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Abstract

Efficient resume parsing is critical for global
hiring, yet the absence of dedicated bench-
marks for evaluating large language models
(LLMs) on multilingual, structure-rich resumes
hinders progress. To address this, we intro-
duce ResumeBench, the first privacy-compliant
benchmark comprising 2,500 synthetic resumes
spanning 50 templates, 30 career fields, and
5 languages. These resumes are generated
through a human-in-the-loop pipeline that pri-
oritizes realism, diversity, and privacy compli-
ance, which are validated against real-world
resumes. This paper evaluates 24 state-of-the-
art LLMs on ResumeBench, revealing substan-
tial variations in handling resume complexities.
Specifically, top-performing models like GPT-
4o exhibit challenges in cross-lingual structural
alignment while smaller models show inconsis-
tent scaling effects. Code-specialized LLMs un-
derperform relative to generalists, while JSON
outputs enhance schema compliance but fail
to address semantic ambiguities. Our findings
underscore the necessity for domain-specific
optimization and hybrid training strategies to
enhance structural and contextual reasoning in
LLMs.

1 Introduction

In today’s competitive global job market, efficient
parsing and interpretation of resumes have become
critical for recruiters and organizations (Jalili et al.,
2024). Nearly 70% of companies use online recruit-
ing platforms (Paramita, 2020). Traditional resume
parsing approaches, relying on rule-based systems
or machine learning models trained on structured
datasets within a single language or cultural con-
text (Tallapragada et al., 2023). Challenges include
scarcity of high-quality training data due to privacy
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concerns and regulations like the General Data Pro-
tection Regulation (GDPR) (Javed et al., 2015),
the lack of standardized resume templates leading
to variability in format and content (Sachan et al.,
2024; Chen, 2022).

Large language models (LLMs) have revolution-
ized structured document processing, achieving
high performance in table extraction (Chen, 2022),
multilingual form understanding (Wibawa et al.,
2024), and synthetic data generation for sensitive
domains like healthcare (Gu et al., 2024). However,
their application to resume parsing remains unex-
plored, which may due to: structural heterogeneity
(mixing tables, lists, and free text), cross-lingual
complexity, and privacy constraints that limit real-
world data availability, as shown in Figure1. Cur-
rent benchmarks focus on homogeneous formats
(e.g., JSON (Ojokoh and Adebisi, 2018)) or sim-
plistic synthetic resumes (van Breugel and van der
Schaar, 2024), failing to reflect the complexity of
real-world applications. This gap leaves LLMs’
ability to parse hybrid layouts and infer implicit
resume semantics (e.g., skill relevance to job roles)
unverified.

Hence, we present ResumeBench, the first mul-
tilingual benchmark comprising 2500 synthetic re-
sumes spanning 50 templates and 5 languages,
generated via a human-in-the-loop pipeline to en-
sure cross-lingual realism and alignment with real-
world resumes. To ensure that our synthetic data
capture the full complexity of real-world situa-
tions, we further collect authentic resumes to build
the ResumeBench-Mix dataset. Our evaluation of
24 LLMs on ResumeBench, both proprietary and
open-source, reveals key limitations. While larger
models generally perform better, domain-specific
optimization remains crucial. Even advanced mod-
els like GPT-4o struggle with parsing hybrid lay-
outs, such as multilingual resume formats. Notably,
enabling JSON mode improves schema adherence
for larger models, yet semantic ambiguities per-
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Figure 1: Overview of Challenges and Solutions in
Resume Parsing

sist, highlighting unresolved challenges in implicit
skill inference. By bridging the gap between syn-
thetic data fidelity and real-world complexity, Re-
sumeBench establishes an auto-generated frame-
work for advancing multilingual structured docu-
ment processing. It offers actionable insights into
parsing robustness, structural accuracy, and cross-
lingual reliability, supporting large language model
adaptation and auditing in recruitment technology.

2 Related Work

2.1 LLMs in Structure-rich Text
Understanding

Early LLMs like BERT and GPT-2 excelled in pro-
ducing fluent text but often struggled to adhere to
specific schemas or formats necessary for gener-

ating structure-aware tasks (Devlin et al., 2018;
Radford et al., 2019). Chain-of-thought (CoT)
prompting improved performance on tasks like le-
gal parsing and table extraction by breaking tasks
into intermediate reasoning steps (Wei et al., 2023;
Hazourli, 2022). However, CoT faces limitations
when applied to implicit structural dependencies
such as skill hierarchies in resumes or fragmented
educational timelines.

Progress has been made with benchmarks
like TableBench (Wu et al., 2025)and StructLM
(Zhuang et al., 2024), which handle tabular data
well but struggle with global schema inference.
Current benchmarks also fall short in capturing
the linguistic and cultural diversity inherent in real-
world resumes, which often feature region-specific
layouts. Tool-augmented LLM, for example, Tool-
former (Schick et al., 2023), enhances reasoning
by integrating external tools, but the application to
resumes with diverse formats remains unexplored.

The lack of publicly available, diverse anno-
tated datasets further complicates the development
of generalizable LLM models for resume parsing.
Current datasets tend to be monolingual or overly
simplified, failing to capture the complexities and
variations inherent in global resumes (Ingvar et al.,
2021).

2.2 LLM-Enabled Synthetic Data Generation
Recent advances in LLMs position synthetic data
generation as a scalable solution for privacy-
constrained domains (Long et al., 2024). LLMs
enable conditional generation using prompts with
structural constraints (Eldan and Li, 2023; Zhuang
et al., 2024). Human-in-the-loop validation im-
proves quality and diversity, ensuring alignment
with career-specific attributes, including job titles
and skill terminologies (Li, 2017; Gu et al., 2024).

Despite progress, challenges persist. Balancing
realism and fidelity in prompts is critical—over-
constraint leads to repetitive outputs, while under-
constraint introduces noise (Liu et al., 2024). Bias
mitigation, such as addressing gender dispari-
ties in job titles, requires debiasing prompts and
diversity-aware sampling strategies (Wilson and
Caliskan, 2024). Finally, cross-lingual consistency
demands schema alignment across languages, a
challenge also observed in multilingual form pars-
ing (Wibawa et al., 2024). Addressing these is-
sues is critical for realizing the full potential of
LLM-based synthetic data generation in real-world
settings.
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Figure 2: The Pipeline of Data Generation And Evaluation

3 ResumeBench

ResumeBench is designed to convert raw PDF re-
sumes and corresponding parsing prompts into
structured JSON format. The dataset follows a
predefined schema that ensures consistency across
diverse resume formats. The pipeline of data gen-
eration consists of three stages as shown in Figure
2. First, a human-in-the-loop process creates di-
verse resume templates with corresponding annota-
tion labels. Next, LLMs automate content genera-
tion, producing structure-aware resumes in multi-
ple languages, including English, Chinese, German,
French and Spanish. Finally, the generated content
is integrated with the templates and undergoes a
thorough quality and accuracy review.

3.1 Human-in-the-loop Pipeline for Template
Generation

Our template generation employs two primary ap-
proaches as follows.

• Collection from multiple sources: We col-
lect resume templates from different on-
line platforms, covering layouts like single-
column, double-columns, and top-down de-
signs. These templates are then converted
into HTML and CSS, focusing only on their
structure and visual appearance, without any
interactive features.

• Utilization of structure-rich text templates:
We also leverage LaTeX templates, convert-
ing them into HTML and CSS using a semi-

automatic batch process facilitated by Chat-
GPT (GPT-4o) (OpenAI, 2022, 2024).

Subsequently, we manually assign unique ID at-
tributes to selected template tags, enabling auto-
mated structure-aware operations with seamless
integration and consistency in content generation
and data fusion.

Human involvement, crucial for ensuring reli-
able data (Li, 2017), is incorporated to review the
outputs, ensuring diverse structures and layouts
while avoiding duplication. A total of 50 templates
are finalized in this phase.

3.2 Automated Resume Generation
3.2.1 Conditional Attributes Generation
To ensure diverse resume content, we adopt the
LLM-based generation paradigm Yu et al. (2024),
using attributed prompts to create varied resumes
across career paths. Unlike prior methods (Bruera
et al., 2022), which sample attributes from exist-
ing datasets, we generate them directly using Chat-
GPT (GPT-4o) (OpenAI, 2022, 2024). This enables
career domain generation in multiple languages,
enhancing cultural diversity. Human reviewers
validate realism and domain adherence, while at-
tributes such as universities, companies, and job
titles are conditionally generated for consistency.
This approach ensures diverse yet realistic resumes
while maintaining quality standards.

3.2.2 Configuration
We define a configuration for each resume tem-
plate, outlining the content structure across differ-
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ent sections. This enables dynamic variation in the
number and arrangement of elements, such as work
experience and education.

The templates consist of non-nested and nested
blocks. Non-nested blocks cover simple sections
like personal details, while nested blocks manage
complex sections, allowing flexible repetition of
sub-blocks. We assign unique ID value to each
block to guide the LLMs in content generation. Ad-
ditionally, for nested blocks, dynamic identifiers
are introduced to enable flexible content generation,
enhancing structural diversity and layout variabil-
ity.

3.2.3 Structure-Aware Content Generation
An essential step in generating synthetic resumes
using LLMs is ensuring that the content adheres to
a specific resume format. We convert the HTML
structure of each resume template into a config-
uration file that stores both structural and seman-
tic information necessary for generating content.
To facilitate structured content generation, we uti-
lize JSON format, which is widely supported by
modern LLMs. In particular, we leverage GPT-
4o’s Structured Generation1 to ensure precision and
consistency in the content generation process. For
each template, we randomly sample multiple sets
of conditional attributes, allowing for controlled
variability across resumes. This approach ensures
that the generated content remains diverse while
conforming to the structural and thematic expecta-
tions defined in the template.

3.2.4 Data Fusion
The final step in the content generation process
involves merging the generated content with the
corresponding resume templates and producing the
final output in PDF format. This ensures that the
synthesized resumes are ready for practical use and
evaluation in NLP tasks. We integrate the generated
content back into the HTML templates, producing
fully formatted resumes. These HTML files are
subsequently converted into PDF documents us-
ing pdfkit2, resulting in a diverse dataset of 2,500
resumes (see samples in Appendix P).

3.3 Dataset Statistic
Resume Templates As illustrated in Figure 1, our
dataset comprises a total of 50 resume templates,

1Available at: https://openai.com/index/
introducing-structured-outputs-in-the-api/

2Available at: https://github.com/JazzCore/
python-pdfkit

Dataset Domains Parsing
Annotation

Jiechieu and Tsopze (2021) 1 ×
Resume Dataset on Kaggle6 24 ×
ResumeBench 30 ✓

Table 1: Comparison with Public Resume Datasets

categorized by layout styles: Double-columns3,
Single-column4 templates and more stylistically
complex formats named designed5 format.

Resume Domains There are very few publicly
available resume datasets designed for NLP tasks.
We compare our work with two accessible datasets:
the real-world English resume dataset (Jiechieu
and Tsopze, 2021), which focuses on engineering-
related resumes, and a broad-spectrum career
dataset6 (Wilson and Caliskan, 2024). In compar-
ison with these existing datasets, ResumeBench
covers a wider range of career domains, as shown
in Table 1.

3.4 Integration of Real-World Resume Data

To demonstrate the effectiveness of our framework
and benchmark, we collect real, public resume sam-
ples in five languages: English, Chinese, Spanish,
French, and German, from various professional
domains using internet sources (e.g., Google Im-
ages). This dataset is referred to as Resumebench-
Real. Additionally, we sample an equal number of
synthetic resume samples from Resumebench in
the same five languages to create a combined real-
synthetic dataset, which we name Resumebench-
Mix (Appendix Q).

3.5 Dataset Analysis

To demonstrate the diversity and truthfulness of
the proposed dataset, we employ widely used com-
mon metrics for machine generated text (see Ap-
pendix O for details) as well as using a LLM-as-
a-judge way to validate the dataset with 20% of
samples in Resumebench-Mix. We take the follow-

3A structured layout with two columns. One typically
contains personal details like contact information and a sum-
mary, while the other presents professional experience and
achievements.

