
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 31583–31595
November 4-9, 2025 ©2025 Association for Computational Linguistics

HookMoE: A learnable performance compensation strategy of
Mixture-of-Experts for LLM inference acceleration

Longkai Cheng∗1,4, Along He∗3,1, Mulin Li1, Xueshuo Xie†2, Tao Li†1,2,4
1College of Computer Science, Nankai University 2Haihe Lab of ITAI

3School of Artificial Intelligence, Shenzhen University
4Key Laboratory of Data and Intelligent System Security, Ministry of Education, China

{xueshuoxie, litao}@nankai.edu.cn

Abstract

Mixture of Experts (MoE) architectures have
emerged as a promising paradigm for scaling
model capacity through top-k routing mecha-
nisms. Although reducing the number of acti-
vated experts inherently enables inference ac-
celeration, this efficiency gain typically comes
at the cost of significant performance degra-
dation. To address this trade-off between ef-
ficiency and performance, we propose Hook-
MoE, a plug-and-play single-layer compensa-
tion framework that effectively restores perfor-
mance using only a small post-training cali-
bration set. Our method strategically inserts
a lightweight trainable Hook module imme-
diately preceding selected transformer blocks.
Comprehensive evaluations on four popular
MoE models, with an average performance
degradation of only 2.5% across various bench-
marks, our method reduces the number of acti-
vated experts by more than 50% and achieves
a 1.42× inference speed-up during the pre-
fill stage. Through systematic analysis, we
further reveal that the upper layers require
fewer active experts, offering actionable in-
sights for refining dynamic expert selection
strategies and enhancing the overall efficiency
of MoE models. We make our code available at
https://github.com/KerwinKai/HookMoE.

1 Introduction

Large language models (LLMs), built on the Trans-
former architecture (Vaswani, 2017), have substan-
tially reshaped the landscape of natural language
processing by enabling advanced language under-
standing and generation across various applica-
tions (Achiam et al., 2023). Traditional dense mod-
els involve all parameters in computation, which
can lead to inefficiencies, especially as the size
of the models increases (Kaplan et al., 2020). In
contrast, Mixture of Experts (MoE) models have

∗Equal contribution †Corresponding author

emerged as a key variant of LLMs, addressing
challenges of scalability and computational effi-
ciency (Lepikhin et al., 2020), and a key distin-
guishing feature of MoE models are active param-
eters. For example, Mixtral-8x22B (Jiang et al.,
2024) only activates 39B parameters, allowing it to
perform on a par with LLaMA3-70B on multiple
evaluation tasks.

Despite these advantages, deploying large-scale
MoE models in real-world applications remains
challenging due to high inference costs (Xia et al.,
2023; Liu et al., 2023). As model sizes grow and
user demands for complex reasoning increase, the
need for efficient inference has become increas-
ingly critical in both academia and industry. Cur-
rent reasoning strategies such as Chain of Thought
(CoT) (Wei et al., 2022) require a model to process
longer token sequences at inference time. Recent
progress in high-bandwidth memory (Kabić et al.,
2025) lets modern GPUs keep all expert parame-
ters on the chip, so weights no longer need to be
offloaded to the CPU. With this memory bottleneck
removed, researchers can now focus on improving
computational efficiency during inference.

MoE routes each token to the top-k experts, ex-
cluding all nonactivated experts from the computa-
tion. This activation sparsity makes it possible to
reduce the number of active parameters even fur-
ther. Recent studies reduce the running time cost by
dynamically decreasing the number of experts per
token (Huang et al., 2024; Szatkowski et al., 2023),
but aggressive reduction often leads to significant
performance degradation.

In this paper, we introduce a systematic com-
pensation strategy that maintains model quality
while keeping only a minimal set of experts ac-
tive. Typically, we adjust the top-k routing to limit
the number of activated experts and introduce a
lightweight, learnable Hook compensation module
to mitigate performance degradation. This com-
ponent can be seamlessly integrated into existing

31583

https://github.com/KerwinKai/HookMoE


MoE architectures. We demonstrate the efficacy of
our approach by applying it to four popular MoE
models and evaluating their performance across
multiple benchmarks. Remarkably, our approach
strikes an advantageous balance with negligible ex-
tra training effort: merely 0.14% to 0.70% of the
overall parameters need fine-tuning on a calibration
dataset comprising only 512 samples. Moreover,
each baseline model can complete its training in
four hours when using 8 H800 GPUs. Compared to
top-k routing alone, Hook compensation reduces
the number of activated experts by 50%–75%. This
decrease in expert activation directly yields compu-
tational savings, delivering over a 1.42× inference
speed-up in the prefill stage.

Moreover, we analyze layer-depth based
dynamic-k gating and observe that post-trained
MoE models usually can activate fewer experts
in their upper layers, and introduce the strategy
Top Layer Needs Less Experts (TLNLE). Com-
bined with TLNLE, HookMoE outperforms exist-
ing State of the Art (SOTA) dynamic-k methods by
over 0.6% in overall performance while reducing
the same number of activated experts. Our contri-
butions are threefold:

Lightweight Hook Compensation Module. We
propose a lightweight Hook compensation method
that inserts a pluggable module before the Feed-
Forward layer in a single transformer block. This
module learns state-space corrections on a cali-
bration dataset to counteract the performance loss
from reduced expert usage, only increasing tiny
parameters for fine-tuning.

Layer-Depth Based Dynamic-k Gating. We
systematically vary the number of active experts
between layers and discover the TLNLE pattern.
TLNLE identifies layers, typically near the mid-
dle, that are most sensitive to expert count and are
therefore chosen for hook insertion. Meanwhile,
it also refines the current SOTA dynamic-k gating
and further cuts the computation without sacrificing
accuracy.

Comprehensive Quantitative and Qualitative
Experiments. We conducted thorough evaluations
of our method on four widely used MoE models,
covering the parameters from 14.3 billion to 140.6
billion, and measured the inference speed-up on
two different NVIDIA GPUs. Both quantitative
metrics and qualitative analyzes show that our ap-
proach improves accuracy while activating fewer
experts than competitive baselines.

