TempParaphraser: ''Heating Up'' Text to Evade AI-Text Detection
through Paraphrasing

1,2,4

Junjie Huang Ruiquan Zhang'#

1,2,4

Jinsong Su Yidong Chen!234f

School of Informatics, Xiamen University, China
2National Institute for Data Science in Health and Medicine, Xiamen University, China
*National Language Resources Monitoring and Research Center
for Education and Teaching Media, Xiamen University, China
*Key Laboratory of Multimedia Trusted Perception and Efficient Computing,
Ministry of Education of China, Xiamen University, China

{junjie2001,rqzhang}@stu.xmu.edu.cn

Abstract

The widespread adoption of large language
models (LLMs) has increased the need for
reliable Al-text detection. While current de-
tectors perform well on benchmark datasets,
we highlight a critical vulnerability: increas-
ing the temperature parameter during infer-
ence significantly reduces detection accuracy.
Based on this weakness, we propose Temp-
Paraphraser, a simple yet effective paraphras-
ing framework that simulates high-temperature
sampling effects through multiple normal-
temperature generations, effectively evading
detection. Experiments show that TempPara-
phraser reduces detector accuracy by an av-
erage of 82.5% while preserving high text
quality. We also demonstrate that training on
TempParaphraser-augmented data improves de-
tector robustness. All resources are publicly
available at https://github.com/HJJWorks/
TempParaphraser.

1 Introduction

Large language models (LLMs) have significantly
enhanced productivity across various fields (M Al-
shater, 2022; Yuan et al., 2022). However, their
rapid deployment raises concerns about their mis-
use in creating fake news, malicious reviews, and
facilitating academic dishonesty (Ahmed et al.,
2021; Lund et al., 2023; Lee et al., 2023). In
response, a growing number of Al-text detectors
have been proposed to distinguish between human-
written and Al-generated content (Mitchell et al.,
2023; Bao et al., 2024; Guo et al., 2023). Under-
standing and systematically analyzing the limita-
tions of these detectors is crucial for developing
more robust detection systems.

While current detectors show promising results
on benchmark datasets (Bao et al., 2024), recent
studies (Sadasivan et al., 2023; Krishna et al., 2023;
Zhou et al., 2024) have explored attack methods

¥ Corresponding author.

{jssu, ydchen}@xmu.edu.cn

Statistical-Based Detectors
0.0 0.9

-1.2
-2.4
-3.6
-4.8
-6.0
-7.2
-8.4
-9.6
-10.8

Log-Likelihood
—— LogRank
—— Entropy

00 07 08 09 10 11 12 13 14 15 16 1.7 18 19 20
Temperature

Neural-Based Detectors

Al-Generated Text Detection Score

—— Fast-DetectGPT |_g 4

HC3
— SA
- —— OpenAl
Q 0.11 — RADAR
< o] — RAD

00 07 08 09 10 11 12 13 14 15 16 1.7 18 19 20
Temperature

Figure 1: Effect of temperature on Al-text detec-
tors. As the temperature increases during LLM infer-
ence, both statistical-based and neural-based detectors
show lower confidence scores in identifying the text
as Al-generated. Details about these detectors are in
Appendix A.

against Al-text detectors, successfully misleading
their predictions. We aim to extend this line of
work with stronger attack methods to better evalu-
ate detector robustness.

We first investigate potential vulnerabilities in
existing detectors that can be exploited. Studies
(Ippolito et al., 2020; Fishchuk and Braun, 2023;
Pu et al., 2023; Dugan et al., 2024) have shown
that simple adjustments to generation parameters
in LLM decoding, such as top-p, repetition penalty,
and temperature, can influence the detectability
of generated text. Among these, temperature has
received limited attention, with prior work typically
restricting analysis to a narrow range (Fishchuk and

31543

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 31543-31562
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/HJJWorks/TempParaphraser
https://github.com/HJJWorks/TempParaphraser

~ Inference at High Temperature®
LLM

LT
A
Inference T simulate
at Normal | High Temperature
Temperature | Distribution
1

Normal
Temperature®
/M

token token

Figure 2: Our main idea is shown in the dashed box:
Using normal temperature for multiple independent
samplings simulates the smoother distribution of high-
temperature generation, leading to increased output ran-
domness.

Braun, 2023), where the impact on detection was
minimal.

To better understand the effect of temperature on
detection, we conduct a systematic and in-depth in-
vestigation. Our preliminary experiments show that
increasing the temperature during LLM infer-
ence significantly reduces the confidence scores
of detectors, making Al-generated text more dif-
ficult to identify (see Figure 1). Further analysis
suggests that current detectors rely on specific sta-
tistical patterns in text distribution, which can be
disrupted by the increased randomness introduced
through higher temperature settings (see Section
3.2).

However, this approach introduces a trade-off:
higher temperatures often lead to degraded text
quality (see Appendix B) (Peeperkorn et al., 2024),
limiting its direct applicability.

To exploit the observed vulnerability and address
the trade-off, we propose TempParaphraser, a
simple yet effective post-processing framework.
TempParaphraser temporarily stores the original
text generated by LLMs, paraphrases it, and out-
puts an optimized version that can evade detection.

This framework incorporates a paraphrasing
model fine-tuned from an LLM using synthetic
data. As shown in Figure 2, the TempParaphraser
framework simulates the smoother distribution in
high-temperature generation by producing multiple
paraphrased variants at normal temperature. This
process introduces randomness typically observed
under high-temperature settings, which manifests
as higher-entropy token distributions that disrupt
the statistical patterns leveraged by detectors.

Our main contributions are as follows:

* We conduct a comprehensive analysis of how

temperature influences the performance of Al-
text detectors (Section 3.1). Furthermore, we
provide an entropy-based theoretical explana-
tion that clarifies why detection performance
degrades under high-temperature sampling
(Section 3.2).

* We propose TempParaphraser, a simple yet
effective paraphrasing framework that oper-
ates independently of the original generation
model. Building on the entropy-based per-
spective and inspired by Jensen’s inequality,
our method uses multiple normal-temperature
generations to simulate high-temperature ef-
fects (Section 4). This method avoids the com-
mon trade-off between detection evasion and
text quality (Section 5.2).

* We further demonstrate that TempParaphraser
can serve not only as an attack tool but also
as a data augmentation tool to improve the ro-
bustness of Al-text detectors (Section 5.3.3).

2 Related Work

AI-Text Detection Current detection methods can
be mainly categorized into two types: 1) Statistical-
based methods (Mitchell et al., 2023; Bao et al.,
2024; Ma and Wang, 2024), which detect Al-
generated text by analyzing differences in vocab-
ulary distribution between human-written and Al-
generated content. These methods assume that
LLMs, trained on large-scale corpora, tend to
favor a specific subset of high-frequency words.
In contrast, human-written text is more context-
driven and exhibits greater diversity in word choice
(Gehrmann et al., 2019). 2) Neural-based methods
(Guo et al., 2023; SuperAnnotate, 2024), which use
deep learning models to distinguish Al-generated
text from human-written text. For example, So-
laiman et al. (2019) fine-tuned RoBERTa-based
models (Liu et al., 2019) to detect GPT-2-generated
text (OpenAl, 2019). Additionally, Hu et al. (2023)
improves detection robustness through adversarial
training.

Additionally, there is a distinct approach, al-
though not a direct detection method, which in-
volves watermarking Al-generated text by embed-
ding imperceptible patterns to facilitate its iden-
tification (Kirchenbauer et al., 2023; Zhao et al.,
2023).

Our proposed method is effective against all the
above-mentioned detection strategies.

Attacks on AlI-Text Detection Shi et al. (2024)

31544

demonstrated the effectiveness of word substitution
attacks against Al-text detectors. Zhou et al. (2024)
proposes the HMGC framework, which utilizes
adversarial attacks to perform minor token-level
perturbations in Al-generated text, confusing detec-
tors and evading detection. Similarly, Wang et al.
(2024) introduces the RAFT framework, which also
applies token-level manipulations to bypass Al-text
detectors.

Paraphrasing is another common approach.
Fishchuk and Braun (2023) utilized carefully de-
signed prompts to instruct models to rephrase the
text. Alexander (2023) proposed prompts that
increase perplexity and burstiness, making Al-
generated text appear more human-like. Sadasivan
et al. (2023) and Krishna et al. (2023) explored
paraphrasers fine-tuned from LLMs to rewrite Al-
generated text. However, these methods treat para-
phrasing as a black-box transformation, without
explicitly leveraging the vulnerabilities of current
detectors.

Another line of research reveals that adjusting
sampling parameters such as repetition penalty,
temperature, top-p, and top-k can help evade detec-
tion to some extent (Ippolito et al., 2020; Fishchuk
and Braun, 2023; Pu et al., 2023; Dugan et al.,
2024). Yet most prior studies explore a limited
temperature range, leaving the deeper relationship
between temperature and detection success insuffi-
ciently examined. In contrast, our work conducts a
more systematic and fine-grained analysis of how
high-temperature decoding disrupts the distribu-
tional patterns detectors rely on, and further lever-
ages this insight to develop effective attack strate-
gies.

3 Preliminary Experiment

To explore the impact of temperature on Al-text
detection, we conducted a preliminary experiment.

3.1 Settings and Results

We selected 3,000 questions from the Dolly dataset
(Conover et al., 2023) and used the Llama-3.1-8B-
Instruct model (Dubey et al., 2024) to generate
responses with different temperature settings. In
particular, the temperature of 0.0 represents greedy
sampling.