4A straightforward format where experiences and informa-
tion are listed sequentially from top to bottom.

5A flexible template without a fixed structure, allowing ex-
periences to be customized and positioned in different sections
as needed.

6A kaggle resume dataset available at https://www.
kaggle.com/datasets/snehaanbhawal/resume-dataset
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Model Type SR ↑ KM Ratio ↑ TED ↓ ROUGE-L ↑ BERTScore ↑
w/ JSON w/o JSON w/ JSON w/o JSON w/ JSON w/o JSON w/ JSON w/o JSON w/ JSON w/o JSON

Proprietary Models
GPT-4o API 0.9912 0.9816 0.5963 0.6020 68.45 67.51 0.6953 0.6908 0.8925 0.8972
GPT-4o-mini API 0.9936 0.9908 0.5674 0.5636 56.58 56.36 0.6882 0.6930 0.9071 0.9087
Gemini-2.0-Flash API 0.8840 0.8680 0.6100 0.6261 74.42 76.35 0.6869 0.7034 0.9000 0.9034
Qwen-2.5-0.5B Local 0.9136 0.6756 0.1702 0.1355 113.29 112.76 0.3928 0.4173 0.7813 0.7933
Llama-3.2-1B Local 0.8716 0.4640 0.4464 0.4703 90.15 89.51 0.4487 0.4498 0.7959 0.7914
Qwen-2.5-1.5B Local 0.8044 0.6528 0.1719 0.1869 94.05 88.92 0.5736 0.5935 0.8509 0.8582
Qwen-2.5-3B Local 0.9812 0.9160 0.5235 0.5363 64.92 62.52 0.6335 0.6472 0.8732 0.8814
Llama-3.2-3B Local 0.7732 0.3316 0.3182 0.4687 100.25 76.17 0.5551 0.6562 0.8339 0.8770
Qwen-2.5-7B Local 0.9888 0.9396 0.6007 0.5934 65.92 65.58 0.6943 0.6957 0.8893 0.8908
Llama3.1-8B Local 0.9496 0.9020 0.5873 0.5943 57.22 53.47 0.6895 0.7140 0.9068 0.9172
Falcon3-7B Local 0.9480 0.9004 0.4211 0.4376 73.57 72.27 0.6852 0.6886 0.9017 0.9035
Qwen2.5-Coder-7B Local 0.9828 0.9544 0.3530 0.3548 78.39 78.31 0.5922 0.5758 0.8577 0.8522
CodeLlama-7B Local 0.9124 0.8992 0.3903 0.3444 90.72 93.19 0.4242 0.3284 0.7556 0.7068
Qwen-2.5-14B Local 0.9932 0.9484 0.5823 0.5834 65.50 63.35 0.7111 0.7334 0.9226 0.9315
Qwen-2.5-32B Local 0.9968 0.9628 0.5065 0.4996 64.76 62.97 0.6809 0.7003 0.8854 0.9119
CodeLlama-34B Local 0.9552 0.6536 0.5197 0.5030 76.08 69.78 0.6710 0.6801 0.8976 0.9063
Qwen2.5-Coder-32B Local 0.9972 0.9596 0.6117 0.6203 66.44 66.03 0.7030 0.7098 0.8962 0.9030
Qwen-2.5-72B Local 0.9972 0.9612 0.6158 0.6156 61.33 57.67 0.7128 0.7351 0.9082 0.9280
Llama3.1-70B Local 0.9708 0.958 0.5633 0.5515 63.83 63.39 0.7283 0.7328 0.9207 0.9271
Ministral-8B-2410 Local 0.9004 0.8292 0.3054 0.3109 75.26 74.28 0.6214 0.6189 0.8799 0.8771
Mistral-Small-24B-2501 Local 0.9924 0.9580 0.5886 0.5920 65.31 64.30 0.6958 0.7073 0.8898 0.9017

Reasoning Models
DeepSeek-R1-Distill-Qwen-1.5B Local 0.7236 0.5824 0.4188 0.4202 106.26 96.10 0.3789 0.3974 0.7632 0.7795
DeepSeek-R1-Distill-Qwen-7B Local 0.8964 0.8096 0.4929 0.4990 73.48 75.64 0.6397 0.6243 0.8812 0.8754
DeepSeek-R1-Distill-Llama-8B Local 0.7800 0.9448 0.5344 0.5645 65.68 62.82 0.6666 0.6749 0.8917 0.8995

Table 2: Performance of LLMs on ResumeBench. The Metrics (KM Ratio, TED, ROUGE-L, BERTScore) Are
Computed as The Average Score across All Success Samples. We present the average scores across all samples in
Appendix A, while the SR in both tables is calculated based on all samples.

ing prompt to guide ChatGPT7

Determine if the given file is a real or
synthetic resume. Ignore photo, name, email,
and other personal information, as these have
been pre-processed. Provide your decision only,
without any additional explanation

to make binary classification on both real and syn-
thetic samples. As show in Figure 6, ChatGPT is
100% confident in real samples classification but
56% of our synthetic samples can pass the judge.

4 Experiments

4.1 Experiment Setup
We conduct a comprehensive evaluation of 24
LLMs, including both general and code-focused
models, as well as proprietary and open-source
models. For proprietary LLMs, our evaluation in-
cludes GPT-4o and GPT-4o-mini (Achiam et al.,
2023) from OpenAI, Gemini-2-Flush from Google
(Google, 2024). For open-source models, we as-
sess models from Llama3.1 (Dubey et al., 2024),
Qwen2.5 (Yang et al., 2024), Mistral (AI, 2025),
CodeLlama (Roziere et al., 2023), Qwen2.5-Coder
(Hui et al., 2024), Falcon (Team, 2024) and
DeepSeek-R1-Distill models (DeepSeek-AI et al.,
2025). All selected open-source models are official
instruct or chat versions, with model sizes ranging

7We use chatgpt-4o-latest https://platform.openai.
com/docs/models/continuous-model-upgrades

from 0.5B to 72B, chosen to accommodate GPU
memory constraints and represent the latest avail-
able versions.

To convert resume PDFs for input into the LLMs,
we utilize the pypdf8 package to extract text from
the PDF files. All LLMs are evaluated in a zero-
shot setting, using only a user prompt aligned
with the corresponding parsing schema. Addition-
ally, we also conducted few-shot prompting abla-
tions (Appendix B). We observed that adding 1–3
in-context examples can improve semantic met-
rics (e.g., ROUGE-L/BERTScore) and sometimes
strengthen structural alignment (KM Ratio/TED)
on successful parses, but it often reduces the overall
success rate due to more invalid or partially valid
outputs. Given this trade-off, we retain zero-shot as
the main-text setting for a fair and consistent base-
line, while reporting the complementary few-shot
gains and their limitations in Appendix B.

4.2 Evaluation Setup
Resumes typically consist of two key components:
the resume template and the resume content, each
presenting unique challenges. To ensure a thorough
and comprehensive evaluation, we propose distinct
evaluation strategies for each component.

The evaluation task is conducted based on a pars-
ing schema prompt provided to a LLM, where
p represents the Parsing Schema Prompt (See

8Available from: https://github.com/py-pdf/pypdf
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Figure 3: Performance of LLMs Across Five Languages in ResumeBench. KM Ratio, TED, ROUGE-L, and BERTScore are
computed as the average scores across all success samples. SR is calculated based on all samples. We apply Min-Max scaling to
transform the scores into a more visually interpretable range, scaling them between 0.1 and 0.9.

Appendix N), r represents the PDF File contain-
ing the resume, o represents the Output from the
LLM, and gt represents the Ground Truth, i.e.,
GT = {GTtemplate, GTcontent}. Then, the output is

o = LLM(p, r). (1)

4.3 Resume Template Evaluation
To evaluate the resume template, we employ three
complementary approaches, each providing a dis-
tinct perspective on the structural aspects of the
resume. We conceptualize the resume structure as
a hierarchical tree, where each section name serves
as a node, and edges recursively link each section
name to its corresponding child subsections.

First, we calculate the Success Rate (SR) for the
success of converting the outputs of LLMs to valid
JSON formats using Equation 3.

fn(oi, di) =

{
1 if conversion is successful,
0 if conversion fails,

(2)
where fn is the output conversion operation, oi
is the output of the LLM conditioned on di such
that di ⊃ [pi, ri] from dataset Dj , and di ∈ Dj .
Additionally, Dj ∈ {Den, Dzh} denotes the dataset
being either Den (English) or Dzh (Chinese).

SR(LLMi, Dj) =

∑
di∈Dj

fn(oi, di)

|Dj |
. (3)

Second, we adopt a Layer-Wise Key Matching
Ratio (KM Ratio) to assess the structural alignment
of the generated resumes with the expected tem-
plate, see Equation 5. For a single resume r, the
Layer-Wise Key Matching Ratio (KM Ratio) is
defined by:

KM Ratio(r) =
1

Lr

Lr∑

l=1

|Sl,r ∩Gl,r|
|Sl,r|

, (4)

where Lr is the number of layers in the hierarchical
tree for the resume r, Sl,r is the set of expected sec-
tion names, and Gl,r is the set of generated section
names at layer l for document r.

We report the average KM Ratio over the dataset
with N resumes, we compute:

Average KM Ratio =
1

N

N∑

r=1

KM Ratio(r). (5)

Third, to enhance structural awareness in our
evaluation, we employ the Tree Edit Distance
(TED) metric (Zhang, 1996). This method allows
for a direct comparison of the hierarchical struc-
tures of keys in the parsing output JSON and the
ground truth, facilitating a more nuanced assess-
ment of the overall structural arrangement of the
resume.

Given the nature of JSON data structures, which
allow for unordered sibling nodes, we specifically
measure the unordered TED (Paaßen, 2018). This
approach focuses solely on ancestor relationships,
making it well-suited for our task.

The unordered TED between the parsed result t1
and the ground truth t2 is defined by:

TED(t1, t2) = min
S

{γ(S) | S(t1 into t2)}, (6)

where S represents the set of edit operations, and
γ(S) is the cost function assigned to each opera-
tion.

We report the average TED over a dataset con-
taining N resumes by:

Average TED =
1

N

N∑

i=1

TED(t1,i, t2,i), (7)

where t1,i represents the ground truth for the i-th
resume, and t2,i is the corresponding parsed result.
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4.4 Resume Content Evaluation

For the evaluation of resume content, we utilize
ROUGE-L (Lin, 2004) to assess the quality of the
parsed resume outputs. ROUGE-L focuses on the
longest common subsequence (LCS) between the
generated text and the ground truth. Additionally,
we employ BERTScore Zhang et al. (2020) to eval-
uate the semantic similarity between the generated
content and the reference data. To calculate the
average of the both metrics over the dataset, we
exclude any structural keys from the parsed results
and the ground truth, focusing on the resume con-
tent.

5 Discussion

5.1 Model Performances on ResumenBench

Our experiments provide critical insights into the
performance of LLMs on resume parsing tasks
(see Table 2). While model scale generally corre-
lates with parsing accuracy, we observe excep-
tions. For instance, Llama3.2-3B underperforms
Llama3.2-1B in SR (77.32% vs. 87.16%), despite
its smaller size. Larger models like Qwen2.5-72B
show marginal improvements over Qwen2.5-7B in
SR (99.72% vs. 98.88%, +0.84%) and BERTScore
(90.82% vs. 88.93%, +2.13%), although there are
larger discrepancies in KM Ratio (+1.51%) and
TED improvement (-6.96%).

There is no clear improvement in coding-
specific models over their general instruction-
tuned counterparts at the same parameter scale
(e.g., Qwen2.5-Coder-7B vs. Qwen2.5-7B and
Qwen2.5-Coder-32B vs. Qwen2.5-32B). In fact,
the coding-specific models show lower perfor-
mance in TED. For example, Qwen2.5-Coder-7B,
underperform generalist counterparts in TED by
18.9% (78.39% vs. 65.92% ), while Qwen2.5-
Coder-32B shows a smaller TED gap (+2.6% vs.
Qwen2.5-32B).