2 Related Works

2.1 Mixture-of-Experts Models

Mixture-of-Experts (MoEs), first introduced by Ja-
cobs et al. (1991), employ a gating mechanism to
route inputs to a subset of experts, typically se-
lecting the top-k most relevant experts per token.
MoEs can be categorized by expert size: coarse-
grained expert models like Mixtral (Jiang et al.,
2024) deploy fewer but larger general-purpose ex-
perts, whereas fine-grained expert models such as
Qwen (Bai et al., 2023) and DeepSpeek-MoE (Dai
et al., 2024) feature many smaller, specialized ex-
perts, offering enhanced flexibility and specializa-
tion without incurring excessive overhead.

2.2 Dynamic-k Gating

Conventional top-k gating in MoEs assumes the
same number of experts is activated for each to-
ken, neglecting the variability in task complexity
across different inputs and potentially resulting in
redundant computation. Thus, recent studies have
revisited the core mechanism of expert activation
under the framework of Dynamic-k Gating. For
example, NAEE (Lu et al., 2024) selects experts
based on predefined ratios inferred from impor-
tance scores, effectively eliminating less critical
experts. D2D (Huang et al., 2024) adopts a prob-
abilistic approach, dynamically adjusting expert
activation according to input complexity. Further-
more, MoED (Szatkowski et al., 2023) leverages
the sparsity of activation to determine the optimal
number of experts per input in real time.

2.3 Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) provides a
practical means of adapting LLMs to downstream
tasks without incurring excessive computational
or storage overhead (Han et al., 2024). Typically,
these strategies can be categorized into three ap-
proaches: introducing additional parameters by
freezing most of the base model and fine-tuning
a small set of newly added parameters (Houlsby
et al., 2019); selecting existing parameters by lim-
iting the scope of fine-tuning to a restricted subset
of the original parameters (He et al., 2023); and
applying low-rank adaptations, such as LoRA (Hu
et al., 2021), which decompose the weight matrices
of the model into low-dimensional components. In
this study, PEFT are employed to mitigate the per-
formance degradation that arises when the number
of active experts is reduced.

31584



3 Method

In this section, we first present the preliminary
MoE, and then introduce the proposed compen-
sation module for the MoE model, with the aim
of minimizing performance loss due to reduced
activated experts. We also provide corresponding
mathematical derivation.

3.1 Preliminary

The general architecture of the MoE layer consists
of N experts {e1, e2, . . . , eN}, and each expert is a
neural network capable of processing input tokens.
For each input token xi in the sequence, the router
calculates a set of routing weights as follows:

P (xi) = Softmax(xi ·W ), (1)

where W ∈ Rh×N is a learned projection matrix
and xi is the embedding of the token, h is the
dimension of hidden states. The routing weights
determine the relevance of each expert for the given
input token. In practice, the top-k experts with the
highest routing weights are selected, with k being
a hyperparameter of the model, and these experts
then process the input token.

The top-k routing strategy ensures that only a
small subset of experts contribute to each token’s
output, which significantly reduces the computa-
tional cost. The output of the MoE layer for the to-
ken xi is a sum of the output of the selected experts.
Thus, the output for the token can be expressed as:

zi =

∑
j∈top-k Pj · ej(xi)∑

m∈top-k Pm
(2)

where ej(xi) is the output of the j-th activated
expert, and Pj is the routing weight of the j-th
expert.

In the case where the MoE utilizes shared ex-
perts, the output zi is modified to incorporate the
outputs of all shared experts in addition to the top-k
selected experts. The output of the token xi is then
the sum of the outputs of both selected and shared
experts:

zi = zi +
∑

s∈Shared

es(xi). (3)

where es(xi) represents the output of the s-th
shared expert.

01234567
gidx_s

0
1

2
3

4
5

6
7

g i
dx

_e

0.65

0.65

0.66

0.66

0.67

0.67

0.68

Figure 1: Mixtral-8x7B consists of 32 layers, which
are structured into 8 groups, with each group contain-
ing 4 layers, with group boundaries defined by start
index gidx_s and end index gidx_e. For layers within the
range [4× gidx_s, 4× gidx_e+3], we apply the function
Expert_N(k, l, r) with fixed k = 2, l = 4× gidxs , and
r = 4×gidxe+3. The effectiveness of this configuration
is evaluated across general tasks, with average perfor-
mance scores visualized and detailed results presented
in Tab. 8.

3.2 Layer-Depth based Dynamic-k Gating
Inspired by work on overthinking in neural net-
works (Huang et al., 2024), we conduct a simple
study to measure how dynamically varying the top-
k gate size as a function of layer depth affects a
post-trained MoE model. We hypothesize that acti-
vating fewer experts in deeper layers within a layer
range [l, r] has a limited impact on model perfor-
mance. Consequently, we define the number of
active experts in the layer L as follows, where k is
the activate expert number of base model:

Expert_N(k, l, r) =

{
k − 1, l ≤ L ≤ r,

k, otherwise.
(4)

We systematically sweep the boundaries l and r
and evaluate general-purpose tasks using the bench-
marks described in Sec.4.1. The experiments were
performed on Mixtral-8x7B. The results in Fig.1
reveal a clear pattern that we term Top Layers Need
Less Experts (TLNLE). This insight enables a de-
crease in the number of active experts, while caus-
ing only a slight decline in performance. Specifi-
cally, when l is 16 and r is 31, which means layers
[16, 31] activate only the top-1 expert, while re-
taining top-2 experts for layers from 0 to 15, we
observe only a 1.1% decrease in performance.

Based on this observation, we find that the right
boundary r can be fixed to the total number of lay-

31585



Transformer Block x L

Attention

Add & Norm

Feed
Forward

Add & Norm

Nr

Router

1 2 3

Top-k

Transformer Block x 1

Attention

Add & Norm

Feed
Forward

Add & Norm

Attention

Add & Norm

Hook Module

Add

Feed
Forward

Add & Norm

(a) Stage 1:  Reduce Top-k  In All Layer  (b) Stage 2: Add Trainable Hook Module

Figure 2: The two-stage framework of our proposed Hook compensation method. (a) Stage 1 employs the TLNLE
strategy to reduce the number of activated experts and identifies a suitable layer for Hook Module integration. (b)
Stage 2 incorporates the Hook Module, consisting of two linear layers with ReLU activation, before the Feed-
Forward component of the selected layer. Detailed architecture is presented in Sec.3.3.

ers without loss of generality. Therefore, TLNLE
can be parameterized solely by the left boundary l.
Formally, we define:

TLNLE(k, l) = Expert_N(k, l, rmax), (5)

where rmax denotes the index of the final layer in
the model. This strategy effectively reduces compu-
tational overhead by limiting the number of experts
utilized in the top layers, thereby accelerating in-
ference, while still leveraging the full potential of
the MoE for complex tasks.

