2's Attitude:
Collaborative towards A1: A2 wants A1 to learn new information.
Obstructive towards A0: A2 doesn 't want A0 to learn new information.

Event:
Artist A0 moves one cell down.

Question:
After the Event , which information is A2 most likely to communicate?

Based on the information above and on the image , choose one of the following answers:
A) Technique Explanation
B) Material Source
C) Art Piece Title
D) Inspiration Story

Provide your final answer within the tags <Answer >[ answer]</Answer > (e.g. <Answer >A</Answer >).

To determine which information A2 is most likely to communicate after the event, we need to analyze A2’s Attitude and the
initial information known by each artist.

A2’s Attitude is collaborative towards A1 and obstructive towards A0. This means A2 wants A1 to learn new information but
does not want A0 to learn new information.

Initially, A2 knows all the information except ’Material Source’. Since A2 is obstructive towards A0, it will not share
any information with A0.

A0 has moved one cell down, which does not change the fact that A2 is obstructive towards A0.

Therefore, A2 will not share any information with A0.

A2 is collaborative towards A1, but A1 already knows ’Technique Explanation’ and ’Inspiration Story’. A2 knows ’Material
Source’ and ’Art Piece Title’, but A1 already knows ’Art Piece Title’.

A2 will share the information that A1 does not know.

The information that A2 knows and A1 does not know is ’Material Source’.

So, after the event, A2 is most likely to communicate ’Material Source’.

<Answer>B</Answer>

Correct answer: C
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Example 7: PBI Correct Case in MC – Llama-3.2-11B-Vision

Task:
You are a helpful AI assistant tasked to answer a question about a speaker in a tech conference.

Setup:
You are observing a gridworld that represents a tech conference where 3 speakers are presenting

their innovations.

Rules:
1. The tech conference is represented as a grid of size 5x5 with 3 speakers: A0 , A1 , and A2. Each

speaker occupies one cell.
2. Each speaker starts out knowing a subset of 4 pieces of information: ['Future Trends ', 'Q&A

Session ', 'Technical Challenges ', 'Innovation Overview '].
3. By default , speakers have two goals: (1) learning information they are missing from other

speakers , and (2) communicating information that other speakers are missing. Setting a speaker 's
Attitude can influence their goals.

4. Each speaker can see the positions , movements , and initial information of other speakers. However
, they cannot see any new information other speakers learn later , so they must infer it.

5. Event(s) change the state of the tech conference and include: movement of speakers (up , down ,
left , right) or communication of information. Aside from what is specified in the Event(s), no
other movement or communication happens.

6. If a speaker shares a piece of information during the Event(s), only the speakers in the adjacent
cells (up, down , left , right , and diagonally neighboring cells) will learn it.

The initial position of the speakers in the tech conference is shown in the provided image.

Information initially known by the speakers:
- A0: ['Q&A Session ', 'Technical Challenges ', 'Innovation Overview ']
- A1: ['Technical Challenges ', 'Innovation Overview ']
- A2: ['Future Trends ', 'Q&A Session ', 'Technical Challenges ', 'Innovation Overview ']

A2 's Attitude:
Collaborative towards A1: A2 wants A1 to learn new information.
Obstructive towards A0: A2 doesn 't want A0 to learn new information.

Event:
Speaker A0 moves one cell left.

Question:
After the Event , which information is A2 most likely to communicate?

Based on the information above and on the image , choose one of the following answers:
A) Q&A Session
B) Innovation Overview
C) Future Trends
D) Technical Challenges

Provide your final answer within the tags <Answer >[ answer]</Answer > (e.g. <Answer >A</Answer >).

To determine which information A2 is most likely to communicate after the event, we need to consider A2’s Attitude and the
new positions of the speakers.

A2’s Attitude is Collaborative towards A1 and Obstructive towards A0. This means A2 wants to help A1 learn new information
but does not want to help A0 learn new information.

After the event, A0 moves one cell left, so the new positions are:

* A0: (2, 1)
* A1: (2, 2)
* A2: (2, 3)

Since A2 is obstructive towards A0, it is unlikely to communicate any information to A0. Therefore, we can rule out
options that would benefit A0.

A2 is collaborative towards A1, so it is likely to communicate information that A1 is missing. A1 initially knows
’Technical Challenges’ and ’Innovation Overview’, but it does not know ’Q&A Session’. Since A2 is in a position
where it can communicate with A1, it is most likely to communicate ’Q&A Session’, which is the only information A1
is missing.

Therefore, the correct answer is:

<Answer>A</Answer>

Correct answer: A
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