Reasoning models consistently underperform
compared with their base instruct models across
all tested parameter sizes (from 1.5B to 8B), with
a particularly notable drop in the SR. Reasoning
models like DeepSeek-R1-Distill-Qwen-1.5B ex-
hibit a 10.1% drop in SR compared to base models,
underscoring the need for hybrid training strategies.
This drop, particularly in the reasoning models,
emphasizes the need for hybrid training objectives
that add schema learning (via techniques like JSON
mode) to improve logical inference within LLM
frameworks.

Proprietary models remain strong, yet open-
source models demonstrate competitive perfor-
mance. Open-source models, such as Qwen2.5-
70B, achieve top scores in SR and KM Ratio
with JSON mode, while Qwen2.5-14B leads in
BERTScore, underscoring their competitiveness in
structured prediction.

5.2 Model Performances on
Resumebench-Mix

Synthetic data enables strong performance in our
evaluation (see Table 3). Specifically, Qwen-2.5-
7B achieves near-perfect SR (99.05%) on synthetic
resumes vs. 96.21% on real data (-2.84% drop).
Llama3.1-8B, however, improves on synthetic data
(83.89% SR vs. 82.46% real, +1.43%), contradict-
ing earlier claims of degradation. The high KM Ra-
tio (Qwen: 0.8844, Llama: 0.872) and BERTScore
(Qwen: 0.9109, Llama: 0.9657) on synthetic data
confirm structural and semantic fidelity.

For all ablation experiments, we adopt parsing
schemas distinct from those used in Resumebench.
(see Appendix M).

5.3 How do LLMs perform on multi-lingual
resumes?

Across multiple model variants (Qwen2.5-7B/72B-
Instruct and Llama-3.1-8B/70B-Instruct), we ob-
serve significant cross-linguistic disparities in
resume parsing, as reflected in key evaluation met-
rics such as SR, KM Ratio, and TED, in Figure 3.
English consistently demonstrates the highest SR
and robust structural alignment, which may be at-
tributed to its syntactic regularity and predominant
representation in pretraining corpora. Chinese oc-
casionally achieves comparable SR, but it exhibits
higher TED values, suggesting challenges related
to segmentation and distinct structural conventions.
Spanish and French present intermediate perfor-
mance, potentially constrained by morphological
complexity and locale-specific formatting varia-
tions. In contrast, German demonstrates compara-
tively robust performance, possibly benefiting from
its frequent inclusion in multilingual benchmarks.
Moreover, cross-lingual generalization remains in-
consistent across the evaluated models, highlight-
ing the need for enhanced training methodologies
and more comprehensive evaluation strategies, par-
ticularly to improve performance in low-resource
language scenarios.

1TED is scale by log(v, 100), where v is variable and 100
is the log base.
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Model Type SR KM Ratio ↑ TED ↓ ROUGE-L ↑ BERTScore ↑
Real Synthetic Real Synthetic Real Synthetic Real Synthetic Real Synthetic

Qwen-2.5-7B Local 0.9621 0.9905 0.7869 0.8844 63.85 31.52 0.7665 0.8607 0.8950 0.9109
Llama3.1-8B Local 0.8246 0.8389 0.7299 0.872 31.49 18.90 0.7653 0.9272 0.8812 0.9657

Table 3: LLMs Performance on ResumeBench-Mix

Figure 4: Performance Metrics Comparison: English
Only Prompts Vs. Native Language Prompts.1

Figure 5: Performance Metrics Comparison: No-
Constraint Vs. JSON Mode Vs. Structured Generation.1

To estimate the impact of prompt language on
model performance, we consider two ablation ex-
perimental settings. In the first setting, the prompts
are presented exclusively in English, while in the
second setting, the prompts are provided in the
corresponding native language for each sample.
Across the five metrics illustrated in Figure 4, with
the exception of the TED score for the Qwen model,
the results consistently indicate that the perfor-
mance under the second setting is inferior com-
pared to the English-only setting. This observation
suggests that the model demonstrates better per-
formance when prompted in English, even when
both the data and prompts are presented in an-
other language.

5.4 Does ’JSON Mode’ improve the
performance of LLMs?

Enabling JSON mode consistently improves
structured data extraction across a range of
LLMs, often boosting the SR by double-digit mar-
gins compared to free-text outputs. Larger open-

source models like Qwen2.5-72B also excel in
JSON mode (99.72% SR), while code-specialized
models such as CodeLlama-34B show stark im-
provements (95.52% vs. 65.36% w/o JSON).

While JSON mode improves structural adher-
ence, it does not resolve semantic ambiguities (e.g.,
Qwen2.5-7B’s KM Ratio increases to 60.07% with
JSON vs. 59.34% without). Semantic metrics like
BERTScore remain largely unaffected (e.g., GPT-
4o: 89.25% vs. 89.72% without JSON). Coding-
specialized models, such as CodeLlama-7B, un-
derperform generalist counterparts in nested field
extraction (TED: 90.72 vs. 65.92 for Qwen2.5-7B),
contradicting assumptions about their superiority.

In comparison, we explore the effectiveness of
structured generation in Figure 5, contrasting it
with JSON mode and no constraints. Both JSON
mode and structured generation improve the SR,
with structured generation providing greater bene-
fits. For structure-related metrics (KM Ratio, TED),
JSON mode decreases structural parsing perfor-
mance, while structured generation slightly im-
proves it. A similar trend is observed for semantic
parsing, as shown by ROUGE-L and BERTScore.
These results suggest that JSON mode enhances
structural accuracy but may weaken semantic
performance, whereas structured generation of-
fers a more balanced improvement, making it a
better choice for resume parsing.

5.5 Qualitative and Error Analysis

Beyond aggregate metrics, our evaluation incor-
porates qualitative case studies and detailed error
categorization (Appendix E). For example, a re-
sume with multiple nested roles in the Work Expe-
rience section was parsed differently across model
scales. Large-capacity models (e.g., GPT-4, Qwen-
2.5-72B) preserved the role hierarchy and bullet-
level details, whereas smaller models (e.g., 7B
scale) collapsed the layout—merging bullet points
across roles and omitting one role-specific descrip-
tion. This structural loss reduced KM Ratio and
increased TED, while omissions lowered ROUGE-
L and BERTScore, illustrating the challenges of
parsing deeply nested fields.
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From such cases, we identify two main failure
categories (Appendix E.3). The first, complete pars-
ing failures, produce invalid JSON (e.g., missing
brackets, empty outputs), directly lowering Success
Rate. The second, partial parsing errors, yield syn-
tactically valid JSON but with structural misalign-
ment (e.g., incorrect nesting, cross-role conflation)
or semantic omissions (e.g., truncated bullet points,
missing sub-sections). The nested-role example
exemplifies this latter type. Both error classes de-
grade evaluation metrics: structural errors reduce
KM Ratio and increase TED, while omissions de-
press ROUGE-L and BERTScore. Notably, smaller
models exhibited more partial errors in domains
such as finance and public administration, where
jargon density and complex layouts increase pars-
ing difficulty.

Taken together, these analyses demonstrate that
averages can obscure hard cases and emphasize the
need to improve both JSON validity and hierarchi-
cal coherence for reliable resume parsing.

5.6 Additional Analysis

To inform deployment, our additional analyses
reveal a few consistent patterns. First, lower-
ing the sampling temperature improves validity
and stability, making conservative decoding a safe
default (Appendix C). Second, incorporating vi-
sual modality with VLMs better preserves lay-
out structures that text-only pipelines often lose
(Appendix D). Third, under structured outputs,
large models reach ceiling success rates across lan-
guages while smaller models gain the most; En-
glish prompts remain the most reliable, though
some non-English cases show segmentation or or-
dering issues (Appendix F–I, K). Fourth, template
complexity matters: deeply nested single-column
and asymmetric two-column formats degrade per-
formance, motivating template-aware prompting
or routing (Appendix J). Finally, efficiency scales
predictably with size and constraints; mid-sized
(∼14B) models offer near–large-model accuracy
with much lower latency, especially with optimized
inference backends (Appendix L). Together, these
findings support practical guidelines: conservative
decoding, layout-sensitive modeling, and balanced
model sizing for effective multilingual parsing.

6 Conclusion

We have presented ResumeBench, the first mul-
tilingual benchmark for evaluating LLMs on re-

sume parsing, addressing structural heterogeneity,
privacy constraints, and linguistic diversity. Our
human-in-the-loop pipeline generates 2,500 syn-
thetic resumes across 50 templates and 30 career
domains, validated against real-world data. Com-
prehensive evaluation of 24 LLMs has revealed crit-
ical insights that, while proprietary models (e.g.,
GPT-4o) excel in schema adherence, cross-lingual
structural alignment remains challenging. Smaller
models exhibit inconsistent scaling, and code-
specialized LLMs lag behind generalist counter-
parts. JSON outputs enhance syntactic fidelity but
fail to resolve semantic ambiguities. ResumeBench
bridges synthetic-to-real gaps in structured docu-
ment understanding, offering a scalable framework
for advancing multilingual parsing.

7 Ethical considerations

We recognize the risks of using LLMs for resume
parsing, including biases in data generation, po-
tential misuse in recruitment, and the possibility
of generating fake resumes. To mitigate these,
we adopted a human-in-the-loop process to en-
sure diversity and realism, alongside privacy- and
ethics-aware dataset design. Debiasing was ap-
plied during data generation through unbiased prior
knowledge and diversity-aware sampling. Clear
usage guidelines further restrict malicious applica-
tions, such as synthetic data misuse. Our dataset
comprises 2,500 synthetic resumes generated via a
privacy-compliant pipeline, with synthetic names
and details to avoid personally identifiable informa-
tion. Sensitive fields (e.g., names, emails, contacts)
were anonymized and manually reviewed to en-
sure privacy and remove offensive content. For
ResumeBench-Mix, we relied solely on publicly
available data and evaluated only on open-source
models in a local setting, with no external expo-
sure. This subset will not be publicly released
unless specifically requested for research purposes
and approved under privacy and ethical review. All
artifacts introduced in this work, including RE-
SUMEBENCH and RESUMEBENCH-MIX, are made
available for non-commercial research and educa-
tional purposes under the CC BY-NC 4.0 license,
consistent with the intended conditions of use.

8 Limitation

First, conducting a thorough failed case analy-
sis and comparing model performance relative to
parsing time could offer valuable insights into
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the efficiency and effectiveness of different ap-
proaches. Second, language diversity, while ad-
dressed through the inclusion of five languages,
does not encompass the full spectrum of linguistic
and cultural variations found globally. The perfor-
mance disparities observed across languages indi-
cate potential model biases and underscore the need
for more linguistically diverse training datasets. Fu-
ture work could explore domain-adaptive training
techniques and investigate the impact of language-
specific prompting strategies more extensively.
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A Performance of LLMs on All Samples

We report the average performance across all sam-
ples in Table 4, including both successful and un-
successful (invalid) samples. Our observations indi-
cate that Qwen2.5 remains stronger, outperforming
other models on several metrics, including the KM
Ratio and ROUGE-L. However, we argue that cal-
culating the average across all samples may not
provide an accurate assessment of model perfor-
mance, as it is contingent on the SR. Specifically,
failed samples disproportionately lower the overall
score, introducing a downward bias. This effect
is particularly problematic for metrics like TED,
where lower values indicate better performance,
as the inclusion of failed samples can distort the
results.

B Few-shot Evaluation

As summarized in Table 5 6 7 8, we have observed
that providing one to three in-context examples can
lead to either higher structural and semantic accu-
racy among successful parses or, in some settings,
a reduced overall success rate. Specifically, when
the prompt examples are from the same template
and language domain, there is a notable improve-
ment in semantic metrics (such as ROUGE-L and
BERTScore) for successful samples, though suc-
cess rates can decrease as more examples are intro-
duced. In contrast, offering diverse examples from
random templates sometimes yields a smaller gain
in structural and semantic accuracy but achieves rel-
atively higher success rates. Taken together, these
findings clarify why we have reported only zero-
shot results in the main body: it presents a con-
sistent baseline without conflating success rates
with partial improvements in structural or se-
mantic understanding.

C How does temperature affect?

