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Abstract
Embedding-based similarity metrics between
text sequences can be influenced not just by
the content dimensions we most care about, but
can also be biased by spurious attributes like
the text’s source or language. These document
confounders cause problems for many appli-
cations, but especially those that need to pool
texts from different corpora. This paper shows
that a debiasing algorithm that removes infor-
mation about observed confounders from the
encoder representations substantially reduces
these biases at a minimal computational cost.
Document similarity and clustering metrics im-
prove across every embedding variant and task
we evaluate—often dramatically. Interestingly,
performance on out-of-distribution benchmarks
is not impacted, indicating that the embeddings
are not otherwise degraded.1

1 Introduction

Suppose a political scientist is studying U.S. politi-
cal discourse. They have access to two data sources:
Twitter posts from senators and summaries of con-
gressional bills. A natural first step in data explo-
ration is to embed the texts (e.g., with a sentence
transformer; Reimers and Gurevych 2019) and then
cluster them (e.g., with k-means). However, some
clusters will predominantly contain items from one
source or the other, because systematic differences
between sources dominate the distances that k-
means relies on (Fig. 1A).

Text embeddings, generated by pretrained mod-
els, capture a wide range of information about
text, including topical, semantic, stylistic, mul-
tilingual, and syntactic features. These models
are typically trained with the goal of “making se-
mantically similar sentences close in vector space”
(Reimers and Gurevych, 2019). However, this ob-
jective can cause spurious correlations—such as

*Equal supervision.
1Code and data available at https://github.com/y-fn/

deconfounding-embeddings.
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Figure 1: Clustering text embeddings from disparate
sources (here, U.S. congressional bill summaries and
senators’ tweets) can produce clusters where one source
dominates (Panel A). Using linear erasure to remove the
source information produces more evenly balanced clus-
ters that maintain semantic coherence (Panel B; sampled
items relate to immigration). Four random clusters of
k-means shown (k=25), trained on a combined 5,000
samples from each dataset.

between domain and topic—to be encoded as un-
intended relationships. As Thompson and Mimno
(2018) observe: “collections are often constructed
by combining documents from multiple sources,
[so the] most prominent patterns in a collection
simply repeat the known structure of the corpus.”2

It therefore would seem useful to remove unwanted
information from text representations.

Indeed, adjusting embeddings to remove con-

2Their analysis focuses on bag-of-words topic models
rather than text embeddings, so their vocabulary-based ap-
proach does not translate to our setting.
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founding information is exactly what we do in this
work. Adapting the algorithm from Belrose et al.
(2023) for linear concept erasure, we remove em-
bedding subspaces that are predictive of the con-
founding variables, which can bias measures of
document distance. In the above example from U.S.
politics, we residualize out the source information
(Twitter or bills), producing adjusted embeddings
for which similarity metrics load on the semantic
content rather than the source (Fig. 1B). As an-
other practical example, in a multilingual corpus,
we residualize out the subspace that is predictive
of language, leading to document distance metrics
that are driven by content, rather than language.

Extensive tests show that the adjusted embed-
dings perform significantly better for clustering and
similarity search. For example, in a multilingual
document search setting, Recall@1 increases from
0.18 to 0.83. Importantly (and surprisingly), there
is also no reduction in performance when using the
adjusted embeddings on unseen datasets and tasks
from a standard retrieval benchmark (Muennighoff
et al., 2023; Enevoldsen et al., 2024), suggesting
erasure does not harm embedding quality.

The approach is computationally inexpensive,
involving only linear transformations on pretrained
embeddings. To support practical use, we release
a wrapper that streamlines encoding, fitting the
deconfounder, and adjusting embeddings. In addi-
tion, we provide several evaluation datasets labeled
both with confounders (language and source) and
semantic content (e.g., topic). In sum, we:

• Formally demonstrate how erasure removes
confounding information from document sim-
ilarities (§2);

• Construct a benchmark of paired data to mea-
sure the impact of confounding attributes on
embedding performance (§3);

• Evaluate a diverse set of embedding methods,
showing that observable features such a text’s
source can reduce the utility of text embed-
dings in applied settings (§4);

• Show that applying a linear erasure algo-
rithm to remove observed confounders can
effectively mitigate such issues—sometimes
dramatically—without degrading other as-
pects of performance (§5).

2 Background

Many downstream tasks such as nearest-neighbor
search, clustering, retrieval, topic discovery etc.
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Figure 2: Performance of the multilingual E5-base
model before and after erasure. Top: category-level
results from the Comparative Agendas Project (metric:
purity). Bottom: event-level results from SCOTUS and
multilingual Swiss case summaries (metric: recall@1).
Detailed results for other models and datasets in Ta-
bles 2, 4, 6 and 10.

rely on assessing how “close” two documents are
in an embedding space. An effective distance met-
ric should rank pairs by semantic relatedness rather
than by superficial attributes like author, language,
or publication venue. In practice, however, pre-
trained embedding models often encode these inci-
dental signals, since they occur frequently during
training and help optimize self-supervised objec-
tives. When such signals correlate with content,
distance measures become biased and can under-
mine empirical conclusions.

Embedding text sequences Sentence-level em-
beddings position semantically similar documents
close to each other in a vector space (Kiros et al.,
2015; Conneau et al., 2017; Cer et al., 2018;
Reimers and Gurevych, 2019). Modern systems
typically begin with a transformer encoder pre-
trained on masked-language modeling, then re-
fine it on hundreds of millions of contrastive
pairs drawn from diverse corpora (Reimers and
Gurevych, 2019). This approach underpins state-of-
the-art performance in retrieval (Asai et al., 2021;
Thakur et al., 2021; Zhang et al., 2023), cluster-
ing (Aggarwal and Zhai, 2012), and classification
(Maas et al., 2011).

Contrastive batches are often drawn from a sin-
gle source, enabling the model to focus on internal
semantics (Nussbaum et al., 2024). A side effect is
that different sources may occupy distinct regions
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Figure 3: PCA projection of text embeddings before
and after LEACE. Data are paired Swiss court case
summaries in German (green) and French (purple). We
deploy multilingual E5 as the embedding model. The
first principal component recovers the two languages
almost exactly.

of the embedding space, especially when cross-
source positives are scarce. Multilingual models
exhibit a similar problem: even when trained with
translation pairs (Wang et al., 2024), large amounts
of monolingual data tends to push languages apart.

Despite attempts to construct comparable con-
trastive pairs, the resulting embeddings still encode
confounding information. Platform-specific jargon
and style can dominate representations. In addition,
language itself may serve as a proxy for topic or ge-
ography. For authors and outlets, stylistic markers
linked to gender or ideology can act as shortcuts for
similarity. Because these attributes correlate with
content, they function as observed confounders in
distance-based analyses.