3.3 A Hook Compensation Module
In this section, we present the proposed Hook com-
pensation method, a fine-tuning approach that in-
troduces an additional learnable module into the
selected layer of the model, guided by the TLNLE
strategy, to mitigate the performance loss caused by
reducing the number of activated experts in MoE
models. The strategy identifies the most suitable
layer for inserting the Hook module by evaluating
the degree of performance degradation between dif-
ferent candidate layers. This evaluation is based on
the average scores on general tasks, as introduced
in Sec. 4.1.

Specifically, we apply TLNLE starts by initial-
izing k as the base number of routed experts per
layer and l as the number of model layers. We first
fix l, and iteratively reduce k until either (i) the
performance drop exceeds a predefined threshold p,
or (ii) k = 2, since at least one expert must remain
active in each MoE layer to preserve functionality.

The parameter p controls the trade-off between
model efficiency and performance stability. A
smaller p results in fewer reductions and better

performance preservation, while a larger p allows
more aggressive pruning at the cost of potential
performance loss. In our experiments, we typically
set p = 1.0%, which provides a reasonable balance
between efficiency gains and model quality.

After determining the optimal k, we proceed to
reduce l iteratively using the same performance
deviation criterion based on p. Finally, we further
reduce the number of activated experts by setting
all layers to use k − 1 experts, and insert the Hook
module into the selected layer l, as illustrated in
Fig. 2. This fine-tuning phase aims to compensate
for performance degradation caused by the addi-
tional reduction in expert activation before the layer
l.

The Hook Module consists of two lightweight
and trainable linear layers, which are added as a
residual connection to the original input xi. The
module processes xi and compensates for potential
activation loss as follows:

xi = xi + Linear(ReLU(Linear(xi)))× r (6)

Here, r denotes a scaling factor, which is a training
parameter initialized to 0.5. The latent space size
of the Hook module for coarse-grained experts is
set to the intermediate size of the MoE, whereas for
fine-grained experts in MoE, the latent space size
is twice the MoE intermediate size. The output of
Eq. 6 is then used as the input of Eq. 1.

To better understand how the Hook module mit-
igates the impact of expert reduction, we analyze
the behavior of the model from a state space per-
spective. In this context, state space refers to the
representation space formed by intermediate acti-
vations across the model layers, reflecting how in-

31586



formation is transformed through the network. We
define the state space vector of the original MoE as
So, the state space of the MoE with reduced acti-
vated experts as Sc, and the state space of the Hook
module as SH. The objective is to ensure that SH,
the state space of the learnable module, effectively
compensates for the loss caused by the reduced
number of activated experts. This is achieved by
minimizing the discrepancy as follows:

min(∥SH − Sc + So∥) (7)

Next, applying the triangle inequality to the L2
norm of the state space difference, we expand the
left-hand side as follows:

∥SH − Sc + So∥22 ≤ ∥SH − Sc∥22 + ∥So∥22 (8)

Direct evaluation of the model state space before
and after compression is not feasible. Therefore,
we rely on an evaluation dataset that defines the
state space represented by the model on the vali-
dation set as Sv. This allows us to further expand
∥SH − Sc∥22:

∥SH − Sc∥22 = ∥SH − Sv + Sv − Sc∥22
≤ ∥SH − Sv∥22 + ∥Sv − Sc∥22 (9)

Combining the above, we seek to minimize the
following:

min
(
∥SH − Sv∥22 + ∥Sv − Sc∥22 + ∥So∥22

)
(10)

Since Sc, Sv, and So are considered fixed, our pri-
mary objective is to minimize ∥SH − Sv∥22. Given
that the training data of the MoEs are inaccessible,
we introduce a small calibration data set to com-
pensate for activation losses as much as possible.
From the expression, it is clear that to improve the
efficacy of this method, the state space of the cal-
ibration dataset should closely match that of the
evaluation dataset. Furthermore, selecting a diverse
evaluation dataset ensures that the data distribution
of the evaluation set is more representative of real-
world scenarios.

4 Experiment

In this section, we first present an overview of the
model, the calibration datasets, and the benchmarks
in Sec. 4.1. We then systematically evaluate our
proposed HookMoE framework from three primary
perspectives. Specifically, in Sec. 4.2, we describe

Model Expert Count
(Activ. / Total) dexpert

Share Expert
Count Attention

Mixtral-8x7B 2 / 8 dffn 0 GQA
Mixtral-8x22B 2 / 8 dffn 0 GQA
Qwen1.5-14.3B-A2.7B 8 / 64 1

4
dffn 4 MHA

DeepSeek-V2-Lite 8 / 66 ≈ 1
8
dffn 2 MLA

Table 1: Architectural specifications of the benchmark
models

the experiments on the Hook module for both gen-
eral and domain-specific tasks. In Section 4.3, we
illustrate how the TLNLE strategy enhances the
dynamic routing method and the Hook module. Fi-
nally, in Sec. 4.4, we assess the effectiveness of our
approach in acceleration of inference.

4.1 Implementation Details

Model Settings. A comprehensive systematic
evaluation was conducted to validate the effective-
ness of the proposed framework in four state-of-
the-art MoE architectures. Mixtral-8×7B (Jiang
et al., 2024), Mixtral-8×22B(Jiang et al., 2024),
DeepSeek-V2-Lite (Dai et al., 2024), and Qwen1.5-
MoE-A2.7B (Bai et al., 2023). The architecture
details are shown in Tab. 1, these models demon-
strate distinct architectural implementations in both
expert routing strategies and attention mechanisms.
Specifically, the Mixtral series adopts a uniform
top-k routing mechanism across all expert mod-
ules, integrated with Grouped-Query Attention
(GQA) (Ainslie et al., 2023) for efficient com-
putation. In contrast, Qwen1.5-MoE-A2.7B and
DeepSeek-V2-Lite implement a hybrid expert man-
agement system, where shared experts remain per-
manently activated while routed experts are dy-
namically selected, combined with Multi-Head At-
tention (MHA) (Vaswani, 2017) and Multi-Head
Latent Attention (MLA) (Dai et al., 2024) mecha-
nisms, respectively.

