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Abstract

In-context learning (ICL) performance is highly
sensitive to prompt design, yet the impact of
class label options (e.g. lexicon or order) in
zero-shot classification remains underexplored.
This study proposes LOADS (Label set Opti-
mization via Activation Distribution kurtosiS),
a post-hoc method for selecting optimal label
sets in zero-shot ICL with large language mod-
els (LLMs). LOADS is built upon the observa-
tions in our empirical analysis, the first to sys-
tematically examine how label option design
(i.e., lexical choice, order, and elaboration) im-
pacts classification performance. This analysis
shows that the lexical choice of the labels in
the prompt (such as agree vs. support in stance
classification) plays an important role in both
model performance and model’s sensitivity to
the label order. A further investigation demon-
strates that optimal label words tend to activate
fewer outlier neurons in LLMs’ feed-forward
networks. LOADS then leverages kurtosis to
measure the neuron activation distribution for
label selection, requiring only a single forward
pass without gradient propagation or labelled
data. The LOADS-selected label words consis-
tently demonstrate effectiveness for zero-shot
ICL across classification tasks, datasets, mod-
els and languages, achieving maximum perfor-
mance gain from 0.54 to 0.76 compared to the
conventional approach of using original dataset
label words.

1 Introduction

Generative large language models (LLMs) are in-
creasingly used for classification tasks via zero-
shot in-context learning (ICL), where models are
prompted to select an option from a pre-defined set
of labels (Wang et al., 2022; Antypas et al., 2023;
Gonen et al., 2023; Mu et al., 2024). While some
classification tasks employ a relatively fixed set
of lexicons to represent class labels, such as senti-
ment analysis (positive and negative) and textual
entailment (entailment and contradiction), other

tasks may present more ambiguous choices in lex-
ical selection. Stance classification, for instance,
uses diverse pairs of antonyms to represent positive
and negative stances across different datasets, e.g.
agree-disagree vs. favor-against. As a result, when
crafting prompts for these classification tasks, prac-
titioners face decisions regarding label options in
the prompt, such as lexical selection and ordering.

Despite studies suggesting the sensitivity of ICL
to prompt design (Lu et al., 2022; Yoo et al., 2022;
Wei et al., 2024; Mao et al., 2024; Liu et al., 2024a;
Zhang et al., 2022; Liu et al., 2022b; Peng et al.,
2024; Gonen et al., 2023; Mu et al., 2024), this
subtle yet critical consideration of label options in
prompt for zero-shot ICL has received limited at-
tention. To fill in this research gap, we explore the
impact of three types of label variants (i.e., lexical
choice, label order and elaborations) in zero-shot
ICL with both encoder-decoder and decoder-only
LLMs. We mainly ground our research on stance
classification, a task where label adaptation is a
known problem due to various label inventories
in different studies (Hardalov et al., 2021). We
demonstrate that the lexical choice of the label
options significantly impacts model performance.
The model’s sensitivity to the label order also de-
pends on the lexical choice, while elaborating on
task-related information (e.g. agree with the claim
elaborating agree) has minimum effect.

Inspired by recent studies on neuron analy-
sis (Kuzmin et al., 2023; Voita et al., 2024; Stolfo
et al., 2024; Kurz et al., 2024), we further inves-
tigate the neurons in the feed-forward network
(FFN) in the decoder of the LLMs. We empirically
show that prompts with optimal label sets activate
fewer outlier neurons. Consequently, we propose a
new method, Label set Optimization via Activation
Distribution kurtosiS (LOADS), to select optimal
label sets for a given classification dataset in zero-
shot ICL. LOADS could stably and effectively
work with only 100 unlabelled samples of the val-
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Figure 1: Illustration of the three aspects (i.e., lexical choice, label order and label elaboration) for designing the
label option in the prompt in zero-shot ICL for classification, and our LOADS to post-hoc select the optimal label
set (top half figure).

idation dataset, also demonstrating transferability
across datasets and languages. Our contributions
are summarized as follows:

• The first benchmark on how variants of label op-
tions in prompts affect zero-shot ICL models’
performance for classification tasks. We pro-
vide useful recommendations on label designing
to practitioners working on zero-shot classifica-
tion with LLMs 1.

• The empirical demonstration that zero-shot ICL
performance negatively correlates with the
number of outlier neurons in FFN when vary-
ing the lexical choices for label options. The cor-
relation holds true across diverse English stance
classification datasets and topic classification
datasets with different models.

• A novel and efficient post-hoc method
(LOADS) for label selection in zero-shot ICL.
Compared with common strategies in practice,
our approach demonstrates statistically signifi-
cant performance improvements across model
types, model sizes and languages with only 100
unlabeled data samples. Our analysis also sug-
gests that the LOADS-selected label set is po-
tentially transferable across similar datasets for
a specific LLM, further alleviating the cost to
collect samples for a target new dataset.

We present our experimental setups, results and
discussions on the impact of label options in zero-
shot ICL in Section 3. Then, we describe our neu-
ron analysis of the lexical choice in label options
in Section 4 and our proposed method LOADS for
selecting optimal label sets in Section 5.

1Code and resources: https://github.com/YLi999/
Stance_LOADS.

2 Related Work

ICL Performance Few-shot ICL mainly focuses
on cases where LLMs are directly prompted with
N demonstration examples. The studies highlight
the substantial impact of example ordering (Lu
et al., 2022), formatting (Yoo et al., 2022; Wei et al.,
2024; Mao et al., 2024; Liu et al., 2024a), and exam-
ples selection (Zhang et al., 2022; Liu et al., 2022b;
Peng et al., 2024). The parallel lines of work fo-
cus on improving few-shot ICL via the optimal
selection or arrangement of examples (Liu et al.,
2022b; Rubin et al., 2022; Lu et al., 2022; Zhang
et al., 2022; Liu et al., 2024b; Xu et al., 2024), re-
weighting examples (Yang et al., 2023), automatic
reformat or generation of demonstration represen-
tations (Kim et al., 2022; Liu et al., 2023), and
introduction of intermediate reasoning steps (Wei
et al., 2022; Zhang et al., 2023b). However, the im-
pact of lexical choices for label names in classifica-
tion received little attention, with the only closely
related work suggesting that LLMs are likely to
confuse classes which share similar key vectors in
the attention modules (Wang et al., 2023).