The document comparison problem. More for-
mally, let X ∈ Rd denote the embedding of a
random document. For a particular document di,
we write its realization as xi and assume ∥xi∥ = 1.
In general, we use bold uppercase letters (e.g., X)
for random variables and lowercase letters (xi) for
their realizations. Erased variables use a tilde (B̃).
Assume a linear decomposition for the embedding:

X = BzZ + BcC + BuU + E, (1)

where Z is a random variable representing the
semantic content of interest (e.g. topic); C the
observed confounders (source, language, author
traits); and U the unobserved confounders. Bz ,Bc,
Bu are loading matrices. Z, C, U and the noise E
are zero-mean and uncorrelated with one another.

Similarity is measured with the dot product,

where x0 and x1 are two IID draws of X:

y01 = x⊤0x1. (2)

Under the model expressed in (1), expanding this
dot product creates multiple entangled factors:

y01 = z⊤0Γzzz1 + z⊤0Γzcc1 (3)

+ z⊤0Γzuu1 + c⊤0Γzcz1 + . . . , (4)

where Γjk = B⊤
j Bk. Only the first term reflects

the semantic proximity we care about; the others
bias any analysis based on y01.

Debiasing and concept erasure. Concept era-
sure techniques aim to remove a targeted feature
(e.g. gender) from an embedding. This is typically
achieved by projecting out the corresponding sub-
space, thereby reducing bias and enabling analysis
of model behavior without that feature (Ravfogel
et al., 2022; Belrose et al., 2023).

Early debiasing work on word vectors identified
a “bias direction” (e.g. race) and removed its projec-
tion (Bolukbasi et al., 2016). Later studies showed
that the removed signal remained recoverable (Go-
nen and Goldberg, 2019), motivating stronger lin-
ear methods such as Iterative Null-space Projection
(INLP, Ravfogel et al., 2020), Linear Adversarial
Concept Erasure (LACE, Ravfogel et al., 2022),
and LEAst-squares Concept Erasure (LEACE, Bel-
rose et al., 2023). These approaches seek an affine
transformation that eliminate all linear correlation
with the protected attribute while altering the rep-
resentations as little as possible.

An important special case of these kinds of con-
cept erasure is linear concept erasure, where the
goal is to prevent linear adversaries from predict-
ing the information we aim to remove. This is
usually achieved in the form of a projection matrix
that neutralizes a subspace that is associated with
the concept C. Following Ravfogel et al. (2022),
Belrose et al. (2023) derived sufficient and neces-
sary conditions for achieving linear guardedness
(Ravfogel et al., 2023), a situation where no linear
classifier can recover the concept C and achieve
a loss lower than that of a trivial predictor that al-
ways predicts the majority class. Specifically, they
derive a linear projection matrix P ∗ such that:

P∗ = arg min
P∈Rd×d

E
[
∥PX −X∥2

]
(5)

subject to Cov(PX,C) = 0. (6)
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The covariance constraint ensures the erasure of
linear information, while the first objective min-
imizes distortion of the representation space. It
turns out that this objective has a closed-form solu-
tion in the form of

P∗ = I − W†(WΣXC)(WΣXC)
†W (7)

where W = Σ
−1/2
XX is a whitening matrix, W† the

pseudoinverse of W, and

ΣXC = Cov(X,C),ΣXX = Cov(X),µ = E[X].

This condition is proved to be sufficient and nec-
essary for achieving linear guardedness, i.e., the
inability of any linear classifier to recover the at-
tribute C from the embeddings. In other words, Eq.
(7) together with b = µ− Pµ defines the unique
affine map that removes all linear correlations with
the observed confounder C while modifying the
embeddings as little as possible.

For any document, the adjusted embedding is
x̃i = Pxi + b. Applying this LEACE map to the
realization of the structural decomposition in (1):

x̃i = P
(
Bzzi +Bcci +Buui + εi

)
+ b

= B̃zzi + B̃uui + Pεi, (8)

where B̃j = PBj . Note that the middle term van-
ishes, following from the constraint Cov(X̃,C) =
0, which ensures that the space spanned by Bc is
removed. In turn, the estimand for the document
similarity,

ỹ01 = x̃⊤0 x̃1 = z⊤0 Γ̃zzz1 + z⊤0 Γ̃zuu1

+ u⊤0 Γ̃uzz1 + u⊤0 Γ̃uuu1 + Pεi, (9)

is also purged of C (furthermore, in expectation
it does not include the cross terms, as they are un-
correlated under our assumptions). Note, however,
that the projection alters the geometry of the re-
maining components. x̃ is now based on PBzz,
which may not be equal to Bzz, depending on the
intensity and nature of the dependence between z
and C. So the LEACE algorithm might also add
bias to similarity metrics through its adjustment
of this term. Further, the (adjusted) unobserved
confounder u remains, and it is unclear how the
deconfounding by LEACE would either increase
or reduce bias from u.

Category-level Data Ntotal Categories

CAP Data
Bills – Orders 1,902 21
Bills – Newspapers 2,613 21
Orders – Newspapers 1,907 21
All Three Sources 3,211 21

Event-level Data Npaired Nunpaired

SCOTUS Cases
Wikipedia – LexisNexis 2,048 1,518
Wikipedia – Oyez 1,560 1,762
LexisNexis – Oyez 2,048 2,075

SemEval News Articles
EN – Non-EN 888 0

Swiss Court Cases
DE – FR 2,048 1,760
DE – IT 2,048 1,760
FR – IT 2,048 1,760

Table 1: Dataset statistics. The data cover a variety of
domains and languages.

3 Experimental Setup

Our evaluation settings are designed to approxi-
mate real-world use cases and involve datasets from
multiple corpora. They are divided into two groups,
category-level and event-level data, both aiming to
measure the same thing: the extent to which doc-
uments that share a common label have similar
embeddings.

The approach is the same across all datasets:
create a vector of concept labels c to erase, using
known metadata (here, a text’s source or language).
Then, pass each text item through the embedding
model to obtain a matrix X. Fit LEACE on (X, c)
to learn the whitening and projection matrices, then
apply the transformations back to X̃.3

3.1 Category-level Data

Recalling the motivating example from the intro-
duction, imagine a researcher clusters documents
from different sources (like news articles and court
cases), with the hope that each cluster contains
documents that fall under a coherent topic.

We measure progress on this task by relying
on a common set of ground-truth category labels,
like “Education”, that cover multiple datasets. The
goal is that the assigned clusters align with the
categories, even if the constituent documents come
from different sources.