Calibration Datasets and Benchmarks. Our
calibration framework draws on two comple-
mentary corpora: the open domain C4 (Raf-
fel et al., 2020) and the mathematically focused
MATH (Hendrycks et al., 2021b). From each data
set, we randomly sub-sample 512 examples for cali-
bration. The C4 provides broad linguistic coverage,
which is essential for cross-domain generalization,
while the MATH specifically targets mathematical
reasoning through its problem-solution pairs. Eval-
uation employs a series of standardized metrics
to assess both linguistic and mathematical reason-
ing abilities, ensuring a comprehensive evaluation
across diverse domains.

Evaluation employs a multi-aspect benchmark

31587



Method Activated
Params General Tasks Domain-Specific Tasks

None (Top-2) 12.88B 67.80 48.34

Top-1 7.24B 62.87 41.43
Ours (C4) 7.36B 65.52 40.16
Ours (Math) 7.36B 65.36 41.91

Table 2: Analysis of the effects of different calibration
datasets on general and domain-specific tasks.

architecture comprising ten standardized tasks from
lm-evaluation-harness (Gao et al., 2023). For gen-
eral language understanding assessment under zero-
shot settings, we utilize eight established bench-
marks: ARC Challenge and ARC Easy (Clark et al.,
2018), BoolQ and RTE (Wang et al., 2019), Hel-
laSwag (Zellers et al., 2019), MMLU (Hendrycks
et al., 2021a), OpenBookQA (Mihaylov et al.,
2018), and Winogrande (Sakaguchi et al., 2019).
Mathematical reasoning evaluation employs two
specialized benchmarks: GSM8K (Cobbe et al.,
2021) and Minerva Math (Hendrycks et al., 2021c).

Evaluation Metrics. For the evaluations, we
first measure the model performance on the bench-
marks mentioned above. Subsequently, we eval-
uate the model’s inference acceleration using the
Hook strategy. In particular, we track four key
metrics: average activated expert counts per token
(Act), average scores on evaluated tasks (Lm-Eval),
time to first token (TTFT) and inter-token latency
(ITL). Following NVIDIA’s recommended LLM in-
ference metrics1, TTFT is calculated as the latency
between the arrival of a request and the generation
of the first token during the pre-fill stage, while
ITL is computed as the latency between succes-
sive token generations for the same request in the
decoding stage.

4.2 Compensation Performance for Models

In this subsection, we evaluate the proposed Hook
method in both general and domain-specific tasks
to provide a comprehensive assessment of model
performance when reducing the number of acti-
vated experts.

Experiment Setup. We conduct experiments on
four widely used MoE models, setting the perfor-
mance degradation tolerance r to 1.5%. Using a
binary search procedure, we determine the specific
layers for inserting the Hook module. For each
selected layer, the Hook module is placed in front
of the gate within the MoE module, and the top-k
parameter is adjusted accordingly.

1Our implementation is based on https://docs.nvidia.
com/nim/benchmarking/llm/latest/metrics.html.

For general tasks, we used 512 calibration sam-
ples from the C4 dataset, each with a sequence
length of 2048. For domain-specific tasks, we sam-
ple 512 instances from the MATH dataset, also
with a sequence length of 2048. For Mixtral-8x7B
and Mixtral-8x22B, the hidden dimension of Hook
module is set to the intermediate size of the expert,
whereas for Qwen1.5-14.3B-A2.7B and DeepSeek-
V2-Lite (fine-grained expert models), the hidden
dimension is configured to be twice the intermedi-
ate size of the expert. All parameters remain frozen
during fine-tuning, except those within the Hook
module, which constitute only 0.14%–0.70% of
the total parameters. We set the learning rate to
1× 10−4 and fine-tuned it for 1000 epochs.

Once the Hook module is fine-tuned, we evaluate
the performance of the compressed MoE models.
For general tasks, we report zero-shot accuracies on
eight benchmarks. For domain-specific math tasks,
we provide 4-shot results for Minerva Math and 5-
shot results for GSM8K. Due to space constraints,
we present results for domain-specific tasks only
for Mixtral-8x7B.

Compensation performance for General
Tasks. Tab. 3 summarizes the precision, param-
eter count, and number of activated experts for the
four baseline models. We also provide baseline
results under a lower top-k activation for reference.
Across all four models, our Hook method deliv-
ers superior performance compared to the original
model, despite activating fewer experts.

Concretely, activating only one expert in Mixtral-
8x7B reduces activated parameters to 57.1% com-
pared to two activated experts, at the cost of a
mere 2.5% performance drop. Using the Hook
module for accuracy compensation, performance
improves by an additional 2.43% compared to sim-
ply reducing the number of active experts with-
out Hook. Similarly, activating a single expert in
Mixtral-8x22B reduces the activated parameters
to 57.3%, with a performance decrease of 1.68%,
and Hook recovers 3.01%. For Qwen1.5-14.3B-
A2.7B, activating an expert yields 76.9% of the
original parameters activated (with four experts),
causing only a performance degradation of 1.87%,
while Hook further recovers 0.31%. Lastly, acti-
vating three experts in DeepSeek-V2-Lite reduces
the activated parameters to 76.4% of the original
six-expert setting, reducing performance by 1.81%,
which Hook mitigates by 0.32%. In general, Hook
activates only 25%–50% of the experts compared
to the original models, recovering an additional

31588

https://docs.nvidia.com/nim/benchmarking/llm/latest/metrics.html
https://docs.nvidia.com/nim/benchmarking/llm/latest/metrics.html


Model Activated
Params

Total
Params Act. ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE WinoGrande Average

Mixtral-8x7B
Origin (k=2) 12.90B 46.70B 2.00 56.66 84.34 85.23 64.82 67.88 35.20 71.48 76.80 67.80
Top-k (k=1) 7.24B 46.70B 1.00 50.90 78.87 80.80 60.65 61.60 31.40 68.23 70.48 62.87
Hook 7.36B 46.82B 1.00 55.80 82.07 85.63 64.06 62.82 34.40 64.26 73.32 65.30 (+2.43)

Mixtral-8x22B
Origin (k=2) 39.15B 140.60B 2.00 59.39 85.94 88.07 67.15 74.35 37.00 69.31 80.58 70.22
Top-k (k=1) 22.24B 140.60B 1.00 52.99 81.78 84.01 63.24 68.86 34.00 63.54 75.85 65.53
Hook 22.44B 140.80B 1.00 58.19 84.97 85.29 66.38 69.28 34.80 72.90 76.48 68.54 (+3.01)