For zero-shot ICL, Mu et al., (2024) demonstrate
the effect of using synonyms for class options, but
they neither consider the order of the label options
nor propose an effective strategy to choose the la-
bel names. Gonen et al., (2023) empirically show
that perplexity could be an effective indicator for
prompt selection, but they do not account for class
options. Notably, behavioral differences between
few-shot and zero-shot ICL have been frequently
observed, suggesting that findings from few-shot
ICL do not necessarily hold in the zero-shot con-
text (Lin and Lee, 2024).
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Prompt-Tuning and Verbalizer Prompt-tuning
aims to automatically find or generate an opti-
mal discrete prompt (e.g., through gradient-based
search (Shin et al., 2020; Shi et al., 2023) or
fine-tuning (Gao et al., 2021; Le Scao and Rush,
2021; Deng et al., 2022)) or by training continu-
ous prompt (Lester et al., 2021; Liu et al., 2022c).
Verbalizer can be taken as a mapping function
that links discrete class labels to corresponding
tokens or phrases in a model’s vocabulary. A range
of methods developed to build the verbalizer, in-
cluding manually created verbalizer (Schick and
Schütze, 2021), search-based verbalizer that iden-
tifies label words automatically from the dataset
(Gao et al., 2021; Shin et al., 2020), and soft ver-
balizers that uses continuous embeddings obtained
through fine-tuning (Hambardzumyan et al., 2021;
Cui et al., 2022). Prompt-tuning often does not fo-
cus on label set selection for zero-shot ICL, and the
verbalizer introduces additional components to the
decoding of the generative models, distinguishing
it fundamentally from our work.

3 Prompting with Varied Label Options
for Zero-shot Classification

In zero-shot ICL for classification, a common ap-
proach is to provide a set of class label options
in the prompt to instruct the LLMs to choose one
of the options as the classification prediction. Al-
though the label option is a subtle component in
the prompt, we are interested in whether it has a
significant impact on model performance.

Specifically, we explore three types of variants
around label options in the prompt: (1) lexical
choice; (2) label order; and (3) label elaboration.
To accurately measure the impact of these factors,
we only manipulate the label options within the
same prompt template (Section 3.2). We show ex-
amples of the three variants in Figure 1.

3.1 Methodology
Lexical Choice We use single-word synonyms
to represent class labels (e.g. support and agree),
forming various label sets. For each dataset, we
compare the zero-shot ICL performance when
LLMs are prompted to select from different label
sets, as illustrated in Figure 1. For this purpose, we
design a pipeline to create a pool of label sets:

1. Collect a seed set of label names. We obtain this
set by collecting the label names in the datasets
we experiment with.

2. Expand label sets with WordNet and LLMs. We
use WordNet (Fellbaum, 1998) as a reliable
source and Claude2 as a supplementary source
to obtain synonyms for label names in the seed
set. For pairs of label names with semantically
opposite meanings (such as “agree" and “dis-
agree"), we also consider antonyms to avoid
potential ambiguity and present clear contrast
for the predicted models.

3. Manual selection. We manually filter out se-
mantically unrelated or inappropriate label sets
generated by Claude to mitigate the impact of
noisy label names.

The label names are arranged in the sequence
presented in their original study (see Table 1). We
refer to this arrangement as the default order.

Label Order We consider every possible order
of the single-word labels in the prompt and com-
pare the model performance against that obtained
with the default order. For binary datasets, there
is only one alternative arrangement besides the de-
fault order, while N -way multi-class classification
would yield N !− 1 alternative orders.

Label Elaboration We investigate whether trans-
forming single-word labels (e.g., “agree") into
more detailed phrases (e.g., “agree with the claim")
has an impact on model performance. On the one
hand, elaborating on task details with the label may
provide the model with a stronger alignment sig-
nal between the label and the task, emphasizing
what the label is referring to. On the other hand, it
also increases the label length and may introduce
noise in the prompt (Liu et al., 2024a). Therefore,
we design three levels of elaborations (shorted for
E1, E2 and E3) by progressively adding more task-
related (and potentially redundant) information to
the single-word label names, as shown in Figure 1.

3.2 Experimental Setups

Datasets We focus on the stance classification
task due to its rich label inventories across vari-
ous readily available datasets. Stance classification
aims to identify the type of an expressed opinion
(e.g., “agree" or “disagree") in a given piece of text
towards a particular topic, claim, or entity. We con-
sider four binary (scd (Hasan and Ng, 2013), per-
spectrum (Chen et al., 2019), snopes (Hanselowski
et al., 2019) and ibmcs (Bar-Haim et al., 2017)) and

2https://claude.ai/new
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Dataset Name Original Label Words Optimal Label Words
scd for, against pro, con
perspectrum support, undermine validate, refute
snopes agree, refute affirm, refute
ibmcs pro, con endorse, deny
vast pro, con, neutral confirm, dispute, neither
emergent for, against, observing endorse, reject, neutral
semeval favour, against, neither accept, reject, neutral
rumoureval support, deny, query, comment confirm, reject, question, neutral
arc agree, disagree, discuss, unrelated affirm, refute, discuss, unrelated

Table 1: Lists of the English stance classification
datasets, their labels in original dataset, and the op-
timal labels with the highest zero-shot ICL performance
on Flan-T5-xl as an example to justify our motivation
on LOADS.

five multi-class datasets (vast (Allaway and McKe-
own, 2020), emergent (Ferreira and Vlachos, 2016),
semeval (Mohammad et al., 2016), rumoureval
(Gorrell et al., 2019) and arc (Hanselowski et al.,
2018)) from existing English stance classification
benchmarks (Schiller et al., 2021; Hardalov et al.,
2021; Chen et al., 2023), as shown in Table 1. The
nine datasets cover different domains, such as so-
cial media posts, news articles and online debates
forums. We also experiment with topic classifica-
tion in Section 4 and 5 to demonstrate the general-
izability of our findings to other NLP tasks.

Models We cover both encoder-decoder and
decoder-only LLMs, and experiment with the
prevalent open-sourced Flan-T5 (Chung et al.,
2024), Llama 3 and Llama 3.1 (Dubey et al., 2024)
model families as representatives for these two
types of LLMs. We choose their moderate-sized
instruction-tuned versions, Flan-T5-xl (3b), Llama
-3-Instruct (8b) and Llama-3.1-Instruct (8b), as our
primary models for investigation due to our hard-
ware resources constraints and their decent zero-
shot ICL performance (Aiyappa et al., 2024; Chung
et al., 2024; Dubey et al., 2024). We conduct ex-
periments with Gemma-2-it (9b) 3 and Flan-T5-
xxl (13b) to further show the generalizability of
LOADS in Section 5.