As shown in Figure 1, the results reveal a strong
correlation between temperature and Al-text de-
tection confidence score. As the temperature in-
creases, detection scores decrease, meaning detec-

(INPUT: I want to eat)
o g
o
LLM Human

e« «
“«a

AI-Text
Detector® T

Source Model/
Surrogate Modeles

Suspected AI Token

Low Similarity
Maybe Human Text

High Similarity!
Maybe LLM Text

Figure 3: Principle of statistical-based detection
methods. These methods assume that large language
models trained on similar corpora exhibit comparable
distributional preferences (Gehrmann et al., 2019; Bao
et al., 2024). A detector generates a reference distri-
bution using either the source model or a surrogate
model, and then compares the token-level probabili-
ties of the text under inspection with this reference. In
practice, measures such as cross-entropy, perplexity, or
rank-based statistics are employed. As illustrated, Al-
generated text tends to yield lower cross-entropy with
the reference model. In contrast, human-written text,
with greater stylistic diversity, typically yields higher
cross-entropy. Aggregated token-level features are then
used to estimate whether the text is Al-generated or
human-written.

tors become less confident in classifying text gen-
erated at that temperature as Al-generated. This
suggests that higher-temperature sampling makes
Al-generated text harder to detect. In Section 3.2,
we analyze why temperature influences Al-text de-
tection performance.

3.2 Detailed Analysis

The probability of generating the next token in
mainstream large language models is given by:

~exp(zy)
Zt’ev exp(zy)’

where V' denotes the vocabulary and z; is the
model’s unnormalized logit for token ¢.

Let pHuman(- | t<;) denote the conditional dis-
tribution over the j-th token, and pai(- | t<;)
the corresponding distribution for Al-generated
text. Statistical-based detection methods posit that
LLMs trained on large corpora exhibit distribu-
tional preferences (Gehrmann et al., 2019; Bao
et al., 2024), yielding more deterministic choices

p(t; | t<j)

31545

LLM Text
Text‘ Segmentation
1 NZEXS
1 ‘ Paasing
Sentence i Hodel

This can help to reduce the
risk of robbery and other
security threats.

security threats.

security hazards.

Candidate Sentences
This can decrease the danger of robbery
and other types of security threats.

It may help you reduce robbery and other

It can reduce robbery, and other 0.21

TempParaphraserZ

P &
AI-Text Human-
Detector®@ Text like
Integration Text

0.08 t

New Sentence i

It may help you reduce
robbery and other security
threats.

Figure 4: The pipeline of the TempParaphraser framework. First, we fine-tune the LLM using the data generated
in Section 4.2.2 to obtain the paraphrasing model. Next, we input Al-generated text for processing. TempParaphraser
begins by segmenting the text into individual sentences. Each sentence is then paraphrased multiple times. Following
this, we employ the approach described in Section 4.2.3 and use an Al-text detector to select the best result for
each sentence. Finally, the selected sentences are combined in sequence to generate the final output, which is more
human-like and harder to distinguish from human-written text.

that favor high-probability tokens. In contrast, hu-
man writing shows greater variability due to seman-
tics, context, and individual style, which typically
implies higher conditional entropy empirically:

H(pai(- | t<j)) < H(pauman(- | t<j))-

As shown in Figure 3, conditional entropy has
served as a key indicator in prior statistical-based
detection studies of Al-generated text.

Next, we consider the adjustable temperature pa-
rameter during LLM inference, which controls the
smoothness of the output probability distribution
by scaling the model’s logits. A higher tempera-
ture creates a smoother distribution, increasing the
randomness in token selection (Peeperkorn et al.,
2024). This increases the entropy of Al-generated
text, thereby reducing its distributional differences
from human-written text and potentially making it
harder to detect.

However, our understanding of neural networks
is still limited (Rauker et al., 2023), making it dif-
ficult to directly analyze their internal decision-
making mechanisms. Based on our empirical re-
sults (Figure 1), it is reasonable to infer that neural-
based detectors rely, at least partially, on the dis-
tributional differences between human-written and
Al-generated text.

4 Methodology

In this section, we present the core principles and
implementation details of the proposed TempPara-
phraser framework.

4.1 Core Principles

As analyzed in Section 3.2, while high-temperature
sampling enhances distribution smoothness and im-
proves evasion against detectors, it also degrades

text quality (Appendix B). To address this trade-off,
we propose an alternative approach that simulates
the effects of high-temperature sampling through
multiple independent samplings at a normal tem-
perature Thormal-

Specifically, we generate N independent se-
quences in parallel, where each sequence follows
its own sampling path. For the ¢-th path, the con-
ditional next-token distribution at normal tempera-
ture is

(@) O €xp (Zt(Z) /Tnormal)
anormal (tj | t<]) - (7,) .
Zt’eV exp(zt, /Tnormal)

By averaging across the N sampled trajectories,
we define the ensemble distribution at position j:
L\) (i)
Pave(ty) = N qumml (5 | ZL'<Zj)-
i=1
In an autoregressive model, early token differ-
ences propagate, causing divergence in later token
distributions. Each individual sample at 7}ormal
tends to be relatively sharp. However, by Jensen’s
inequality, the ensemble entropy satisfies

1 i i
Hpags) = ~ S H (B0 119).
=1

This higher-entropy ensemble suggests that mul-
tiple normal-temperature samples collectively yield
a broader and more diverse token distribution.
Consequently, the likelihood of obtaining at least
one sequence with a low detector confidence
score increases with N, thereby approximating
the detector-evasion capability of high-temperature
sampling.

31546

4.2 Overall Framework and Implementation
Details

We define the sampling unit at the sentence level,
meaning that each sentence within the paraphrased
segment is sampled and rewritten multiple times.
This process is repeated until the entire segment is
fully paraphrased.

Although this approach may sacrifice some con-
textual coherence, focusing on sentence-level para-
phrasing allows the paraphrasing model to refine
each sentence more precisely.

Our overall framework is illustrated in Figure 4.
Next, we will explain the key details of our method.

4.2.1 The Paraphrasing Model

The paraphrasing model takes input text, para-
phrases it in a more human-like manner, and out-
puts the revised version. We choose a decoder-
only transformer model (Qwen Team, 2024; Dubey
et al., 2024; Javaheripi et al., 2023) as the para-
phrasing model and fine-tune it. Given the com-
putational cost of multiple samplings, we select
lightweight LLMs (with 1-3 billion parameters) as
the paraphrasing models.

4.2.2 High-Quality Data Synthesis
Framework

Paraphrased
sentences

d

=~
!\ « Unlabeled Pre-
, WD rained sentences
T

raw training data

OUTPUT :

AI-Text Detection Score Verification
Semantic Consistency Check
N-gram Constraint

Rule-Based Filtering

High-Quality Data

Figure 5: The pipeline of the data synthesis frame-
work.

To train our paraphrasing model, we develop a
data synthesis framework that eliminates the need
for labeled datasets. Instead, it relies solely on
human-written sentences, which are extracted from
pre-trained corpora (Gao et al., 2021a; Biderman
et al., 2022), avoiding the complexities of manual
annotation.

As shown in Figure 5, we first extract single-
sentence fragments from paragraphs within pre-
trained corpora. These sentences are then para-
phrased using Llama-3.1-8B-Instruct (Dubey et al.,

2024), guided by carefully designed prompts (de-
tailed in Appendix 1.1). The paraphrased sen-
tences form the basis of our raw dataset: the para-
phrased text serves as model inputs for fine-tuning,
while the original human-written sentences serve
as ground truth outputs.

Then we apply the following filtering steps
to refine the dataset: 1) Al-text detection score
verification: We use Al-text detectors to ensure
that the original human-written texts have low Al-
generated likelihood scores. 2) Semantic consis-
tency check: We employ an embedding model
to compute cosine similarity between original
and paraphrased sentences, ensuring that semantic
meaning is preserved. 3) N-gram constraint: We
track sentence modifications using N-gram over-
lap metrics, ensuring that the paraphrased output
balances textual diversity and fidelity to the origi-
nal sentence. 4) Rule-based filtering: Rule-based
mechanisms are applied to remove redundant sym-
bols and outputs with altered sentence types. For
example, if the original sentence is a question but
the paraphrased version is turned into a declarative
statement, the pair is discarded.

4.2.3 Incorporating Heuristic Strategies for
Selecting Paraphrased Outputs

The results in Figure 1 show that detectors consis-
tently respond to increases in temperature, indicat-
ing a shared detection mechanism across models.
This insight helps guide our approach.

When generating multiple sentences at each step,
our method uses a detector to evaluate the candi-
dates and selects the one with the lowest detection
confidence score as the final result. This heuristic
search strategy iteratively constructs a paraphrased
sequence that minimizes the likelihood of being
detected.

S Experiments

5.1 Experimental Setup
5.1.1 Evaluation Metrics

We evaluate performance on two aspects:

Attack Effectiveness: We assess the attack ef-
fectiveness using several recent open-source de-
tectors, including neural-based detectors: SA (Su-
perAnnotate, 2024), the RADAR (Hu et al., 2023)
detector, which is designed to resist paraphrasing-
based attacks, and statistical-based detectors: Fast-
DetectGPT (Bao et al., 2024), TOCSIN (Ma and
Wang, 2024).