Qwen1.5-14.3B-A2.7B
Origin (k=4) 2.69B 14.31B 4.00 46.08 75.34 86.42 62.84 74.12 33.20 74.37 74.74 65.89
Top-k (k=1) 2.06B 14.31B 1.00 46.76 77.06 85.26 57.49 66.45 30.20 75.09 71.35 63.71
Hook 2.07B 14.32B 1.00 48.38 77.48 85.35 58.10 66.34 30.00 76.17 70.32 64.02 (+0.31)

DeepSeek-V2-Lite
Origin (k=6) 2.80B 16.40B 6.00 46.59 78.32 79.08 58.55 54.81 33.40 61.37 70.32 60.31
Top-k (k=3) 2.13B 16.40B 3.00 42.92 77.02 76.09 56.73 52.00 32.00 60.29 68.35 58.18
Hook 2.14B 16.41B 3.00 43.77 77.06 76.18 56.81 51.80 31.80 62.45 68.11 58.50 (+0.32)

Table 3: Performance comparison of four general MoE models under various top-k settings with and without the
proposed Hook method. For each model, we report the number of activated parameters, total parameters, and the
zero-shot accuracies on eight general tasks, followed by the overall average.

0.31%–3.01% accuracy relative to simply lowering
the top-k without Hook.

Compensation performance for Domain-
Specific Tasks. As shown in Tab. 2, for domain-
specific tasks, using task-specific calibration data
yields better performance than using the general
pre-trained dataset. Hence, when selecting calibra-
tion data, it is advantageous to use data that closely
align with the target domain.

Analysis of Performance Gains Across Mod-
els. Hook module consistently achieves strong
performance across different MoE architectures,
with the most pronounced gains observed in coarse-
grained models, where it significantly outperforms
the baseline on all benchmarks. In fine-grained
MoE models, such as Qwen1.5-14.3B-A2.7B and
DeepSeek-V2-Lite, it still achieves statistically sig-
nificant improvements on five of the same bench-
marks, albeit with smaller absolute gains. In such
architectures, individual experts are less capable
and there is greater redundancy among them. Con-
sequently, reducing activation sparsity results in
only a slight performance drop, limiting the po-
tential for compensation. However, consistent out-
performance of the baseline on the majority tasks
demonstrates that Hook module is broadly applica-
ble and effective on diverse granularities of MoE.

4.3 Effect of TLNLE

In this subsection, we explore the broader appli-
cability of the TLNLE strategy, including its inte-
gration with existing dynamic-k methods and the
Hook module. The results are based on the Mixtral-
8x7B model.

Experiment Setup. In the experiment combin-
ing our method with the SOTA dynamic-k gating

Route Act. Lm-Eval

Origin (Top-2) 2.00 67.80

MoED (p = 0.6) 1.31 66.37
MoED (p = 0.7) 1.59 67.06
D2D (τ = 0.5) 1.50 67.17
D2D (τ = 0.6) 1.38 66.68
NAEE 1.50 67.32
MoED + TLNLE 1.33 66.82
D2D + TLNLE 1.39 67.19

MoED (p = 0.52) 1.07 64.88
D2D (τ = 0.9) 1.09 64.96
Hook + TLNLE 1.06 65.52

Table 4: Performance comparison of different routing
methods.

methods, we replicate the baselines of dynamic-k
gating and incorporate the TLNLE strategy. The
dynamic-k gating method uses a threshold to de-
termine whether to skip an expert. The TLNLE
strategy adjusts this threshold layer by layer, re-
ducing the number of activated experts in top lay-
ers. Specifically, in the MoED (Szatkowski et al.,
2023)experiment, the threshold p starts at 0.7 for
the first layer and decreases by 0.2/32 for each sub-
sequent layer. In the D2D (Huang et al., 2024)
experiment, the threshold τ starts at 0.5 for the first
layer and increases by 0.2/32 for each subsequent
layer. In the Hook experiment, TLNLE activates
two experts in the two bottom layers and one ex-
pert in the remaining layers. We report the Act
and LM-Eval metrics. The Act results are derived
from approximately 1 billion tokens in the router’s
choice statistics.

Baselines for Comparison. Previous stud-
ies, such as MoED (Szatkowski et al., 2023),
D2D (Huang et al., 2024), and NAEE (Lu et al.,
2024), have implemented dynamic-k routing us-

31589



ing fixed thresholds for expert activation. In these
methods, expert activation is determined by com-
paring the router’s output to predefined thresholds.

Evaluation Results. As shown in Tab.4, com-
pared to the baselines, the integration of our method
with MoED and D2D results in minimal increases
in the Act. MoED + TLNLE activates only 0.02
more experts than MoED (p = 0.6), yet achieves
a 0.45 increase in accuracy. Similarly, D2D +
TLNLE activates 0.01 more experts than D2D (τ =
0.6), but outperforms D2D (τ = 0.5). Compared to
the SOTA dynamic-k gating method, the combina-
tion of Hook + TLNLE achieves an improvement
of over 0.6% in overall performance, with a similar
number of activated experts.2

4.4 Acceleration of Inference Speed

In this subsection, we apply our proposed method
to the Mixtral-8x7B model and evaluate its perfor-
mance on two key inference metrics. We conducted
experiments on two different types of GPU to as-
sess the effectiveness of our method in accelerating
the inference speed.

Experiment Setup. The experiments are car-
ried out using transformers Python library. For
the TTFT measurement, the input sequence lengths
are set at 1024, 2048, and 4096 tokens, and the
output length is set at 1 token. Timestamps are
recorded immediately before and after inference,
with each measurement repeated 100 times. For
ITL measurement, the setup remains the same, ex-
cept that the maximum number of new tokens is
set to 256. The experiments are carried out on
systems with 1 node featuring 2x NVIDIA A800-
SXM-80GB GPUs (400GB/s NVLink bandwidth
and Bfloat16 Tensor Core with 312 TFLOPS) and
1 node with 2x NVIDIA H20-SXM-96GB GPUs
(900GB/s NVLink bandwidth and Bfloat16 Tensor
Core with 148 TFLOPS). The A800 is a compute-
oriented GPU, known for its high single-card per-
formance, while the H20 is an inference-oriented
GPU, optimized for high inter-GPU communica-
tion bandwidth. Model inference is performed us-
ing the Bfloat16 representation.