Prompt Template We refer to the prompt tem-
plate used in the supervised fine-tuning of Flan-
T5 and Llama (Wang et al., 2022; Chung et al.,
2024; Dubey et al., 2024). We present the re-
sults with the following prompt template in this
paper: Given a [text1_name] and a [text2_name],
detect the stance that the [text2_name] has to-
wards the [text1_name]. There are {N} options:

“{label0}", “{label1}, ... , and {labelN−1}". Now
complete the following example. [text1_name]:

3https://huggingface.co/google/gemma-2-9b-it

{text1}. [text2_name]: {text2}. We also test other
templates and find the results are consistent (e.g.,
prompting with label explanations in Appendix E).

Evaluation We adopt macro-F1 for model per-
formance evaluation to align with prior studies
(Schiller et al., 2021; Hardalov et al., 2021; Chen
et al., 2023). We use wF24 to account for data
imbalance in rumoureval (Scarton et al., 2020).

Implementation Details To ensure reproducibil-
ity, we use greedy search for decoding5. In more
than 95% cases, LLMs exactly follow the instruc-
tion and output the stance name within the required
stance options. Therefore, we directly use the
model generation as the predicted label without
post-processing or mapping. We run experiments
on the validation set of each dataset. See Appendix
C for details on the label sets experimented with.
We exclude the topic/entities-based (such as stance
towards Obama) stance classification datasets (i.e.
scd, semeval and vast) in label elaboration experi-
ments to avoid unnecessary ambiguity or bias dur-
ing elaboration (e.g., the text to be classified may
refer to anything from policy to personal behav-
ior about Obama, and elaborating agree to agree
with the opinion of Obama could lead to biased
prediction).

3.3 Results and Analysis

We first discuss the impact of lexical choice, label
order, and label elaboration on zero-shot ICL for
classification. Then we provide suggestions for
practitioners in zero-shot ICL for classification.

Lexical Choice As shown in Table 2, perfor-
mance varies across datasets and models solely due
to changes in the label names within the prompt.
The variations are more pronounced than those
reported in previous studies (Mu et al., 2024). The
gap between the highest and lowest performance
exceeds 0.1 for all datasets and models, and
surpasses 0.2 on more than half of the datasets. We
observe that certain stance labels could potentially
trigger biased predictions, leading to extremely
low performance. For example, Flan-T5 tends to
always output support when using support, deny,
neither for the semeval dataset, and Llama 3 overly
predicts con when prompted by the label set pro,

4wF2 gives different weights for each stance: deny =
support = 0.40, query = 0.15 and comment = 0.05.

5Potential impact of the decoding strategy can be found in
the Appendix D.
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Fscore perspectrum ibmcs snopes scd emergent semeval rumoureval arc vast

Llama 3
(8b)

max 0.869 0.834 0.770 0.759 0.740 0.688 0.659 0.453 0.382
min 0.738 0.592 0.540 0.639 0.387 0.544 0.286 0.249 0.173
Original 0.799 0.679 0.656 0.709 0.467 0.643 0.521 0.364 0.219
avg±var 0.824±0.001 0.756±0.003 0.666±0.003 0.713±0.001 0.547±0.006 0.624±0.001 0.514±0.008 0.329±0.002 0.279±0.002

Llama 3.1
(8b)

max 0.909 0.898 0.748 0.769 0.660 0.735 0.584 0.466 0.409
min 0.376 0.300 0.435 0.629 0.166 0.456 0.320 0.252 0.175
Original 0.809 0.759 0.660 0.749 0.494 0.676 0.480 0.426 0.237
avg±var 0.832±0.009 0.805±0.011 0.668±0.003 0.737±0.001 0.496±0.013 0.652±0.003 0.488±0.003 0.387±0.002 0.282±0.002

Flan-T5-
xl (3b)

max 0.940 0.960 0.809 0.776 0.743 0.706 0.761 0.685 0.496
min 0.836 0.807 0.576 0.449 0.487 0.166 0.281 0.358 0.155
Original 0.939 0.939 0.746 0.631 0.649 0.467 0.381 0.493 0.311
avg±var 0.899±0.001 0.901±0.002 0.695±0.004 0.661±0.009 0.626±0.003 0.539±0.012 0.520±0.010 0.507±0.008 0.328±0.008

Table 2: The maximum (max), minimum (min), average (avg), variance (var) of the model performance across
different label names in the prompt for each validation set. The performance of the original label set (Original) is also
included, showing that they fail to reach the maximum performance LLMs could get. The extent of the gap between
the maximum and minimum performances is represented using colors: max−min> 0.3 , 0.2 <max−min< 0.3 .
The greater the variance, the greater the impact of label lexical choice, and the greater the potential utility of
optimizing the label set.

con, neutral for the emergent dataset.

Label Order On average, we observe limited
influence of label order (see the Appendix F for de-
tails). However, we are also interested in extremes
of performance change caused by shifting label or-
ders, particularly the maximum performance gain
and drop, and whether the extreme gain or drop cor-
relates with the lexicons used for the label names.
Therefore, for each dataset, we first select the top-
k6 optimal and poor label sets based on their perfor-
mance in the same order (i.e. the default order). We
then examine the maximum increase or decrease of
the performance after re-arranging the label orders
for optimal and poor label sets, respectively.

We find that altering the order for the optimal la-
bel sets has the risk of high performance drops (e.g.,
even more than 0.2 on the binary classification
snopes dataset, Figure 2a in Appendix). While per-
formance improvements are possible, the gains are
relatively limited (lower than 0.1 on all datasets).
Conversely, re-arranging the order for the poorly
performing label sets offers potential for substantial
improvement (Figure 2b). This high improvements
for certain label sets after re-ordering suggests that
the poor performance may partly stem from the
initial sub-optimal ordering.

Label Elaborations Similarly, we select the top-
k7 optimal and sub-optimal single-word label sets
based on their performance, and examine the per-

6Due to the exponential increasing of label order options
and our limited computational resources, we set k=15 for
binary classification; k=10 for three-way classification and
k=2 for four-way classification

7k=15 for binary classification, k=30 for three/four-way
classification.

formance change after elaborations. We observe
that the models are robust to the elaborations for
either optimal or poor single-name label sets (full
results in Table 9), indicating that adding task re-
lated details or increasing the label token lengths
brings limited impact on average. However, we
also observe relatively large performance change
on certain datasets. Specifically, for the rumoureval
dataset with Llama 3, we notice a performance drop
larger than 0.2 when elaborating an optimal label
set. Performance on the ibmcs dataset with Llama
3.1 could increase 0.2 when elaborating a poorly-
performing label set.

3.4 Suggestions to Practitioners

Based on our results and analysis, we provide the
following suggestions to practitioners in zero-shot
ICL for classification:

1. Lexical designing for the label names should
be considered as an important step in prompt
engineering.

2. Single-word class label without elaboration on
task information is able to achieve high perfor-
mance in most cases, i.e. adding extra informa-
tion does not yield better results.