In our paper, all models—both open-source and
proprietary—were evaluated under the same con-
figuration with temperature set to 1.0. To address
concerns about parameter sensitivity, we have con-
ducted additional ablation studies1 by varying the
temperature to 0.0, 1.0, and 1.9 in Table 9 and Ta-
ble 10. The results demonstrate that lower temper-
atures consistently yield better performance - for
instance, Qwen-72B achieved a 95.6% success rate

1Due to computation Constraints, We randomly sample
half of the Resumebench across 5 languages (250 samples per
language, total 1250 samples)

31919

https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671


Model Type SR ↑ KM Ratio ↑ TED ↓ ROUGE-L ↑ BERTScore ↑
w/ JSON w/o JSON w/ JSON w/o JSON w/ JSON w/o JSON w/ JSON w/o JSON w/ JSON w/o JSON

Proprietary Models
GPT-4o API 0.9912 0.9816 0.5915 0.5900 67.91 66.16 0.6898 0.6769 0.8854 0.8792
GPT-4o-mini API 0.9936 0.9908 0.5651 0.5591 56.35 55.91 0.6855 0.6875 0.9035 0.9015
Gemini-2.0-Flash API 0.8840 0.8680 0.5392 0.5434 65.79 66.27 0.6072 0.6106 0.7956 0.7841
Qwen-2.5-0.5B Local 0.9136 0.6756 0.1555 0.0915 103.50 76.18 0.3589 0.2819 0.7138 0.5359
Llama-3.2-1B Local 0.8716 0.4640 0.3891 0.2182 78.57 41.53 0.3911 0.2087 0.6937 0.3672
Qwen-2.5-1.5B Local 0.8044 0.6528 0.1383 0.1220 75.65 58.05 0.4614 0.3874 0.6845 0.5602
Qwen-2.5-3B Local 0.9812 0.9160 0.5136 0.4913 63.70 57.27 0.6215 0.5928 0.8568 0.8073
Llama-3.2-3B Local 0.7732 0.3316 0.2460 0.1554 77.51 25.26 0.4292 0.2176 0.6448 0.2908
Qwen-2.5-7B Local 0.9888 0.9396 0.5940 0.5576 65.18 61.62 0.6865 0.6537 0.8793 0.8370
Llama3.1-8B Local 0.9496 0.9020 0.5577 0.5360 54.34 48.23 0.6547 0.6440 0.8611 0.8273
Falcon3-7B Local 0.948 0.9004 0.3992 0.3940 69.75 65.07 0.6496 0.6200 0.8548 0.8135
Qwen2.5-Coder-7B Local 0.9828 0.9544 0.3469 0.3386 77.04 74.74 0.5820 0.5495 0.8430 0.8134
CodeLlama-7B Local 0.9124 0.8992 0.3561 0.3097 82.77 83.80 0.3871 0.2878 0.6894 0.6356
Qwen-2.5-14B Local 0.9932 0.9484 0.5784 0.5533 65.05 60.08 0.7063 0.6955 0.9163 0.8835
Qwen-2.5-32B Local 0.9968 0.9628 0.5049 0.4810 64.56 60.63 0.6787 0.6742 0.8826 0.8780
CodeLlama-34B Local 0.9552 0.6536 0.4964 0.3287 72.67 45.61 0.6409 0.4445 0.8574 0.5924
Qwen2.5-Coder-32B Local 0.9972 0.9596 0.6100 0.5953 66.25 63.36 0.7010 0.6812 0.8936 0.8665
Qwen-2.5-72B Local 0.9972 0.9612 0.6140 0.5917 61.15 55.43 0.7109 0.7066 0.9057 0.8920
Llama3.1-70B Local 0.9708 0.9580 0.5468 0.5284 61.97 60.73 0.7070 0.7020 0.8938 0.8882
Ministral-8B-2410 Local 0.9004 0.8292 0.2750 0.2578 67.76 61.59 0.5595 0.5132 0.7923 0.7273
Mistral-Small-24B-2501 Local 0.9924 0.9580 0.5842 0.5672 64.81 61.60 0.6905 0.6776 0.8830 0.8638

Reasoning Models
DeepSeek-R1-Distill-Qwen-1.5B Local 0.7236 0.5824 0.3030 0.2447 76.89 55.96 0.2737 0.2315 0.5523 0.4540
DeepSeek-R1-Distill-Qwen-7B Local 0.8964 0.8096 0.4418 0.4040 65.87 61.24 0.5734 0.5055 0.7899 0.7087
DeepSeek-R1-Distill-Llama-8B Local 0.7800 0.9448 0.4168 0.5333 51.23 59.35 0.5199 0.6377 0.6956 0.8498

Table 4: Performance of LLMs on ResumeBench. The Metrics Are Computed as The Average Score across All
Samples.

Model Name Type Success Rate ↑
Qwen-2.5-7B (One-Shot) Local 0.3683
Qwen-2.5-7B (Two-Shot) Local 0.3889
Qwen-2.5-7B (Three-Shot) Local 0.7964
Qwen-2.5-14B (One-Shot) Local 0.5967
Qwen-2.5-14B (Two-Shot) Local 0.4802
Qwen-2.5-14B (Three-Shot) Local 0.9944
Qwen-2.5-32B (One-Shot) Local 0.8122
Qwen-2.5-32B (Two-Shot) Local 0.7882
Qwen-2.5-32B (Three-Shot) Local 0.8449
Qwen-2.5-72B (One-Shot) Local 0.8445
Qwen-2.5-72B (Two-Shot) Local 0.8283
Qwen-2.5-72B (Three-Shot) Local 0.8081

Table 5: Average on all samples (success + failed), ex-
ample samples from same template but different do-
mains

Model Name Type Success Rate ↑
Qwen-2.5-7B (One-Shot) Local 0.5445
Qwen-2.5-7B (Two-Shot) Local 0.4656
Qwen-2.5-7B (Three-Shot) Local 0.2960
Qwen-2.5-14B (One-Shot) Local 0.9443
Qwen-2.5-14B (Two-Shot) Local 0.9283
Qwen-2.5-14B (Three-Shot) Local 0.4562
Qwen-2.5-32B (One-Shot) Local 0.8423
Qwen-2.5-32B (Two-Shot) Local 0.8480
Qwen-2.5-32B (Three-Shot) Local 0.7523
Qwen-2.5-72B (One-Shot) Local 0.9762
Qwen-2.5-72B (Two-Shot) Local 0.9443
Qwen-2.5-72B (Three-Shot) Local 0.9364

Table 6: Average on all samples (success + failed), ex-
ample samples randomly

at temperature 0.0 versus 94.1% at 1.9, with similar
trends observed across all metrics (KM Ratio, TED,
ROUGE-L, and BERTScore). Nevertheless, certain

models still demonstrate robust performance even
at higher temperatures, indicating that temperature
alone does not fully resolve ambiguity or structural
complexity in resume parsing.

D Vision Language Models

In the following additional experiments12 (Table 11
and Table 12), we feed each resume as an image
(PNG) plus a text-based prompt to vision-language
models (VLMs). Our results indicate that vision-
language models achieve higher parsing accuracy
and, for successful parses, noticeably better per-
formance in both structural (KM Ratio, TED) and
semantic (ROUGE-L, BERTScore) metrics com-
pared to their text-only counterparts.

This finding underscores that document layout
is not merely a cosmetic element. Even though
we rely on text extraction in our main evalua-
tion, the arrangement of sections, headers, and
nested blocks—which originates from the tem-
plate designs—still affects how the extracted text
is grouped and interpreted. VLMs that directly pro-
cess the visual layout appear to benefit from these
visual cues, demonstrating a more robust grasp of
both structure and meaning.

However, multimodal setups introduce addi-
tional complexities (e.g., image resolution), mak-
ing them a larger undertaking than text-based exper-
iments alone. Our main paper focuses on text-based
parsing to establish a consistent, reproducible base-
line, but we plan to delve deeper into multi-modal
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Model Name Type KM Ratio ↑ TED ↓ ROUGE-L ↑ BERTScore ↑
Qwen-2.5-7B (One-Shot) Local 0.7297 52.9130 0.7610 0.9050
Qwen-2.5-7B (Two-Shot) Local 0.6987 57.2990 0.7074 0.8971
Qwen-2.5-7B (Three-Shot) Local 0.7332 48.7789 0.7558 0.9053
Qwen-2.5-14B (One-Shot) Local 0.7861 37.1678 0.7770 0.9367
Qwen-2.5-14B (Two-Shot) Local 0.7722 39.8500 0.7464 0.9303
Qwen-2.5-14B (Three-Shot) Local 0.7852 38.1992 0.8025 0.9439
Qwen-2.5-32B (One-Shot) Local 0.8784 20.6010 0.8020 0.9427
Qwen-2.5-32B (Two-Shot) Local 0.9074 12.3959 0.8532 0.9530
Qwen-2.5-32B (Three-Shot) Local 0.9246 9.5782 0.8489 0.9607
Qwen-2.5-72B (One-Shot) Local 0.9048 24.2938 0.8079 0.9497
Qwen-2.5-72B (Two-Shot) Local 0.9063 17.8357 0.8500 0.9629
Qwen-2.5-72B (Three-Shot) Local 0.9241 11.8812 0.8872 0.9680

Table 7: Average on all samples (success + failed), example samples from same template but different domains

Model Name Type Success Rate ↑ KM Ratio ↑ TED ↓ ROUGE-L ↑ BERTScore ↑
Qwen-2.5-7B (One-Shot) Local 0.5445 0.6515 71.6148 0.6965 0.9174
Qwen-2.5-7B (Two-Shot) Local 0.4656 0.5720 68.0000 0.7213 0.9288
Qwen-2.5-7B (Three-Shot) Local 0.2960 0.5740 78.2973 0.6829 0.8898
Qwen-2.5-14B (One-Shot) Local 0.9443 0.6636 52.4746 0.7371 0.9301
Qwen-2.5-14B (Two-Shot) Local 0.9283 0.6754 53.5000 0.7408 0.9319
Qwen-2.5-14B (Three-Shot) Local 0.4562 0.6974 53.1053 0.7507 0.9360
Qwen-2.5-32B (One-Shot) Local 0.8423 0.7008 42.2002 0.7441 0.9276
Qwen-2.5-32B (Two-Shot) Local 0.8480 0.7179 42.2973 0.7526 0.9336
Qwen-2.5-32B (Three-Shot) Local 0.7523 0.7123 43.8191 0.7612 0.9354
Qwen-2.5-72B (One-Shot) Local 0.9762 0.7267 38.0821 0.7576 0.9393
Qwen-2.5-72B (Two-Shot) Local 0.9443 0.7393 36.0254 0.7773 0.9432
Qwen-2.5-72B (Three-Shot) Local 0.9364 0.7389 37.2906 0.7780 0.9433

Table 8: Average on Success Samples, example samples randomly

Model Name Type Success Rate ↑
Qwen-2.5-7B (0.0) Local 0.924
Qwen-2.5-7B (1.0) Local 0.920
Qwen-2.5-7B (1.9) Local 0.864
Qwen-2.5-14B (0.0) Local 0.944
Qwen-2.5-14B (1.0) Local 0.944
Qwen-2.5-14B (1.9) Local 0.904
Qwen-2.5-32B (0.0) Local 0.956
Qwen-2.5-32B (1.0) Local 0.960
Qwen-2.5-32B (1.9) Local 0.924
Qwen-2.5-72B (0.0) Local 0.956
Qwen-2.5-72B (1.0) Local 0.952
Qwen-2.5-72B (1.9) Local 0.941

Table 9: Average on all samples (success + failed)

analysis in future work. We believe these initial
multimodal results already illustrate why investing
in template design and layout is valuable: even
when text-based extraction is available, the visual
format of a resume offers meaningful signals that
large language models can exploit for more accu-
rate parsing.

2We choose Qwen-2.5-VL Series since they provide var-
ious model size options and they are built on corresponding
Qwen-2.5 LLM (evaluated in our paper)

E Qualitative Error Analysis

E.1 Language Scope

As detailed in Section 3.1 and Section 3.2.1, while
human review is part of template design, the
pipeline’s modular architecture (templates + auto-
mated content generation) is inherently extensible
to new languages once templates are validated.

