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Abstract

De-identification in the healthcare setting is
an application of NLP where automated algo-
rithms are used to remove personally identify-
ing information of patients (and, sometimes,
providers). With the recent rise of generative
large language models (LLMs), there has been
a corresponding rise in the number of papers
that apply LLMs to de-identification. Although
these approaches often report near-perfect re-
sults, significant challenges concerning repro-
ducibility and utility of the research papers per-
sist. This paper identifies three key limitations
in the current literature: inconsistent reporting
metrics hindering direct comparisons, the in-
adequacy of traditional classification metrics
in capturing errors which LLMs may be more
prone to (i.e., altering clinically relevant in-
formation), and lack of manual validation of
automated metrics which aim to quantify these
errors. To address these issues, we first present
a survey of LLM-based de-identification re-
search, highlighting the heterogeneity in report-
ing standards. Second, we evaluated a diverse
set of models to quantify the extent of inappro-
priate removal of clinical information. Next,
we conduct a manual validation of an exist-
ing evaluation metric to measure the removal
of clinical information, employing clinical ex-
perts to assess their efficacy. We highlight poor
performance and describe the inherent limita-
tions of such metrics in identifying clinically
significant changes. Lastly, we propose a novel
methodology for the detection of clinically rel-
evant information removal.

1 Introduction

Free-text clinical notes hold significant potential
for NLP applications in healthcare, as they contain
extensive patient information crucial to providing

Figure 1: Demonstration of correct and incorrect de-
identification. Incorrect de-identification my change
clinically relevant facts.

care and conducting research. These notes often in-
clude personally identifiable information (PII) such
as names, addresses, and other identifiers, leading
to privacy concerns that frequently restrict research
access. Removing PII can mitigate these concerns,
reduce the risk of privacy breaches, and enable
the use of this valuable clinical information for re-
search purposes. The process of de-identification,
which involves removing PII, is often required by
regulations such as the Health Insurance Portability
and Accountability Act (HIPAA) and the General
Data Protection Regulation (GDPR).

Traditional de-identification approaches have
evolved from using rule-based and dictionary-
based methods to supervised machine learning
models trained on large annotated datasets (Ab-
dalla, 2022). Although effective (i.e., recall in the
mid- to high-90s) in the contexts on which they are
trained, these algorithms often do not generalize
well to notes from other contexts (e.g., institutions,
specialties, etc.) (Ferrández et al., 2012; Yang et al.,
2019; Chen et al., 2024), requiring significant man-
ual effort to train for each specific context, and
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often struggle in handling non-standard PII (e.g.,
rare abbreviations) (Dernoncourt et al., 2017).

Recent advances in transformer-based mod-
els (Vaswani et al., 2017) such as BERT (De-
vlin et al., 2019), ClinicalBERT (Huang et al.,
2019), BioBERT (Lee et al., 2020) and genera-
tive large language models (LLMs) such as Llama
(Grattafiori et al., 2024), ChatGPT (Radford et al.,
2018) and Mixtral (Jiang et al., 2024) have shown
promise in overcoming these limitations. LLMs are
pre-trained on very large datasets, giving better gen-
eralization without retraining across multiple con-
texts (Radford et al., 2019; Kim et al., 2024). The
few-shot and zero-shot capabilities of LLMs can
mitigate the need for extensive manual annotation
and task-specific training (Brown et al., 2020). Un-
like traditional token-based or rule-based systems,
LLMs can encode semantic meaning in context,
handling rare PII more robustly. As a result, many
recent works have proposed the use of LLMs for
de-identification and claimed to achieve state-of-
the-art performance with relatively minimal effort.

However, claims of state-of-the-art performance
are hard to substantiate. In this work, we conducted
an in-depth review of LLMs used to de-identify
clinical notes in the NLP literature. We found that
models are often evaluated on different datasets,
different cuts of the same data, and there is little
agreement on which metrics are reported. These
limitations hinder direct comparisons, which re-
duces the impact of these works. Some works do
not provide their final prompts further reducing the
reproducibility of the work.

In addition to inconsistent performance report-
ing, only one previous work (Pissarra et al., 2024)
evaluated ‘Clinical Information Retention’ (CIR):
“the impact of anonymization on the preservation of
clinical concepts” (Pissarra et al., 2024), illustrated
in Figure 1. Although this issue is not novel (i.e., it
also affects traditional de-identification methods),
it was brought to researchers’ attention given the
observed hallucinations of LLMs. Recognizing the
importance of this, Pissarra et al. (2024) proposed a
novel metric to measure CIR. However, the metric
has not yet been manually validated.

Three issues limit our ability to accurately assess
the performance of LLM-based de-identification:
1) lack of standardized evaluation data, methodol-
ogy, and metrics; 2) lack of evaluation of CIR; and
3) use of nonvalidated metrics for CIR.

The contributions in this paper help address these
issues and can be summarized as follows:

• Review of the literature on LLM-based de-
identification, highlighting inconsistent evalu-
ation practices and their limitations.

• Introducing the concept of high and low sever-
ity for clinically relevant changes.

• Manual validation of metrics previously pro-
posed in the literature (highlighting their se-
vere limitations).

• Development of a novel manually validated
evaluation metric to capture clinically signifi-
cant changes introduced by LLMs.

2 Related Work

2.1 De-identification (Pre-LLMs)
Traditional de-identification techniques include
dictionary-based (using a predefined list of identi-
fiers to flag PII) (Thomas et al., 2002) and statistical
replacement (using classical machine learning or
neural networks (Liu et al., 2017)). These tech-
niques work by searching for PII and removing or
replacing it. Such approaches often fail to correctly
identify all PII and much research has been done
to improve them (Abdalla et al., 2020).

2.2 De-identification (LLMs)
To address the limitations of the previously ex-
isting approaches, researchers explored applying
transformer-based models like BERT and its vari-
ants (ClinicalBERT, BioBERT, RoBERTa (Liu
et al., 2019)), which use contextual embeddings
to improve performance over existing neural net-
work approaches, to the task of de-identification.
The BERT-based model achieved accuracy, preci-
sion and an F1 score in the high 90s (Johnson et al.,
2020). Building on this, recent work on prompting
generative LLMs (e.g., GPT and Llama) for clini-
cal text de-identification demonstrates that zero and
few-shot prompting can effectively de-identify PII
(e.g., achieving near-perfect accuracy above 0.95).