3. If the practitioner has selected a set of optimal
lexicons for label options based on a specific
order, exploring alternative label orders can be
redundant due to the limited performance gain
brought from high computational costs. How-
ever, if a label set is chosen randomly, experi-
menting with different label orders may yield
meaningful improvements (see Figure 2).
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Model Stance Classificaion Topic Classification
perspectrum ibmcs snopes scd emergent semeval rumoureval arc vast TweetTopic AG News

Llama 3 (8b) -0.4921* -0.3787* -0.4359* -0.4217* -0.5781 -0.2618* -0.3764* -0.1662 -0.3639* -0.4994* -0.2447*
Llama 3.1 (8b) -0.4103* -0.3642* -0.1874 -0.0686 -0.4310* -0.2232* -0.3944* -0.1708* -0.1208 -0.2196* 0.0200
Flan-T5-xl (3b) -0.4476* -0.3638* -0.6014* 0.2353 -0.1089 -0.2881* -0.1714* -0.5742 0.1003 0.1587 0.0398

Table 3: Spearman correlation co-efficiency between model performance on validation set and kurtosis of neurons
in the last layer. Mark with * when p value is lower than 0.05.

4 Neuron Analysis for Label Selection

Although our findings indicate the importance of
label word selection for text classification in zero-
shot ICL, current studies lack consideration of this
factor. Therefore, we conduct empirical analysis
to gain insights into the underlying mechanism of
lexical choice for single-word label names.

We preliminarily explored related approaches
discussed in Section 2, including prompt perplex-
ity (Gonen et al., 2023) and model internal rep-
resentation of label words (Wang et al., 2023),
but they did not yield any significant correlation
with zero-shot ICL model performance (see the
Appendix J and K for details). Meanwhile, vari-
ous studies have indicated the correlation between
neuron activation pattern in FFN and model per-
formance (Kuzmin et al., 2023; Tang et al., 2024;
Stolfo et al., 2024; Wu et al., 2024). Inspired by
the finding that the presence of outliers in neural
networks is predictive of quantization and pruning
performance for the layers of LLMs (Kuzmin et al.,
2023), we establish a new hypothesis: the model
performance influenced by label names is corre-
lated with the number of outliers in the neurons
within FFN in the decoder of the LLMs. We em-
pirically validate our hypothesis on the nine stance
classification datasets, as well as two topic clas-
sification datasets (AG News (Zhang et al., 2015)
and TweetTopic (Antypas et al., 2022)) to show the
generalizability to other NLP tasks.

Methodology For each FFN module in layer i in
the decoder, it can be denoted as follows:

hi = (act_fn(h̃iW i
1)⊗ h̃iW i

3) ·W i
2. (1)

where h̃i is the output hidden states from multi-
head self-attention module. The activation function
(act_fn) for Flan-T5 and Llama 3/3.1 is Gaussian
Error Linear Unit (GELU) (Hendrycks and Gimpel,
2016) and Sigmoid Linear Unit (SiLU) (Hendrycks
and Gimpel, 2016; Elfwing et al., 2018), respec-
tively.

A neuron is defined as the linear transformation
of each column in W i

1 followed by the activation

function. Here, we study the last layer I’s output
of act_fn(h̃IW I

1 ) (denoted as NI ) for the predicted
first token of the label name in the model genera-
tion. Following Kuzmin et al., (2023), we measure
the number of outliers over the neuron output dis-
tribution (NI ) through kurtosis, given by:

Kurtosis[NI ] =
E[(NI − µ)4]

(E[(NI − µ)2])2
(2)

where µ is the mean of NI . For each dataset, we
average the kurtosis scores over the validation set
for each candidate label set. We then calculate the
Spearman correlation between model performance
and the averaged kurtosis score.

Results Table 3 shows that, for most datasets,
there is statistically significant negative correlation
between model performances and kurtosis scores
across models and activation functions, indicating
that fewer outliers in the neurons of the final layers
are associated with enhanced zero-shot ICL perfor-
mance. This observation implies that the kurtosis
score of neuron activation distribution in FFN of
the last decoder layer of LLMs could potentially
serve as an effective signal for selecting optimal
label names in zero-shot classification.

5 LOADS: Label set Optimization via
Activation Distribution kurtosiS

Motivated by the above observation that the fluctu-
ated zero-shot ICL performance caused by different
label names could be attributed to the number of
outliers in neurons in the last layer of LLMs, we
propose LOADS to obtain an optimal label set for
a given classification task in a post-hoc setting.

5.1 Method
We design a three-step pipeline based on LOADS
for automatic label selection in zero-shot ICL:

1. Create a list of candidate label sets for class
options in the prompt (see Section 3). The label
names in each set should follow the same order.

2. Rank the list of label options based on the kur-
tosis score of the neuron activation in FFN of
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Model Method Stance Classification Topic Classification
perspectrum ibmcs snopes scd emergent semeval rumoureval arc vast TweetTopic AG News

Llama 3
(8b)

LOADS 0.8431 0.7684 0.5516 0.6698 0.5870 0.6445 0.4097 0.3662 0.3190 0.7752 0.7660
Original Label 0.8187 0.5485 0.4387 0.6504 0.3416 0.5565 0.3487 0.3130 0.2395 0.7742 0.7594
Original + Verbalizer 0.8185 0.5485 0.4306 0.6578 0.3400 0.5576 0.3476 0.3131 0.2395 0.7742 0.7594
Self-generated 0.6912 0.5802 0.3314 0.6607 0.3692 0.6032 0.2745 0.2837 0.3070 0.5851 0.6235

Llama 3.1
(8b)

LOADS 0.8789 0.8856 0.6212 0.7274 0.6403 0.6581 0.3642 0.3637 0.2458 0.7988 0.7306
Original Label 0.8064 0.6783 0.4426 0.6983 0.4337 0.6492 0.3528 0.3784 0.2126 0.7909 0.7273
Original + Verbalizer 0.8064 0.6783 0.4426 0.6983 0.4262 0.6448 0.3534 0.3838 0.2128 0.7909 0.7273
Self-generated 0.6244 0.4918 0.5146 0.6798 0.2984 0.6421 0.3409 0.3373 0.2578 0.5956 0.6217

Gemma 2
(9b)

LOADS 0.9110 0.9247 0.6233 0.7595 0.5989 0.6784 0.4896 0.4858 0.3439 0.8032 0.8451
Original Label 0.8966 0.8728 0.6454 0.7707 0.5704 0.6874 0.4778 0.4858 0.3383 0.8241 0.8316
Original + Verbalizer 0.8966 0.8728 0.6424 0.7707 0.5523 0.6873 0.4689 0.4748 0.3383 0.8246 0.8322
Self-generated 0.9017 0.9113 0.6656 0.7480 0.5833 0.6621 0.3549 0.4657 0.3178 0.6303 0.8215