3For the out-of-sample experiments in Section 5, the trans-
formations are applied to novel benchmark data X′.

32116



Datasets. We use datasets from the Comparative
Agendas Project (CAP), which provides a coding
framework for analyzing policy activities across
time and between countries (Jones et al., 2023b).

We use texts from three sources: newspaper ar-
ticles4, congressional bill summaries (Wilkerson
et al. 2023, taken from Hoyle et al. 2022), and ex-
ecutive orders (Jones et al., 2023a). We evaluate
each pair of sources separately, as well as all three
simultaneously.

Metrics and Methodology. We measure align-
ment between ground-truth category labels and
assigned clusters with two metrics. Following
Poursabzi-Sangdeh et al. (2016), we use purity,
which quantifies to what extent each cluster con-
tains items from a single gold category, and the
Adjusted Rand Index, a chance-corrected metric
that measures the similarity of two clusterings.

The erased concept is the source for each of the
four settings (Table 1). When generating clusters,
we follow a standard practice and apply k-means
to the text embeddings for each document (Zhang
et al., 2022).5

3.2 Event-level Data

Now imagine that a practitioner wants to under-
stand how a common event—a court case, a nat-
ural disaster—is portrayed by distinct sources or
languages. If they have access to one document
discussing the event, how can they best find others?

Datasets. We rely on three paired datasets, which
link documents depicting the same event in differ-
ent sources or languages.

Super-SCOTUS (Fang et al., 2023) contains
case summaries from the U.S. Supreme Court
sourced from LexisNexis and Oyez. In addition,
we scrape case summaries from Wikipedia. This
results in 1,518 pairs of LexisNexis and Wikipedia
case summaries, 2,075 from LexisNexis and Oyez,
and 780 pairs from Wikpedia and Oyez.

SemEval 2022 Task 8 (Chen et al., 2022) as-
sesses the similarity between pairs of multilingual
news articles. We obtain 444 pairs of news articles
that depict similar events in different languages,
namely English and non-English (Spanish, Ger-
man, and Chinese).

4https://comparativeagendas.net/project/
pennsylvania

5We set k = 21, the total number of categories in the data.
Improvements are robust to different k, see Fig. 10 in ap-
pendix.

A third dataset is derived from SwilTra-Bench
(Niklaus et al., 2025), which contains parallel sum-
maries of leading Swiss court decisions from the
Federal Supreme Court of Switzerland in German,
French, and Italian.

Methodology and Metrics. To accurately simu-
late real-world conditions, in which only partially
paired data is available and the remaining data is
unpaired and derived from different sources, we
retain up to 1,024 data pairs for each applicable set-
ting. We treat the remainder of the data as unpaired
by randomly discarding one example from each
pair. Thus, data is considered unpaired either be-
cause paired data was unavailable from the original
sources or because one item from a pair was ran-
domly removed. In each setting, we pool together
the paired and unpaired data and subsequently use
this combined dataset to train the LEACE eraser,
aiming to remove source-specific information.

We evaluate whether each paired item can re-
trieve its counterpart from the pooled dataset us-
ing Recall@1 and @10, the proportion of correct
matches that appear in the top k retrieved results.

3.3 Embedding Models

Our experiments use ten embedding models
of varying sizes and dimensionality (appendix
Table 12). This set includes multilingual and mono-
lingual variants, as well as models with instruction
fine-tuning: MiniLM6, GIST-small, GIST-base,
GIST-large (Solatorio, 2024), multilingual
E5-small, E5-base, E5-large (Wang et al.,
2024), all-mpnet-base-v2 (Song et al., 2020),
Nomic-v2 (Nussbaum and Duderstadt, 2025), and
MXB-large (Li and Li, 2023; Lee et al., 2024).

4 Primary Results

We first discuss the results on the category-level
datasets, then turn to the event-level. In brief, era-
sure improves embeddings across the board—over
all models, metrics, and datasets (when perfor-
mance is not already saturated). A summary of
results for a single model is in Fig. 2.

4.1 Category-level

In all four source pairings from the CAP dataset,
erasing source-specific information with LEACE
consistently improves clustering quality (Table 2).

6https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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Model
Bills & News Orders & News Bills & Orders All Three Sources

Purity ARI Purity ARI Purity ARI Purity ARI

Before After Before After Before After Before After Before After Before After Before After Before After

MiniLM 0.346 0.507 0.148 0.268 0.329 0.463 0.123 0.228 0.391 0.448 0.169 0.226 0.269 0.411 0.096 0.205
GIST-small 0.380 0.549 0.171 0.328 0.421 0.515 0.200 0.283 0.422 0.513 0.191 0.275 0.330 0.483 0.131 0.259
E5-small 0.260 0.414 0.085 0.207 0.289 0.290 0.099 0.101 0.319 0.422 0.123 0.190 0.237 0.356 0.069 0.166

MPNet 0.365 0.504 0.162 0.282 0.377 0.444 0.151 0.217 0.461 0.493 0.229 0.256 0.334 0.481 0.130 0.259
GIST-base 0.373 0.534 0.157 0.312 0.380 0.534 0.165 0.309 0.425 0.498 0.188 0.262 0.320 0.470 0.054 0.147
E5-base 0.240 0.375 0.072 0.175 0.252 0.297 0.075 0.108 0.328 0.407 0.130 0.173 0.212 0.346 0.130 0.173
Nomic-v2 0.324 0.463 0.122 0.250 0.331 0.353 0.127 0.161 0.386 0.442 0.159 0.218 0.249 0.411 0.073 0.196

MXB-large 0.328 0.493 0.134 0.279 0.332 0.524 0.127 0.281 0.420 0.487 0.188 0.263 0.299 0.410 0.112 0.199
GIST-large 0.361 0.492 0.148 0.295 0.375 0.471 0.153 0.258 0.418 0.495 0.195 0.258 0.294 0.434 0.106 0.226
E5-large 0.224 0.373 0.066 0.170 0.273 0.283 0.082 0.103 0.327 0.366 0.104 0.152 0.211 0.297 0.055 0.124

Table 2: Cluster alignment metrics on the “category-level” Comparative Agendas Project datasets (§3.1), before and
after linear concept erasure. Here, the erased concept is the source (top row). We set k = 21, the total number of
categories in the CAP datasets. Erasure substantially improves cluster alignment for every combination of sources
across all embedding models. Bolded scores indicate performance improvements after erasure; underlined scores
mark the highest value in each column.