31547

Method Detection Accuracy (%) Text Quality

SA | RADAR | Fast | TOCSIN | Avg | IAPPLI | Flesch T Sim 1
Origin AI-Text 99.8 90.0 98.9 95.5 96.1 — — —
WordNet 86.5 79.9 46.5 43.0 64.0 14.142 57.109 0.991
BERT 78.2 84.4 48.9 434 63.7 12.288 60.151 0.974
BART 98.1 94.3 93.5 88.2 93.5 24.331 59.497 0.980
BackTrans 99.8 95.7 90.7 82.5 922 24.072 56.284 0.981
EDP 82.3 86.3 87.8 83.5 85.0 18.688 52.602 0.917
FMP 75.0 84.7 90.1 86.5 84.1 18.875 55.709 0.923
DIPPER 90.3 84.2 87.7 71.5 834 19.251 62.650 0.936
Recursive 78.0 89.2 72.9 48.3 72.1 14.922 64.414 0.868
Oursyi 13.7 51.8 8.5 11.5 21.4 8.785 66.747 0.963
RAFT 75.1 69.4 21.2 16.4 45.5 9.372 52.504 0.976
HMGC 239 69.6 53 9.9 27.2 3.629 53.240 0.921
Oursy7 1.9 454 2.6 4.5 13.6 2.532 66.159 0.958

Table 1: Comparison of attack methods on Al-text detection and text quality. Detection accuracy is evaluated
using four detectors: SA (SuperAnnotate, 2024), RADAR (Hu et al., 2023), Fast-DetectGPT (Bao et al., 2024)
and TOCSIN (Ma and Wang, 2024). Text quality is measured by absolute perplexity difference (IAPPLI), Flesch
reading ease score (Flesch), and semantic similarity (Sim) between the attacked and original text. Lower detection
accuracy ({) indicates better evasion, while higher Flesch and Sim scores (1) reflect better readability and semantic
preservation. The subscript N in Oursy; and Ours 7 represents the sampling times setting. RAFT, HMGC, and
Oursy; are white-box attack methods requiring an open-source detector, with HC3 (Guo et al., 2023) used in our

experiments. Appendix E.3 provides additional results with alternative detectors.

We treat the problem as a binary classification
task. In testing, all original texts are Al-generated,
and we evaluate the detection accuracy of the Al-
text detectors on the attacked texts. Additionally,
we report F1 score, AUROC, and other metrics,
along with results for additional detectors, in Ap-
pendix E.1.

Text Quality: Our goal is to ensure that the mod-
ified texts resemble human-written texts. We first
compute the perplexity (PPL) of human-written
text using the GPT-2 model (Radford et al., 2019).!
We then evaluate the difference in PPL between
the attacked and human-written texts, denoted as
IAPPLI. We use TextStat? to measure the Flesch
reading ease score,> which assesses the readabil-
ity of the attacked text. A higher score indicates
greater readability. We compute the semantic simi-
larity (Sim) between the attacked text and the orig-
inal text to measure how well the meaning is pre-
served.

5.1.2 Baselines

Referring to recent research (Zhou et al., 2024), we
establish the following baselines:

Perturbation Methods: These methods involve
replacing words or sentences in the original text,

'We extract 10,000 human-written texts from the RAID
dataset as a reference. The benchmark human PPL is 35.836.

2https ://github.com/textstat/textstat

3https ://en.wikipedia.org/wiki/Flesch-Kincaid_
readability_tests#Flesch_reading_ease

including: 1) Token-level perturbation: Randomly
deleting some words and using WordNet (Fell-
baum, 2010) and BERT (Devlin et al., 2019) to
complete these words. 2) Sentence-level pertur-
bation: Using BART (Lewis et al., 2020) to ran-
domly replace some sentences with synonymous
ones. 3) Adversarial perturbation: HMGC (Zhou
et al., 2024) and RAFT (Wang et al., 2024).

Paraphrasing Methods: These methods in-
volve paraphrasing the original text to express the
same content differently, including: 1) Back trans-
lation: Translating the original English text into
German and then back to English. 2) Prompt-
based paraphrasing: Crafting the prompt to in-
struct an LLLM to paraphrase. We employ two
types of prompts: evasion-driven paraphras-
ing (EDP) (Fishchuk and Braun, 2023), which
directly instructs the model to evade text detec-
tors by rephrasing the content while preserving its
meaning, and feature-maximization paraphras-
ing (FMP) (Alexander, 2023), which directs the
model to enhance specific linguistic features, such
as perplexity and burstiness, to increase text vari-
ation. Detailed prompts used are listed in Ap-
pendix [.3. 3) Fine-tuned paraphrasing models:
We compare our approach with DIPPER (Krishna
et al., 2023), using lex=40 and order=40 in our
experiments. Additionally, we use DIPPER for
Recursive Paraphrase (Sadasivan et al., 2023).

For our proposed TempParaphraser method, two

31548

https://github.com/textstat/textstat
https://en.wikipedia.org/wiki/Flesch-Kincaid_readability_tests#Flesch_reading_ease
https://en.wikipedia.org/wiki/Flesch-Kincaid_readability_tests#Flesch_reading_ease

=]
3

@
3

R - s e e
B . e s e
)
O - s o e
2
. v o o v

News W|k| Rewews Books Poetry Reddlt

[GEICAE 99.8% | 99.8% | 99.8% | 99.8% | 98.6% | 97.4% |1

@
8

S

3

(a) Origin Text

ChatGPT- 2.8% 8.8% 5.0% 5.0% 1.2% 1.6%

(97.0%) (91.0%) (94.8%) (94.8%) (97.4%) (-95.8%)
80

GPT-4- 22% 5.2% 56% 4.4% 04% 3.4%
(97.6%) (-936%) (-942%) (954%) (96.2%) (-95.8%)
60

Mistral - 5.8%
(-94.0%)

19.4% 6.8% 7.6% 9.0% 8.8%
(80.0%) (-93.0%) (92.2%) (89.8%) (-89.8%)

12.2% 9.4% 8.8%

(-87.6%) (-90.4%) (-90.8%)

-40

LLaMA- 5.4%
(-94.4%)

20.0% 6.0%

(782%) (:938%) _20
MPT- 3.2% 11.6% 4.0% 6.6% 9.0% 2.0%
(-96.6%) (-88.2%) (-95.8%) (-93.0%) (-88.2%) (-88.2%) -0

News Wiki Reviews Books Poétw Re&dit

(b) After TempParaphraser Attack

Figure 6: Detection accuracy heatmap before
and after applying TempParaphraser on the Fast-
DetectGPT detector (Bao et al., 2024) across differ-
ent models and domains. (a) shows the detection ac-
curacy for the original Al-generated text. (b) shows
the detection accuracy after applying TempParaphraser.
Results for additional detectors can be found in Ap-
pendix E.4.

key hyperparameters are considered: the number
of sampling times and the temperature of the para-
phrasing model. We first conduct a hyperparameter
study (see Appendix D) to analyze their effects and
set the temperature to 1.2 for the main experiments.
More details on the experimental setup and im-
plementation can be found in Appendix C.

5.2 Main Results

In this section, we compare TempParaphraser with
previous methods on the widely used HC3 dataset
(Guo et al., 2023), as shown in Table 1. We also
evaluate its performance across different LLMs and
domains on the more recent RAID dataset (Dugan
et al., 2024), illustrated in Figure 6.

TempParaphraser addresses the trade-off be-
tween detection evasion and text quality. In Ta-
ble 1, our method outperforms previous approaches
by effectively manipulating text to evade detection
from four different detectors, achieving optimal
attack success rates.

The texts generated by TempParaphraser achieve
the lowest |APPL|, differing by only 2.532 from
the human-written text. Additionally, the Flesch

reading ease score exceeds all baseline methods,
indicating the generated text has high readability.
In Appendix E.2, we further confirm through hu-
man evaluation that our method maintains high
readability.

TempParaphraser shows consistent effective-
ness across different detectors. Table 1 also high-
lights that, unlike previous attack methods whose
effects vary widely across detectors, TempPara-
phraser consistently achieves strong performance.
For example, the WordNet attack method is highly
effective against Fast-DetectGPT and TOCSIN but
has minimal impact on SA, while the FMP method
works well with SA but shows limited effectiveness
on RADAR and TOCSIN. In contrast, our method
performs effectively across all detectors, achieving
optimal results.

It is worth noting that RADAR has been en-
hanced to resist paraphrasing-based attacks. Earlier
paraphrasing methods, such as BackTrans, made
the text more detectable. However, our method
remains effective against RADAR.

TempParaphraser is effective across differ-
ent LLLMs and domains. As shown in Figure 6,
we evaluate the attack performance on text gener-
ated by mainstream LLMs across different domains.
TempParaphraser significantly lowers detection ac-
curacy, achieving an average reduction of 92.3%
across five LLMs and six domains.

Moreover, TempParaphraser is also effective
in evading watermark-based detection methods
(Kirchenbauer et al., 2023). The experimental re-
sults are provided in Appendix E.5.

5.3 More Analyses

5.3.1 Can TempParaphraser Effectively
Simulate High-Temperature Values?

Temperature 0.7

Temperature 0.7 + TempParaphraser

.
2| I
Al

Figure 7: Token distribution at different temperature
settings, with token ID below 50,000. For detailed
token counts, refer to Appendix G.

Temperature 1.9

i,

25000 50000 000 5nuuo 25000 50000
Token ID Token ID

@
3

Frequency (%)
P
, Freguency (%) ., o

Freguensy 09,
F
r
1]

As discussed in Section 4.1, TempParaphraser
mimics high-temperature effects by performing
multiple normal-temperature samples, making the
token distribution at each position more diverse. In

31549

this experiment, we compare token distributions
between texts processed by TempParaphraser and
those generated at varying temperatures during in-
ference.

We used the Llama-3.2-3B-Instruct model
(Dubey et al., 2024) to perform 5,000 inference
runs at low (0.7) and high (1.9) temperatures using
an identical input. Additionally, we apply TempPa-
raphraser to the 5,000 texts generated at a temper-
ature of 0.7. The paraphrasing model, fine-tuned
from the Llama-3.2 series, ensures a consistent to-
kenizer with the inference model, allowing for a
direct comparison. For simplicity, we focus on
the token distribution at position 7 = 8, which
was heuristically selected as a representative mid-
sequence position, comparing token frequencies
from both the direct inference and the TempPara-
phraser outputs.