2.3 Evaluating De-identification
Regardless of the model, evaluations have re-
mained largely limited to classification metrics (i.e.,
accuracy, precision, recall, and F1-score). While
useful, these metrics fail to capture the full variety
of errors which may occur during de-identification.
More specifically, false positive errors (i.e., when
a token is incorrectly classified as sensitive and
removed) can change clinical meaning (e.g., medi-
cations, patient history, diagnoses, procedures, and
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Paper Model Dataset Prompting A P R F1 FNR FPR

Altalla’ et al. (2025) GPT-3.5 100 discharge
summaries [PCD]

zero shot 0.79 0.34 0.67 0.39 - -
GPT-4 0.99 0.99 0.83 0.90 - -

Sousa et al. (2025)

BERT

n2c2

fine-tuned

- 0.93 0.95 0.94 - -
ClinicalBERT - 0.84 0.85 0.84 - -
DistilBERT - 0.90 0.92 0.91 - -
RoBERTa - 0.95 0.96 0.96 - -
FLAN-T5 XXL

one shot

0.40 0.55 0.59 0.57 - -
GPT-3.5 Turbo 0.45 0.65 0.59 0.62 - -
GPT-4 0.63 0.70 0.87 0.78 - -
Llama-3 0.36 0.59 0.48 0.53 - -
Mistral-7B 0.33 0.38 0.69 0.49 - -
FLAN-T5 XXL

zero shot

0.06 0.09 0.14 0.11 - -
GPT-3.5 Turbo 0.20 0.28 0.42 0.33 - -
GPT-4 0.41 0.48 0.75 0.58 - -
Llama-3 0.26 0.55 0.32 0.41 - -
Mistral 7B 0.14 0.15 0.58 0.24 - -

Wiest et al. (2025)

Llama-3 8B

250 clinical letters [PCD] zero shot

0.98 0.5* 0.99 - 0.006 0.02
Llama-3 70B 0.98 0.5* 0.99 - 0.01 0.02
Llama-2 7B 0.97 0.5* 0.95 - 0.05 0.03
Llama-2 70B 0.97 0.5* 0.99 - 0.01 0.03
Mistral 7B 0.98 0.5* 0.94 - 0.06 0.02
Phi-3 Mini 0.97 0.3* 0.92 - 0.08 0.03
LLM-Anonymizer 0.98 0.8* 0.99 - 0.01 0.02
Presidio - 0.71 - 0.82 - 0.17 0.29

Yashwanth and Shettar (2024)

GPT-3.5

i2b2-2014

(fine-tuned
+ few shot)

0.99 - - 0.99 - -
PaLM 0.96 - - 0.95 - -
GPT-3.5 zero shot 0.96 - - 0.95 - -
GPT-4 zero shot 0.99 - - 0.99 - -
PaLM zero shot 0.74 - - 0.73 - -

Chang et al. (2024) Llama-2 70B institutional safety database[PCD] zero shot 0.95 - - - - -

Langenbach et al. (2024)† Llama-2 chest reports[PCD] fine-tuned - 0.99 0.84 0.89 - -
NLP rule-based - 1 0.93 0.96 - -

Gunay et al. (2024) GPT-4 i2b2 one shot 0.97 0.97 0.97 0.97 - -

Liu et al. (2023)

BERT

i2b2-2014

fine-tuned 0.80 - - - - -
RoBERTa fine-tuned 0.95 - - - - -
ClinicalBERT fine-tuned 0.97 - - - - -
Llama-2 7B zero shot 0.61 - - - - -
ChatGPT zero shot 0.93 - - - - -
GPT-4 zero shot 0.99 - - - - -

Table 1: Works using generative LLMs for de-identification. Missing values indicate unreported metrics. A:
Accuracy, P: Precision, R: Recall, F1: F1-score, FNR: False Negative Rate, FPR: False Positive Rate.
*approximated from graph, † metrics averaged over identifiers

test results). Such a change is worse than a false
positive that removes a stop word (e.g., a, the,
of). However, traditional classification metrics treat
these errors as equal.

This issue is exacerbated by the fact that zero-,
one-, or few-shot de-identification by generative
LLMs may not always match the input text (i.e.,
a hallucination unrelated to de-identification). Re-
alizing this issue, Pissarra et al. (2024) proposed
six novel metrics beyond classification-based eval-
uation that explicitly account for clinically sig-
nificant changes. Two of these metrics, Jaccard
Similarity Coefficient (JSC) (Jaccard, 1901) and
Normalized Softmax Discounted Cumulative Gain
(NSDCG), attempt to measure CIR. JSC uses a
BioBERT model trained to predict which ICD-10
codes, codes used to classify medical diseases and
conditions, are present in a text. JSC applies this
model to the original and de-identified note to mea-
sure the overlap in ICD-10 codes predicted from
each note. NSDCG takes a similar approach to JSC
but does not binarize the outputs, instead compar-
ing the ranking of ICD-10 code predictions (logits)
from original and de-identified notes.

Both of these metrics aim to quantify CIR by
comparing the changes in the associated ICD-10

codes. While this is an intuitive approach, in ex-
amining our own de-identification task, we ob-
served that these metrics themselves faced limita-
tions. Specifically, they are solely concerned about
changes which would change the ICD codes pre-
dicted from a text. Although such changes are im-
portant to capture, such changes do not constitute
the full set of clinically relevant changes (CRC)
that may occur. For example, changes in patient
history, family status, or employment, which can af-
fect treatment of a patient, will (usually) not change
the ICD codes assigned to the note. As such, many
CRC are undercounted.

3 Literature Review

The sensitive nature of the data and the rapid evolu-
tion of LLMs have introduced challenges in bench-
marking and reproducibility. Although many stud-
ies report high performance, differences in data
set choice, prompt design, and evaluation criteria
make it difficult to compare findings across the
literature. To facilitate future research endeavors,
we have collated de-identification works that em-
ployed generative LLM models (e.g., GPT, Llama)
to analyze their performance, the datasets utilized,
and to identify potential gaps for future investiga-
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tion, see Table 1.
Several studies use a previously publicly avail-

able datasets such as n2c2 (originally i2b2) (Stubbs
and Uzuner, 2015)1, which provides a standard-
ised benchmark for clinical de-identification (Liu
et al., 2023; Sousa et al., 2025; Yashwanth and
Shettar, 2024). However, a significant portion of
the literature relies on private institutional datasets
(e.g., institutional safety reports, clinical letters,
discharge summaries, etc.) limiting reproducibil-
ity and comparison. Some of the existing work
uses closed-source models (e.g., GPT-3.5, GPT-4),
which, in addition to privacy concerns as data must
be sent off-premises, raises concerns regarding re-
producibility, in contrast to open-source models
(e.g., Llama, Phi).