In the Bills–Newspapers comparison, all ten mod-
els show marked improvements, with gains in ARI
ranging from +0.104 (E5-large) to +0.157 (GIST-
small), and purity increases as high as +0.169
(GIST-small). Although the magnitude of im-
provement varies, this pattern persists in the Or-
ders–Newspapers comparison. While most models
benefit substantially, multilingual models such as
E5-small and E5-large show only marginal gains,
suggesting that source signal may be less distinct
in this pairing.

The Bills–Orders setting yields more moder-
ate improvements, yet the gains remain consistent
across model scales. Finally, the All Three Sources
setting demonstrates that LEACE generalizes to
more complex source distributions. Smaller-sized
models, such as MiniLM and GIST-small, gain
over +0.130 in purity and +0.100 in ARI. Even
larger models such as GIST-large and MXB-large
improve substantially after concept erasure.

Overall, these results demonstrate the robustness
of LEACE across diverse source combinations and
embedding models, confirming its ability to reduce
spurious relationships between items while preserv-
ing task-relevant semantic structure.

4.2 Event-Level
At the event level, we present the results with Re-
call@10 and Recall@1, because only one docu-
ment is deemed relevant for each query.

U.S. Supreme Court Case Summaries Apply-
ing LEACE consistently improves retrieval perfor-
mance on the SCOTUS summary data (Table 10).
In both Wikipedia pairings, improvements are large

and especially pronounced for the E5 family. For
instance, on LexisNexis-Wikipedia, E5-small gains
+0.177 in Recall@1 and E5-base +0.153.

Performance before erasure on LexisNexis–Oyez
is already high, likely because the two have more
stylistic elements in common—both being techni-
cal summaries based on the original court opin-
ion. Nonetheless, we still observe more modest but
consistent gains. E5-small and E5-base increase
Recall@1 by +0.226 and +0.183, respectively, al-
though GIST-base and MXB-large exhibit improve-
ments of only about +0.08.

Overall, LEACE not only improves represen-
tation consistency across heterogeneous legal
sources, but also enhances alignment even when
initial model performance is already strong.

Swiss Federal Supreme Court Case Summaries
Turning now to multilingual data, we observe that
LEACE can be extremely effective, even with
already-multilingual embeddings (Table 4).

For all settings on the Swiss court case summary
data, nearly every model sees higher recall after
applying LEACE. The improvements tend to be
largest with different language families: German-
Italian and German-French. On DE-IT, gains in
Recall@1 can reach +0.651 (E5-large); on DE-FR,
+0.570 (E5-base). As French and Italian are closer,
baseline retrieval is already strong, with some mod-
els already having near-perfect Recall@10. This re-
flects the tendency of related languages to lie closer
in embedding space, as shown in prior work on ge-
nealogical structure (Östling and Kurfalı, 2023) and
cross-lingual language representations (Sharoff,
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Model
LexisNexis & Wikipedia LexisNexis & Oyez Oyez & Wikipedia

Recall@10 Recall@1 Recall@10 Recall@1 Recall@10 Recall@1

Before After Before After Before After Before After Before After Before After

MiniLM 0.487 0.606 0.231 0.313 0.890 0.899 0.651 0.693 0.850 0.924 0.623 0.747
GIST-small 0.563 0.656 0.261 0.325 0.918 0.943 0.702 0.778 0.762 0.844 0.478 0.599
E5-small 0.421 0.673 0.176 0.353 0.830 0.939 0.563 0.789 0.689 0.951 0.398 0.752

MPNet 0.566 0.666 0.259 0.337 0.926 0.943 0.724 0.775 0.856 0.911 0.565 0.678
GIST-base 0.646 0.757 0.308 0.412 0.939 0.963 0.727 0.819 0.880 0.950 0.628 0.773
E5-base 0.414 0.660 0.188 0.341 0.830 0.940 0.575 0.758 0.650 0.942 0.371 0.737
Nomic-v2 0.530 0.701 0.254 0.384 0.950 0.966 0.770 0.820 0.903 0.978 0.658 0.819

MXB-large 0.537 0.703 0.249 0.376 0.928 0.958 0.720 0.805 0.883 0.960 0.654 0.819
GIST-large 0.657 0.770 0.305 0.414 0.954 0.967 0.787 0.834 0.947 0.971 0.760 0.826
E5-large 0.479 0.720 0.209 0.381 0.864 0.949 0.636 0.791 0.765 0.964 0.489 0.792

Table 3: Document similarity search results on paired “event-level” U.S. Supreme Court Summaries (3.2), before
and after linear concept erasure. Here, the erased concept is the document’s source. Erasure improves recall for
every setting and model.

2020). Still, increases in metrics abound, primarily
in the smaller models like MiniLM. Taken together,
LEACE removes source-specific signals even in
complex multilingual legal domains.

SemEval News Articles To avoid bludgeoning
the reader with positive results, we briefly outline
the results on our other multilingual dataset: all ten
models again benefit from erasure (Table 6 in the
appendix).

4.2.1 Qualitative Analysis
To investigate which semantic features contribute
most and least to changes before and after LEACE,
we conducted a qualitative analysis using pairs of
legal case summaries sourced from Wikipedia and
LexisNexis, employing multilingual E5 as the em-
bedding model.

We observe that when baseline similarity is al-
ready high due to shared style or genre, LEACE
encounters fewer residual confounders to remove,
thus yielding relatively smaller improvements.
Conversely, when baseline similarity is lower ow-
ing to clear stylistic or domain differences, LEACE
proves particularly effective, as it targets and re-
moves pronounced confounding signals, leading to
greater gains.

Our examination of legal case summaries pro-
vides insights into these dynamics. Summaries
that experience the largest changes after apply-
ing LEACE are generally shorter, focus primarily
on legal rulings, and lack factual idiosyncrasies.
Without LEACE-based deconfounding, these sum-
maries present substantial challenges for similarity-
based text retrieval because of their limited seman-

tic overlap regarding specific facts and rules (see
also Fan et al. 2025). We provide examples in Ap-
pendix F.1.

On the other hand, summaries that display mini-
mal change tend to incorporate both factual details
and judgments, offer broader contextual framing,
discuss subsequent impacts, and frequently inte-
grate direct quotations from court decisions. An
example can be found in Appendix F.2.

These findings underscore LEACE’s distinctive
advantage in scenarios where domain experts can
clearly identify and specify features irrelevant to
downstream similarity tasks, highlighting its po-
tential value within human-in-the-loop frameworks
that leverage expert knowledge to detect and elimi-
nate confounding factors. They also show LEACE
is less useful when relevance relies on higher-order
discourse features such as blending facts, judg-
ments, and framing, which it cannot account for.