Flan-T5-xl
(3b)

LOADS 0.9334 0.9380 0.6881 0.5997 0.5813 0.4951 0.4759 0.4688 0.3857 0.8530 0.8556
Original Label 0.9305 0.8971 0.7267 0.6341 0.5580 0.5697 0.3837 0.4628 0.3473 0.8071 0.9209
Original + Verbalizer 0.9305 0.8953 0.7026 0.6507 0.5586 0.5712 0.3852 0.4613 0.3482 0.8091 0.9209
Self-generated 0.7914 0.7384 0.3677 0.6974 0.3883 0.5954 0.2986 0.3343 0.3042 0.8501 0.7368

Flan-T5-xxl
(13b)

LOADS 0.9428 0.9644 0.6905 0.6158 0.5938 0.5257 0.3852 0.6151 0.4218 0.7727 0.7742
Original Label 0.9407 0.9630 0.7814 0.7598 0.5614 0.5697 0.2016 0.6065 0.3278 0.6643 0.9177
Original + Verbalizer 0.9407 0.9621 0.7716 0.7598 0.5631 0.5705 0.2011 0.6062 0.3278 0.6643 0.9177
Self-generated 0.8622 0.8384 0.4226 0.7315 0.4309 0.6182 0.3110 0.6115 0.2881 0.7242 0.9177

Table 4: Comparison of zero-shot ICL performance on test sets between prompting with LOADS-selected label
names versus the other three baseline approaches. We underline the highest model performance (statistically
significant with paired chi-squared test).

the last decoder layer (averaged across the vali-
dation set).

3. Choose the label set with the lowest averaged
kurtosis score.

The above LOADS-selected label set can then be
used in the standard zero-shot ICL on test sets.

5.2 Evaluation

Setups We randomly sample 100 data points
from the validation set for label selection and test
the selected label sets on the official test sets.

• Baselines: We compare the model performance
of using label words selected by LOADS to the
following three approaches: (1) Original label
words: we use the original label words from the
dataset (i.e., the labels in Table 1), as it is the con-
ventional and widely adopted practice; (2) Origi-
nal label words with a verbalizer: after prompt-
ing the LLMs with the original label words, we
employ our pool of candidate label words (See
Section 3.1) as a verbalizer and incorporate their
probabilities into the final probability of the same
class; (3) Self-generated label words: we prompt
the LLMs without providing any class options
and select the candidate label words with the av-
erage highest probability at the first generated
label token.

• LLMs: In addition to Llama3 (8b), Llama
3.1 (8b) and Flan-T5-xl (3b), we also examine
whether LOADS could generalize to other model
families and model sizes by including instruction-
tuned Gemma-2-it (9b) and Flan-T5-xxl (13b).

Results Table 4 presents the zero-shot ICL model
performances on stance classification and topic
classification datasets with different label word
selection strategies. The results demonstrate that
employing LOADS to select label sets for zero-
shot ICL prompts yields superior performance com-
pared to other baseline approaches on most of the
datasets. The improvement is consistent across
NLP tasks and datasets, model architectures and
sizes, as well as prompt templates8.

Also, we observe limited benefits from adopt-
ing the verbalizer in post-processing, since LLMs
tend to give the predicted label word tokens high
probability in most of cases. Prompting with the
self-generated label words rarely results in the best
performance, while with the risk of leading to ex-
tremely low performance on certain datasets (e.g.,
perspectrum and snopes datasets with Llama 3).

Furthermore, potential data leakage could have
significant impact on LOADS, indicated by the
high performance achieved by the original label
words on the AG News dataset with Flan-T5 mod-
els which was instruction-tuned with this dataset.
It also aligns with the results in Table 3 where no
statistically negative correlation was observed on
the AG news dataset with Flan-T5-xl.

5.3 Analysis

Cross-lingual Transferability Previous research
(Zhang et al., 2023a) has demonstrated that for
non-English datasets, prompting with English task

8The analysis of prompt sensitivity can be found in the
Appendix H.
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instructions (including label words) while keeping
the input in the original language often yields su-
perior performance than non-English instructions.
Therefore, we investigate whether the optimal En-
glish label sets selected by LOADS on English
dataset can also enhance performance for non-
English datasets in this scenario.

We manually translate the English rumoureval
Twitter test set into French and Portuguese. We
select the optimal label set based on LOADS
with 100 randomly sampled data from the En-
glish rumoureval validation set. We then prompt
the LLMs with English task instructions and
French/Portuguese inputs. Table 5 presents the
results, indicating that the optimal English label
set identified by LOADS also effectively improves
performance on non-English datasets when the in-
struction is provided in English.

Model Method French Portuguese
Llama 3
(8b)

LOADS 0.5020 0.4528
Original Label 0.4544 0.4284

Llama 3.1
(8b)

LOADS 0.4728 0.4278
Original Label 0.3731 0.3679

Flan-T5-xl
(3b)

LOADS 0.5137 0.3912
Original Label 0.4189 0.3317

Table 5: Performance when LLMs are prompted
with English instructions (including label options) and
French/Portuguese inputs. Label options are selected by
LOADS with English validation data.

Data Efficiency To show the merit of data effi-
ciency of LOADS, we randomly sample 50, 100,
300, 500 or 1000 data points from the validation set
and compare the rankings of the label sets based on
LOADS. Due to the resource restriction, we con-
duct experiments on snopes (binary classification)
and emergent (three-way classification) datasets
with Flan-T5-xl and Llama 3.

The results show that the rankings of the top 5
label sets remain consistent across different sample
sizes. It suggests that LOADS can achieve compa-
rable performance even with a smaller number of
unlabeled data samples than 100, further highlight-
ing the data efficiency of our proposed method. We
provide computational cost estimation of LOADS
using 100 unlabelled samples in Appendix I.

Label Transferability We explore whether
LOADS-selected label sets can be generalised
across datasets or even models for NLP tasks such
as stance classification where different label lexi-
cons are used to represent the same classes across
datasets. Specifically, for each dataset Di on each

LLM Mj , we select the optimal label set LDiMj

through LOADS. To analyse whether the LOADS-
selected label set on one dataset could be adapted
to another related dataset with the same LLM M ,
we calculate the overlap of optimal labels (LDi_M )
between each dataset. Similarly, we examine the
overlap of optimal labels (LD_Mi) between each
model to explore whether the LOADS-selected op-
timal labels for dataset D could be adapted across
LLMs. We only focus on the positive and negative
stances to enable comparison across binary, three-
way and four-way stance classification datasets.