Figure 7 shows that at a temperature of 0.7, the
most frequent token makes up over 60%. At a
temperature of 1.9, this frequency drops to around
7%, indicating greater variability in the selection
of tokens. TempParaphraser-processed texts show
similar token distribution patterns, effectively sim-
ulating the high-temperature sampling effects.

5.3.2 Ablation Study

Semantic Similarity (%)

Figure 8: Impact of fine-tuning and data filtering
on the paraphrasing model. The left panel shows
the detection accuracy of SA (SuperAnnotate, 2024)
under different settings, and the right panel shows the
corresponding semantic similarity. Ablation 1 compares
models with and without fine-tuning, while Ablation 2
compares the use of filtered data (Section 4.2.2) with
random data selection. All results are reported with
sampling times N = 1.

Ablation 1: Fine-tuning of the paraphrasing
model (Section 4.2.1) In Figure 8, we compare the
performance of TempParaphraser with and without
fine-tuning the paraphrasing model. The results
show that fine-tuning significantly improves eva-
sion performance and enhances semantic preserva-
tion. Additionally, comparisons of paraphrasing
models fine-tuned from different LLMs are pro-

vided in Appendix F.

Ablation 2: Data filtering method (Sec-
tion 4.2.2) The data filtering process is another
key factor. Removing the filter causes a notice-
able increase in detection accuracy, indicating that
unfiltered paraphrases still retain detectable Al-
generated features. Moreover, semantic similarity
(Sim) decreases significantly. These findings high-
light the importance of careful data curation when
training an effective paraphrasing model.

Additionally, our framework includes a detection
module (Section 4.2.3) that selects paraphrased sen-
tences. Without this module, the model degenerates
to N = 1, performing a single sampling, similar
to previous paraphrasing methods. As shown in
Table 1, Oursy still outperforms traditional meth-
ods. Furthermore, in Appendix E.3, we replace this
detector and demonstrate that our method remains
effective.

5.3.3 Improving AI-Text Detection with
TempParaphraser-Augmented Data

~
=]

Detection Accuracy (%)

20| —#— Initial Detector
TempParaphraser-Augmented Detector
Gain

19 20

10 11 12 13 14 15 16 17 18
Temperature

Figure 9: Impact of TempParaphraser-augmented
training on detection robustness. The figure com-
pares detection accuracy across different temperature
settings for the initial detector and the TempParaphraser-
augmented detector.

Malicious users can easily bypass detection by
generating text with high-temperature decoding
and manually adjusting it (Sadasivan et al., 2023).
This process essentially replicates the effects of
high-temperature model output, as the adjusted text
retains the same randomness. Therefore, improving
the detector’s robustness to temperature variations
is essential.

TempParaphraser can improve the robustness
of Al-text detectors by augmenting their training
datasets with paraphrased text, without requiring
additional manually curated data. We fine-tune the
RoBERTa-based model (Liu et al., 2019) using the
HC3 dataset’s (Guo et al., 2023) training set to ob-

31550

tain an initial detector. Then, we select a 5% subset
of the HC3 dataset and apply TempParaphraser to
rewrite the Al-generated text. This augmented data
is subsequently used to further fine-tune the initial
detector. Experimental details are in Appendix H.1.

In Figure 9, the TempParaphraser-augmented de-
tector shows improved robustness across different
temperature settings, with greater gains at higher
temperatures. It also maintains the detector’s origi-
nal performance under normal conditions (see Ap-
pendix H.2 for details).

6 Conclusion

This paper highlights a key vulnerability in Al-text
detection systems, where adjusting the temperature
during inference significantly reduces detection per-
formance. We introduced the TempParaphraser
framework, which exploits this weakness to effec-
tively evade detection while maintaining high text
quality. Experiments show that TempParaphraser
achieves SOTA evasion success rates and provides
insights for improving future detection systems.

Limitations

Although TempParaphraser is highly effective in
evading Al-text detection, it has some limitations
that require further exploration.

Our framework operates primarily at the sen-
tence level, which may result in a loss of long-
range contextual coherence in complex texts. Fu-
ture research could focus on advanced methods
to enhance contextual integrity while preserving
strong evasion performance.

We believe that further optimizations could help
mitigate the issue. For instance, during the fine-
tuning of the paraphrasing model, we could ex-
periment with incorporating additional contextual
information into the training data. Similarly, dur-
ing inference, including this context could help
preserve semantic coherence across longer spans.
This direction is worth exploring in future work.

Ethical Considerations

The goal of this paper is to identify and highlight
vulnerabilities in current Al-text detection systems,
particularly concerning paraphrasing-based evasion
techniques. While we demonstrate the effective-
ness of the TempParaphraser in bypassing detec-
tion mechanisms, we want to emphasize that our
intention is not to develop tools for malicious use.
Instead, our primary aim is to raise awareness of

the potential weaknesses in Al-text detectors, en-
couraging researchers and developers to address
these vulnerabilities and strengthen the robustness
of detection systems against paraphrasing-based
attacks.

We also recognize that the TempParaphraser
framework has the potential to contribute positively
to the development of more resilient Al-text detec-
tion systems (Section 5.3.3). By using paraphrased
text to augment training datasets, TempParaphraser
can help enhance the performance of detection
models, making them better equipped to defend
against evasion attacks. This dual-purpose func-
tionality serves both as an exploration of potential
attack methods and as a tool to improve detection
systems, thereby supporting our objective of ad-
vancing more secure and reliable Al technologies.

Acknowledgments

This work was supported in part by the National
Natural Science Foundation of China under Grant
No. 62476232 and in part by the University-
Industry Cooperation Programs of Fujian Province
of China under Grant No. 2023H6001.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Alim Al Ayub Ahmed, Ayman Aljabouh, Praveen Ku-
mar Donepudi, and Myung Suh Choi. 2021. Detect-
ing fake news using machine learning: A systematic
literature review. arXiv preprint arXiv:2102.04458.

Chris Alexander. 2023. Asking chatgpt to put perplexity
and burstiness in an essay appears to fool ai detectors.
Last accessed: 2025-01-20.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi
Yang, and Yue Zhang. 2024. Fast-detectgpt: Effi-
cient zero-shot detection of machine-generated text
via conditional probability curvature. In The Tivelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Stella Biderman, Kieran Bicheno, and Leo Gao.
2022. Datasheet for the pile. arXiv preprint
arXiv:2201.07311.

Tom B. Brown, Benjamin Mann, and et al. 2020. Lan-
guage models are few-shot learners. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing

31551

https://telblog.unic.ac.cy/teaching-chatgpt-perplexity-burstiness-appears-to-fool-ai-detectors/
https://telblog.unic.ac.cy/teaching-chatgpt-perplexity-burstiness-appears-to-fool-ai-detectors/
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z
https://openreview.net/forum?id=Bpcgcr8E8Z
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Cohere. 2024. World-class ai, at your command. Ac-
cessed: 2025-01-02.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned 1lm.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, and et al.
2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Liam Dugan, Alyssa Hwang, Filip Trhlik, Andrew
Zhu, Josh Magnus Ludan, Hainiu Xu, Daphne Ip-
polito, and Chris Callison-Burch. 2024. RAID: A
shared benchmark for robust evaluation of machine-
generated text detectors. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12463—
12492, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Christiane Fellbaum. 2010. Wordnet. In Theory and ap-
plications of ontology: computer applications, pages
231-243. Springer.

Vitalii Fishchuk and Daniel Braun. 2023. Efficient
black-box adversarial attacks on neural text detectors.
In Proceedings of the 6th International Conference
on Natural Language and Speech Processing (IC-
NLSP 2023), pages 7883, Online. Association for
Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2021a. The pile: An
800gb dataset of diverse text for language modeling.
CoRR, abs/2101.00027.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b.
Simese: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 6894—
6910. Association for Computational Linguistics.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M. Rush. 2019. GLTR: statistical detection and
visualization of generated text. In Proceedings of

the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28 - August 2, 2019, Volume 3: System Demonstra-
tions, pages 111-116. Association for Computational
Linguistics.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jin-
ran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng Wu.
2023. How close is chatgpt to human experts? com-
parison corpus, evaluation, and detection. Preprint,
arXiv:2301.07597.

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2023.
RADAR: robust ai-text detection via adversarial
learning. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurlPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2020. Automatic detec-
tion of generated text is easiest when humans are
fooled. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1808-1822, Online. Association for Computational
Linguistics.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jy-
oti Aneja, Sebastien Bubeck, Caio César Teodoro
Mendes, Weizhu Chen, Allie Del Giorno, Ronen
Eldan, Sivakanth Gopi, et al. 2023. Phi-2: The sur-
prising power of small language models. Microsoft
Research Blog, 1(3):3.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 17061-17084. PMLR.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Wieting, and Mohit Iyyer. 2023. Paraphras-
ing evades detectors of ai-generated text, but retrieval
is an effective defense. In Advances in Neural In-
formation Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurlPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Jooyoung Lee, Thai Le, Jinghui Chen, and Dongwon
Lee. 2023. Do language models plagiarize? In
Proceedings of the ACM Web Conference 2023, pages
3637-3647.

