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Abstract

Large Language Models inherit stereotypes
from their pretraining data, leading to biased
behavior toward certain social groups in many
Natural Language Processing tasks, such as
hateful speech detection or sentiment analysis.
Surprisingly, the evaluation of this kind of bias
in stance detection methods has been largely
overlooked by the community. Stance De-
tection involves labeling a statement as being
against, in favor, or neutral towards a specific
target and is among the most sensitive NLP
tasks, as it often relates to political leanings.
In this paper, we focus on the bias of Large
Language Models when performing stance de-
tection in a zero-shot setting. We automati-
cally annotate posts in pre-existing stance de-
tection datasets with two attributes: dialect or
vernacular of a specific group and text complex-
ity/readability, to investigate whether these at-
tributes influence the model’s stance detection
decisions. Our results show that LLMs exhibit
significant stereotypes in stance detection tasks,
such as incorrectly associating pro-marijuana
views with low text complexity and African
American dialect with opposition to Donald
Trump.

1 Introduction

Large Language Models (LLMs) are computational
models with billions of parameters, demonstrat-
ing exceptional performance across various Natu-
ral Language Processing (NLP) tasks. A notable
example is ChatGPT, commonly used for ques-
tion answering and writing assistance. LLMs are
not limited to text generation. They also excel in
summarization, translation, text classification, and
other core NLP functions.

Previous studies indicate that prompt engineer-
ing, i.e., optimizing input instructions, can some-
times outperform traditional NLP model tuning for
specific tasks (Kheiri and Karimi, 2023). One such
task is stance detection, which infers an author’s

position on a topic based on the text they wrote.
Stance detection models typically classify opinions
as "Favorable", "Against", or occasionally "Neu-
tral". LLMs have demonstrated strong performance
in stance detection, surpassing specialized models
(Cruickshank and Ng, 2024).

Nevertheless, despite their advanced capabili-
ties, LLMs exhibit significant biases toward social
groups. For example, they may default to assum-
ing a doctor is male and a nurse is female, which
can impair task performance (Salinas et al., 2023;
Motoki et al., 2024; Gallegos et al., 2024; Li et al.,
2024). In stance detection, these biases could re-
sult in unfair outcomes, such as associating cer-
tain ideologies with specific demographic groups,
demonstrating the existence of stereotypes in the
model’s parametric knowledge. Here, we refer to
a stereotype as the set of ideas used to describe a
person or a social group that is often reducing or
false1.

Surprisingly, limited research has focused on
bias in stance detection, particularly regarding
racial and social group biases in LLMs, even
though a recent study showed that language mod-
els demonstrate gender bias in stance detection (Li
and Zhang, 2024). This gap is especially concern-
ing given the task’s sensitivity and its potential
real-world impact, such as inferring a social media
user’s political orientation. Moreover, the scarcity
of datasets that integrate both stance information
and author attributes significantly limits the ability
to study and mitigate bias in this domain. As a con-
sequence, Li and Zhang (2024) focus on template-
based gender bias (i.e. synthetic data), while our
work is the first to leverage demographic linguistic
cues on real-life data.

In this work, we aim to address the gap in re-
search regarding bias in zero-shot stance detection

1https://dictionary.cambridge.org/dictionary/
english/stereotype
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with LLMs. Our contributions are as follows: (1)
We investigate biases in LLMs’ stance detection
predictions, focusing on discriminatory decisions
based on pre-existing stereotypes embedded in their
parametric knowledge, such as associating political
stances with a vernacular expression of English or
text complexity. We evaluate popular LLMs, in-
cluding Mistral, Llama, Falcon, Flan, and GPT-3.5,
on stance detection tasks and analyze their biases
using several fairness metrics. (2) We release en-
hanced datasets that integrate stance information
with sensitive attributes for further research. (3)
Our findings reveal significant biases, including
the association of certain political and social issues
with specific sensitive attributes, emphasizing the
need for more equitable stance detection models
and better debiasing techniques.