5 Erasure helps, but can it hurt?

The results from the previous section appear con-
clusive: linear concept erasure effectively removes
spurious information from embeddings that dis-
torts similarities. At the same time, we must ask
whether erasure might also degrade embeddings in
subtle ways that our evaluations fail to detect. Al-
though LEACE is designed to minimize unwanted
distortions, the trained eraser may inadvertently
remove “desirable” information that may support
other tasks.

In this section, we address this question through
additional evaluations on out-of-distribution (OOD)
benchmarks. These experiments test whether apply-
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Model
DE & IT DE & FR FR & IT

Recall@10 Recall@1 Recall@10 Recall@1 Recall@10 Recall@1

Before After Before After Before After Before After Before After Before After

MiniLM 0.009 0.086 0.003 0.023 0.026 0.102 0.008 0.030 0.146 0.545 0.040 0.260
GIST-small 0.020 0.211 0.004 0.063 0.041 0.246 0.011 0.075 0.315 0.771 0.101 0.461
E5-small 0.093 0.930 0.027 0.543 0.167 0.937 0.051 0.563 0.853 1.000 0.455 0.968

MPNet 0.016 0.149 0.006 0.048 0.053 0.155 0.021 0.050 0.157 0.646 0.052 0.346
GIST-base 0.034 0.296 0.008 0.092 0.076 0.378 0.024 0.142 0.440 0.873 0.167 0.565
E5-base 0.380 0.987 0.124 0.749 0.457 0.989 0.178 0.748 0.987 1.000 0.821 0.979
Nomic-v2 0.958 0.994 0.600 0.765 0.944 0.996 0.596 0.767 1.000 1.000 0.968 0.979

MXB-large 0.027 0.356 0.012 0.117 0.087 0.427 0.033 0.168 0.366 0.910 0.125 0.632
GIST-large 0.045 0.298 0.014 0.090 0.116 0.385 0.039 0.152 0.415 0.880 0.144 0.551
E5-large 0.503 0.995 0.175 0.826 0.722 0.998 0.300 0.852 0.988 1.000 0.831 0.983

Table 4: Document similarity search results on paired “event-level” multilingual Swiss Court Case Summaries
(3.2), before and after linear concept erasure. Here, the concept is the document’s language. Once again, erasure
significantly improves recall of the paired item in all cases. The only exception is one instance where retrieval
performance is already perfect before erasure. In some cases, erasure even allows smaller models to outperform
their larger counterparts.

ing an eraser trained for a specific domain uninten-
tionally harms general-purpose semantic represen-
tations. While our main experiments in the previ-
ous section focused on domain-specific differences,
real-world deployment of embedding models of-
ten requires robust cross-domain performance. We
thus benchmark our models against diverse eval-
uation datasets from MTEB (Muennighoff et al.,
2023) to assess whether erasers trained to isolate
certain information also degrade performance in
unrelated tasks.

5.1 Data and Methods

We focus on two sentence embedding models:
MiniLM and E5-base-v2 (Wang et al., 2022). Each
model is paired with two trained concept erasers:
the CAP eraser, trained to remove the source from
the Bill–Newspapers pair, and the Legal eraser,
trained on LexisNexis–Wikipedia. This results in
four models-eraser combinations per task.

We apply these combinations to retrieval and se-
mantic texutal similarity (STS) tasks from MTEB
(Muennighoff et al., 2023): (1) Legal Retrieval
tasks, (2) News Retrieval tasks (Thakur et al.,
2021), and (3) STS News tasks. These benchmarks
differ in domain, structure, and evaluation metrics,
offering a comprehensive perspective on erased em-
bedding behavior in out-of-domain settings. For
each benchmark, we compare the performance of
the original model embeddings to the same embed-
dings after applying the trained LEACE erasers.

Orig CAP Legal Orig CAP Legal
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Figure 4: An eraser trained on embeddings from one
dataset does not degrade embeddings from a different
dataset. Erasers fit to the CAP and SCOTUS data (§3)
are applied to embeddings (MiniLM and E5-base-v2)
from five legal retrieval tasks. Each triplet of same-color
bars compares the average NDCG@10 for the base and
erased embeddings.

5.2 MTEB Results

We report a selection of results here, again empha-
sizing that our hope is not to improve benchmark
results, but to avoid making them worse (full results
in Appendix C).

Retrieval. On both the legal and news retrieval
tasks, the trained erasers do not harm performance
(as measured by the average NDCG@10). See
Fig. 4 for legal retrieval; per-task performance
(Fig. 6) and news retrieval (Fig. 7) are in the ap-
pendix. Given the domain overlap, we had hy-
pothesized that the Legal eraser might improve
legal retrieval somewhat, but only one task sees
a marginal improvement (AILACasedocs), from
0.197 to 0.218 (Table 7 in appendix). That said,
the results are still positive overall, indicating that
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Figure 5: Relationship between variance explained by
PC1 in the original embeddings and Recall@1 improve-
ment after LEACE. Each point corresponds to a dataset
setting in the event-level evaluation.

both the CAP and Legal erasers operate robustly
in OOD retrieval tasks with both small and large
models.

Semantic Textual Similarity. We evaluate the
four model–eraser combinations on eight well-
established STS benchmarks, covering both mono-
lingual and crosslingual settings in the news do-
main (Fig. 8 and Table 9 in the appendix). The
evaluation metric is the Spearman correlation be-
tween embedding cosine similarities and ground-
truth semantic similarity. LEACE does not degrade
performance over tasks, with most scores either
unchanged or showing negligible increases.

Across the retrieval and semantic similarity eval-
uations, LEACE consistently preserves the quality
of the embedding space while effectively removing
targeted conceptual signals. These results reinforce
its utility as a lightweight and reliable method for
concept erasure.

6 Additional Findings

Relating LEACE to PCA Why does LEACE
work in these settings? Here, we consider its rela-
tionship to Principal Component Analysis (PCA).

Taking the embeddings of the German-French
Swiss court summaries, the first principal compo-
nent (PC1) forms two clearly separable clusters cor-
responding directly to the text’s language (Fig. 3).
After applying LEACE, the clusters collapse into a
single, overlapping distribution, an indication that

language identity is no longer linearly separable in
the embedding space.

To better understand when LEACE is effective,
we investigate how the structural characteristics of
the original embedding space relate to observed per-
formance improvements. Specifically, we hypoth-
esize that LEACE provides greater performance
gains when the removable concept is prominently
encoded within the embedding space.