Evaluation Results. As illustrated in Fig.3, our
method achieves a TTFT speedup ranging from
1.24x to 1.46x, and an ITL speedup between 1.09x
and 1.13x, compared to the baseline model. In par-
ticular, the speed-up is more pronounced on the
inference-oriented H20 GPU than on the compute-

2Futher details of Act are provided in A.4.

1k 2k 4k
Context Length

200

300

400

500

600

700

Ti
m

e(
m

s)

(a)

1.24x

1.34x

1.39x
Origin(Top-2)
HookMoE

1k 2k 4k
Context Length

200

400

600

800

1000

Ti
m

e(
m

s)

(b)

1.42x

1.46x

1.43x
Origin(Top-2)
HookMoE

1k 2k 4k
Context Length

92
94
96
98

100
102
104

Ti
m

e(
m

s)

(c)

1.11x
1.09x

1.08x

Origin(Top-2)
HookMoE

1k 2k 4k
Context Length

70
72
74
76
78
80
82

Ti
m

e(
m

s)

(d)

1.13x 1.13x

1.12x

Origin(Top-2)
HookMoE

Figure 3: Performance comparison of TTFT and ITL
metrics on Mixtral-8x7B model. The subfigures demon-
strate: (a) TTFT measurements using A800 GPU; (b)
TTFT measurements using H20 GPU; (c) ITL measure-
ments using A800 GPU; (d) ITL measurements using
H20 GPU.

oriented A800 GPU. This outcome aligns with our
goal of accelerating inference for post-trained mod-
els while preserving accuracy. Our approach is par-
ticularly well-suited for deployment on inference-
optimized GPUs.

By activating fewer experts, our method directly
lowering the dominant GPU compute cost. How-
ever, as revealed by profiling with Nvidia Nsight,
CPU scheduling overhead alone can account for
up to 50% of the total inference time (Srivatsa
et al.). Thus, although our current implementa-
tion achieves a TTFT speedup ranging from 1.24x
to 1.46x under these conditions, we anticipate that
this speedup will become increasingly as modern
inference engines, such as vLLM (Kwon et al.,
2023) and SGLang (Zheng et al., 2024), continue
to improve their CPU scheduling efficiency.

5 Conclusion

In this paper, we propose a novel and lightweight
Hook compensation module for MoE models, ef-
fectively addresses the challenge of balancing com-
putational efficiency and model performance. Our
approach introduces minimal training overhead and
demonstrates consistent effectiveness across vari-
ous MoE models and hardware platforms. By in-
tegrating this module with the observed TLNLE
property, we offer a practical solution for deploying
efficient yet performant MoE models. This work
not only enhances the understanding of MoE ar-
chitectures but also provides valuable insights for
future research on efficient LLMs deployment.

31590



Limitations

Our approach effectively reduces the number of ex-
perts activated during inference and compensates
for performance degradation by adding parameters,
making it more efficient to deploy the mixture of ex-
perts (MoE). Despite the improvements, there are
several limitations. First, the hook method demon-
strates stronger compensation when fewer experts
are activated. However, as the number of activated
experts increases and approaches the original set-
ting, the accuracy compensation may become less
significant. Second, due to resource constraints, we
have not evaluated MoEs with over 141B param-
eters, such as DeepSeek-V3, Grok-1 and Qwen3.
As MoE continue to evolve and computational re-
sources expand, we plan to conduct experiments
on larger models to more comprehensively assess
the generalizability and scalability of our method.

Ethics Statement

Our research focuses on mitigating performance
degradation caused by reducing the number of acti-
vated experts by adding parameters for fine-tuning,
with the goal of improving inference speed with-
out sacrificing model performance. Although our
approach offers potential benefits for more effi-
cient deployment of advanced large language mod-
els (LLMs), we acknowledge the importance of
carefully considering the ethical implications of
deploying such models. The responsible use of
LLMs involves addressing biases, improving the
interpretability of the output, protecting data pri-
vacy, and conducting risk assessments. We are
committed to making our code transparent for the
responsible review and evaluation of the research
community.

Acknowledgement

This project is funded in part by the National Natu-
ral Science Foundation of China (No. 62272248),
and the Natural Science Foundation of Tianjin (No.
23JCZDJC01010).

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv
preprint arXiv:2305.13245.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,
and John Schulman. 2021. Training verifiers to solve
math word problems. Preprint, arXiv:2110.14168.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. 2024. Deepseek-
moe: Towards ultimate expert specialization in
mixture-of-experts language models. arXiv preprint
arXiv:2401.06066.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
arXiv preprint arXiv:2403.14608.

Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao,
and Bohan Zhuang. 2023. Sensitivity-aware visual
parameter-efficient fine-tuning. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 11825–11835.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021a. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021c. Measuring mathematical
problem solving with the math dataset. NeurIPS.

31591

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836


Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao,
Chen Zhang, Yang Jin, Kun Xu, Liwei Chen, Song-
fang Huang, and Yansong Feng. 2024. Harder tasks
need more experts: Dynamic routing in moe models.
arXiv preprint arXiv:2403.07652.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
and Geoffrey E Hinton. 1991. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Marko Kabić, Bowen Wu, Jonas Dann, and Gustavo
Alonso. 2025. Powerful gpus or fast interconnects:
Analyzing relational workloads on modern gpus. Pro-
ceedings of the VLDB Endowment, 18(11):4350–
4363.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning, pages 22137–22176. PMLR.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan
Huang, Bo Zhang, Junchi Yan, and Hongsheng Li.
2024. Not all experts are equal: Efficient expert

pruning and skipping for mixture-of-experts large
language models. arXiv preprint arXiv:2402.14800.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In EMNLP.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2019. Winogrande: An ad-
versarial winograd schema challenge at scale. arXiv
preprint arXiv:1907.10641.

Vikranth Srivatsa, Dongming Li, Yiying Zhang, and
Reyna Abhyankar. Can Scheduling Overhead Domi-
nate LLM Inference Performance? A Study of CPU
Scheduling Overhead on Two Popular LLM Infer-
ence Systems. https://mlsys.wuklab.io/posts/
scheduling_overhead/.