Studies also differ in how models are prompted.
Some adopt a zero-shot setting, relying purely on
the model’s pre-trained knowledge without any in-
context examples (Liu et al., 2023), while others
use few-shot prompting by providing a few exam-
ples to guide the model. Yashwanth and Shettar
(2024) fine-tuned GPT-3.5 and PaLM in the i2b2
2014 dataset for clinical de-identification, experi-
menting with brief and detailed prompt styles.

Most of the metrics used for the evaluation are
classification-based (e.g., accuracy, precision, re-
call, F1 score). LLM-based approaches gener-
ally demonstrate high performance, with Liu et al.
(2023) reporting 99% accuracy for GPT-4. Sim-
ilarly, Altalla’ et al. (2025) showed that GPT-4
outperformed GPT-3.5, achieving 99.25% preci-
sion, 83.18% recall, 89.73% F1-score, and 99.11%
accuracy.

Past work describes LLMs as performing better
with few-shot prompting (accuracy and F1-score of-
ten in the high 90s) compared to zero-shot attempts
(performance varies greatly from as low as 0.39 and
high as 0.99), depending on the model and dataset.
For example, GPT-3.5 performed poorly (accuracy
around 80s) on discharge summaries (private data)
(Altalla’ et al., 2025) compared to structured data
sets like i2b2 (Liu et al., 2023) (accuracy around
mid-90s), highlighting that the reliability of the
model can depend heavily on input data and its
structure.

In general, we can see that despite the tremen-
dous amount of effort undertaken by researchers,
the inconsistencies regarding the dataset used and

1Although the dataset has been made “Temporarily Un-
available” for the past two years.

the metrics reported severely limit our ability to
compare de-identification approaches, and thus the
utility of the work to readers and real-world NLP
users.

4 Datasets

We conducted experiments on two different
English-language clinical datasets: a large pub-
lic dataset (MIMIC-III) (Johnson et al., 2016) and
a smaller private dataset of rheumatology referral
notes. The appendix Table 5 presents some descrip-
tive statistics of the two datasets.

4.1 MIMIC

We randomly sampled 2000 de-identified discharge
summaries to provide some comparison to Pissarra
et al. (2024), who also sampled discharge sum-
maries. Since the notes are already de-identified,
we used the Faker library (Faraglia and Other Con-
tributors) to randomly replace the placeholders
based on their relative tags, illustrated in Appendix
Figure 4.

4.2 Private Clinical Dataset (AHS)

Our private dataset contains 204 referral letters
from physicians to rheumatologists documenting a
variety of clinical scenarios, physical exam find-
ings, medication lists, lab and imaging results,
and other clinical notes. The collection and use
of this dataset was approved by the University
of Alberta’s REB (#Pro00141020). All of these
notes were stored in PDF format, including a mix
of digitally typed notes, scanned documents, and
handwritten letters. We performed OCR (Opti-
cal Character Recognition) with the Doctr library
(Mindee, 2021). A computer scientist and a physi-
cian manually removed all sensitive tokens, ex-
cluding provider/clinic information and years in
the date of birth. To enable de-identification, we
replaced all removed identifiers using the Faker li-
brary, injecting noise (e.g., character and number
swaps) into a subset of the replaced tokens to match
the original OCR results.
All datasets and models used in this study were
obtained and applied in accordance with their re-
spective licenses and access requirements.

5 Models

We tested multiple models: generative LLMs
(Llama 3.3), ClinicalBERT, two established open
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source toolkits (Deidentify and Presidio) and a com-
bined approach of ClinicalBERT and Presidio.

5.1 Llama 3.3

Llama 3.3 (70B parameters, 16 bits per parameter)
was used with prompt tuning on 10% of the pri-
vate dataset. We used an iterative trial-and-error
approach to prompt design. Our prompting strategy
followed a one-shot format, where a single anno-
tated example was provided to guide the model.
The final prompt is presented in Appendix Fig-
ure 5. During prompt tuning, multiple prompts
were tested on the AHS dataset, and the prompt
that achieved the highest recall was selected and
then adapted for the MIMIC-III dataset to target
its specific sensitive tokens. The results of the per-
formance of prompt tuning are presented in the
Appendix Table 6.

5.2 ClinicalBERT

ClinicalBERT (Alsentzer et al., 2019), pre-trained
in MIMIC-III and fine-tuned in i2b2 / n2c2, was
used (obi-bert). To accommodate long clinical
notes, we split the text into 512-token chunks, pro-
cessed each chunk individually, and then recon-
structed the full de-identified note.

5.3 Deidentify

The Deidentify Python library (Trienes et al., 2020)
combines pre-trained neural sequence-tagging
models with rule-based patterns (e.g., regular ex-
pressions for dates and phone numbers).

5.4 Presidio

Microsoft Presidio, an open-source framework, de-
tects PII (named: entities) using NER (named entity
recognition) techniques.

5.5 Bert-Presidio

In the Bert-Presidio pipeline, we applied a modified
ClinicalBERT model (described below) and then
ran the text through the modified presidio with
some built-in and custom entity sets.

5.6 Modified Versions

For all “off-the-shelf” algorithms, we also evaluate
a modified version (e.g., “Modified ClinicalBERT”,
“Modified De-identify”). Given that MIMIC is an
American dataset, to enable a fair comparison, we
needed to add regex patterns to catch non-US PII
(e.g., addresses, postal codes and patient health
number) in addition to keeping age and only the

birth year in dates or birth. Likewise, some of
the pre-selected identifiers did not apply to our
dataset. Therefore, for “Modified Presidio” we
only anonymized selected entities such as ‘Person’
and ‘Phone number’.

6 Evaluation Metrics

6.1 Standard Classification Metrics
To start, we used existing evaluation metrics (ac-
curacy, precision, recall, and F1 score). Accuracy
is the ratio of correctly predicted tokens (sensitive
and non-sensitive) to the total number of tokens.
Precision is the proportion of tokens predicted as
personally identifying that are actually personally
identifying. Recall evaluates the model’s ability to
detect all personally identifiable tokens in the data
set. F1-score is the harmonic mean of precision
and recall.

6.2 Evaluating Clinically Significant Changes
While standard classification metrics are essential
for evaluating the identification of sensitive enti-
ties, they do not fully reflect the "cost" or impact
of different error types. Specifically, such metrics
do not differentiate between the clinical relevance
of falsely removed tokens and do not consider the
downstream impact of de-identification on the clin-
ical utility of the text. In this section, we present
two metrics, one existing and one novel, to evaluate
how much LLM result in CRC.