To test this, we apply PCA to the original em-
beddings from each event-level dataset (SCOTUS,
SemEval, Swiss Court Cases) and record the pro-
portion of total variance explained by PC1. A high
proportion of explained variance suggests that PC1
encodes a dominant direction in the embedding
space, which will tend to correspond to the concept
targeted by LEACE (i.e., the source or language,
per Fig. 3). Indeed, Fig. 5 shows a strong positive
correlation (r = 0.79, p < 0.001) between the
proportion of variance explained by PC1 and the
percentage improvement in Recall@1. This result
indicates that LEACE is more effective when the
removable concept aligns with dominant directions
in the embedding space.

Given these findings, one might ask why not use
PCA for erasure instead, following Bolukbasi et al.
(2016). We observe positive but less consistent re-
sults than LEACE on our tasks, along with a strong
degradation in MTEB performance (Appendix E).

A new task: bitext mining Erasure improves
already multilingual models on with multilingual
tasks, so can it help with bitext mining—retrieving
translation pairs via similarity search? Our further
experiments show that improvements are not uni-
formly strong, but we do achieve state-of-the-art
results on a few leaderboard tasks from Enevold-
sen et al. (2025), and erasure never reduces perfor-
mance (details in Appendix A).

7 Conclusion

For applied practitioners working with large text
collections from multiple sources or languages—a
common scenario—our results offer a clear rec-
ommendation: apply linear erasure to document
embeddings before use to remove confounding in-
formation. While there may be cases where it is
less effective, the method does not appear to harm
representations (see below) and incurs only mini-
mal computational cost.

32121



Limitations

The primary limitation of our method is its depen-
dence on per-document metadata or labels. If an un-
desirable low-level pattern in the data distribution
is suspected but not known—say, an unreported
change in how a corpus was collected over a long
time period—then the user must first apply some
possibly-unsupervised labeling method. Although
confounder labels are available for many tasks, re-
liance on such labels constrains the broader appli-
cability of our proposed methods. We explored
approaches that automatically generate features;
however, these did not lead to measurable improve-
ments in downstream retrieval or similarity com-
parison tasks. Other works have developed unsu-
pervised techniques to debias or erase neural rep-
resentations (Kim et al., 2019; Seo et al., 2022;
Yang et al., 2025). We leave a deeper exploration
of such methods in our context for future work.
One direction is to integrate sparse autoencoders
(e.g., Movva et al., 2025; Paulo et al., 2025) that
extract features whose utility can be interpreted and
validated by human experts.

Another shortcoming arises when metadata is
available but the categories are too numerous rela-
tive to the total number of items. For example, in
the paired within-language (en–en) SemEval Task
8 news articles, the data originate from dozens of
sources, many of which are represented by only
a handful of articles. In contrast to removing the
language label in the multilingual data (Table 6), re-
moving the source label does not improve retrieval
results over the baseline. A possible direction for
future work is to first merge similar sources into
broader categories (e.g., local vs. national newspa-
pers) before applying label erasure.

A final limitation was first noted by Huang et al.
(2024), who used LEACE as a baseline in mul-
tilingual retrieval contexts. While they similarly
removed language information, their results were
mixed, suggesting that LEACE may not be effec-
tive in all settings. One hypothesis is that our tasks,
though realistic, differ from the standard bench-
mark data on which models are typically trained,
leading to saturated in-domain performance that
does not transfer well out-of-domain. Another pos-
sibility is that retrieval setups—with their distinct
(short query, document) structure, as opposed to
our (document, document) structure—may be less
amenable to erasure. We plan to explore these hy-
potheses to help explain such discrepancies.
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Genta Indra Winata, Saba Sturua, Saiteja Utpala,
Mathieu Ciancone, Marion Schaeffer, Gabriel Se-
queira, Diganta Misra, Shreeya Dhakal, Jonathan
Rystrøm, Roman Solomatin, Ömer Çağatan, Akash
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A Bitext Mining Results

Our gains on multilingual tasks with already mul-
tilingual embeddings motivate us to ask whether
erasure can benefit already “saturated” leaderboard
tasks that cover multiple languages. To this end,
we focus on bitext mining: given pairs of sentences
in different languages, the goal is to retrieve a spe-
cific sentence in the target language given a “query”
sentence in the source language (typically a trans-
lation; F1 is the standard metric). We collect all 28
tasks available through the MTEB package at the
time of writing (Muennighoff et al., 2023) and use
E5-large-instruct, one of the best-performing
models on the leaderboard.

In several cases, there is a marked increase, yield-
ing state-of-the-art scores on three tasks that appear
on the public leaderboard (even with a different
base model class, Table 5 in appendix). Generally,
though, the improvements are much smaller than
those in our main experiments, with over half of
the 28 tasks showing less than a 0.01 change (al-
though no tasks decrease more than −0.01). First
applying LEACE is therefore a simple step when
bitext mining; even if it may not always help, it is
unlikely to hurt.

F1

Before After ∆

SynPerChatbotSumS 0.283 0.500 0.217
SAMSumFa 0.811 0.943 0.132
SynPerChatbotRAGSumS 0.560 0.680 0.120
RomaTales 0.201 0.263 0.062
SRNCorpus 0.500 0.551 0.051
NusaX* 0.853 0.892 0.039
NollySenti* 0.807 0.839 0.032
NusaTranslation* 0.851 0.876 0.025
LinceMT 0.487 0.506 0.019
Bornholm* 0.560 0.578 0.018
IN22Conv 0.626 0.637 0.011
Phinc 0.855 0.867 0.011

Number of tasks with |∆| < 0.01 15

Table 5: F1 on MTEB Bitext Mining Tasks before and
after erasing the language ID, for E5-large-instruct.
Gains are substantial in a few cases, sometimes improv-
ing over the reported state-of-the-art on MTEB (tasks
with * appear on the public leaderboard, improvements
over SotA in bold).

B SemEval English & Non-English News
Results

The results on testing LEACE on the SemEval
2022 Task 8 dataset are presented in Table 6. All

models benefit from LEACE, with consistent im-
provements in both Recall@10 and Recall@1. The
E5-small model shows the strongest gains over-
all: +0.202 (Recall@10) and +0.236 (Recall@1).
High-performing large models like E5-large and
MXB-large achieve further enhancements of up to
+0.156 in Recall@1. Smaller models also gain no-
table increases. For instance, MiniLM gains +0.183
(Recall@10) and +0.127 (Recall@1), respectively.
These improvements highlight LEACE’s utility in
reducing source bias and improving semantic align-
ment in multilingual event representations. Nomic-
v2, which already has high scores before LEACE,
showed modest increases, likely due to saturation.
In general, LEACE proves effective even under
high-resource, multilingual scenarios.