31552

https://cohere.com/command
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2024.acl-long.674
https://doi.org/10.18653/v1/2024.acl-long.674
https://doi.org/10.18653/v1/2024.acl-long.674
https://aclanthology.org/2023.icnlsp-1.8/
https://aclanthology.org/2023.icnlsp-1.8/
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.552
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.552
https://doi.org/10.18653/V1/P19-3019
https://doi.org/10.18653/V1/P19-3019
https://arxiv.org/abs/2301.07597
https://arxiv.org/abs/2301.07597
http://papers.nips.cc/paper_files/paper/2023/hash/30e15e5941ae0cdab7ef58cc8d59a4ca-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/30e15e5941ae0cdab7ef58cc8d59a4ca-Abstract-Conference.html
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://arxiv.org/abs/2310.06825
https://proceedings.mlr.press/v202/kirchenbauer23a.html
http://papers.nips.cc/paper_files/paper/2023/hash/575c450013d0e99e4b0ecf82bd1afaa4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/575c450013d0e99e4b0ecf82bd1afaa4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/575c450013d0e99e4b0ecf82bd1afaa4-Abstract-Conference.html

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871-7880.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Brady D Lund, Ting Wang, Nishith Reddy Mannuru,
Bing Nie, Somipam Shimray, and Ziang Wang.
2023. Chatgpt and a new academic reality: Artificial
intelligence-written research papers and the ethics
of the large language models in scholarly publishing.
Journal of the Association for Information Science
and Technology, T4(5):570-581.

Muneer M Alshater. 2022. Exploring the role of artifi-
cial intelligence in enhancing academic performance:
A case study of chatgpt. Available at SSRN 4312358.

Shixuan Ma and Quan Wang. 2024. Zero-shot detec-
tion of LLM-generated text using token cohesiveness.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
17538-17553, Miami, Florida, USA. Association for
Computational Linguistics.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D. Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. In International
Conference on Machine Learning, ICML 2023, 23-
29 July 2023, Honolulu, Hawaii, USA, volume 202
of Proceedings of Machine Learning Research, pages
24950-24962. PMLR.

MosaicML NLP Team. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable
llms. Accessed: 2025-01-20.

OpenAl 2019. Gpt-2: 1.5b release. Accessed: 2025-
01-20.

Max Peeperkorn, Tom Kouwenhoven, Dan Brown, and
Anna Jordanous. 2024. Is temperature the creativity
parameter of large language models? In Proceedings
of the 15th International Conference on Computa-
tional Creativity, ICCC 2024, Jonkoping, Sweden,
June 17-21, 2024, pages 226-235. Association for
Computational Creativity (ACC).

Jiameng Pu, Zain Sarwar, Sifat Muhammad Abdullah,
Abdullah Rehman, Yoonjin Kim, Parantapa Bhat-
tacharya, Mobin Javed, and Bimal Viswanath. 2023.
Deepfake text detection: Limitations and opportu-
nities. In 2023 IEEE Symposium on Security and
Privacy (SP), pages 1613-1630.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8).

Tilman Réuker, Anson Ho, Stephen Casper, and Dylan
Hadfield-Menell. 2023. Toward transparent ai: A
survey on interpreting the inner structures of deep
neural networks. In 2023 IEEE Conference on Secure
and Trustworthy Machine Learning (SaTML), pages
464-483.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala-
subramanian, Wenxiao Wang, and Soheil Feizi. 2023.
Can ai-generated text be reliably detected? CoRR,
abs/2303.11156.

Zhouxing Shi, Yihan Wang, Fan Yin, Xiangning Chen,
Kai-Wei Chang, and Cho-Jui Hsieh. 2024. Red team-
ing language model detectors with language models.
Transactions of the Association for Computational
Linguistics, 12:174—-189.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah
Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

SuperAnnotate. 2024.
detector.

roberta-large-1lm-content-

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almabhairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

James Liyuan Wang, Ran Li, Junfeng Yang, and
Chengzhi Mao. 2024. RAFT: Realistic attacks to fool
text detectors. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 16923-16936, Miami, Florida, USA.
Association for Computational Linguistics.

Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ip-
polito. 2022. Wordcraft: Story writing with large
language models. In IUI 2022: 27th International
Conference on Intelligent User Interfaces, Helsinki,
Finland, March 22 - 25, 2022, pages 841-852. ACM.

Dun Zhang, Jiacheng Li, Ziyang Zeng, and Fulong
Wang. 2025. Jasper and stella: distillation of sota
embedding models. Preprint, arXiv:2412.19048.

Xuandong Zhao, Yu-Xiang Wang, and Lei Li. 2023.
Protecting language generation models via invisible
watermarking. In International Conference on Ma-
chine Learning, ICML 2023, 23-29 July 2023, Hon-
olulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pages 42187-42199.
PMLR.

31553

https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2024.emnlp-main.971
https://doi.org/10.18653/v1/2024.emnlp-main.971
https://proceedings.mlr.press/v202/mitchell23a.html
https://proceedings.mlr.press/v202/mitchell23a.html
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://openai.com/research/gpt-2-1-5b-release
https://computationalcreativity.net/iccc24/papers/ICCC24_paper_70.pdf
https://computationalcreativity.net/iccc24/papers/ICCC24_paper_70.pdf
https://doi.org/10.1109/SP46215.2023.10179387
https://doi.org/10.1109/SP46215.2023.10179387
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.48550/ARXIV.2303.11156
https://doi.org/10.1162/tacl_a_00639
https://doi.org/10.1162/tacl_a_00639
https://huggingface.co/SuperAnnotate/roberta-large-llm-content-detector
https://huggingface.co/SuperAnnotate/roberta-large-llm-content-detector
https://doi.org/10.18653/v1/2024.emnlp-main.939
https://doi.org/10.18653/v1/2024.emnlp-main.939
https://doi.org/10.1145/3490099.3511105
https://doi.org/10.1145/3490099.3511105
https://arxiv.org/abs/2412.19048
https://arxiv.org/abs/2412.19048
https://proceedings.mlr.press/v202/zhao23i.html
https://proceedings.mlr.press/v202/zhao23i.html

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Ying Zhou, Ben He, and Le Sun. 2024. Humanizing
machine-generated content: Evading ai-text detec-
tion through adversarial attack. In Proceedings of
the 2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalua-
tion, LREC/COLING 2024, 20-25 May, 2024, Torino,
Italy, pages 8427-8437. ELRA and ICCL.

A Detectors Tested in Preliminary
Experiments

A.1 Statistical-based Methods

Statistical-based methods generate a reference dis-
tribution using the source or reference model and
compare it with the distribution of the text to be
detected. The comparison methods include:

* Log-Likelihood (Gehrmann et al., 2019): Av-
erage log-probability of tokens under the de-
tection model. This test evaluates how likely
the text as a whole is, given the model’s con-
ditional next-token probabilities.

* LogRank (Gehrmann et al., 2019): Average
of the logarithm of each token’s rank when
all vocabulary tokens are ordered by their pre-
dicted probability. The lower the rank of the
actual token, the more likely that token is
among the higher probability set.

* Entropy (Gehrmann et al., 2019): Average
over token positions of the entropy of the
model’s predicted token distribution at each
position.

¢ Fast-DetectGPT (Bao et al., 2024): Builds
on DetectGPT (Mitchell et al., 2023) by us-
ing conditional probability curvature, replac-
ing expensive mask-based perturbation with a
more efficient substitution or sampling mecha-
nism, to capture differences in word selection
behavior between Al-generated and human-
written text in context.

A.2 Neural-based Methods

« HC3 Detector* (Guo et al., 2023)
* SA Detector’ (SuperAnnotate, 2024)

*https://huggingface.co/Hello-SimpleAl/
chatgpt-detector-roberta

5https://huggingface.co/SuperAnnotate/
roberta-large-1llm-content-detector

« OpenAl GPT-2 Detector® (Solaiman et al.,
2019)

« RADAR Vicuna-7B Detector’ (Hu et al.,
2023)

« RAID E5-Small-LoRA Detector® (Dugan
et al., 2024)

B Effects of Temperature on Text Quality

llama3.1-8B PPL
—— GPT2PPL

log(PPL)
(=2

%.0 07 08 09 10 11 12 13 14 15 16 17 18 19 20
Temperature

Figure 10: Effect of temperature on log(PPL) of gener-
ated text.

80

60

40

20

0

Flesch Reading Ease Score

-20

_4%.0 07 08 09 10 11 12 13 14 15 16 1.7 18 19 20
Temperature

Figure 11: Effect of temperature on Flesch reading ease
score of generated text.

80

N @
S S

Difficult Words Rate (%)

N
S

%.0 07 08 09 10 11 12 13 14 15 16 1.7 18 19 20
Temperature

Figure 12: Effect of temperature on proportion of diffi-
cult words in generated text.

As the temperature increases, the perplexity
(PPL) of the generated text rises sharply, even-

®https://huggingface.co/openai-community/
roberta-large-openai-detector

"https://huggingface.co/TrustSafeAl/
RADAR-Vicuna-7B

8https://huggingface.co/menglinzhou/
e5-small-lora-ai-generated-detector

31554

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://aclanthology.org/2024.lrec-main.739
https://aclanthology.org/2024.lrec-main.739
https://aclanthology.org/2024.lrec-main.739
https://huggingface.co/Hello-SimpleAI/chatgpt-detector-roberta
https://huggingface.co/Hello-SimpleAI/chatgpt-detector-roberta
https://huggingface.co/SuperAnnotate/roberta-large-llm-content-detector
https://huggingface.co/SuperAnnotate/roberta-large-llm-content-detector
https://huggingface.co/openai-community/roberta-large-openai-detector
https://huggingface.co/openai-community/roberta-large-openai-detector
https://huggingface.co/TrustSafeAI/RADAR-Vicuna-7B
https://huggingface.co/TrustSafeAI/RADAR-Vicuna-7B
https://huggingface.co/menglinzhou/e5-small-lora-ai-generated-detector
https://huggingface.co/menglinzhou/e5-small-lora-ai-generated-detector

tually reaching unacceptable levels, as shown in
Figure 10.