6.2.1 Jaccard Similarity Coefficient (JSC)
JSC, developed by Pissarra et al. (2024), uses
a trained BERT model to predict ICD-10 codes
from text to measure CIR. This approach measures
changes in ICD codes predicted from a note before
and after de-identification as a proxy for CIR (Pis-
sarra et al., 2024). Changes in the ICD-10 codes
after de-identification indicates that clinically rele-
vant information has been altered (as they fairly
assume that removing PII (e.g., names) should
not affect ICD-10 codes prediction). We used the
JSC baseline settings as specified by Pissarra et al.
(2024).

6.2.2 LLM-based Clinical Information
Retention Evaluation (CIRE)

Modifications that change the predicted ICD codes
are only a subset of all possible CRC. For exam-
ple, removal of patient history, test result numbers,
or procedures can affect patient treatment (thereby
counting as clinically relevant) without changing
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Figure 2: Illustration of the novel LLM-based Clinical Information Retention Evaluation (CIRE) approach.

Dataset Model TP TN FP FN A R P F1

AHS

Presidio 5508 120245 26544 1772 0.82 0.76 0.17 0.28
Modified Presidio 5039 133312 13477 2241 0.90 0.69 0.27 0.39
ClinicalBERT 6806 119392 27397 474 0.82 0.93 0.20 0.33
Modified ClinicalBERT 6974 118804 27985 306 0.82 0.96 0.20 0.33
ClinicalBERT + Presidio 6996 117180 29609 284 0.81 0.96 0.19 0.32
Deidentify 5689 129339 17450 1591 0.88 0.78 0.25 0.37
Modified Deidentify 6117 128304 18485 1163 0.87 0.84 0.25 0.38
Llama-3 7214 144385 2404 66 0.98 0.99 0.75 0.85

MIMIC-III

Presidio 113716 2688543 216510 28252 0.92 0.80 0.34 0.48
Modified Presidio 106739 2881778 21988 34674 0.98 0.75 0.83 0.79
ClinicalBERT 134831 2888521 16532 7137 0.99 0.95 0.89 0.92
Modified ClinicalBERT 134959 2885440 19613 7009 0.99 0.95 0.87 0.91
ClinicalBERT + Presidio 133677 2861053 44000 8291 0.98 0.94 0.75 0.84
Deidentify 118047 2873672 31381 23921 0.98 0.83 0.79 0.81
Modified Deidentify 118096 2871166 33887 23872 0.98 0.83 0.78 0.80
Llama-3 133107 2854895 50158 8861 0.98 0.94 0.73 0.82

Table 2: Standard Classification Metrics TP: True Positive, TN: True Negative, FP: False Positive, FN: False
Negative, A: Accuracy, P: Precision, R: Recall, F1: F1-score

the ICD code predicted from the note. Due to
the above limitations, we argue that JSC alone is
insufficient for evaluating whether clinically rele-
vant information has been preserved through de-
identification. To address this gap, we propose
LLM-based Clinical Information Retention Evalu-
ation (CIRE), a method that directly assesses clini-
cally relevant semantic changes using a sentence-
level LLM-based prediction.

To assess whether the de-identification process
inadvertently changed clinically relevant informa-
tion, CIRE works as follows (illustrated in Figure
2): First, notes before and after de-identification are
split into sentences that are then aligned using the
string2string library (Suzgun et al., 2023). Once
aligned, the token sequences from both sentences
are grouped into fixed-length chunks (20 tokens per
chunk). Our choice to use fixed-length chunking
rather than sentence-level splitting was primarily
motivated by OCR-related noise in the dataset and
supported by experimental results; further details
are provided in Appendix J. Paired chunks are pre-

sented to a Llama 3 model which is prompted to
classify “whether the deidentified sentence chunk
has altered any clinically meaningful information”,
complete prompt presented in Appendix Figure
6. Then each sentence is assigned a 1 or 0 for
clinically relevant alteration. For each note, the
per-sentence classifications are then averaged to
produce a metric of CIR. The pseudocode for CIRE
is presented in the Appendix Algorithm 1, and the
results of the training set can be found in Appendix
G.

7 Experiments and Results

7.1 How do de-identification models perform
on standard evaluation metrics? How
does document length affect performance?

We evaluated models using traditional classifica-
tion metrics (accuracy, precision, recall, F1 score)
in AHS and MIMIC-III and present the results
in Table 2. Llama-3.3 was the highest performer
on AHS (near perfect recall and highest precision
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Figure 3: F1-Score of three de-identification models on
AHS and MIMIC binned by the number of tokens in
the clinical texts. 6,040 tokens corresponds to approxi-
mately 4,500 words.

and F1 score). For MIMIC-III, while all models
achieved accuracy in the high 90s, there was a large
variation in the other metrics. This is because the
accuracy is not robust to class imbalance, and PII
is relatively rare. This highlights the inappropri-
ateness of simply reporting accuracy as done in
two previous works. However, we observe that
BERT variants achieved relatively higher precision
compared to Llama, which could be due to the
fact that the ClinicalBERT model we used was pre-
trained on the MIMIC dataset (so data leakage may
be present). Further analyses of schema variants
are provided in Appendix N, including evaluations
where provider identifiers are considered PII and
where sub-token handling differs. Although gener-
ative LLMs are easier to use ‘out of the box’ (i.e.,
they do not require fine-tuning and are more gener-
alizable), they have been reported to under-perform
as input length increases (Wang et al., 2024). Bin-
ning the de-identification evaluation of Deidentify,
BERT and Llama models by token lengths for both
AHS and MIMIC-III, we observe that this observa-
tion is not limited solely to generative LLMs. The
F1 score of the three models decreases between
5-25% as the length of the text increases, Figure 3.

7.2 How successful are de-identification
models at clinical information retention?

A high rate of false positives in Table 2 indicates
a tendency toward over-redaction, with all models
redacting much more content than necessary. This
raises concerns about the loss of meaningful clin-
ical information. This is further compounded by
the fact that LLMs may make changes unrelated

Dataset Model CRC(%) Low High

AHS
M. Deidentify 22 (4) 7 15
CBERT + Pres 14 (3) 4 10
Llama-3.3 89 (18) 22 67

MIMIC-III
Deidentify 444 (89) 57 387
CBERT 263 (53) 45 218
Llama-3.3 252 (50) 57 195

Table 3: Number of clinically relevant changes (CRC)
caused by three de-identification models on two differ-
ent datasets. For each model, 500 false positive cases
were manually annotated. Then each CRC was labelled
with a clinical severity of low or high. M. Deidentify:
Modified De-identify. CBERT: ClinicalBERT. Pres: Pre-
sidio

to the task of de-identification (current approaches,
including our own, do not make predictions at the
token level rather processing the whole note at
once). To better understand the impact of false
positives, for each algorithm, we randomly sam-
pled 500 changes that were incorrectly redacted
by a subset of the evaluated models (i.e., false pos-
itive). Each change was manually reviewed by
a computer scientist and a physician to determine
whether its removal resulted in CRC, categorization
presented in Table 14. To ensure consistency across
annotators, we provided detailed written guidelines,
which are included in Appendix M. The physicians
then assessed each CRC to determine if the clinical
impact caused by the removal of the information
was high or low. The results are presented in Table
3, and a description of high and low clinical impact
is presented in the Appendix Section F.