Our focus on English, Chinese, Spanish, French,
and German reflects their prevalence in global hir-
ing markets and the availability of standardized re-
sume formats. Low-resource language challenges
(e.g., template scarcity, cultural validation) are in-
herent to template design (Section 3.1), not pipeline
limitations. These challenges necessitate rigorous
human review for template and content alignment,
which falls beyond the scope of this initial bench-
mark.

Critically, our pipeline’s scalability ensures that
once validated templates and terminology are es-
tablished for a new language, synthetic resumes
can be generated at scale without additional human
effort.
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Model Name Type KM Ratio ↑ TED ↓ ROUGE-L ↑ BERTScore ↑
Qwen-2.5-7B (0.0) Local 0.5750 71.1212 0.6660 0.8829
Qwen-2.5-7B (1.0) Local 0.5758 71.3652 0.6756 0.8805
Qwen-2.5-7B (1.9) Local 0.5669 74.0185 0.6501 0.8698
Qwen-2.5-14B (0.0) Local 0.5864 63.6780 0.7407 0.9338
Qwen-2.5-14B (1.0) Local 0.5814 64.7500 0.7370 0.9309
Qwen-2.5-14B (1.9) Local 0.5771 64.8186 0.7338 0.9292
Qwen-2.5-32B (0.0) Local 0.5015 62.4854 0.7147 0.9176
Qwen-2.5-32B (1.0) Local 0.5167 62.1833 0.7102 0.9119
Qwen-2.5-32B (1.9) Local 0.4968 67.2251 0.6651 0.8959
Qwen-2.5-72B (0.0) Local 0.6135 57.1506 0.7450 0.9294
Qwen-2.5-72B (1.0) Local 0.6058 58.6261 0.7398 0.9268
Qwen-2.5-72B (1.9) Local 0.5922 59.0596 0.7378 0.9294

Table 10: Average on Success Samples

Model Name Type Success Rate ↑
Qwen-2.5-VL-3B Local 0.9764
Qwen-2.5-VL-7B Local 0.9848
Qwen-2.5-VL-32B Local 0.9762
Qwen-2.5-VL-72B Local 0.9920

Table 11: Average on all samples (success + failed)

E.2 Bias Analysis
Unlike hiring algorithms, parsing extracts neutral
fields (e.g., ‘Degree’, ‘Company’) without subjec-
tive interpretation. Our synthetic data avoids em-
bedding biases by design, and occupational diver-
sity is ensured via 30 career domains (please refer
to the description in Figure 1).

E.3 Failure Analysis
We categorized and described model failures, iden-
tifying two distinct types:

• The first is complete parsing failure, where
models either produce invalid JSON (e.g.,
missing brackets or commas) or outright
refuse to parse, sometimes indicating the need
for more text despite having received the full
prompt. This issue is discussed explicitly in
Section 4.3, addressing the success rate met-
ric used to quantify the conversion success of
outputs into valid JSON formats.

• The second concerns partially successful
parses that include structural or semantic in-
accuracies (detailed in Section 4.3 and Sec-
tion 4.4). Structurally, resumes can lose
their hierarchical alignment or nested struc-
ture when, for instance, having several roles
under “Work Experience,” each containing
job titles, dates, and multiple bullet points or

nested descriptions. Models often confuse or
omit elements in these parallel blocks, reduc-
ing scores on our structural metrics. Seman-
tically, certain bullet points may be truncated
or rephrased, leading to incomplete or misrep-
resented content.

• Nested sections and complex domain-specific
details (e.g., finance, education, public ad-
ministration) also tend to be challenging for
smaller models, which show more frequent in-
complete parses in business or social science
domains compared to science or engineering
fields.

E.4 Time cost and budget on the template
creation, annotation and validation
process

• During the template creation stage, each tem-
plate required an average of about 5–10 min-
utes of manual adjustment to ensure proper
HTML/CSS formatting.

• For annotation and data generation, we used
GPT-4o with a total expenditure of around
$300 (per dataset), covering prompts for mul-
tiple languages and career domains.

• Lastly, we verified that each generated resume
matched the intended structure; The pass rate
of the generated samples is 96%, with most
samples requiring no human augmentation.

F Success Rate (SR) Supplementary
Materials: language-wise model
performance on Success Rate (SR)

Success Rate (SR) supplementary materials we
would like to supplement language-wise model per-
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Model Name Type KM Ratio ↑ TED ↓ ROUGE-L ↑ BERTScore ↑
Qwen-2.5-VL-3B Local 0.5843 66.7681 0.7122 0.9214
Qwen-2.5-VL-7B Local 0.5439 64.6296 0.7187 0.9247
Qwen-2.5-VL-32B Local 0.5757 66.4467 0.6874 0.9127
Qwen-2.5-VL-72B Local 0.6335 60.7903 0.7529 0.9410

Table 12: Average on Success Samples

formance on Success Rate (SR) for incomplete
failure case analysis, see Figure 13.

G KM Ratio Supplementary Materials:
language-wise model performance on
KM Radio.

KM Ratio supplementary materials we would like
to supplement language-wise model performance
on KM Radio for incomplete failure case analysis,
see Figure 14. The percentage indicates the success
rate for each individual language.

H Tree Edit Distance Supplementary
Materials: language-wise model
performance on tree edit distance

Tree Edit Distance supplementary materials we
would like to supplement language-wise model
performance on tree edit distance for incomplete
failure case analysis, see Figure 15. The percent-
age indicates the success rate for each individual
language.

I ROUGE-L Supplementary Materials:
language-wise model performance on
ROUGE-L

ROUGE-L supplementary materials we would like
to supplement language-wise model performance
on ROUGE-L for incomplete failure case analysis,
see Figure 16. The percentage indicates the success
rate for each individual language.

J Template-wise Supplementary
Materials

We found that the performance of most tem-
plates fluctuates around the average, see Figure 17.
Among them, Template 7 underperforms signif-
icantly (−12.23% below the average). It is a
single-column layout with numerous sections and
a tendency to include deeply nested experience
entries. Template 48 also shows weaker perfor-
mance (−11.15% below the average). It features
a two-column layout with an approximate 3:7 ra-
tio between the left and right columns. The left

column contains dense personal information and
language details, while the right focuses on experi-
ence. Overall, its structure is more complex than
standard single- or two-column templates.

K BERTScore Supplementary Materials:
language-wise model performance on
BERTScore

BERTScore Supplementary Materials we would
like to supplement language-wise model perfor-
mance on BERTScore, see Figure 18. The percent-
age indicates the success rate for each individual
language

L Computational Efficiency Metrics

While our primary focus is to evaluate structural
and semantic accuracy across multilingual resumes,
a challenge underexplored in prior work, we found
that efficiency is critical for real-world deployment
in time-sensitive recruitment systems. To address
this, we added a new parsing-time table, see Fig-
ure 19, reporting average inference latency across
all models in our benchmark.

All open-source models were evaluated on 4×
NVIDIA H100 (80GB) GPUs in a consistent setup.
Our observations confirm that larger models and
reasoning-focused models generally incur higher
latency, with Qwen-2.5-72B and DeepSeek-R1-
Distill showing longer runtimes. Enabling JSON-
mode will add additional latency.

Please note: We took Huggingface Transform-
ers to run all experiments (without any inference
acceleration); Using frameworks like vLLM can
accelerate the inference process. We use a batch
size equals to 10 to run all experiments, therefore
there are higher latency than processing one single
sample

Speed-Performance Trade-off Suggestion: we
find that Qwen-2.5-14B offers a strong trade-off,
achieving near-72B performance on most accuracy
metrics while significantly reducing computational
cost. We will add a note in Section 5.1 to rec-
ommend Qwen-2.5-14B as a practical baseline for
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Model German English Spanish French Chinese
CodeLlama-34b-Instruct-hf 0.526 0.808 0.722 0.628 0.584
CodeLlama-34b-Instruct-hf_json_mode 0.954 0.980 0.956 0.954 0.932
CodeLlama-7b-Instruct-hf 0.920 0.894 0.900 0.934 0.848
CodeLlama-7b-Instruct-hf_json_mode 0.920 0.866 0.876 0.918 0.982
DeepSeek-R1-Distill-Llama-8B 0.930 0.940 0.964 0.952 0.938
DeepSeek-R1-Distill-Llama-8B_json_mode 0.762 0.816 0.784 0.762 0.776
DeepSeek-R1-Distill-Qwen-1.5B 0.602 0.622 0.584 0.638 0.466
DeepSeek-R1-Distill-Qwen-1.5B_json_mode 0.664 0.790 0.682 0.752 0.730
DeepSeek-R1-Distill-Qwen-7B 0.854 0.834 0.792 0.804 0.764
DeepSeek-R1-Distill-Qwen-7B_json_mode 0.890 0.910 0.870 0.892 0.920
Falcon3-7B-Instruct 0.890 0.966 0.894 0.868 0.884
Falcon3-7B-Instruct_json_mode 0.942 0.990 0.942 0.906 0.960
GPT-4o 0.984 0.962 0.982 0.984 0.996
GPT-4o-mini 0.998 0.996 0.994 0.984 0.982
GPT-4o-mini_json_mode 0.996 0.984 0.998 0.994 0.996
GPT-4o_json_mode 0.984 0.982 0.998 0.998 0.994
Gemini-2.0-Flash 0.920 0.900 0.740 0.880 0.900
Gemini-2.0-Flash_json_mode 0.920 0.920 0.780 0.900 0.900
Llama-3.1-70B-Instruct 0.940 0.954 0.950 0.964 0.982
Llama-3.1-70B-Instruct_json_mode 0.966 0.968 0.958 0.968 0.994
Llama-3.1-8B-Instruct 0.894 0.928 0.892 0.912 0.884
Llama-3.1-8B-Instruct_json_mode 0.958 0.972 0.948 0.970 0.900
Llama-3.2-1B-Instruct 0.470 0.450 0.408 0.388 0.604
Llama-3.2-1B-Instruct_json_mode 0.880 0.934 0.800 0.810 0.934
Llama-3.2-3B-Instruct 0.280 0.348 0.224 0.254 0.552
Llama-3.2-3B-Instruct_json_mode 0.752 0.816 0.718 0.758 0.822
Ministral-8B-Instruct-2410 0.874 0.824 0.802 0.796 0.850
Ministral-8B-Instruct-2410_json_mode 0.922 0.922 0.870 0.878 0.910
Mistral-Small-24B-Instruct-2501 0.952 0.968 0.948 0.976 0.946
Mistral-Small-24B-Instruct-2501_json_mode 0.992 0.994 0.998 1.000 0.978
Qwen2.5-0.5B-Instruct 0.646 0.692 0.664 0.636 0.740
Qwen2.5-0.5B-Instruct_json_mode 0.912 0.920 0.908 0.900 0.928
Qwen2.5-1.5B-Instruct 0.670 0.700 0.606 0.604 0.684
Qwen2.5-1.5B-Instruct_json_mode 0.814 0.852 0.760 0.750 0.846
Qwen2.5-14B-Instruct 0.928 0.940 0.934 0.952 0.988
Qwen2.5-14B-Instruct_json_mode 0.992 0.994 0.992 0.996 0.992
Qwen2.5-32B-Instruct 0.946 0.958 0.956 0.960 0.994
Qwen2.5-32B-Instruct_json_mode 0.994 0.998 0.998 1.000 0.994
Qwen2.5-3B-Instruct 0.930 0.924 0.874 0.902 0.950
Qwen2.5-3B-Instruct_json_mode 0.986 0.982 0.972 0.976 0.990
Qwen2.5-72B-Instruct 0.950 0.950 0.952 0.960 0.994
Qwen2.5-72B-Instruct_json_mode 0.994 0.996 0.996 1.000 1.000
Qwen2.5-7B-Instruct 0.942 0.960 0.950 0.928 0.918
Qwen2.5-7B-Instruct_json_mode 0.986 0.986 0.986 0.990 0.996
Qwen2.5-Coder-32B-Instruct 0.962 0.956 0.960 0.958 0.962
Qwen2.5-Coder-32B-Instruct_json_mode 0.998 1.000 0.996 1.000 0.992
Qwen2.5-Coder-7B-Instruct 0.950 0.976 0.954 0.956 0.936
Qwen2.5-Coder-7B-Instruct_json_mode 0.994 0.994 0.970 0.988 0.968

Table 13: Success Rate (SR) Supplementary Materials: language-wise model performance on Success Rate (SR)

applications that balance accuracy and latency.