We use TextStat’ to measure the Flesch read-
ing ease score.!® The results show a clear trend:
readability decreases significantly as temperature
increases (Figure 11).

Additionally, we use the TextStat tool to calcu-
late the proportion of difficult words in sentences.
A higher proportion indicates a tendency to use rare
and complex words, reducing text readability. The
results are shown in Figure 12.

Question: "Which is a species of fish? Tope or
Rope" (Conover et al., 2023)

Temperature 0.0 Answer:

"The correct answer is Tope. Tope
(Galeorhinus galeus) is a species of
requiem shark, while Rope is not a
species of fish.”

Temperature 1.2 Answer:

"The correct answer is Tope. The
Tope is a species of shark and, more

specifically, a drum species belonging
to the Scombridae family. Rope, on the
other hand, does not refer to a specific
species of fish. The word ’rope’
is a general term for a long, thick
string made of fibers, commonly used
for climbing, securing, or connecting
objects.”

Temperature 2.0 Answer:

"Probability of
Torchoids nods
River experts Configuration Variables
acting Seeing bol At Bald Answer
HttpClient missribbonSlot Ville
Attempts comparisons verbosity complete
burdens dominate Alger Lent_____ Few
PyQt ang Right Persona Curtain water
both approximation.)"” (Text becomes
incoherent)

Richtorsi insults

Table 2: Examples of text generated at different tem-
perature settings. Higher temperatures introduce more
randomness, increasing verbosity and eventually lead-
ing to gibberish.

To illustrate these effects more intuitively, Ta-

9https ://github.com/textstat/textstat
Ohttps://en.wikipedia.org/wiki/Flesch-Kincaid_
readability_tests#Flesch_reading_ease

ble 2 presents example model outputs at different
temperature settings.

The examples demonstrate that at a low tem-
perature (0.0), the model produces a concise and
factual response. At a moderate temperature (1.2),
the response contains additional but still relevant
information. At a high temperature (2.0), however,
the text becomes less coherent and ultimately non-
sensical.

C Main Experiment Implementation
Details

C.1 Dataset

The HC3 (Human ChatGPT Comparison Cor-
pus) (Guo et al., 2023) dataset is used for com-
paring answers from human experts and ChatGPT.
It includes question-answer pairs from various do-
mains such as open-domain, computer science, fi-
nance, medicine, law, and psychology. The data is
sourced from publicly available datasets (e.g., ELIS
and WikiQA) and knowledge points scraped from
websites like Wikipedia and BaiduBaike. Human
answers primarily come from experts or highly-
rated users, while ChatGPT responses are gener-
ated based on human questions and adjusted with
specific instructions to resemble human-like an-
SWers.

RAID (Robust Al Detection) dataset (Dugan
et al., 2024) includes over 6 million text gener-
ations from 11 different language models across 8
diverse domains, such as News, Wikipedia, Books,
Reddit, and Poetry. This benchmark dataset fea-
tures a wide range of models to ensure comprehen-
sive evaluation, including variants of GPT (GPT-2
XL, GPT-3 text-davinci-003, GPT-4, and ChatGPT)
(Brown et al., 2020; Achiam et al., 2023), as well as
Llama-2-70B (Touvron et al., 2023), Mistral mod-
els (7B and its chat variant) (Jiang et al., 2023),
MPT models (30B and its chat variant) (MosaicML
NLP Team, 2023), and Cohere (Cohere, 2024).

For our experiments, we randomly selected a
subset of 10,000 samples from the HC3 test set
(Guo et al., 2023), as provided by (Zhou et al.,
2024). This subset includes 3,218 Al-generated
texts. We use the RAID dataset (Dugan et al., 2024)
to evaluate attacks across various LLMs and text
domains. We primarily focus on common models,
including "ChatGPT", "GPT-4", "Mistral-Chat",
"LLaMA-Chat" and "MPT-Chat" along with typ-
ical domains such as "News", "Wiki", "Reviews",
"Books", "Poetry" and "Reddit". Each model-

31555

https://github.com/textstat/textstat
https://en.wikipedia.org/wiki/Flesch-Kincaid_readability_tests#Flesch_reading_ease
https://en.wikipedia.org/wiki/Flesch-Kincaid_readability_tests#Flesch_reading_ease

domain combination contains 500 Al-generated
texts, including both greedy and random sampling.
Note that only AI-generated texts from the dataset
are used as the original texts for the attack in Sec-
tion 5.2. Our main experiments are based on these
datasets.

C.2 Implementation Details of
TempParaphraser

For training the paraphrasing model, we began with
human-written texts extracted from The Pile corpus
(Gao et al., 2021a), which served as raw data for
paraphrase generation. We first applied the SA de-
tector (SuperAnnotate, 2024) to filter out texts that
might be mistakenly flagged as Al-generated. Next,
we used the stella_en_400M_v5 embedding model
(Zhang et al., 2025) to compute sentence represen-
tations and measured cosine similarity to assess
semantic consistency, with an empirically chosen
threshold of 0.6. Additionally, we computed Jac-
card similarity based on 2-grams and 3-grams. To
enforce lexical diversity while preserving fidelity,
we required

ngram3_sim X 3 + ngram?2_sim > 1.2,

a heuristic threshold selected from pilot experi-
ments. After all filtering steps, we obtained a total
of 151,189 high-quality paraphrase pairs for train-
ing.

For the main experiment, we selected the Llama-
3.2-1B-Instruct model as the base model and
performed full fine-tuning using LLaMA-Factory
(Zheng et al., 2024). The training was conducted
with a learning rate of 2e-5, a batch size of 32, on a
single NVIDIA L40 GPU, and took approximately
three hours.

In the TempParaphraser framework, sentence
segmentation is done by splitting the text at English
periods ("."). Sentences with fewer than four words
are not paraphrased.

C.3 Evaluation Metrics Details

For detection accuracy, we treat the task as a bi-
nary classification problem, applying a fixed deci-
sion threshold of 0.5. Texts are classified as Al-
generated if their confidence score exceeds this
threshold. During testing, all original texts are Al-
generated, and we evaluate the prediction accuracy
of the Al-text detectors on the attacked texts.

For perplexity (PPL) calculation, we use the
GPT-2 model (Radford et al., 2019) to evaluate

31556

10

8]
Q
<
c
2
]
o
2 06
©
[=]
-
3
[
=
<

0975

0.8
Te 1.1

'my 12

PeratUre) .

£
Similarity

0.6
0.8

Te 1.0
“mer, Aty

(b) Semantic Similarity

B3
Flesch Reading Ease Score

x
3

(c) Flesch Reading Ease

Figure 13: Hyperparameter Search

METHOD Avg RADAR DetectGPT TOCSIN OpenAl HC3 SA Fast-DetectGPT
Origin Text 94.9 90.0 85.9 95.5 94.3 99.8 99.8 98.9
WordNet 52.3 79.9 7.5 43.0 5.8 973 86.5 46.5
BERT 55.3 84.4 4.7 434 31.2 96.1 782 48.9
BART 88.3 94.3 60.3 88.2 91.2 922 98.1 93.5
BackTrans 87.4 95.7 59.1 82.5 85.3 99.0 99.8 90.7
EDP 73.0 86.3 76.0 83.5 24.6 704 823 87.8
FMP 71.2 84.7 78.3 86.5 22.7 609 750 90.1
DIPPER 77.4 84.2 36.3 71.5 83.9 87.9 903 87.7
RecursiveParaphrase 66.6 89.2 28.0 48.3 77.3 729 78.0 72.9
HMGC 19.0 69.6 0.4 9.9 21.0 27 239 53
Oursy: 25.0 51.8 8.1 11.5 35.6 456 137 8.5
Oursy7 11.3 454 6.0 4.5 16.8 2.1 1.9 2.6

Table 3: This table shows the additional results of detection accuracy.

METHOD Avg RADAR DetectGPT TOCSIN OpenAl HC3 SA Fast-DetectGPT
Origin Text 0.910 0.700 0.872 0.936 0.909 0.997 0.984 0.973
WordNet 0.564 0.647 0.126 0.567 0.097 0.984 0913 0.615
BERT 0.605 0.671 0.081 0.572 0.432 0978 0.863 0.637
BART 0.870 0.722 0.704 0.897 0.892 0.957 0975 0.945
BackTrans 0.865 0.728 0.695 0.864 0.859 0992 0.984 0.929
EDP 0.764 0.681 0.813 0.869 0.357 0.824 0.888 0913
FMP 0.749 0.673 0.828 0.887 0.334 0.755 0.843 0.926
DIPPER 0.798 0.670 0.493 0.795 0.851 0933 0934 0911
RecursiveParaphrase 0.721 0.696 0.403 0.616 0.811 0.840 0.861 0.822
HMGC 0.230 0.588 0.008 0.167 0.313 0.063 0.376 0.096
Oursy 0.327 0.474 0.135 0.192 0.478 0.625 0.235 0.150
Oursyr 0.142 0.427 0.103 0.080 0.258 0.041 0.037 0.049

Table 4: This table shows the F1 score. The threshold for classification is based on the best threshold found using

the AUROC curve on the original HC3 dataset.

both human-written and attacked texts. As a ref-
erence, we compute the average PPL of human-
written texts from the RAID dataset, which yields
a benchmark value of 35.836. The difference be-
tween the PPL of attacked texts and this benchmark
is denoted as IAPPLI, and serves as a measure of
how closely the attacked texts resemble human-
written text.

For semantic similarity, we compute the em-
beddings of the texts using the princeton-nlp/sup-
simcse-roberta-large model (Gao et al., 2021b).
We then calculate the cosine similarity between the
embeddings of the attacked and original texts to
assess how well the meaning is preserved.