We can see that a substantial subset of these
redacted tokens was found to affect clinically rele-
vant information, with Llama-3.3 showing the high-
est number of clinical redactions (89 out of 500) on
AHS and Deidentify with the highest count (444
out of 500) for MIMIC-III dataset. Unfortunately,
even for the best performing models, most (70-
80%) false positives caused substantial changes in
clinical information that doctors considered high.

7.3 Can automated metrics accurately
measure CIR?

As highlighted in the previous section, all mod-
els introduce CRC that physicians consider to be
highly impactful. To assist with the evaluation (and
improvement) of de-identification approaches, we
investigate whether CIR can be assessed automat-
ically. To do this, we evaluated the JSC and our
novel metric (CIRE).

This experiment leveraged 40 notes (30 AHS,
10 MIMIC-III) that were manually labeled at the
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Dataset Model Pearson Spearman
CIR-JSC CIR-CIRE CIR-JSC CIR-CIRE

AHS

Modified Deidentify 0.43 0.78 0.43 0.51
ClinicalBERT + Presidio -0.51 0.67 -0.25 0.57
Llama-3.3 0.43 0.73 0.6 0.48
All -0.34 0.78 -0.20 0.59

MIMIC-III

Deidentify -0.03 0.86 -0.21 0.88
ClinicalBERT + Presidio 0.19 0.85 0.41 0.84
Llama-3.3 0.09 0.33 0.07 0.40
All 0.04 0.40 0.17 0.41

Table 4: Correlation metrics subdivided into CIR-JSC and CIR-CIRE for Pearson and Spearman. M. Deidentify:
Modified De-identify. CBERT: ClinicalBERT. Pres: Presidio.

sentence level (6720 annotated sentences) compar-
ing pre- and post-de-identification for CRC. We
used 20 full-text AHS text as our prompt-tuning
set. We evaluated the performance of CIRE to de-
tected CRC on the remaining full texts (10 AHS
and 10 MIMIC-III).

On this subset of data, we evaluated CIR after
de-identification using both the existing metric JSC
and our novel metric CIRE. We computed Pearson
and Spearman correlations between the results of
CIRE and JSC and the existing ground truth (ra-
tio of total clinically unchanged sentence pairs to
the total sentence pairs across each document), Ta-
ble 4. Although the precision and recall of CIRE
could be substantially improved (Table 7), our anal-
ysis revealed a strong Pearson correlation between
CIRE and manually labeled CIR (ground truth) that
was much stronger than with JSC (Table 4). This
demonstrates that JSC is indeed insufficient as a
metric for assessing CIR while, at the same time,
demonstrating the potential of our approach. We
are excited for the community to work to further
improve performance.

When we use CIRE to evaluate the clinical re-
tention of Llama-3.3, ClinicalBERT, and Deiden-
tify on the entire AHS dataset, we observe that all
models score in the mid-90s with ClinicalBERT
performing the best with the average amount of
clinical retention at 95%, Appendix H, Table 9.
While our main evaluation used Llama-3.3 as the
reference LLM, we verified that CIRE remains sta-
ble for other reference LLMs. As detailed in Ap-
pendix I, results with Qwen-72B, Qwen-32B, and
Llama-3.1-8B show consistent relative rankings
across models.

8 Conclusion

In this work, we started by exploring the current
evaluation methodologies of papers performing de-
identification using generative LLMs. We found
that there was low consistency in the datasets used
or the metrics reported – a problem that reduces
the utility of the conducted research.

We then evaluated the performance of a wide
variety of models on two different datasets. We
demonstrated that despite what is claimed by prior
work, there is a wide variation in performance and
non-generative models can sometimes beat genera-
tive LLMs in de-identification.

Next, we highlighted that the many false pos-
itives caused by the process of de-identification
actually remove clinical relevant information and
that most of these removals were deemed, by physi-
cians, to be significant (i.e., high severity). We
then demonstrated that existing metrics aiming to
quantify the effect of de-identification with respect
to CIR were not sufficient, and are fundamentally
flawed in their approach.

We conclude the paper by introducing a new
metric, CIRE. CIRE is more strongly correlated
with manual counts of CRC and presents a more
reliable assessment of CIR. We applied it on both
datasets and observed that all models both tradi-
tional and new seem to retain clinical information
at nearly the same rate (differences in performance
as measured by CIRE were not substantial).

8.1 Future Work
This paper has uncovered several avenues for fu-
ture work. Those working on de-identification need
to tackle the problem of inappropriate clinical in-
formation removal possibly by developing a multi-
stage de-identification process where proposed re-
movals are assessed for clinical relevance.
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Those interested in evaluation methodologies
can work to iterate and improve CIRE. We believe
that there is much that exists in the subfield of para-
phrase detection that can be used for this task. We
are currently creating a dataset to enable a shared
task to bring these two communities together.

Limitations

There are limitations to our work. Because of the
sensitive nature of the data, our experiments were
limited to two datasets (AHS and MIMIC-III). This
has various impacts. First, the models, prompts,
and rules we have tuned here are unlikely to be
generalized to other hospitals, clinical note struc-
tures, or narrative styles without additional tuning.
Likewise, the performance patterns observed (e.g.,
ranking of models) may change when applied to
different datasets of notes. Third, many of the pre-
trained models have been applied to MIMIC dataset
(if not fine-tuned on some subset of the MIMIC
dataset given its rare status as one of the only few
publicly available clinical datasets). This affects
the generalizability of our findings. However, since
the focus of our work was on the retention of clini-
cal information (or lack thereof), we do not believe
that such contamination necessarily invalidates our
findings. If anything, we are overestimating the re-
tention of such models (since overall performance
would be lower had there been no contamination).

Another limitation is the presence of tagging
errors in the MIMIC dataset. First, some errors
involve misclassification of PII types (e.g., names
labeled as addresses). While this reduces the re-
alism of replacements generated with Faker, the
affected tokens remain PII and are therefore still
valid for de-identification. Second, the rule-based
system occasionally tags normal tokens as PII; in
our manual validation of 2000 disagreements, we
observed 90 such cases. In these instances, our
Faker approach still produces plausible PII for re-
moval, preserving the validity of evaluation. Third,
the rules occasionally miss true PII; we identified
only four such examples of 2000 disagreements
that we checked, all involving single initials. Given
their rarity, these errors are unlikely to substantially
affect our findings.