M Parsing Schema

We define two distinct parsing schemas for Re-
sumebench and Resumebench-Mix, respectively.
For Resumebench, we employ a comprehensive

schema designed to exhaustively extract as much in-
formation as possible from the resumes. In contrast,
for Resumebench-Mix, we adopt a more stream-
lined schema that focuses on parsing only the most
essential information—namely, contact details, ed-
ucation, and work experience—due to the high cost
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Model German English Spanish French Chinese
CodeLlama-34b-Instruct-hf 0.5113 0.5348 0.5382 0.5014 0.4095
CodeLlama-34b-Instruct-hf_json_mode 0.5676 0.5730 0.5093 0.5005 0.4449
CodeLlama-7b-Instruct-hf 0.3208 0.3155 0.3271 0.3316 0.4329
CodeLlama-7b-Instruct-hf_json_mode 0.3626 0.3215 0.3800 0.3785 0.4970
DeepSeek-R1-Distill-Llama-8B 0.5522 0.5881 0.5689 0.5665 0.5464
DeepSeek-R1-Distill-Llama-8B_json_mode 0.4856 0.5487 0.5548 0.5574 0.5239
DeepSeek-R1-Distill-Qwen-1.5B 0.4557 0.4425 0.4195 0.4281 0.3346
DeepSeek-R1-Distill-Qwen-1.5B_json_mode 0.4271 0.4520 0.3833 0.3948 0.4331
DeepSeek-R1-Distill-Qwen-7B 0.4912 0.4936 0.4944 0.5176 0.4985
DeepSeek-R1-Distill-Qwen-7B_json_mode 0.4980 0.5027 0.4817 0.4844 0.4969
Falcon3-7B-Instruct 0.4402 0.4828 0.3106 0.4718 0.4806
Falcon3-7B-Instruct_json_mode 0.4186 0.4741 0.3240 0.4560 0.4312
Llama-3.1-70B-Instruct 0.5245 0.5490 0.5515 0.5536 0.5778
Llama-3.1-70B-Instruct_json_mode 0.5437 0.5652 0.5638 0.5586 0.5845
Llama-3.1-8B-Instruct 0.6073 0.6283 0.5808 0.5791 0.5746
Llama-3.1-8B-Instruct_json_mode 0.5982 0.6196 0.5707 0.5815 0.5643
Llama-3.2-1B-Instruct 0.4887 0.5128 0.3950 0.4326 0.4994
Llama-3.2-1B-Instruct_json_mode 0.4522 0.4981 0.3524 0.4150 0.4971
Llama-3.2-3B-Instruct 0.3973 0.4660 0.4512 0.4768 0.5100
Llama-3.2-3B-Instruct_json_mode 0.2670 0.3338 0.2737 0.2971 0.4077
Ministral-8B-Instruct-2410 0.3127 0.3099 0.2981 0.2953 0.3369
Ministral-8B-Instruct-2410_json_mode 0.3067 0.3041 0.2952 0.2902 0.3299
Mistral-Small-24B-Instruct-2501 0.6228 0.5951 0.5636 0.5917 0.5867
Mistral-Small-24B-Instruct-2501_json_mode 0.6124 0.5875 0.5639 0.5917 0.5879
Qwen2.5-0.5B-Instruct 0.1514 0.1009 0.1737 0.1785 0.0828
Qwen2.5-0.5B-Instruct_json_mode 0.1992 0.1532 0.1920 0.2081 0.1005
Qwen2.5-1.5B-Instruct 0.2075 0.2148 0.1615 0.1955 0.1532
Qwen2.5-1.5B-Instruct_json_mode 0.1841 0.1820 0.1609 0.1814 0.1513
Qwen2.5-14B-Instruct 0.5812 0.6047 0.5596 0.5752 0.5959
Qwen2.5-14B-Instruct_json_mode 0.5768 0.6056 0.5604 0.5686 0.6002
Qwen2.5-32B-Instruct 0.5342 0.5563 0.4768 0.4730 0.4598
Qwen2.5-32B-Instruct_json_mode 0.5413 0.5644 0.4930 0.4794 0.4544
Qwen2.5-3B-Instruct 0.5470 0.5528 0.5276 0.5458 0.5090
Qwen2.5-3B-Instruct_json_mode 0.5414 0.5430 0.5113 0.5158 0.5059
Qwen2.5-72B-Instruct 0.6235 0.6349 0.6047 0.6141 0.6014
Qwen2.5-72B-Instruct_json_mode 0.6199 0.6315 0.6078 0.6165 0.6032
Qwen2.5-7B-Instruct 0.5981 0.6059 0.5921 0.5712 0.5995
Qwen2.5-7B-Instruct_json_mode 0.6071 0.6092 0.6040 0.5724 0.6109
Qwen2.5-Coder-32B-Instruct 0.6172 0.6369 0.6155 0.6116 0.6205
Qwen2.5-Coder-32B-Instruct_json_mode 0.6126 0.6255 0.6059 0.6048 0.6098
Qwen2.5-Coder-7B-Instruct 0.3623 0.3615 0.3510 0.3440 0.3548
Qwen2.5-Coder-7B-Instruct_json_mode 0.3604 0.3649 0.3466 0.3365 0.3564
gemini-2.0-flash 0.6260 0.6219 0.5879 0.6292 0.6585
gemini-2.0-flash_json_mode 0.6238 0.6186 0.5735 0.6090 0.6197
gpt-4o-mini 0.6185 0.5837 0.5877 0.5452 0.4808
gpt-4o-mini_json_mode 0.6098 0.5955 0.5751 0.5639 0.4932
gpt-4o 0.6250 0.6155 0.5955 0.5802 0.5942
gpt-4o_json_mode 0.6006 0.6043 0.5841 0.5909 0.6017

Table 14: KM Ratio Supplementary Materials: language-wise model performance on KM Radio

of annotation. This difference in schema design
helps explain why the performance of the LLM on
synthetic data in Resumebench-Mix exceeds its per-
formance in Resumebench. The introduction of a
more common, simplified parsing schema reduces
the density of the extracted information, thereby

making the task less complex for the model.

Example Parsing Schema for Resumebench

Listing 1: Example Parsing Schema for Resumebench
{

"{{NAME}}": "NAME",
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Model German English Spanish French Chinese
CodeLlama-34b-Instruct-hf 69.3 61.3 71.4 67.9 82.0
CodeLlama-34b-Instruct-hf_json_mode 71.0 62.4 78.5 75.5 93.8
CodeLlama-7b-Instruct-hf 95.6 86.1 98.9 96.1 88.9
CodeLlama-7b-Instruct-hf_json_mode 89.0 84.5 98.7 95.9 85.8
DeepSeek-R1-Distill-Llama-8B 64.2 53.4 64.1 63.4 69.0
DeepSeek-R1-Distill-Llama-8B_json_mode 70.0 57.6 66.4 65.2 69.8
DeepSeek-R1-Distill-Qwen-1.5B 101.0 82.7 103.7 99.7 93.1
DeepSeek-R1-Distill-Qwen-1.5B_json_mode 111.9 94.4 111.6 110.7 104.5
DeepSeek-R1-Distill-Qwen-7B 79.7 63.1 80.3 79.2 76.3
DeepSeek-R1-Distill-Qwen-7B_json_mode 77.0 62.2 78.7 79.1 71.0
Falcon3-7B-Instruct 72.8 60.3 76.8 69.1 83.4
Falcon3-7B-Instruct_json_mode 75.2 61.7 77.7 70.4 83.2
Llama-3.1-70B-Instruct 62.3 56.2 64.4 61.2 72.6
Llama-3.1-70B-Instruct_json_mode 62.6 57.5 64.8 61.7 72.3
Llama-3.1-8B-Instruct 50.9 44.7 54.6 52.8 64.8
Llama-3.1-8B-Instruct_json_mode 55.1 47.5 60.1 57.6 66.5
Llama-3.2-1B-Instruct 91.4 73.4 102.1 91.5 90.3
Llama-3.2-1B-Instruct_json_mode 92.6 74.3 102.3 93.8 90.1
Llama-3.2-3B-Instruct 82.7 71.7 80.0 74.0 75.1
Llama-3.2-3B-Instruct_json_mode 105.9 92.5 111.3 105.5 88.3
Ministral-8B-Instruct-2410 75.0 68.9 77.4 78.1 72.3
Ministral-8B-Instruct-2410_json_mode 76.2 69.0 79.9 78.5 73.1
Mistral-Small-24B-Instruct-2501 61.4 57.1 65.1 61.2 77.0
Mistral-Small-24B-Instruct-2501_json_mode 62.3 58.5 66.9 61.5 77.5
Qwen2.5-0.5B-Instruct 115.6 102.1 117.0 115.4 114.2
Qwen2.5-0.5B-Instruct_json_mode 115.5 102.0 118.7 116.2 114.3
Qwen2.5-1.5B-Instruct 90.9 76.8 97.9 89.0 91.3
Qwen2.5-1.5B-Instruct_json_mode 96.0 81.1 103.0 93.8 97.4
Qwen2.5-14B-Instruct 62.6 56.4 65.7 63.0 68.8
Qwen2.5-14B-Instruct_json_mode 65.8 58.8 68.3 65.3 69.3
Qwen2.5-32B-Instruct 61.4 54.6 65.0 62.5 71.0
Qwen2.5-32B-Instruct_json_mode 63.9 56.2 67.8 64.7 71.4
Qwen2.5-3B-Instruct 62.9 55.6 66.2 62.2 65.7
Qwen2.5-3B-Instruct_json_mode 64.9 57.5 69.1 66.3 66.9
Qwen2.5-72B-Instruct 54.5 50.5 58.5 55.3 69.1
Qwen2.5-72B-Instruct_json_mode 58.5 55.0 62.6 59.9 70.5
Qwen2.5-7B-Instruct 65.5 58.7 67.4 64.6 71.9
Qwen2.5-7B-Instruct_json_mode 66.1 58.9 67.1 65.0 72.4
Qwen2.5-Coder-32B-Instruct 65.4 59.6 67.6 64.0 73.5
Qwen2.5-Coder-32B-Instruct_json_mode 65.8 60.4 68.3 64.7 73.0
Qwen2.5-Coder-7B-Instruct 79.1 71.6 85.6 80.4 75.1
Qwen2.5-Coder-7B-Instruct_json_mode 79.6 71.1 85.2 80.8 75.4
gemini-2.0-flash 73.2 67.2 79.7 77.9 84.5
gemini-2.0-flash_json_mode 67.8 64.2 80.3 77.1 83.9
gpt-4o-mini 52.7 51.5 55.9 54.8 67.2
gpt-4o-mini_json_mode 54.9 50.3 55.2 53.0 69.3
gpt-4o 63.2 60.4 67.7 63.7 82.2
gpt-4o_json_mode 64.6 62.0 70.0 64.5 81.0

Table 15: Tree Edit Distance Supplementary Materials: language-wise model performance on tree edit distance

"field -contact": [
{

"{{ LOCATION }}": "LOCATION",
"{{PHONE}}": "PHONE",
"{{EMAIL}}": "EMAIL",
"{{ LINKEDIN }}": "LINKEDIN"

}
],

"{{ SUMMARY }}": "SUMMARY",
"Work Experience": [

{
"{{ START_DATE }}": "

START_DATE",
"{{ END_DATE }}": "END_DATE",
"{{ JOB_TITLE }}": "JOB_TITLE"