Some baseline attack result texts are taken from
the study by Zhou et al. (2024).

D Effect of the Hyperparameters

In the TempParaphraser framework, two key ad-
justable hyperparameters are the temperature 7" and
the sampling times N. The temperature 7' refers
to the decoding temperature used during inference
of the paraphrasing model. The sampling times N

specify how many independent paraphrase candi-
dates are generated for each sentence. This section
examines how these two factors affect model per-
formance.

We conducted experiments by varying 7" from
0.5 to 1.6 in increments of 0.1 and adjusting N
from 1 to 8.

Our results indicate that as both 7" and N in-
crease, the accuracy of Al-text detection drops sig-
nificantly, as shown in Figure 13a. This demon-
strates that increasing either 7" or N can improve
the attack success rate, and combining higher val-
ues of both further amplifies this effect.

However, as illustrated in Figure 13b, we also
observe a decline in semantic similarity with in-
creasing 1. This effect is likely due to higher
T producing a smoother probability distribution,
which results in outputs deviating further from the
original meaning. Furthermore, as 7" increases, the
Flesch reading ease score also decreases signifi-
cantly, as shown in Figure 13c, indicating that the
generated text becomes harder to read.

Notably, changes in [V have minimal impact on

31557

METHOD Avg RADAR DetectGPT TOCSIN OpenAl HC3 SA Fast-DetectGPT
Origin Text 0.912 0.489 0.941 0.974 0.983 1.000 0.999 0.997
WordNet 0.697 0.414 0.460 0.793 0.400 0.999 0.987 0.828
BERT 0.739 0.466 0.403 0.798 0.676 0.998 0.980 0.851
BART 0.903 0.561 0.855 0.956 0.974 0.996 0.997 0.985
BackTrans 0.895 0.550 0.855 0.941 0.954 1.000 0.984 0.981
EDP 0.834 0.425 0913 0.952 0.599 0.994 0.983 0.976
FMP 0.832 0.415 0.921 0.958 0.575 0992 0.979 0.981
DIPPER 0.870 0.501 0.753 0.924 0.951 0.998 0.990 0.975
RecursiveParaphrase 0.859 0.580 0.699 0.871 0.938 0.995 0.982 0.946
HMGC 0.597 0.432 0.141 0.594 0.620 0.994 0.953 0.445
Oursy 0.689 0.336 0.455 0.713 0.745 0.991 0.943 0.643
Oursyr 0.622 0.308 0.413 0.626 0.610 0.965 0.905 0.525

Table 5: This table reports the ROC AUC. Note: The RADAR detector has only released the checkpoint trained
with Vicuna, which performs poorly on the HC3 dataset used in our tests, often classifying all text as Al-generated.

METHOD Avg RADAR DetectGPT TOCSIN OpenAl HC3 SA Fast-DetectGPT
Origin Text 0.904 0.446 0.941 0.962 0.986 1.000 0.999 0.998
WordNet 0.702 0412 0.462 0.768 0.443 0.999 0.983 0.849
BERT 0.743 0.456 0.426 0.769 0.716 0.998 0.973 0.866
BART 0.891 0.506 0.835 0.939 0.978 0.996 0.996 0.988
BackTrans 0.877 0.479 0.823 0.894 0.960 1.000 0.998 0.983
EDP 0.836 0.415 0.899 0.948 0.652 0.992 0970 0.979
FMP 0.834 0.412 0.907 0.953 0.630 0.989 0.962 0.983
DIPPER 0.856 0.475 0.719 0.881 0.957 0.997 0.986 0.977
RecursiveParaphrase 0.838 0.549 0.663 0.802 0.938 0.994 0973 0.948
HMGC 0.617 0.442 0.327 0.553 0.644 0.974 0.900 0.480
Oursyi 0.672 0.390 0.466 0.625 0.758 0986 0.873 0.608
Oursyr 0.601 0.384 0.436 0.550 0.615 0.926 0.800 0.500

Table 6: This table displays the PR AUC (Precision-Recall Area Under the Curve) values, which evaluate the
detector’s performance considering the precision and recall at different thresholds.

semantic similarity and the Flesch reading ease
score. This highlights a key advantage of our para-
phrasing model: despite multiple samplings, it
maintains high text quality.

E Main Experiment Additional
Experimental Results

Due to space limitations in the main text, this sec-
tion provides additional details and results from
our main experiment.

E.1 Additional Metrics for Evaluating Attack
Effectiveness

In the main experiment, we focused on demon-
strating the undetectability of the attacked texts by
reporting detection accuracy for Al-generated text.
We treat this as a binary classification problem,
where Al-generated text is considered the positive
class, and an equal amount of human text serves
as the negative class. The detection accuracy met-
ric (see Table 3) used in the paper is equivalent to

recall. Additionally, we include other important
metrics, such as F1 score (see Table 4), ROC AUC
(see Table 5), and PR AUC (see Table 6).

We also extend the number of detectors to seven,
including RADAR (Hu et al., 2023), DetectGPT
(Mitchell et al., 2023), TOCSIN (Ma and Wang,
2024), the GPT-2 output detector released by Ope-
nAl (Solaiman et al., 2019), HC3 (Guo et al., 2023),
SA (SuperAnnotate, 2024), and Fast-DetectGPT
(Bao et al., 2024), to evaluate the effectiveness of
our attack method more comprehensively. Across
a broader set of classification metrics, all seven
detectors exhibited significantly degraded perfor-
mance. On average, our method achieved the best
or near-best results, confirming its strong attack
effectiveness.

E.2 Human Evaluation of Text Readability

We invited five human experts to evaluate the read-
ability of the texts on a scale from 1 (worst read-
ability) to 5 (best readability). We collected 300
samples, focusing on three types of texts.

31558

[LECTOE 94.4% | 95.8% | 95.4% 41.2% | 1450
52.4% G 38.6% 25.4%
60

mistral-chat - RCE X . 82.2% | 73.6%
- 40

[ETGEREIE 99.4% | 96.6% | 97.6%

mptchat I 1.0 s0.0%
-0

news wiki reviews books poetry reddit

100
80

%% 82.0%

(a) HC3 Detector - Before Attack

100

[LEIC[OE 98.6% | 99.6% | 99.8% | 99.4% MR/ 96.2%
80

[e[JZ% 88.8% 98.8% PL/3 86.0%
60

mistral-chat LR 9.2% ELEYS
- 40

llama-chat LK ! 1.6% EKrAF
-20

[T E TR 100.0%| 99.4 CERAN 5.4% [RLXF
-0

news wiki reviews books poetry reddit

(c) SA Detector - Before Attack

100

chatgpt- 0.0% 0.0% 0.0% 1.0% 0.0% 0.0%
(-94.4%) (-95.8%) (954%) (90.6%) (41.2%) (-57.6%)

80
gptd - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
(820%) (-524%) (-82.0%) (59.6%) (-38.6%) (-25.4%)
60
mistral-chat- 0.0% 0.0% 0.0% 1.6% 1.6% 0.0%
(-100.0%) (-946%) (-100.0%) (-98.2%) (-806%) (-73.6%)
- 40

llama-chat- 0.0% 0.0% 0.0% 0.0% 3.2% 0.0%
(-99.4%) (-96.6%) (97.6%) (98.0%) (56.8%) (-68.6%) 50

2.6% 0.0%

mpt-chat - 0.0% 0.2% 2% 2.4% .0%
0. (68.8%) (-59.6%)

(-99.8%) (-99.2%) (-99.6%) (-97.2%)
'

| ! I I |
news wiki reviews books poetry reddit

(b) HC3 Detector - After Attack

100
chatgpt- 0.0% 0.2% 0.0% 1.4% 0.0% 0.2%
(-98.6%) (-99.4%) (-99.8%) (-98.0%) (-0.8%) (-96.0%)

80
gptd- 0.2% 0.0% 0.0% 0.2% 0.0% 0.0%
(-88.6%) (-72.2%) (-100.0%) (-98.6%) (-0.2%) (-86.0%)

60
mistral-chat- 0.0% 0.0% 0.2% 0.8% 0.2% 0.6%
(-99.8%) (-98.4%) (-99.8%) (-99.0%) (-9.0%) (-95.8%)

- 40

llama-chat- 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
(99.0%) (-99.6%) (99.0%) (99.2%) (-1.6%) (-82.6%) | 20

mpt-chat- 0.0% 0.8% 1.0% 4.8% 0.0% 1.0%
(-100.0%) (-98.6%) (99.0%) (-95.0%) (54%) (-93.8%) -0

news wiki reviews books poetry reddit

(d) SA Detector - After Attack

Figure 14: Detection accuracy of HC3 and SA before and after applying TempParaphraser, evaluated across multiple

domains and LLMs.

Annotators were instructed to rate readability
according to the ease and smoothness of reading a
text, considering grammaticality, fluency, and nat-
uralness of expression, but not factual correctness.
The five-point scale was defined as follows: 1 =
very poor (ungrammatical or extremely awkward),
2 = poor (frequent errors or unnatural phrasing),
3 = fair (acceptable but somewhat unnatural), 4 =
good (fluent and mostly natural with minor issues),
5 = excellent (highly fluent, natural).

Average
Text Type Readability Score
Al-Generated 4.47
TempParaphraser-Processed 3.78
Human-Written 3.89

Table 7: Average readability scores for different text
types based on human evaluation.

As shown in Table 7, the results indicate that
Al-generated texts received the highest readability
scores, with an average score of 4.47. In com-
parison, TempParaphraser-processed texts received
slightly lower scores at 3.78, but still maintained
fluency (scores > 3), with readability levels similar

to human-generated texts (3.89). This trend aligns
with the results from our PPL evaluation, further
confirming that our method effectively simulates
human-like text characteristics.