Finally, our work is restricted to English, and the
findings may not generalize to other languages or
multilingual clinical contexts.

Despite limiting the analysis to these two
datasets, running Llama-3.3 on lengthy clinical

notes requires substantial GPU memory and pro-
cessing time, which presented a significant re-
source challenge. We estimated that the total num-
ber of GPU hours used for the experiments con-
ducted in this paper is approximately 1550, Ap-
pendix K. As a result, following previous work
(Pissarra et al., 2024), we were only able to test
on a subset of our data set for de-identification and
evaluation (instead of the full MIMIC-III dataset).

Likewise, our evaluation of the CIR of these
models was manual, requiring expert physician an-
notators, which limited the number of instances that
could be annotated (and thus the generalizability
of our findings).

The application of de-identification is generally
low-risk. In fact, this type of application serves
to reduce the risk associated with other work. So,
in our opinion, the primary effect of this kind of
research is positive. However, there may be neg-
ative externalities to our work. For example, our
proposed metric, which requires processing via a
generative LLM, increases compute costs which
may also have negative effects on the environment.
Likewise, the development of these approaches re-
quires substantial time from physicians which may
theoretically be spent providing care to patients.
Our work is limited in that we do not account for
such externalities.
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A Dataset Description

AHS MIMIC-III
Number of texts 204 2000
Token Length

min 141 26
mean 755 1524
max 5436 6040

Number of Sensitive
Tokens

min 8 7
mean 35 70
max 201 293

Table 5: Descriptive statistics of datasets used in this
paper.

B Faker Library

Figure 4: Demonstration of Faker Library.

C Prompts

Figure 5 presents the final prompt used for the
experiments described in the paper.
Figure 6 presents the final prompt used for the CIR
evaluation using Llama-3.3 (i.e., the CIRE metric).

D Llama-3.3 De-identification Prompt
Tuning

The performance of Llama-3 after prompt-tuning
on the training set is presented in Table 6.

Llama-3.3
TP 1020
TN 23841
FP 610
FN 0
Precision 0.63
Recall 1.00
F1-Score 0.77

Table 6: Performance of Llama-3.3 after prompt-tuning
on the training set.

E LLM-based Clinical Information
Retention Evaluation (CIRE)

Algorithm 1 Pseudo-code for LLM-based Clinical
Information Retention Evaluation (CIRE)
1: Initialize: NW← NeedlemanWunsch()
2: function CHUNK(sequence, size)
3: tokens← SPLIT(sequence, “ | ”)
4: return SPLITINTOSUBLISTS(tokens, size)
5: end function
6: function LLM(chunk1, chunk2)
7: yes/no← Llama(prompt,chunk1, chunk2)
8: return Yes or No
9: end function

10: for all summary do
11: seq1← TOKENIZE(original summary)
12: seq2← TOKENIZE(deid summary)
13: (aligned1, aligned2)← NW.GET_ALIGNMENT(seq1,

seq2)
14: chunks1← CHUNK(aligned1, 20)
15: chunks2← CHUNK(aligned2, 20)
16: for (c1, c2) in ZIP(chunks1, chunks2) do
17: llm input← “original: ” + JOIN(c1, “ ”) +
18: “\ndeid: ” + JOIN(c2, “ ”)
19: decision← LLM(c1, c2)
20: end for
21: end for

F Severity of Clinical Changes

For each CRC caused by de-identification, we
asked physicians to select if the change was high
or low severity. A change was considered high
severity if it resulted in loss of clinically meaning-
ful information that could possibly affect diagnosis
or management. Changes which would not affect
diagnosis or management were annotated as low
impact/severity.
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Prompt

You are a precise text transformer. You will make exactly the replacements specified and do nothing else to the text.
Please replace every instance of the following patient identifiers with their labels, and leave absolutely every other word, punctuation mark, 
spacing, line breaks, years, ages, providers’ names, etc. _completely_ untouched:
  • ***patient_Name***
  • ***patient_Phone_Number***  (even incomplete phone number)
  • ***patient_Address***
  • ***patient_Postal_Code***
  • ***patient_Medical_Record_Number(MRN)***
  • ***patient_Personal_Health_Number(PHN)***
  • ***patient_Unique_Lifetime_Identifier(ULI)***
  • ***patient_Date_of_Birth(DOB)***
  • ***patient_Health_Card_Number(HCN)***
  • ***patient_patient_email***
  • ***patient_insurance_number***
  • ***patient_accession_number***
Example:
Input:
Rebecca was born on aug 26/1997 and has rheumatoid arthritis. Her contact is (780) 555-1234.
Output:
  ***patient_Name*** was born on ***patient_Date_of_Birth(DOB)***/1997 and has rheumatoid arthritis. Her contact is 
***patient_Phone_Number***.
IMPORTANT
- Do not truncate, summarize, or omit any part of the letter.
- Do not alter years, ages.
- Do not anonymize anything else (providers’ info, lab values, normal text).
- Return the _entire_ letter, verbatim except for the exact replacements above.

Figure 5: Final prompt used for de-identification using Llama-3.3.

Prompt

You are given two sentences, labelled “original:” and “deid:“. Your job is to decide only whether the de-identified sentence has altered any 
clinically meaningful information. Answer with Yes or No (nothing else).

Clinically meaningful changes include:
● Adding, removing, or modifying a medication, diagnosis, procedure, test result, clinical instruction, or patient history.
● Altering the patient’s age.
● Any change that would aǣect medical interpretation or decision-making.

Do NOT count as clinical changes:
● Removal or masking of facility names, street addresses, clinic names, hospital names, or other location identifiers.
● Removal or masking of personal or institutional identifiers, such as patient or provider names, practice IDs, PHNs, MRNs, account 

numbers, etc.
● Generic role titles (e.g. nurse, physician) or department names.