,
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Model German English Spanish French Chinese
CodeLlama-34b-Instruct-hf 0.6689 0.6799 0.6535 0.6558 0.7495
CodeLlama-34b-Instruct-hf_json_mode 0.6783 0.6686 0.6498 0.6531 0.7061
CodeLlama-7b-Instruct-hf 0.3000 0.3151 0.2869 0.2757 0.4314
CodeLlama-7b-Instruct-hf_json_mode 0.4500 0.4515 0.3660 0.3235 0.5222
DeepSeek-R1-Distill-Llama-8B 0.6490 0.6957 0.6508 0.6534 0.7265
DeepSeek-R1-Distill-Llama-8B_json_mode 0.6356 0.6794 0.6595 0.6347 0.7218
DeepSeek-R1-Distill-Qwen-1.5B 0.2773 0.5250 0.3102 0.2828 0.6485
DeepSeek-R1-Distill-Qwen-1.5B_json_mode 0.2371 0.4968 0.2902 0.2521 0.5908
DeepSeek-R1-Distill-Qwen-7B 0.5696 0.6691 0.5903 0.5874 0.7108
DeepSeek-R1-Distill-Qwen-7B_json_mode 0.5961 0.6580 0.6124 0.6177 0.7108
Falcon3-7B-Instruct 0.6736 0.6898 0.6772 0.6804 0.7217
Falcon3-7B-Instruct_json_mode 0.6710 0.6889 0.6794 0.6764 0.7094
Llama-3.1-70B-Instruct 0.7387 0.7318 0.7291 0.7188 0.7454
Llama-3.1-70B-Instruct_json_mode 0.7317 0.7238 0.7215 0.7150 0.7488
Llama-3.1-8B-Instruct 0.7212 0.7172 0.7037 0.7066 0.7213
Llama-3.1-8B-Instruct_json_mode 0.6937 0.6924 0.6701 0.6714 0.7217
Llama-3.2-1B-Instruct 0.4148 0.5003 0.3825 0.3653 0.5393
Llama-3.2-1B-Instruct_json_mode 0.4196 0.5046 0.3733 0.3780 0.5462
Llama-3.2-3B-Instruct 0.6250 0.6678 0.6367 0.6153 0.6914
Llama-3.2-3B-Instruct_json_mode 0.5329 0.5615 0.5233 0.4952 0.6520
Ministral-8B-Instruct-2410 0.6348 0.6127 0.6046 0.6025 0.6376
Ministral-8B-Instruct-2410_json_mode 0.6405 0.6156 0.6076 0.6126 0.6295
Mistral-Small-24B-Instruct-2501 0.7147 0.7021 0.7116 0.6910 0.7175
Mistral-Small-24B-Instruct-2501_json_mode 0.7023 0.6909 0.6925 0.6864 0.7070
Qwen2.5-0.5B-Instruct 0.3328 0.4980 0.3372 0.3082 0.5812
Qwen2.5-0.5B-Instruct_json_mode 0.3154 0.4795 0.3159 0.2971 0.5509
Qwen2.5-1.5B-Instruct 0.5446 0.6103 0.5691 0.5667 0.6696
Qwen2.5-1.5B-Instruct_json_mode 0.5256 0.5985 0.5436 0.5502 0.6424
Qwen2.5-14B-Instruct 0.7406 0.7304 0.7319 0.7259 0.7381
Qwen2.5-14B-Instruct_json_mode 0.7110 0.7073 0.7014 0.6954 0.7405
Qwen2.5-32B-Instruct 0.6970 0.7085 0.7149 0.6982 0.6834
Qwen2.5-32B-Instruct_json_mode 0.6759 0.6879 0.6880 0.6793 0.6734
Qwen2.5-3B-Instruct 0.6447 0.6520 0.6272 0.6232 0.6859
Qwen2.5-3B-Instruct_json_mode 0.6323 0.6402 0.6045 0.6035 0.6859
Qwen2.5-72B-Instruct 0.7453 0.7372 0.7212 0.7260 0.7455
Qwen2.5-72B-Instruct_json_mode 0.7163 0.7077 0.6927 0.7011 0.7464
Qwen2.5-7B-Instruct 0.6951 0.6953 0.6829 0.6744 0.7315
Qwen2.5-7B-Instruct_json_mode 0.6864 0.6956 0.6858 0.6704 0.7327
Qwen2.5-Coder-32B-Instruct 0.7050 0.7069 0.6968 0.6980 0.7425
Qwen2.5-Coder-32B-Instruct_json_mode 0.6982 0.6946 0.6927 0.6888 0.7409
Qwen2.5-Coder-7B-Instruct 0.5877 0.5733 0.5329 0.5517 0.6345
Qwen2.5-Coder-7B-Instruct_json_mode 0.6013 0.5916 0.5526 0.5710 0.6447
gemini-2.0-flash 0.7076 0.7034 0.6749 0.6956 0.7303
gemini-2.0-flash_json_mode 0.7137 0.6958 0.6519 0.6652 0.7026
gpt-4o-mini 0.7148 0.6859 0.6950 0.6713 0.6976
gpt-4o-mini_json_mode 0.6972 0.6970 0.7002 0.6744 0.6727
gpt-4o 0.7095 0.7157 0.6810 0.6738 0.6746
gpt-4o_json_mode 0.7077 0.7022 0.6775 0.6692 0.7204

Table 16: ROUGE-L Supplementary Materials: language-wise model performance on ROUGE-L

"{{ COMPANY }}": "COMPANY",
"{{ LOCATION }}": "LOCATION",
"{{ WORK_DESCRIPTION -STR -

MULTIPLE -3}}": [
{

"WORK_DESCRIPTION -
STR -0": "
WORK_DESCRIPTION

-0"
},
{

"WORK_DESCRIPTION -
STR -1": "
WORK_DESCRIPTION
-1"

},
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Template Success Rate (%) Deviation from Average
Template 1 93.99 +5.99%
Template 2 79.94 -8.06%
Template 3 88.08 +0.08%
Template 4 85.45 -2.55%
Template 5 89.30 +1.30%
Template 6 87.12 -0.88%
Template 7 75.77 -12.23%
Template 8 88.92 +0.92%
Template 9 88.62 +0.62%
Template 10 87.87 -0.13%
Template 11 87.84 -0.16%
Template 12 87.37 -0.63%
Template 13 86.08 -1.92%
Template 14 86.98 -1.02%
Template 15 87.89 -0.11%
Template 16 90.42 +2.42%
Template 17 92.52 +4.52%
Template 18 87.56 -0.44%
Template 19 89.01 +1.01%
Template 20 92.52 +4.52%
Template 21 87.81 -0.19%
Template 22 88.26 +0.26%
Template 23 93.97 +5.97%
Template 24 89.25 +1.25%
Template 25 86.38 -1.62%
Template 26 89.28 +1.28%
Template 27 89.96 +1.96%
Template 28 88.37 +0.37%
Template 29 90.42 +2.42%
Template 30 94.63 +6.63%
Template 31 94.80 +6.80%
Template 32 94.11 +6.11%
Template 33 87.56 -0.44%
Template 34 88.12 +0.12%
Template 35 86.67 -1.33%
Template 36 85.35 -2.65%
Template 37 89.98 +1.98%
Template 38 89.75 +1.75%
Template 39 83.64 -4.36%
Template 40 90.19 +2.19%
Template 41 88.43 +0.43%
Template 42 85.96 -2.04%
Template 43 88.50 +0.50%
Template 44 84.46 -3.54%
Template 45 86.25 -1.75%
Template 46 89.90 +1.90%
Template 47 89.87 +1.87%
Template 48 76.85 -11.15%
Template 49 85.63 -2.37%
Template 50 82.56 -5.44%

Table 17: Success rate and deviation from average for
each template

{
"WORK_DESCRIPTION -

STR -2": "
WORK_DESCRIPTION
-2"

}
]

},
{

"{{ START_DATE }}": "
START_DATE",

"{{ END_DATE }}": "END_DATE",
"{{ JOB_TITLE }}": "JOB_TITLE"

,
"{{ COMPANY }}": "COMPANY",
"{{ LOCATION }}": "LOCATION",
"{{ WORK_DESCRIPTION -STR -

MULTIPLE -3}}": [

{
"WORK_DESCRIPTION -

STR -0": "
WORK_DESCRIPTION
-0"

},
{

"WORK_DESCRIPTION -
STR -1": "
WORK_DESCRIPTION
-1"

},
{

"WORK_DESCRIPTION -
STR -2": "
WORK_DESCRIPTION
-2"

}
]

},
{

"{{ START_DATE }}": "
START_DATE",

"{{ END_DATE }}": "END_DATE",
"{{ JOB_TITLE }}": "JOB_TITLE"

,
"{{ COMPANY }}": "COMPANY",
"{{ LOCATION }}": "LOCATION",
"{{ WORK_DESCRIPTION -STR -

MULTIPLE -3}}": [
{

"WORK_DESCRIPTION -
STR -0": "
WORK_DESCRIPTION
-0"

},
{

"WORK_DESCRIPTION -
STR -1": "
WORK_DESCRIPTION
-1"

},
{

"WORK_DESCRIPTION -
STR -2": "
WORK_DESCRIPTION
-2"

}
]

}
],
"Education": [

{
"{{ GRADUATION_YEAR }}": "

GRADUATION_YEAR",
"{{ DEGREE }}": "DEGREE",
"{{ INSTITUTION }}": "

INSTITUTION",
"{{ LOCATION }}": "LOCATION"

},
{

"{{ GRADUATION_YEAR }}": "
GRADUATION_YEAR",

"{{ DEGREE }}": "DEGREE",
"{{ INSTITUTION }}": "

INSTITUTION",
"{{ LOCATION }}": "LOCATION"