Filip Szatkowski, Bartosz Wójcik, Mikołaj Piórczyński,
and Kamil Adamczewski. 2023. Sadmoe: Exploiting
activation sparsity with dynamic-k gating. arXiv e-
prints, pages arXiv–2310.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2023. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv
preprint arXiv:2310.06694.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. 2024.
Sglang: Efficient execution of structured language
model programs. arXiv preprint arXiv:2312.07104.

31592

https://mlsys.wuklab.io/posts/scheduling_overhead/
https://mlsys.wuklab.io/posts/scheduling_overhead/
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf


A Appendix

A.1 Evaluation of Adjust Top-k
In the top-k adjustment experiment, we control the
number of experts activated per layer by modifying
the number of activated experts parameter in the
configuration file, varying it from 1 to 8. Fig. 4
illustrates the results of varying top-k settings. As
observed, performance is optimal with the origi-
nal top-2 configuration, while performance signifi-
cantly drops with top-1. However, when increasing
the number of experts from the top-3 to top-8, per-
formance still declines slightly. This phenomenon
shows that after the key experts are activated, the
model’s ability to resist noise increases.

1 2 3 4 5 6 7 8
Top-K

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

K = 2

Arc challenge
Arc easy
Boolq
Hellaswag
MMLU
Rte
Winogrande

Figure 4: Evaluation Mixtral-8×7B in different general
tasks.

A.2 Parameter Calculate for MoE Models
Consider a Mixture of Experts (MoE) model with
the following parameters:

P = L×(PAttention+PMoE)+PEmbedding+PLM_head

Let L be the number of transformer blocks, h rep-
resent the hidden size, hffn−expert the hidden size
of the expert, k the number of experts selected per
token, nr

e the total number of router experts, ns
e the

total number of shared experts, and v the size of
the vocabulary. The total number of parameters in
the model is given by:

Pt = L

×
(
h2 × 4 + h× hffn_moe × 3× (nr

e + ns
e)
)

+ 2× v × h

The term h2 × 4 corresponds to the Attention layer
parameters PAttention, and the term h×hffn_moe×

3× (nr
e + ns

e) accounts for the MoE layers PMoE,
including both routing and shared experts. Both
parameters PEmbedding and PLM_head are v×h. Simi-
larly, the activation values are calculated as follows:

Pa = L

×
(
h2 × 4 + h× hffn_moe × 3× (k + ns

e)
)

+ 2× v × h

This expression captures the contributions from
both the standard transformer layers and the MoE
layers, as well as the embedding layer correspond-
ing to the vocabulary.

A.3 Training Curve

In this subsection, we present the loss curve for four
baseline models during training in Fig. 5. A consis-
tent trend is observed across all four MoE models:
a steady reduction in loss. This indicates that the
models effectively explored and implemented more
optimal activation compensation strategies.

0 200 400 600 800 1000
Epochs

0.5

1.0

1.5

2.0

Lo
ss

Mixtral-8x7B

0 200 400 600 800 1000
Epochs

0.0

0.5

1.0

1.5

2.0

Lo
ss

Mixtral-8x22B

0 200 400 600 800 1000
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Qwen1.5-14.3B-A2.7B

0 200 400 600 800 1000
Epochs

0.2

0.4

0.6

0.8

Lo
ss

DeepSeek-V2-Lite

Figure 5: Loss curves for four baseline models.

A.4 Details of Dynamic-k Routing

In this subsection, we present a comprehensive
analysis of the average number of activated experts
at each of the 32 layers in Mixtral-8×7B, evaluated
over 2.1M tokens. Our investigation compares var-
ious dynamic-k routing strategies to highlight their
impact on the utilization of experts across different
layers. Details are shown on Tab. 5.

A.5 LLM Inference Metrics

Time to First Token (TTFT): This metric mea-
sures the latency that a user experiences before re-
ceiving the model’s output. TTFT covers the prefill
time. Specifically, TTFT increases with the length

31593



Layer MoED D2D TLNLE

0 1.04 1.05 2.00
1 1.07 1.08 2.00
2 1.06 1.08 1.00
3 1.07 1.09 1.00
4 1.06 1.08 1.00
5 1.07 1.08 1.00
6 1.08 1.10 1.00
7 1.08 1.10 1.00
8 1.09 1.11 1.00
9 1.09 1.11 1.00

10 1.09 1.11 1.00
11 1.06 1.08 1.00
12 1.07 1.09 1.00
13 1.10 1.13 1.00
14 1.09 1.11 1.00
15 1.08 1.10 1.00
16 1.09 1.11 1.00
17 1.07 1.09 1.00
18 1.08 1.09 1.00
19 1.07 1.08 1.00
20 1.07 1.08 1.00
21 1.07 1.09 1.00
22 1.07 1.09 1.00
23 1.07 1.09 1.00
24 1.07 1.08 1.00
25 1.06 1.08 1.00
26 1.06 1.08 1.00
27 1.06 1.07 1.00
28 1.05 1.07 1.00
29 1.06 1.07 1.00
30 1.05 1.07 1.00
31 1.08 1.10 1.00

Act. 1.07 1.09 1.06
LM-Eval 64.88 64.96 65.52

Table 5: Layer-wise comparison of the average number
of activated experts for MoED (p = 0.52), D2D (τ =
0.9), and TLNLE (2,2).

of the input prompt due to the attention mecha-
nism’s requirement to process the entire input se-
quence and build the key-value cache (KV cache),
which is essential for initiating the iterative token
generation loop. The longer the prompt, the greater
the TTFT, as more time is needed to prepare the
KV-cache.

Inter-token Latency (ITL): ITL represents the
average time between the generation of consecutive
tokens, also known as the time per output token
(TPOT). ITL is formally defined as:

ITL =
e2e_latency − TTFT

Total_output_tokens − 1

Here, e2e_latency denotes the total end-to-end la-
tency of the inference process, and TTFT is the
time to the first token. The subtraction of 1 from
the denominator reflects the fact that the first token
generation is excluded from the ITL calculation,
as it pertains to the prefill stage, not the iterative
decoding process.

Dataset
Size ARC-c ARC-e HellaSwag MMLU Average

512 55.80 82.07 64.06 62.82 66.19
1024 54.69 82.20 63.82 61.84 65.64

Table 6: Performance comparison across different
dataset sizes.

Device TTFT
(Transformers)

TTFT
(SGLang)

ITL
(Transformers)

ITL
(SGLang)

2xA800 1.24× 1.99× 1.11× 1.23×
2xH20 1.42× 1.71× 1.13× 1.21×

Table 7: Performance comparison of TTFT and ITL
metrics on Mixtral-8x7B model.