E.3 Using Different Detectors within the
TempParaphraser Framework

The TempParaphraser framework uses an open-
source detector to select paraphrased outputs. As
discussed in Section 4.2.3, we leverage a shared
detection mechanism observed across different de-
tectors. By exploiting this consistency, any single
detector used for selection can effectively evade
detection by other detectors. Table 8 illustrates this
generalization capability.

Notably, TempParaphraser attacks detectors
without requiring access to their internal weights,
relying solely on their output probabilities.

E.4 Additional Detection Results Across
Different Models and Domains

To further validate the effectiveness of TempPa-
raphraser, we provide additional detection results
using multiple Al-text detectors, including HC3
and SA. Figure 14 presents heatmaps illustrating

31559

TempParaphraser Detection Accuracy (%)

with HC3| SA| Fast-DetectGPT| TOCSIN| RADAR]
HC3 2.1 1.9 2.6 4.5 454
SA 19.2 ~0 2.7 3.7 44 .4
Fast-DetectGPT 394 7.1 0 1.2 50.4

Table 8: Detection accuracy (%) of Al-text detectors when different detectors are used within the TempParaphraser

framework for paraphrased outputs selection.

Model Detection Accuracy (%) Text Quality

HC3| SA| Fast] Flesch?T IAPPLI| Sim7
Llama-3.2-1B-Instruct (Dubey et al., 2024) 45.6 13.7 8.5 66.747 8.785 0.963
Llama-3.2-3B-Instruct (Dubey et al., 2024) 49.8 18.6 11.0 66.280 9.666 0.966
Phi-2 (Javaheripi et al., 2023) 54.1 354 15.1 65.943 12.019 0.965
Qwen2.5-1.5B-Instruct (Qwen Team, 2024) 48.1 19.5 10.9 66.220 10.043 0.965

Table 9: Comparison of detection accuracy and text quality across different models. The experiment was conducted
with hyperparameters: sampling times = 1 and temperature = 1.2.

the detection accuracy before and after applying
TempParaphraser across different models and do-
mains.

These results reinforce the findings presented in
Figure 6, confirming that TempParaphraser remains
effective across various Al-text detection methods.

E.5 Attacking the Watermarking Methods

B Detected Undetected

Original

TempParaphraser

0 200 400 600 800 1000
Number of Samples

Figure 15: Detection results before and after applying
TempParaphraser to watermarked texts.

To further evaluate the effectiveness of TempPa-
raphraser against watermarking methods, we sam-
pled 1,000 texts from the Dolly dataset (Conover
et al., 2023) and employed the watermark injection
framework proposed by Kirchenbauer et al. (2023)
to embed watermarks into outputs generated by the
Llama-3.1-8B-Instruct model (Dubey et al., 2024).
These watermarked texts were then tested using the
corresponding detection algorithm. Subsequently,
we applied TempParaphraser to the watermarked
texts to assess its ability to undermine watermark
detection.

As shown in Figure 15, the original responses
were detected as watermarked in 56% of the
cases, whereas only 1.7% of the TempParaphraser-
processed responses were detected. This sharp re-
duction demonstrates that TempParaphraser effec-
tively reduces the success rate of watermark detec-
tion.

F Effectiveness of Paraphrasing Models
Fine-Tuned from Different LL.Ms

To examine how the choice of paraphrasing model
within the TempParaphraser framework impacts
detection evasion, we fine-tune various LLMs on
the same dataset using identical hyperparameters.
The evaluation results are summarized in Table 9.

Our findings indicate that all tested models suc-
cessfully reduce Al-text detection accuracy, con-
firming that diverse paraphrasing models can effec-
tively evade detection.

G Token Frequency Analysis

In Section 5.3.1, we ran 5,000 inferences with the
same input on Llama-3.2-3B-Instruct and recorded
the frequency of token IDs at position j = 8. The
hyperparameters for TempParaphraser were set to
a sampling times parameter of N = 7 and a tem-
perature of 7' = 1.0. Table 10 reports the token
frequencies for the top 20 tokens under three differ-
ent settings. The input is "What climate are cacti
typically found in?".

The results indicate that as the temperature in-
creases, the distribution of generated tokens be-
comes more diverse. At a lower temperature (0.7),

31560

Token ID Temperature (.7 Temperature 1.9 TempParaphraser

Count %0 Count % Count %0

802 3184 63.68 360 7.2 160 32
9235 1459 29.18 268 5.36 330 6.6
4106 258 5.16 161 322 154 3.08
304 3 0.06 79 1.58 261 5.22
11 0 0.0 41 0.82 291 5.82
323 0 0.0 29 0.58 288 5.76
527 0 0.0 14 0.28 220 4.4
72 0 0.0 7 0.14 206 4.12
307 1 0.02 27 0.54 171 342
533 0 0.0 0 0.0 166 3.32
18768 0 0.0 10 0.2 151 3.02
8369 50 1.0 62 1.24 22 0.44
24521 21 0.42 63 1.26 27 0.54
1766 0 0.0 11 0.22 97 1.94
311 0 0.0 25 0.5 83 1.66
279 2 0.04 45 0.9 48 0.96
272 0 0.0 3 0.06 68 1.36
356 0 0.0 0 0.0 65 1.3
449 0 0.0 6 0.12 55 1.1
13918 0 0.0 34 0.68 22 0.44

Table 10: Top 20 most frequent tokens at position j = 8 under different temperature settings.

a few token IDs dominate the outputs, whereas at a
higher temperature (1.9), the distribution becomes
noticeably more dispersed. TempParaphraser pro-
duces a further redistribution of token probabilities,
promoting a more varied token selection compared
to standard temperature-based sampling. Notably,
TempParaphraser reduces reliance on the highest-
probability token (Token ID 802), thereby mitigat-
ing bias in LLM-generated text.

H Experimental Details for RoBERTa
Fine-Tuning

H.1 Training Detail

To get the Initial RoOBERTa-based Al-text detec-
tor, we use the following hyperparameters:

Dataset: HC3-text dataset (Guo et al., 2023)
Base Model: RoBERTa-base (Liu et al., 2019)
Batch Size: 16

Learning Rate: 5e-5

Optimizer: AdamW

Epochs: 1

Max Sequence Length: 512

To get the TempParaphraser-augmented detec-
tor, we use the following hyperparameters:

* Dataset: 5% subset of HC3-text for TempPa-
raphraser, retaining human-written text while
only modifying Al-generated text.

Base Model: Initial RoBERTa-based Al-
text detector

Batch Size: 16

Learning Rate: le-6

Optimizer: AdamW

Epochs: 1

Max Sequence Length: 512

We use the standard binary classification setup,
where the model predicts whether a given text is
Al-generated or human-written.

H.2 Further Evaluation of the
TempParaphraser-Augmented Detector

99.2% g cor 98.9% 99.2% 98.9% 100.0% 100.0%

I I :

B |nitial Detector
TempParaphraser-Augmented Detector

79.4%

F1 Score

ionS

nanc® o _aues
opef—

ﬂ\ed'\c'\“e « edd‘\\/e\'\f’ K et ,csé\
Figure 16: Performance of the TempParaphraser-
augmented detector on the HC3 test set across different

domains.

We further evaluate the TempParaphraser-
augmented detector on the HC3 test set across mul-
tiple domains under standard settings. As shown in

31561

Figure 16, while fine-tuning with TempParaphraser-
augmented data leads to slight performance drops
in some domains, the detector still maintains high
overall accuracy.

Our findings suggest that TempParaphraser can
serve as a data augmentation tool for enhanc-
ing Al-text detection datasets. By generating para-
phrased variations of Al-generated text, TempPara-
phraser introduces more diverse linguistic patterns
into training data, helping detectors generalize bet-
ter to real-world adversarial scenarios. A more
detailed study on improving detector performance
is left for future work.

I Prompt Design

LI.1 Prompt for High-Quality Data Synthesis
Framework

In the High-Quality Data Synthesis Framework,
we use the following prompt to guide the LLM in
generating paraphrased text:

"Rewrite and paraphrase the following
sentence. Focus on changing the struc-
ture and vocabulary while preserving the
original meaning and tone. Return the
rewritten sentence directly without in-
cluding any additional content.”

LI.2 System Prompt for Fine-Tuning the
Paraphrasing Model

For fine-tuning the paraphrasing model, we employ
the following system prompt:

"Rewrite the following text to sound more
natural and human-like. Maintain the
same information and overall structure,
but use more casual language, varied
sentence structures, and subtle personal
touches."

LI.3 Prompts Used in Baseline Methods

Below are the prompts used in baseline methods
for comparison. We made slight modifications to
adapt them to our task while preserving the core
structure of the prompts.

EDP (Fishchuk and Braun, 2023):

"Rewrite the following content in a way
that minimizes the likelihood of being
detected as Al-generated text. Ensure
the text exhibits characteristics of human-
authored writing, including natural syn-
tactic diversity, idiomatic expressions,

31562

contextual adaptability, and organic co-
herence in argumentation: {text} Pro-
vide the results directly without any ad-
ditional explanation.”

FMP (Alexander, 2023):

"Rewrite the following content to make it
sound more natural and human-like. In
effective rewriting, two key factors are
crucial: perplexity and burstiness. Per-
plexity measures the complexity of the
text, while burstiness compares varia-
tions in sentence structure. Human writ-
ing tends to have greater burstiness, fea-
turing a mix of longer, complex sentences
and shorter ones. Al-generated text, in
contrast, is often more uniform. When
rewriting the following content, ensure
it has a good balance of perplexity and
burstiness: {text} Provide the results di-
rectly without any additional explana-
tion."