Recall@10 Recall@1

Model Before After Before After

MiniLM 0.350 0.533 0.150 0.277
GIST-small 0.497 0.636 0.247 0.372
E5-small 0.614 0.816 0.318 0.554

MPNet 0.557 0.664 0.262 0.347
GIST-base 0.564 0.694 0.301 0.402
E5-base 0.777 0.859 0.466 0.601
Nomic-v2 0.892 0.906 0.637 0.651

MXB-large 0.527 0.691 0.250 0.390
GIST-large 0.624 0.734 0.332 0.428
E5-large 0.747 0.866 0.436 0.592

Table 6: Results on SemEval English & Non-English
News Articles

C MTEB Evaluation Results

We report the full evaluation results of the CAP and
Legal erasers on three MTEB benchmark groups:
Legal Retrieval, News Retrieval, and STS News
Tasks. Each setting involves comparing model per-
formance before and after LEACE-based erasure,
across two embedding models (MiniLM and E5-
base), as shown in Table 7, Table 8, and Table 9
and Fig. 6, Fig. 7 and Fig. 8.

D Sources of MTEB Tasks

We list below the original sources for the datasets
used from the MTEB benchmark (Muennighoff
et al., 2023; Enevoldsen et al., 2025):

• Legal retrieval tasks: AILACasedocs and
AILAStatutes (Bhattacharya et al., 2020),
LegalBenchConsumerContractsQA (Wang
et al., 2025; Koreeda and Manning, 2021),
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Task MiniLM E5-base

Before After (CAP) After (Legal) Before After (CAP) After (Legal)

AILACasedocs 0.197 0.197 0.218 0.292 0.290 0.292
AILAStatutes 0.205 0.196 0.205 0.186 0.191 0.193
ConsumerContractsQA 0.656 0.659 0.654 0.720 0.712 0.720
CorporateLobbying 0.864 0.865 0.863 0.915 0.914 0.913
LegalSummarization 0.590 0.591 0.592 0.577 0.576 0.578

Table 7: Legal Retrieval Results on MTEB evaluated using NDCG@10. Each model (MiniLM, E5-base-v2) is
tested with and without LEACE erasure, using both CAP and Legal erasers.

Figure 6: Performance of CAP and Legal erasers across three news retrieval tasks. Each group of bars compares the
base and LEACE-erased models for MiniLM and E5-base-v2 embeddings.

LegalBenchCorporateLobbying (Guha
et al., 2023; Holzenberger and Van Durme,
2021; Lippi et al., 2019; Ravichander et al.,
2019; Wang et al., 2023; Wilson et al., 2016;
Zheng et al., 2021; Zimmeck et al., 2019),
LegalSummarization (Manor and Li, 2019).

• News retrieval tasks: BelebeleRetrieval
(Bandarkar et al., 2024), NanoClimate-
FeverRetrieval (Diggelmann et al., 2021),
mFollowIRCrossLingualInstructionRe-
trieval (Weller et al., 2025).

• STS news tasks: IndicCrosslingualSTS
(Ramesh et al., 2022), STS12 (Agirre et al.,
2012), STS13 (Agirre et al., 2013), STS15
(Biçici, 2015), STS17 (Cer et al., 2017),
STS22 (Chen et al., 2022), STSBenchmark
and STSBenchmarkMultilingualSTS (May,
2021).

E Additional PCA Analysis

We create a baseline by removing PC1 from the
embedding space, and evaluate it in the event-level

setting using the SCOTUS dataset (Table 10). Over-
all, the baseline occasionally helps and can even
marginally outperform LEACE in a few cases, but
its effectiveness appears unstable, heavily depen-
dent on the particular setting and model used (al-
though it is effective for the E5 family for most
configurations). Furthermore, in some cases, it per-
forms worse than applying no erasure at all. There
is also a final catch: removing the learned PC1
from OOD embeddings does dramatically degrade
performance on MTEB tasks (Table 11), unlike
LEACE (Fig. 9).

E.1 Event-Level Results on SCOTUS Case
Summaries

Table 10 reveals the results of applying the baseline,
which removes the first principal component (PC1)
from the embedding space, in the event-level set-
ting on the SCOTUS dataset. While it sometimes
improves over the original embeddings and occa-
sionally outperforms LEACE (especially for the
E5 family), its performance is inconsistent across
models and configurations, and it can underperform
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Figure 7: Performance of CAP and Legal erasers across three news retrieval tasks. Each group of bars compares the
base and LEACE-erased models for MiniLM and E5-base-v2 embeddings.

Task MiniLM E5-base

Before After (CAP) After (Legal) Before After (CAP) After (Legal)

BelebeleRetrieval 0.212 0.212 0.211 0.312 0.311 0.303
NanoClimateFeverRetrieval 0.296 0.296 0.291 0.315 0.325 0.307
mFollowIR (CrossLingual) -0.004 -0.005 -0.003 -0.018 -0.019 -0.018

Table 8: News Retrieval Results on MTEB evaluated using NDCG@10. Each model (MiniLM, E5-base-v2) is
evaluated before and after applying LEACE, using both CAP and Legal erasers.

even relative to no erasure.

E.2 MTEB Evaluation Results

Table 11 shows the results of applying the baselines,
derived from both CAP and SCOTUS datasets, on
the MTEB legal retrieval tasks. In all cases, this
PC1 removal leads to a drastic performance drop
for both MiniLM and E5-base models. As observed
in the comparison between the two approaches in
Fig. 9, in contrast, LEACE erasures maintain re-
trieval quality, highlighting its robustness.

F Examples for Qualitative Analysis

We provide here examples for legal case summaries
that experience the largest and least changes after
applying LEACE.

F.1 Examples with The Largest Changes

• Riggins v. Nevada, 504 U.S. 127 (1992), is a
U.S. Supreme Court case in which the court
decided whether a mentally ill person can be
forced to take antipsychotic medication while
they are on trial to allow the state to make
sure they remain competent during the trial.

• Benton v. Maryland, 395 U.S. 784 (1969), is a
Supreme Court of the United States decision

concerning double jeopardy. Benton ruled
that the Double Jeopardy Clause of the Fifth
Amendment applies to the states. In doing so,
Benton expressly overruled Palko v. Connecti-
cut.

• Rutan v. Republican Party of Illinois, 497 U.S.
62 (1990), was a United States Supreme Court
decision that held that the First Amendment
forbids a government entity from basing its
decision to promote, transfer, recall, or hire
low-level public employees based upon their
party affiliation.