Our results indicate that LOADS-selected la-
bel sets is transferable across datasets on the
same LLM, highlighting the potential of leveraging
LOADS to identify optimal label words with estab-
lished related datasets, avoiding the need to collect
samples for the target new dataset. For example,
the positive-negative stance label pairs identified
for Llama 3 is endorse and deny across all the
stance classification datasets. However, we find
that the label words selected for a specific dataset
on one LLM often differ from those identified for
another LLM, suggesting LOADS’ dependency on
the underlying model architectures and parameters.

In summary, the LOADS-selected label sets
tend to be model-dependent rather than dataset-
dependent. This observation aligns with the mech-
anism of LOADS, as the neurons and their distri-
butions are inherently tied to the specific model.
We hypothesize that this may suggest a correlation
between the LOADS-selected label words and the
LLMs’ internal representation or understanding of
the target NLP task or concept (e.g., what is stance),
highlighting potential directions for future studies.

6 Conclusion

We study the impact of label options in the prompt
for classification in zero-shot ICL, including lexi-
cal choice, label order, and label elaborations. We
observe a significant effect of the lexicons used
to represent label words in the prompt, also link-
ing to the models’ sensitivity to the label order.
Through neuron activation analysis, we find that
optimal label sets produce fewer outlier neurons
in LLMs’ feed-forward networks. We then pro-
pose LOADS, a novel method for selecting opti-
mal label sets using activation distribution kurtosis.
Prompting with LOADS-selected label sets consis-
tently outperforms the use of original dataset labels
across different models. Our approach is post-hoc,
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data-efficient and requires no gradient propagation
or model fine-tuning. It also demonstrates cross-
lingual transferability when using English instruc-
tions for non-English datasets. By showing that
carefully selecting label sets based on neuron acti-
vation patterns can significantly enhance model per-
formance without requiring additional training or
labeled data, this paper has important implications
for leveraging LLMs in zero-shot classification.

Limitations

Our experiments focused primarily on stance clas-
sification tasks. We chose this task because the
label ambiguity is an identified challenge (i.e., la-
bel names could be replaced by a sufficient number
of synonyms without altering their meanings and
scopes in the original study), and it has sufficient
datasets for empirical study. Although we have
tested the generalisabity of our findings on topic
classification, with more datasets released and new
tasks proposed in future studies, studies could be
conducted to explore whether our findings gen-
eralize to a broader range of classification tasks
and domains. Also, although we examined multi-
ple models from the Flan-T5 and Llama families,
our study did not include other popular language
models (such as Phi9 or Mistral 10) due to compu-
tational resource limitation. Expanding the range
of models would provide a more comprehensive
understanding of label option’s impact across dif-
ferent architectures.

Another limitation of our study is English-
language bias. Although we have explored the
cross-lingual transferability to French and Por-
tuguese on one dataset, more extensive multilingual
testing is needed to ensure the approach’s effective-
ness across diverse languages and cultures.

Our method, while more efficient than gradient-
based approaches, still requires running inference
on a subset of data to compute activation statistics.
This may be challenging for resource-constrained
environments or very large models. The efficiency
of our method may also be challenged when the
classification task contains a very large number of
class categories. Furthermore, we ensure the inclu-
sion of samples for each class. The effectiveness
of our method might vary when the validation set
is highly imbalanced or even lack of data for the

9https://huggingface.co/microsoft/phi-2
10https://huggingface.co/mistralai/

Mistral-7B-Instruct-v0.2

minority class. The effectiveness of different distri-
bution metrics is out of scope but we acknowledge
that it may have significant improvement for our
method.

Lastly, while we focused on technical perfor-
mance, future work should consider potential bi-
ases introduced by label set choices and their impli-
cations for fairness and inclusivity in classification
tasks. Addressing these limitations in future re-
search will help to further validate and refine our
approach to optimal label set selection for zero-shot
ICL.
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A Datasets

We summarise the datasets we used in our
study in Table 6. For the stance classification
datasets without official validation sets, we use
the train/validation splits provided by Schiller et
al., (2021). We utilize the official test set for AG
news14, and the official “train/test random split in
the COLING 2022 paper" for TweetTopic dataset15.
TweetTopic dataset has six class categories, poten-
tially resulting in more than 4,000 different label
sets if we consider only five synonymy words for
each category (i.e., more than 12,000 experiments
on three LLMs). Due to our limited computational
resource, we experiment with three topics: pop
culture, daily life, and science & technology.

Dataset Name Source # of Label Sets
scd Debates 31
perspectrum Debates 31
snopes News 31
ibmcs Debates + Wikipedia 31
vast Debates + Artificial 62
emergent News 62
semeval Social Media 93
rumoureval Social Media 248
arc Debates 62
AG News News 50
TweetTopic Social Media 64

Table 6: Datasets and the number of label sets we exper-
iment with for each dataset.

B Data Leakage

As far as we know, Llama 3 and Llama 3.1 are
not supervised fine-tuned with any public stance
classification datasets. Flan-T5 is fine-tuned on
Super-NaturalInstructions dataset (Wang et al.,

14https://huggingface.co/datasets/sh0416/ag_
news

15https://huggingface.co/datasets/cardiffnlp/
tweet_topic_single
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2022), containing two English stance classification
tasks (Kobbe et al., 2020) (i.e., task 209 and 513).
The tasks are formed as a binary (“in favor” and
“against”) and a three-way (“in favor”, “against”
and “neutral”) classification, respectively. There is
no overlapping between these two datasets and our
nine experimented datasets.

C Label Pool Creation

Stance Classification Following the pipeline we
described in Section 3 of the main paper, we collect
the seed label sets from the nine stance classifica-
tion datasets (see Table 1). For the semeval dataset,
the label set in the original paper ("favor, against,
neither" in Table 1 in main paper) is slightly dif-
ferent from the set used in their published dataset
("favor, against, none"), so we consider both of
them.

For positive and negative stance label names, we
aim to acquire word-pairs with semantically oppo-
site meaning. We first extract antonym for each
positive and negative seed stance label from Word-
Net. Since we obtain limited antonyms in this way,
Claude is then used to generate synonym for each
seed positive-negative stance label pairs. An exam-
ple of the prompt we used is: Provide 5 different
pairs of synonyms for "support" and "deny". They
are supposed to be labels for stance classification.
We use WordNet to obtain synonyms for the rest of
stance labels if there are any. For the label names
that represent "neutral" stance in the original study,
such as "observing" and "comment", we take "neu-
tral" as their synonyms. Finally, we manually select
the appropriate label names generated by Claude.
The number of label sets we experiment with for
each dataset is listed in Table 6.