## Examples
Original: Prescribed ferric maltol capsules
deid: Prescribed maltol capsules
Output: Yes (because a clinically important word is deleted)

Original: The patient is Jerry, seen at East Clinic on 2025-04-01.
deid: The patient is [NAME], seen at [CLINIC] on [DATE].
Output: No (patient name and dates are not clinically relevant)

Original: Was tested positive on 13/05/2001, and had fever on 13th April 2013
deid: Was tested positive on [DATE], and had fever on [DATE]
Output: No (because this date refers to a date of testing and not DOB)

Original: DOB - 12/12/1999
deid: DOB - [DATE]
Output: Yes (because year of birth is removed)

Original: DOB - 12/12/1999
deid: DOB - [DATE]1999
Output: No (because date of birth (DOB) is removed, but year of birth is conserved)

Original: DOB - 12 Aug 2012, testing done on 19 April 2014
deid: DOB - [DATE] [DATE] 2012, testing done on [DATE]
Output: No (because date of birth (DOB) is removed but year of birth is conserved)

Original: The patient is John, aged 39 has fever.
deid: The patient is [NAME], aged [AGE] has fever
Output: Yes (because AGE is removed)

Original: Patient MRN 123456 underwent colonoscopy on 2025-02-20 3.5 2 mg acetaminophen and was given anti-viral medicines.
deid: Patient MRN [MRN] underwent colonoscopy on [DATE][DATE][DATE] 3.5 2 mg acetaminophen and was given anti-viral medicines.
Output: No (MRN and dates are not clinically relevant and medications are preserved)

Please apply this to each pair and return only Yes or No.

Figure 6: Prompt used for CIR evaluation with Llama-3.3

32188



G CIRE Development

Table 7 presents the performance of the CIRE
pipeline on the manually annotated training set of
AHS (20 texts). Table 8 presents the true and false
positives and negatives.

Dataset Model Accuracy Precision Recall

AHS
M. Deidentify 0.94 0.86 0.57
CBERT + Presidio 0.96 0.87 0.54
Llama-3.3 0.98 1 0.71

MIMIC-III
Deidentify 0.93 0.73 0.61
CBERT 0.95 0.59 0.86
Llama-3.3 0.88 0.11 0.8

Table 7: Performance of the CIRE metric as measured
by manual annotation on the AHS training set (20 notes).
M. Deidentify: Modified Deidentify; CBERT: Clinical-
BERT

Dataset Model TP TN FP FN

AHS
Modified Deidentify 24 359 4 18
ClinicalBERT + Presidio 14 377 2 12
Llama-3.3 15 385 0 6

MIMIC-III
Deidentify 36 479 13 23
ClinicalBERT 32 491 22 5
Llama-3.3 8 478 64 2

Table 8: Results of CIRE on the training dataset.

H CIRE Application

When applied to the full dataset, we can see that all
models have similar CIRE scores with an average
number of 5% loss in clinical information.

Dataset Model JSC CIRE

AHS
Modified Deidentify 67.53 0.90
ClinicalBERT + Presidio 54.56 0.95
Llama-3.3 71.26 0.93

Table 9: CIR Evaluation

I Robustness of CIRE Across LLMs

A limitation of our initial experiments was that
CIRE was evaluated with only a single LLM
(Llama-3.3). To strengthen this analysis, we re-
peated the evaluation using three additional models:
Qwen-72B, Qwen-32B, and Llama-3.1-8B. Results
on the manually annotated subset (comparable to
Table 7) are presented in Table 10. While there is
some numerical variation, the relative rankings of
de-identification systems remain consistent.
For the full dataset (comparable to Table 9), results
are shown in Table 11. Again, we observe stability
in the relative performance of de-identification sys-
tems across LLMs.
Together, these results suggest that CIRE is ro-
bust to the choice of LLM used for evaluation,
though further validation with additional models
and datasets would be valuable.

Dataset Evaluating Model Model Accuracy Precision Recall

AHS

Qwen 72B
M. Deidentify 0.94 0.95 0.42
CBERT + Presidio 0.95 0.79 0.39
Llama-3.3 0.97 0.86 0.57

Qwen 32B
Deidentify 0.94 0.74 0.6
CBERT + Presidio 0.96 0.86 0.43
Llama-3.3 0.98 0.92 0.57

Llama 3.1 8B
Deidentify 0.83 0.31 0.51
CBERT + Presidio 0.84 0.28 0.79
Llama-3.3 0.88 0.06 0.1

MIMIC-III

Qwen 72B
M. Deidentify 0.93 0.82 0.33
CBERT 0.98 0.97 0.74
Llama-3.3 0.92 0.13 0.67

Qwen 32B
Deidentify 0.95 0.82 0.65
CBERT 0.98 0.88 0.76
Llama-3.3 0.89 0.1 0.78

Llama 3.1 8B
Deidentify 0.74 0.22 0.62
CBERT 0.78 0.23 0.89
Llama-3.3 0.81 0.05 0.56

Table 10: Results of CIRE with additional LLMs on
the manually annotated subset (comparable to Table 7
M. Deidentify: Modified Deidentify; CBERT: Clinical-
BERT

Dataset Evaluating Model Model CIRE

AHS

Qwen 72B
Modified Deidentify 0.92
ClinicalBERT + Presidio 0.98
Llama-3.3 0.94

Qwen 32B
Modified Deidentify 0.89
ClinicalBERT + Presidio 0.96
Llama-3.3 0.94

Llama 3.1 8B
Modified Deidentify 0.87
ClinicalBERT + Presidio 0.85
Llama-3.3 0.95

Table 11: CIR Evaluation across different models

J Chunking vs. Sentence Splitting

The decision to employ fixed-length chunking
rather than sentence-pair alignment was not a mat-
ter of design preference but of empirical neces-
sity. Our private clinical dataset (AHS) was derived
from non-native PDF sources using OCR, which in-
troduced substantial formatting noise. In particular,
sentence boundary detection was highly unreliable:
in a manual review of 300 aligned sentences, only
159 were found to be valid sentences. Given these
limitations, sentence-level splitting would have fur-
ther increased alignment errors and reduced the
consistency of evaluation. For this reason, we em-
ployed fixed-length 20-token chunking, which of-
fered a more reliable preprocessing strategy, though
at the cost of occasionally dividing clinical con-
cepts.
To evaluate the effect of this choice, we conducted
a targeted experiment comparing sentence-level
alignment to 20-token chunking on 100 samples
each. Results showed near-identical performance
between the two approaches: accuracy (0.980 vs.
0.983), precision (0.543 vs. 0.547), and recall
(0.630 vs. 0.630).
These findings suggest that the alignment method
(sentence-level vs. chunking) has minimal influ-
ence on model performance in this setting and that
our decision to use chunking is justified by both
practical robustness and empirical validation.
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K Compute

The experiments described in the paper were per-
formed on two NVIDIA A100-SXM4-80GB GPUs.
We roughly estimate that the total GPU time used
was approximately 1550 hours.

Prompt-tuning took an approximate 100 GPU
hours. De-identification took an approximate 1350
hours. Measuring the CIR metrics took an approxi-
mate 100 hours.

L Use of AI Assistants

An AI assistant was used only for spelling, gram-
mar, and phrasing.

M Instructions for Annotators

• Document Overview: This file lists the false
positives produced by the de-identification
model—that is, tokens removed unnecessarily
that may carry important triage or diagnostic
information. We sampled 500 of these tokens
to categorize them and estimate the proportion
of genuinely important or sensitive clinical
data.