It is important to note that as the length of the
output sequence increases, the size of the KV-cache
also grows, which increases memory consumption.
Additionally, the computational cost of the atten-
tion mechanism increases linearly with the length
of the input and output sequence generated so far.
Although this computation is typically not compute
bound, the growing memory demand can impact
overall performance.

A.6 Ablation Study of Dataset Size
According to Sec. 4.1, we performed an ablation
study by adjusting the size of the calibration dataset
from 512 to 1024 in Tab. 6. We found that simply
increasing the size of the dataset within the same
domain did not yield significant performance im-
provements.

A.7 Adapt Inference Framework
As discussed in Sec. 4.4, the adoption of
mature inference frameworks would further
bridge the gap between theoretical and empirical
speedup gains. Based on SGLang v0.4.6.post5,
we implemented lightweight adaptations for
Mixtral-8x7B (modifying the implementation in
sglang.srt.models.mixtral) and performed bench-
marking on H20 and A800 systems with 1024 to-
ken sequences under pipeline parallelism. Perfor-
mance comparison between hardware platforms is
summarized in Tab. 7.

A.8 Benchmark Description
The following section provides a brief overview
of the benchmarks used in our evaluation. These
benchmarks are designed to assess various aspects
of language understanding and reasoning capabil-
ities across diverse domains. Tab. 9 summarizes
each benchmark and its corresponding task descrip-
tion.

31594



gidx_s gidx_e Act ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE WinoGrande Average

0 0 1.88 57.34 83.92 85.41 64.76 67.25 33.40 69.68 74.11 66.98
0 1 1.75 56.23 83.38 85.11 64.27 66.43 33.20 66.79 74.19 66.20
0 5 1.25 55.12 81.99 85.32 62.78 63.47 32.00 64.98 73.40 64.88
0 6 1.13 54.35 81.31 85.38 62.50 63.47 31.40 64.62 72.30 64.42
1 2 1.75 55.12 83.29 85.17 64.05 65.23 33.80 67.51 75.61 66.22
1 3 1.63 55.03 82.49 85.02 63.83 63.84 34.00 66.06 73.72 65.50
1 4 1.50 53.67 82.41 85.26 63.34 63.82 33.80 64.98 74.74 65.25
1 5 1.38 53.07 81.65 84.98 62.81 63.90 33.00 64.26 74.90 64.82
1 6 1.25 52.90 81.14 85.02 62.85 63.92 32.00 65.34 73.72 64.61
1 7 1.13 53.84 81.19 85.20 62.77 63.85 32.40 66.06 74.27 64.95
3 3 1.88 55.89 83.63 85.60 64.64 66.18 34.20 69.31 76.24 66.96
3 4 1.75 55.89 83.63 85.60 64.64 66.18 34.20 69.31 76.24 66.96
4 5 1.75 54.95 82.41 85.17 63.82 67.83 33.80 70.40 75.61 66.75
4 6 1.63 54.52 82.49 84.83 63.52 67.87 32.00 71.48 75.45 66.52
4 7 1.50 55.12 82.11 84.83 63.56 67.79 33.20 70.76 75.93 66.66
6 6 1.88 56.57 84.09 85.38 64.63 68.02 33.40 70.40 76.40 67.36
0 2 1.63 55.29 83.33 85.14 63.62 65.00 32.80 67.87 74.43 65.94
0 3 1.50 54.78 82.79 84.98 63.63 63.54 34.60 65.70 73.72 65.47
0 4 1.38 54.78 82.74 85.17 63.05 63.15 32.60 64.26 72.61 64.80
0 7 1.00 54.35 81.31 85.38 62.50 63.47 31.40 64.62 72.30 64.42
1 1 1.88 55.46 83.46 85.54 64.56 66.68 33.60 68.59 76.40 66.79
2 2 1.88 56.40 84.18 85.11 64.37 66.42 35.20 69.68 75.77 67.14
2 3 1.75 55.03 83.21 85.32 64.18 64.85 35.00 68.23 76.32 66.52
2 4 1.63 53.92 82.74 85.41 63.72 64.78 34.00 67.15 75.30 65.88
2 5 1.50 53.67 81.90 85.47 63.10 65.12 33.80 67.51 75.14 65.71
2 6 1.38 53.58 81.48 85.47 63.08 65.03 34.20 67.15 74.66 65.58
2 7 1.25 52.82 81.82 85.47 63.04 64.92 34.20 68.23 74.74 65.66
3 5 1.63 54.35 81.82 85.44 63.37 66.06 33.40 67.15 75.22 65.85
3 6 1.50 53.84 81.78 85.54 63.25 66.13 32.40 67.51 75.06 65.69
3 7 1.38 53.92 81.65 85.29 63.25 66.08 33.00 66.79 74.35 65.54
4 4 1.88 55.46 83.25 85.23 64.41 67.75 34.60 70.40 75.85 67.12
5 5 1.88 56.14 83.38 84.98 64.43 68.02 34.60 71.12 75.77 67.31
5 6 1.75 55.89 83.08 84.86 64.13 68.00 33.80 70.40 76.01 67.02
5 7 1.63 55.72 82.95 84.92 64.03 68.03 35.20 71.12 76.24 67.28
6 7 1.75 55.55 83.42 85.32 64.54 67.81 36.20 71.12 75.77 67.47
7 7 1.88 56.74 83.75 85.29 64.84 67.73 36.20 70.76 75.93 67.66

Table 8: Evaluation results of act and 8 general tasks under different sets of gidx_s and gidx_e.

Benchmark Description

ARC-c / ARC-e Tasks involving complex reasoning
over a diverse set of questions.

HellaSwag Tasks to predict the ending of sto-
ries or scenarios, testing compre-
hension and creativity.

MMLU Massive Multitask Language Under-
standing benchmark for broad do-
main language evaluation. Several
variants are supported.

OBQA Open-book question answering
tasks that require external knowl-
edge and reasoning.

RTE / BoolQ A suite of challenging tasks de-
signed to test a range of language
understanding skills.

WinoGrande A large-scale dataset for corefer-
ence resolution, inspired by the
Winograd Schema Challenge.

Table 9: Overview of the benchmarks used in the evalua-
tion, including their descriptions and target capabilities.

31595