Topic Classification Similarly, we follow the
pipeline to collect and generate synonyms for each
topic category. For TweetTopic dataset, since pop
culture is a mixture of multiple sub-topics as dis-
cussed by Antypas et al.,(2022), we also consider
the synonyms of the sub-topics. We use every pos-
sible combination of synonyms among topic cate-
gories for TweetTopic dataset. For AG news, there
are total 160 combinations. We randomly sample
50 of them due to limited computational resources.
The number of label sets we experiment with for
two datasets is listed in Table 6.

D Decoding Strategies

We adjust the temperature (0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4) used for sampling-based decoding and
compare their performances with the greedy search
based performance for emergent and snopes dataset
on Flan-T5-xl and Llama 3.

A temperature value larger than 1.0 – flattening
the probability distribution – tends to harm the per-
formance especially for Flan-T5-xl, which gener-
ates outputs irrelevant to stance. When temperature
is lower than 1.0, introducing randomness in decod-
ing through sampling may benefit the performance,
but not significantly (in most of cases improvement
is lower than 0.07). We summarise the maximum
performance increase or decrease comparing with
greedy search in Table 7.

Model Name Temperature
snopes emergent

+ - + -

Flan-T5

0.2 0.021 0.049 0.037 0.049
0.4 0.055 0.066 0.066 0.068
0.6 0.033 0.099 0.034 0.064
0.8 0.033 0.145 0.066 0.107
1.0 0.022 0.189 0.036 0.149
1.2 0.037 0.264 0.046 0.196
1.4 0.015 0.428 0.042 0.361

Llama 3

0.2 0.050 0.063 0.068 0.035
0.4 0.044 0.047 0.073 0.073
0.6 0.040 0.062 0.075 0.059
0.8 0.027 0.062 0.066 0.107
1.0 0.054 0.086 0.100 0.103
1.2 0.038 0.072 0.069 0.171
1.4 0.030 0.104 0.128 0.142

Table 7: The maximum performance increase (+) and
decrease (-) if adopting sampling-based decoding rather
than greedy search.

E Prompting with Label Explanation

We investigate whether the performance variance
caused by different lexical choices of the label
names could be mitigated or lowered by including
the explanation of the label names in the prompt.
We experiment with emergent and snopes datasets
on Flan-T5-xl and Llama 3. We add the fol-
lowing class explanations in the prompt template
after the class options for snopes and emergent
datasets respectively: (1) snopes: If the text sup-
ports that claim, answer with "{positive stance}"; if
the text opposes the claim, answer with "{negative
stance}"; (2) emergent: If the headline supports
the claim, answer with "{positive stance}"; if the
headline opposes the claim, answer with "{negative
stance}"; if the claim is discussed in the headline
but without assessment of its veracity, "{neutral
stance}".
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We observe that including these label name ex-
planations in the prompt may help with the label
sets that achieve the lowest zero-shot performance.
As for the snopes dataset, its worst performance
would increase from 0.5400 to 0.555 (Llama 3, la-
bels: supportive and opposed) or from 0.5766 to
0.6568 (Flan-T5-xl, labels: for, against). As for
emergent, its lowest performance would increase
significantly from 0.3877 to 0.5600 with Llama
3 (labels: pro, con and neutral). However, when
using Flan-T5-xl, the inclusion of the class expla-
nation even decrease the worst performance from
0.4870 to 0.3775 (labels: support, deny and neu-
tral).

More importantly, the benefits from label ex-
planations in the prompt would not close the gap
between the optimal and sub-optimal label sets,
comparing the above improved performance with
the maximum performances in Table 2 in the main
paper.

F Label Order Results

We present the averaged absolute performance dif-
ference after re-ordering the label names in the
prompt in Table 8. The influence is limited on
average.

Dataset Flan-T5 Llama 3 Llama 3.1
perspectrum 0.0148 0.0372 0.0771
ibmcs 0.0195 0.0696 0.0961
snopes 0.0296 0.0772 0.1259
scd 0.0309 0.0288 0.0484
emergent 0.0211 0.0689 0.1578
semeval 0.0230 0.0304 0.0527
vast 0.0311 0.0465 0.0495
rumoureval 0.0355 0.0720 0.0439
arc 0.0152 0.0606 0.0612

Table 8: The average absolute performance change after
re-ordering the label options in the prompt.

The maximum performance gain and drop on
each dataset after re-ordering the label names for
the top-k optimal and poor label sets with Llama3,
Llama 3.1 and Flan-T5-xl are in Figure 2.

G Label Elaboration Results

We supplement the averaged absolute performance
difference for each level of elaboration on Llama
3.1 and Flan-T5-xl in Table 9.

H Prompt Sensitivity Analysis of LOADS

To analyse the the prompt sensitivity of LOADS,
we test it on different prompt templates, select the
label set through LOADS, and then compare the

Dataset E1 E2 E3

Opt. Sub-opt. Opt. Sub-opt. Opt. Sub-opt.

L
la

m
a

3

perspectrum 0.016 0.018 0.010 0.015 0.017 0.009
ibmcs 0.027 0.041 0.024 0.014 0.029 0.044
snopes 0.055 0.040 0.054 0.026 0.029 0.018
emergent 0.051 0.053 0.047 0.038 0.022 0.040
rumoureval 0.095 0.036 0.084 0.020 0.058 0.102
arc 0.017 0.024 0.015 0.021 0.035 0.049

L
la

m
a

3.
1

perspectrum 0.027 0.020 0.048 0.025 0.037 0.022
ibmcs 0.033 0.018 0.054 0.031 0.057 0.067
snopes 0.015 0.021 0.032 0.020 0.034 0.033
emergent 0.048 0.077 0.048 0.107 0.034 0.133
rumoureval 0.041 0.040 0.037 0.032 0.039 0.035
arc 0.032 0.046 0.029 0.036 0.042 0.046

Fl
an

-T
5-

xl

perspectrum 0.009 0.026 0.010 0.021 0.013 0.021
ibmcs 0.014 0.015 0.016 0.020 0.017 0.028
snopes 0.020 0.026 0.022 0.032 0.033 0.016
emergent 0.026 0.025 0.044 0.031 0.042 0.042
rumoureval 0.059 0.040 0.060 0.031 0.086 0.018
arc 0.034 0.042 0.025 0.038 0.031 0.041

Table 9: The average absolute performance change after
elaborating for optimal or poor single-word label sets
with Llama 3.1 and Flan-t5-xl (E1, E2, E3 see Figure 1
in main paper).

performance with that on the label sets in the origi-
nal dataset.