• File Columns:

– File Name: The source document in
which the false positive occurred.

– Edit Distance: The Levenshtein dis-
tance between the original token and the
de-identified token; lower values indi-
cate minor changes (e.g., simple spelling
fixes).

– Original Token: The token from the
original text that was removed by the
model.

– De-identified Token: The model’s re-
placement (or removal) of the original
token.

– Context: A snippet of surrounding
text, formatted as . . . / prev
/ prev / original_token /
deidentified_token / next / next
/ . . . .

– Category: Our assigned category for the
original token (see below).

– Severity of Change: For clinically rel-
evant removals, indicates whether the
change is High or Low criticality.

• Categories:

– Clinically Relevant Changes: Re-
movals or edits that alter key clinical in-
formation—medication names, dosages,
critical terms—or that change meaning
(e.g., “stop smoking”).

– Clinically Irrelevant Changes: Tokens
whose removal does not affect clinical in-
terpretation (e.g., generic words like “it,”
irrelevant dates, or “communication”).

– Correct De-identification Missed by
Human: Patient identifiers the manual
review missed but the model correctly
removed.

– Insensitive Identifier: Non-sensitive
identifiers (e.g., document IDs or en-
counter numbers) that the model re-
moved.

– Provider/Clinic Information: Details
about providers or clinics—phone num-
bers, clinic names, addresses, provider
IDs, etc.

– Unknown: Tokens that do not clearly
belong to any of the above categories
and require your judgment.

• Reviewer Instructions:

– Validate Categories: Randomly inspect
entries to confirm or correct the assigned
Category.

– Resolve “Unknown” Tokens: For every
row labeled Unknown, choose the ap-
propriate category.

– Set Severity for Relevant Changes:

* In the Category column, select Clin-
ically Relevant Changes.

* Enter High or Low in the Severity of
Change column.

N Variation on De-identification

N.1 Increasing PII to include provider
information

There is no consensus on the set of metrics that
qualify as PII and need to be removed. For exam-
ple, provider name is often not legally required to
be removed. This was the approach we took in the
main body of the text. However, as many mod-
els are trained to remove all names, our schema
mis-match with that which they were trained on
results in an under-estimation of their performance.
To that end, we re-ran the evaluation on a subset
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of AHS (100 texts) considering provider informa-
tion as PII. Results are presented in Table 12. We
can see that the precision of all models improve,
with substantial improvements for all models asides
from Llama-3.3.

N.2 Sub-token Modifications
Likewise, there is no consensus on how much of a
PII needs to be removed for the change to count as
a true positive instead of a false negative. That is, if
half a name is removed, should that count as being
de-identified? In the work, we too the generous
approach which considers any change in a token
labelled as PII as being fully de-identified (i.e., a
true positive). Table 13 presents the performance if
we take the conservative approach instead. In the
conservative approach, the whole set of characters
belonging to the PII must be correctly classified to
count as a true positive.
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Dataset Model TP TN FP FN A R P F1

AHS

Presidio 10025 94154 16350 5492 0.83 0.65 0.38 0.48
Modified Presidio 9463 104689 5815 6054 0.91 0.61 0.62 0.61
ClinicalBERT 13708 96096 14408 1809 0.87 0.88 0.49 0.63
Modified ClinicalBERT 14023 95847 14657 1494 0.87 0.90 0.49 0.63
ClinicalBERT + Presidio 14125 94512 15992 1392 0.86 0.91 0.47 0.62
Deidentify 10217 101511 8993 5300 0.89 0.66 0.53 0.59
Modified Deidentify 11004 101117 9387 4513 0.89 0.71 0.54 0.61
Llama-3.3 12607 103213 7291 2910 0.92 0.81 0.63 0.71

Table 12: AHS (clinic/provider identifiers removed) with standard classification metrics

Dataset Model TP TN FP FN A R P F1

AHS

Presidio 5436 120910 25879 1844 0.82 0.75 0.17 0.28
Modified Presidio 5015 133543 13246 2265 0.90 0.69 0.27 0.39
ClinicalBERT 6468 121915 24874 812 0.83 0.89 0.21 0.33
Modified ClinicalBERT 6603 121386 25403 677 0.83 0.91 0.21 0.34
ClinicalBERT + Presidio 6643 119753 27036 637 0.82 0.91 0.20 0.32
Deidentify 5672 129649 17140 1608 0.88 0.78 0.25 0.38
Modified Deidentify 6094 128780 18009 1186 0.88 0.84 0.25 0.39
Llama-3.3 7214 144545 2244 66 0.99 0.99 0.76 0.86

MIMIC-III

Presidio 109190 2692556 212497 32778 0.92 0.77 0.34 0.47
Modified Presidio 104717 2883273 21780 37251 0.98 0.74 0.83 0.78
ClinicalBERT 124859 2890210 14843 17109 0.99 0.88 0.89 0.89
Modified ClinicalBERT 124951 2887777 17276 17017 0.99 0.88 0.88 0.88
ClinicalBERT + Presidio 110903 2863729 41324 31065 0.98 0.78 0.73 0.75
Deidentify 114718 2873971 31082 27250 0.98 0.81 0.79 0.80
Modified Deidentify 114721 2871704 33349 27247 0.98 0.81 0.77 0.79
Llama-3.3 133107 2855168 49885 8861 0.98 0.94 0.73 0.82

Table 13: Conservative Evaluation

Dataset Model
Clinically Relevant

Changes
Clinically

Irrelevant Changes
provider/clinic

information
insensitive
identifier

Correct de-id
missed by human

AHS
Modified Deidentify 22 138 319 20 1
ClinicalBERT + Presidio 14 134 328 22 2
Llama-3.3 89 168 180 39 23

MIMIC-III
Deidentify 444 36 20 0 0
ClinicalBERT 263 67 166 4 0
Llama-3.3 252 168 80 0 0

Table 14: Breakdown of De-identification Error Categories Across Models: 1. Clinically relevant changes:
Modifications affecting medical meaning or patient care (e.g., drug-name corrections, dose removals or ’stop’
in ’stop smoking’). 2. Clinically irrelevant changes: Edits that do not alter clinical interpretation (e.g., removal
of random dates or filler words like “thank,” “communication”). 3. Provider/clinic information: Redactions of
healthcare facility or provider details (phone numbers, clinic names, addresses). 4. Insensitive identifiers: insensitive
IDs (e.g., document or encounter numbers) that the model unnecessarily redacted. 5. Correct de-identifications
missed by human: Patient identifiers the annotators missed but the model successfully redacted.
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