}
],
"field -skills": [
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Model German English Spanish French Chinese
CodeLlama-34b-Instruct-hf 0.8996 0.9562 0.8956 0.8892 0.8750
CodeLlama-34b-Instruct-hf_json_mode 0.8977 0.9512 0.8917 0.8856 0.8595
CodeLlama-7b-Instruct-hf 0.6713 0.8267 0.6706 0.6631 0.7056
CodeLlama-7b-Instruct-hf_json_mode 0.7583 0.8789 0.7176 0.6903 0.7392
DeepSeek-R1-Distill-Llama-8B 0.8811 0.9562 0.8907 0.8843 0.8851
DeepSeek-R1-Distill-Llama-8B_json_mode 0.8720 0.9508 0.8822 0.8762 0.8740
DeepSeek-R1-Distill-Qwen-1.5B 0.7204 0.9142 0.7319 0.7175 0.8204
DeepSeek-R1-Distill-Qwen-1.5B_json_mode 0.6874 0.9039 0.7124 0.6943 0.7985
DeepSeek-R1-Distill-Qwen-7B 0.8421 0.9498 0.8536 0.8489 0.8819
DeepSeek-R1-Distill-Qwen-7B_json_mode 0.8536 0.9468 0.8628 0.8659 0.8755
Falcon3-7B-Instruct 0.8895 0.9588 0.9023 0.8936 0.8681
Falcon3-7B-Instruct_json_mode 0.8872 0.9583 0.9030 0.8908 0.8665
Llama-3.1-70B-Instruct 0.9289 0.9701 0.9265 0.9180 0.8933
Llama-3.1-70B-Instruct_json_mode 0.9173 0.9604 0.9182 0.9146 0.8934
Llama-3.1-8B-Instruct 0.9154 0.9652 0.9160 0.9132 0.8742
Llama-3.1-8B-Instruct_json_mode 0.9004 0.9594 0.8992 0.8958 0.8768
Llama-3.2-1B-Instruct 0.7721 0.9083 0.7590 0.7503 0.7675
Llama-3.2-1B-Instruct_json_mode 0.7717 0.9092 0.7605 0.7604 0.7666
Llama-3.2-3B-Instruct 0.8476 0.9459 0.8728 0.8565 0.8598
Llama-3.2-3B-Instruct_json_mode 0.8034 0.9169 0.8137 0.7993 0.8288
Ministral-8B-Instruct-2410 0.8706 0.9330 0.8552 0.8546 0.8714
Ministral-8B-Instruct-2410_json_mode 0.8740 0.9343 0.8592 0.8619 0.8681
Mistral-Small-24B-Instruct-2501 0.9028 0.9425 0.9070 0.8879 0.8678
Mistral-Small-24B-Instruct-2501_json_mode 0.8864 0.9276 0.8864 0.8826 0.8654
Qwen2.5-0.5B-Instruct 0.7439 0.9092 0.7592 0.7387 0.8053
Qwen2.5-0.5B-Instruct_json_mode 0.7287 0.8971 0.7475 0.7267 0.8042
Qwen2.5-1.5B-Instruct 0.8211 0.9291 0.8353 0.8369 0.8611
Qwen2.5-1.5B-Instruct_json_mode 0.8100 0.9274 0.8296 0.8260 0.8546
Qwen2.5-14B-Instruct 0.9302 0.9702 0.9298 0.9220 0.9068
Qwen2.5-14B-Instruct_json_mode 0.9166 0.9643 0.9159 0.9097 0.9062
Qwen2.5-32B-Instruct 0.9030 0.9573 0.9121 0.9004 0.8876
Qwen2.5-32B-Instruct_json_mode 0.8697 0.9233 0.8765 0.8716 0.8858
Qwen2.5-3B-Instruct 0.8675 0.9376 0.8625 0.8596 0.8784
Qwen2.5-3B-Instruct_json_mode 0.8612 0.9298 0.8513 0.8491 0.8744
Qwen2.5-72B-Instruct 0.9300 0.9701 0.9211 0.9211 0.8992
Qwen2.5-72B-Instruct_json_mode 0.9064 0.9456 0.8950 0.8981 0.8963
Qwen2.5-7B-Instruct 0.8815 0.9269 0.8811 0.8711 0.8927
Qwen2.5-7B-Instruct_json_mode 0.8766 0.9278 0.8813 0.8694 0.8914
Qwen2.5-Coder-32B-Instruct 0.8912 0.9397 0.8936 0.8957 0.8951
Qwen2.5-Coder-32B-Instruct_json_mode 0.8859 0.9286 0.8864 0.8842 0.8956
Qwen2.5-Coder-7B-Instruct 0.8353 0.9118 0.8142 0.8217 0.8774
Qwen2.5-Coder-7B-Instruct_json_mode 0.8393 0.9154 0.8215 0.8295 0.8827
gemini-2.0-flash 0.9112 0.9272 0.9023 0.9125 0.8637
gemini-2.0-flash_json_mode 0.9165 0.9407 0.8864 0.8958 0.8573
gpt-4o-mini 0.9179 0.9388 0.9108 0.8904 0.8849
gpt-4o-mini_json_mode 0.9117 0.9427 0.9040 0.8979 0.8799
gpt-4o 0.9002 0.9626 0.8923 0.8893 0.8439
gpt-4o_json_mode 0.8881 0.9412 0.8875 0.8839 0.8629

Table 18: BERTScore Supplementary Materials: language-wise model performance on BERTScore

{
"{{ SKILL_1 }}": "SKILL_1",
"{{ SKILL_2 }}": "SKILL_2",
"{{ SKILL_3 }}": "SKILL_3",
"{{ SKILL_4 }}": "SKILL_4"

}
],
"field -language": [

{
"{{ LANGUAGE_1 }}": "

LANGUAGE_1",
"{{ LANGUAGE_1_LEVEL_TEXT }}":

"LANGUAGE_1_LEVEL_TEXT"
,

"{{ LANGUAGE_2 }}": "
LANGUAGE_2",
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Rank Model Average Time Mode
1 gemini-2.0-flash 12.06s Standard
2 gemini-2.0-flash 12.07s JSON Mode
3 Llama-3.2-1B-Instruct 21.22s Standard
4 Qwen2.5-7B-Instruct 22.97s JSON Mode
5 gpt-4o-mini 23.88s Standard
6 Qwen2.5-Coder-7B-Instruct 26.06s JSON Mode
7 Qwen2.5-0.5B-Instruct 27.58s Standard
8 gpt-4o-mini 27.83s JSON Mode
9 Qwen2.5-1.5B-Instruct 29.30s Standard

10 gpt-4o 30.94s Standard
11 gpt-4o 31.19s JSON Mode
12 Qwen2.5-0.5B-Instruct 41.96s JSON Mode
13 Qwen2.5-3B-Instruct 53.10s Standard
14 Llama-3.2-1B-Instruct 58.28s JSON Mode
15 Llama-3.2-3B-Instruct 59.48s Standard
16 Llama-3.1-8B-Instruct 67.08s (1.1m) JSON Mode
17 Qwen2.5-3B-Instruct 67.41s (1.1m) JSON Mode
18 Qwen2.5-7B-Instruct 70.33s (1.2m) Standard
19 DeepSeek-R1-Distill-Qwen-1.5B 72.24s (1.2m) Standard
20 Qwen2.5-1.5B-Instruct 81.85s (1.4m) JSON Mode
21 Qwen2.5-Coder-7B-Instruct 85.58s (1.4m) Standard
22 Falcon3-7B-Instruct 95.73s (1.6m) Standard
23 DeepSeek-R1-Distill-Qwen-7B 107.97s (1.8m) Standard
24 Llama-3.1-8B-Instruct 115.72s (1.9m) Standard
25 Ministral-8B-Instruct-2410 125.10s (2.1m) Standard
26 DeepSeek-R1-Distill-Qwen-1.5B 126.10s (2.1m) JSON Mode
27 Falcon3-7B-Instruct 132.72s (2.2m) JSON Mode
28 DeepSeek-R1-Distill-Llama-8B 136.10s (2.3m) Standard
29 Qwen2.5-14B-Instruct 150.24s (2.5m) Standard
30 DeepSeek-R1-Distill-Qwen-7B 165.65s (2.8m) JSON Mode
31 CodeLlama-7b-Instruct-hf 165.74s (2.8m) Standard
32 Mistral-Small-24B-Instruct-2501 166.72s (2.8m) Standard
33 Mistral-Small-24B-Instruct-2501 169.09s (2.8m) JSON Mode
34 Llama-3.2-3B-Instruct 186.67s (3.1m) JSON Mode
35 Qwen2.5-14B-Instruct 201.00s (3.4m) JSON Mode
36 Ministral-8B-Instruct-2410 223.77s (3.7m) JSON Mode
37 Qwen2.5-32B-Instruct 228.36s (3.8m) Standard
38 Qwen2.5-Coder-32B-Instruct 230.43s (3.8m) JSON Mode
39 Qwen2.5-32B-Instruct 255.66s (4.3m) JSON Mode
40 CodeLlama-7b-Instruct-hf 260.41s (4.3m) JSON Mode
41 DeepSeek-R1-Distill-Llama-8B 287.35s (4.8m) JSON Mode
42 Qwen2.5-72B-Instruct 418.83s (7.0m) JSON Mode
43 CodeLlama-34b-Instruct-hf 421.07s (7.0m) Standard
44 Qwen2.5-72B-Instruct 423.61s (7.1m) Standard
45 Llama-3.1-70B-Instruct 439.67s (7.3m) Standard
46 CodeLlama-34b-Instruct-hf 475.47s (7.9m) JSON Mode
47 Llama-3.1-70B-Instruct 556.92s (9.3m) JSON Mode
48 Qwen2.5-Coder-32B-Instruct 709.58s (11.8m) Standard

Table 19: Average inference time by model and mode (lower is better)
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"{{ LANGUAGE_2_LEVEL_TEXT }}":
"LANGUAGE_2_LEVEL_TEXT"

}
]

}

Parsing Schema for Resumebench-Mix
(Most-Common Schema)

Listing 2: Parsing Schema for Resumebench-Mix (Most-
Common Schema)
{

"field -contact": {
"{{NAME}}": "NAME",
"{{ PHONE_NUMBER }}": "

PHONE_NUMBER",
"{{ EMAIL_ADDRESS }}": "

EMAIL_ADDRESS"
},
"Work Experience": [

{
"{{ COMPANY_NAME }}": "

COMPANY_NAME",
"{{ JOB_TITLE }}": "JOB_TITLE"

,
"{{ START_TIME_TO_END_TIME }}"

: "
START_TIME_TO_END_TIME",

"{{ WORK_DESCRIPTION -STR -
MULTIPLE }}": [
{

"WORK_DESCRIPTION":
"
WORK_DESCRIPTION
"

}
]

}
],
"Education": [

{
"{{ INSTITUTION_NAME }}": "

INSTITUTION_NAME",
"{{ DEGREE_NAME }}": "

DEGREE_NAME",
"{{ START_TIME_AND_END_TIME }}

": "
START_TIME_AND_END_TIME"

}
]

}

N Prompts for Evaluation

We use the above prompt to guide the evaluation
process, as we find that this prompt can effectively
control various LLMs to generate the desired out-
put.

Your task is to extract information from the
provided resume text into the provided **VALID
JSON format**.

The resume text is as follows: <resume_text>
<placeholder> </resume_text>

Instructions: 1. Do not change the content of
the resume text, you only need to extract the
required information. 2. Only output the valid
JSON format as shown below. 3. Do not modify
the key names in the JSON format. 4. **Do not
translate the language of the resume text.**
Your response should be structured in JSON format
as shown below: <JSON_FORMAT>

where we replace <placeholder> and
<JSON_FORMAT> with the corresponding
resume text and the appropriate parsing schema.

O Dataset Analysis Metrics for
ResumeBench

O.1 Common Metrics
Refer to Table 20. The Kaggle dataset is the same
as the Kaggle dataset in Section 3.3.

O.2 LLM-As-A-Judge

Figure 6: Confusion Matrix on LLM-As-A-Judge
for real-or-synthetic resume binary classification from
Resumebench-Mix

In our LLM-as-a-Judge experiment, we observe
that ChatGPT-4o achieves 100% accuracy in eval-
uating real résumé samples. However, more than
half of our synthetic samples are misclassified as
real by ChatGPT-4o, demonstrating the effective-
ness of our synthetic data in mimicking the charac-
teristics of authentic resumes.

P Resume Samples

P.1 English
Please refer to Figure 7.
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Dataset Unigram TTR Bigram TTR NP Ratio NP Length Verb Ratio Verb Subtree Length
Resumebench-EN 0.5898 0.9172 0.1163 3.8551 0.0511 26.1485
Resumebench-ZH 0.5376 0.8896 – – 0.1168 13.2349
Resumebench-DE 0.6289 0.9181 0.1749 2.1611 0.0104 19.3595
Resumebench-FR 0.4861 0.8536 0.1638 2.3424 0.0322 23.2585
Resumebench-ES 0.4889 0.8420 0.1647 2.2781 0.0295 27.8825
Kaggle dataset (EN) 0.4757 0.8392 0.2050 2.5724 0.0874 21.1797
Resumebench-REAL-EN 0.5515 0.8933 0.1993 2.6915 0.0822 18.9395
Resumebench-REAL-ZH 0.5018 0.8494 – – 0.1297 13.5563
Resumebench-REAL-DE 0.6670 0.9068 0.2215 2.0655 0.0260 16.7983
Resumebench-REAL-FR 0.5577 0.8260 0.2662 1.5107 0.0320 15.7689
Resumebench-REAL-ES 0.5057 0.7861 0.2167 2.4817 0.0257 19.9568

Table 20: Common Metrics on Resume Dataset

English (en) Chinese (zh) French (fr) Germany (de) Spanish (es) Total
Resumebench-Real 52 41 37 45 36 211
Resumebench-Mix 104 82 74 90 72 422

Table 21: ResumeBench-Mix Data Distribution

P.2 Chinese
Please refer to Figure 8.

P.3 Spanish
Please refer to Figure 9.

P.4 France
Please refer to Figure 10 and Figure 11.

P.5 German
Please refer to Figure 12 and Figure 13

Q ResumeBench-Mix

The sample distribution is presented in Table 21.

Figure 7: Resume Sample in English
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Figure 8: Resume Sample in Chinese

Figure 9: Resume Sample in Spanish

Figure 10: Resume Sample in French Page 1

Figure 11: Resume Sample in French Page 2
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Figure 12: Resume Sample in German Page 1

Figure 13: Resume Sample in German Page 2
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