Due to the computational resource constraints,
we manually craft two prompts and test LOADS
with the four binary stance classification datasets
on Llama 3. In the two prompts, we replace
Given a [text1_name] and a [text2_name], detect
the stance that the [text2_name] has towards the
[text1_name] (see Section 3.2 in main paper) with
two different queries:

1. Prompt 1: What is the stance of [text2_name]
towards [text1_name]?

2. Prompt 2: What stance does [text2_name]
take regarding [text1_name]?

As shown in Table 10, although different
prompts with the same label sets may result in
performance changes as expected (compare with
Table 5 in main paper), LOADS is robust to dif-
ferent prompts used for the label selection. The
performance gap between LOADS-selected and
original label sets tends to be similar across prompt
templates.

I Computational Cost Estimation

Following previous work (Kaplan et al., 2020; Liu
et al., 2022a), we estimate that a decoder-only LLM
with N parameters uses 2N FLOPs per token for
inference. We suppose that: (1) the input token
length for the dataset we are interested in is L on
average; (2) the number of candidate label sets is
X; (3) 100 unlabelled texts are used for LOADS.
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(a) Llama3: top-k optimal label sets (b) Llama3: top-k sub-optimal label sets

(c) Llama 3.1: top-k optimal label sets (d) Llama 3.1: top-k sub-optimal label sets

(e) Flan-T5-xl: top-k optimal label sets (f) Flan-T5-xl: top-k sub-optimal label sets

Figure 2: The maximum performance gain (positive value) and drop (negative value) on each dataset after re-
ordering the label names for the top-k optimal and sub-optimal label sets with Llama3, Llama 3.1 and Flan-T5-xl.
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Dataset LOADS Original Label

Prompt 1

snopes 0.5926 0.4984
ibmcs 0.8737 0.7303
perspectrum 0.8925 0.8658
scd 0.6895 0.6860

Prompt 2

snopes 0.6191 0.5336
ibmcs 0.8619 0.7523
perspectrum 0.8921 0.8619
scd 0.6836 0.6931

Table 10: Performance comparison on Llama 3 when
using LOADS-selected label sets (lowest kurtosis) and
using original label sets (original label) with prompt 1
or prompt 2. The higher performance is underlined.

Therefore, the total FLOPs taken by LOADS would
be 2N ∗ L ∗X ∗ 100 = 200NLX .

J Perplexity Analysis

As discussed in Section 2 in main paper, Gonen et
al.,(2023) empirically show that zero-shot ICL per-
formance is statistically negative correlated with
the perplexity of the prompt with input. However,
they did not take into account the label options in
the prompt when calculating the perplexity. There-
fore, we further investigate whether the perplexity
is also correlated with the variance zero-shot ICL
performance caused by different label names.

Specifically, we use the prompt template in Sec-
tion 3.2 in main paper, and calculate the perplexity
of prompts with inputs and different label sets. Fol-
lowing Gonen et al.,(2023), for each label set, we
average the perplexity over the dataset. And then
we adopt spearman correlation test between the av-
eraged perplexity scores and model performances.
Due to the computational restriction, we experi-
ment with all the binary datasets on Flan-T5-xl and
Llama3-8b. Since Flan-T5 is an encoder-decoder
model where perplexity has a loose definition, we
treat the encoder input as an empty string when
calculating perplexity.

The results in Table 11 indicate that there is no
statistically significant correlation between prompt
perplexity and model performance if considering
different label sets in the prompt.

perspectrum ibmcs snopes scd

Llama 3
coefficient 0.0068 0.1641 0.0394 0.1698
p value 0.9707 0.3774 0.8303 0.3608

Flan-T5
coefficient 0.0738 0.1733 -0.0500 -0.2273
p value 0.6929 0.3511 0.7892 0.2187

Table 11: Spearman correlation between model perfor-
mance and prompt perplexity. P-values are all larger
than 0.05, indicating no statistical significance.

K Label Attention Key Similarity
Analysis

In this section, we explore whether the closely re-
lated observation on few-shot ICL could be directly
adopted to zero-shot ICL. Specifically, we focus
on the study discussed in Section 2 in main paper,
where Wang et al.,(2023) suggest that the when the
LLM is prompted by demonstration with examples
in a few-shot ICL setting, the model is likely to
confuse the label categories if their key vectors in
the attention modules are similar to each other.

Since this finding is easier to be tested on binary
datasets, we experiment with the binary datasets
on Llama 3 and Flan-T5-xl. We extract the key
vectors in the attention module in each layer for
each label name in the prompt. Then we calculate
the cosine similarity between the vectors of two
label names. Finally, we use spearman correlation
test between similarity scores and model perfor-
mances. As shown in Table 12, we do not observe
statistically significant correlation between model
performance and label key vector similarities.

perspectrum ibmcs snopes scd

Llama 3
coefficient -0.0181 -0.0051 -0.2791 -0.1696
p value 0.9244 0.9784 0.1283 0.3702

Flan-T5-xl
coefficient -0.0595 0.0223 -0.0209 -0.0992
p value 0.7503 0.9047 0.9108 0.5953

Table 12: Spearman correlation between model perfor-
mance and label’s key vector similarity.

L Layer-wise Output Projections Analysis

We hypothesize that LLM may jump to the output
prediction at last layers when a sub-optimal label
set is used in the prompt. Therefore, we extract the
hidden states from each decoder layer and project
them on the model vocabulary, so that we obtain
the ranked position of the final predicted label’s
token in each layer (Elhage et al., 2021; Geva et al.,
2022).

we observe that the hypothesis indeed holds in
certain cases. We show an example on rumoureval
dataset where we compare the averaged rank of the
correctly predicted label comment/neutral in each
decoder layer when Flan-T5-xl is prompt to choose
from support, deny, query, comment or support,
deny, query, neutral. Label set support, deny, query,
comment performs worse than the set endorse, deny,
query, neutral on this dataset. As shown in Figure 3,
when using the relatively optimal label set endorse,
deny, query, neutral, the rank of the final predicted
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label tends to move closer to the top at an earlier
stage.

Figure 3: The rank of the final correctly predicted label
(comment orneutral) when Flan-t5-xl is prompted with
two different label sets for rumoureval dataset.

M Human Translation Details

To translate the English Twitter rumoureval test set
into French and Portuguese, we recruit volunteer
students from translation studies in Brazilian and
French universities. The students are given gift
vouchers (0.6 pounds per tweet). Consent has been
obtained from the students and our study has re-
ceived approval from the Ethics Committee of our
university.

We instruct the students to translate the tweets
accurately, and preserve the original meaning, con-
text, and tone of the tweet. They are also encour-
aged to leave notes for their translations. The trans-
lations are finished on Google Sheets.
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