F.2 An Example with The Least Changes

• Cuomo v. Clearing House Association, L.L.C.,
557 U.S. 519 (2009), was a case decided by
the United States Supreme Court. In a 5–4
decision, the court determined that a federal
banking regulation did not pre-empt the abil-
ity of states to enforce their own fair-lending
laws. The Court determined that the Office
of the Comptroller of the Currency is the sole
regulator of national banks but it does not
have the authority under the National Bank
Act to pre-empt state law enforcement against
national banks. The case came out of an inter-
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Figure 8: Performance of CAP and Legal erasers across eight STS news tasks. Each group of bars compares the
base and LEACE-erased models for MiniLM and E5-base-v2 embeddings.

Task MiniLM E5-base

Before After (CAP) After (Legal) Before After (CAP) After (Legal)

IndicCrosslingualSTS -0.063 -0.070 -0.062 -0.013 -0.012 -0.013
STS12 0.724 0.724 0.723 0.735 0.736 0.735
STS13 0.806 0.806 0.806 0.830 0.830 0.830
STS15 0.854 0.854 0.854 0.882 0.882 0.882
STS17 0.288 0.289 0.288 0.354 0.355 0.353
STS22.v2 0.492 0.496 0.499 0.581 0.578 0.583
STSBenchmark 0.820 0.820 0.820 0.855 0.855 0.855
STSBenchmarkMultilingualSTS 0.820 0.820 0.820 0.855 0.855 0.855

Table 9: STS News Results on MTEB evaluated using the mean cosine Spearman score. Each model (MiniLM,
E5-base-v2) is evaluated before and after LEACE, using both CAP and Legal erasers.

pretation of the US Treasury Department’s Of-
fice of the Comptroller of the Currency which
had blocked an investigation by New York into
lending practices. The OCC claimed that the
1864 National Bank Act bars states from en-
forcing their own laws against national banks.
Justice Scalia stated in the opinion that while
the OCC has "visitorial powers," the right
to examine the affairs of a corporation, that
does not mean that it has the exclusive right to
enforcement. "A sovereign’s ’visitorial pow-
ers’ and its power to enforce the law are
two different things. Contrary to what the
[OCC’s] regulation says, the National Bank
Act pre-empts only the former." Scalia noted
that states "have always enforced their gen-
eral laws against national banks—and have
enforced their banking-related laws against
national banks for at least 85 years." The
case is notable for the justices composing the
5-4 majority, which included the liberal jus-
tices (John Paul Stevens, David Souter, Ruth
Bader Ginsburg, and Stephen Breyer) along

with the conservative Scalia, who authored
the opinion. Justice Clarence Thomas, joined
by Justices Samuel Alito, Anthony Kennedy,
and Chief Justice John Roberts, wrote a dis-
sent. The case is further notable for the sug-
gested relationship of this OCC decision to
the 2008 financial crisis.

G Embedding model information

We list characteristics of the embedding models in
Table 12.

H Use of AI Assistants

We used AI assistants, including ChatGPT and
Claude, for editing (e.g. grammar, spelling, and
word choice), debugging code, and visualizing re-
sults.
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Model
LexisNexis & Wikipedia LexisNexis & Oyez Oyez & Wikipedia

Recall@10 Recall@1 Recall@10 Recall@1 Recall@10 Recall@1

Before After Baseline Before After Baseline Before After Baseline Before After Baseline Before After Baseline Before After Baseline

MiniLM 0.487 0.606 0.478 0.231 0.313 0.231 0.890 0.899 0.883 0.651 0.693 0.646 0.850 0.924 0.869 0.623 0.747 0.670
GIST-small 0.563 0.656 0.547 0.261 0.325 0.254 0.918 0.943 0.920 0.702 0.778 0.701 0.762 0.844 0.776 0.478 0.599 0.500
E5-small 0.421 0.673 0.675 0.176 0.353 0.356 0.830 0.939 0.939 0.563 0.789 0.789 0.689 0.951 0.950 0.398 0.752 0.753

MPNet 0.566 0.666 0.552 0.259 0.337 0.257 0.926 0.943 0.925 0.724 0.775 0.722 0.856 0.911 0.862 0.565 0.678 0.574
GIST-base 0.646 0.757 0.636 0.308 0.412 0.309 0.939 0.963 0.936 0.727 0.819 0.725 0.880 0.950 0.917 0.628 0.773 0.701
E5-base 0.414 0.660 0.660 0.188 0.341 0.344 0.830 0.940 0.939 0.575 0.758 0.755 0.650 0.942 0.942 0.371 0.737 0.738
Nomic-v2 0.530 0.701 0.703 0.254 0.384 0.382 0.950 0.966 0.948 0.770 0.820 0.767 0.903 0.978 0.981 0.658 0.819 0.818

MXB-large 0.537 0.703 0.627 0.249 0.376 0.321 0.928 0.958 0.933 0.720 0.805 0.729 0.883 0.960 0.919 0.654 0.819 0.737
GIST-large 0.657 0.770 0.641 0.305 0.414 0.300 0.954 0.967 0.954 0.787 0.834 0.787 0.947 0.971 0.944 0.760 0.826 0.772
E5-large 0.479 0.720 0.717 0.209 0.381 0.388 0.864 0.949 0.949 0.636 0.791 0.790 0.765 0.964 0.963 0.489 0.792 0.792

Table 10: Event-Level Results on SCOTUS Case Summaries

Task MiniLM E5-base

Before After (CAP) After (Legal) Before After (CAP) After (Legal)

AILACasedocs 0.197 0.039 0.044 0.292 0.027 0.042
AILAStatutes 0.205 0.082 0.092 0.186 0.081 0.079
ContractsQA 0.656 0.018 0.029 0.720 0.022 0.028
CorporateLobbying 0.864 0.012 0.016 0.915 0.012 0.004
LegalSummarization 0.590 0.011 0.012 0.577 0.018 0.006

Table 11: Legal Retrieval Results on MTEB evaluated using NDCG@10. Each mode (MiniLM, E5-base-v2) is
evaluated before and after applying baseline model (PC1 removal), using both CAP and Legal erasers.

Models #Dims #Params Multilingual IFT

MiniLM 384 22.7M
GIST-small 384 33.4M
E5-small 384 118M ✓

MPNet 768 109M
GIST-base 768 109M
E5-base 768 278M ✓
Nomic-v2 768 475M ✓ ✓

MXB-large 1,024 335M ✓
GIST-large 1,024 335M
E5-large 1,024 560M ✓

Table 12: Embedding Models. We examine mono- and
multilingual models spanning multiple parameter sizes
and embedding dimensions.
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Figure 9: Comparison of average NDCG@10 scores across five MTEB legal retrieval tasks. Each group of bars
compares the original, LEACE-erased and baseline models for MiniLM and E5-base-v2 models.
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Figure 10: Purity score before vs. after LEACE erasure
under different cluster counts, using data from CAP
news articles and congressional bills.
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