2 Related Work

2.1 Stance Detection

Stance detection used to be dominated by super-
vised methods, often enhanced by pre-trained lan-
guage models (Ahmed et al., 2020), or unsuper-
vised approaches (Sutter et al., 2024). Recently,
modern Language Models were shown to be fast
learners, and demonstrate good abilities in zero-
shot settings (Kocoń et al., 2023). Cruickshank and
Ng (2024) show that, under the usage of effective
prompting methods, LLMs are able to outperform
baselines on the stance detection task. Therefore,
in the past months, stance detection using LLMs
has been largely expanded upon. Wang et al. (2024)
work shows even better results with LLMs, using
a new method to inject expert information into the
models.

2.2 Fairness/Bias of Language Models

In their stance detection benchmark from 2020,
Schiller et al. (2021) do mention the problem of
bias in stance detection models, showing that while
it has been a known problem for years, little to no
research has been done about it. Language models
were shown to be biased by many existing studies
(Dixon et al., 2018; Kiritchenko and Mohammad,
2018; Leteno et al., 2023), i.e. they were shown to
demonstrate different behavior with regard to the
demographic group associated with the text, mostly
gender and race. Salinas et al. (2023) show ways
to prompt a model to remove its filters, confirm-
ing obvious bias against certain groups when the
model is not restrained by manually applied con-

straints. Motoki et al. (2024) trick ChatGPT into
impersonating humans with certain political opin-
ions, leading to biased responses when the model
does not consider itself restrained anymore. Addi-
tionally, LLMs were shown by Feng et al. (2023)
to be politically oriented.

This work shows that politically skewed pretrain-
ing data can propagate biases into LLMs’ appli-
cations, resulting in unfair predictions, especially
in tasks involving social or identity groups. This
could lead the language model to inherit some bi-
ases or stereotypes that might impact its decision
when detecting stances toward political subjects
such as those appearing in the commonly used
datasets, e.g. Biden, Trump, abortion, gay rights
(Hasan and Ng, 2013).

Surprisingly, the issue of bias in stance detec-
tion approaches has received little attention in the
literature, possibly due to the scarcity of sensitive
attribute annotations within existing datasets. Li
et al. (2024) examine the potential influence of the
text polarity on the model decision, but also target
preference, similarly to Zhang et al. (2024). Close
to the latter, Yuan et al. (2022) use causal graph
modeling and propose to isolate the text’s direct
effect on stance and to focus on the text-target in-
teraction.

In this paper, we focus on biases as unfair actions
that result more often from stereotypes, i.e. over-
generalization or false beliefs toward a certain part
of the population, most often social groups such as
defined by so-called protected attributes (gender,
race, etc.).To date, the work of Li and Zhang (2024)
is the only one that focuses on social group bias
in stance detection algorithms. They demonstrate
the existence of gender biases in stance detection
based on language models such as BERT, GPT-3.5
and GPT-4 in zero-shot settings, using generated
data. No other work proposes to study two impor-
tant sensitive attributes: African American English
vs Standard American English and Text complex-
ity, easily detectable with Flesch score, and their
influence on the model decision when producing a
stance for a text on politically oriented topics.

3 Methodology

In this section, we provide all the information con-
cerning our protocol. Note that in addition, we
make the datasets and code available online2.

2https://github.com/AntoineGourru/
StanceDetectionBiases
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3.1 Enriching Datasets with Sensitive
Attributes Annotation

In this paper, we measure bias related to two dif-
ferent sensitive attributes. None of the existing
Stance Detection datasets contain text or post-level
sensitive attribute annotations. Therefore, we pro-
pose to leverage existing datasets and augment
them with automatic text annotation for two sen-
sitive attributes. We consider the potential bias of
the models regarding African-American English
(AAE) text. AAE can be grammatically and syntac-
tically different from Standard American English
(SAE), serving as a proxy for linguistic and so-
ciocultural group membership. Importantly, note
that as stated in (Blodgett et al., 2016), “Not all
African-Americans speak AAE, and not all speak-
ers of AAE are African-American”. AAE/SAE is
used here as a linguistic marker, not as a determin-
istic racial classifier, and it represents perceived so-
ciocultural identity, which is interpreted by LLMs
as a social signal, a central point of our bias hy-
pothesis. Second, we consider the bias towards text
complexity/readability. We use the Flesch-Kincaid
score (Kincaid, 1975), which is a test for the read-
ability of a text or sentence. Our aim is to assess
whether models implicitly rely on text complexity
to make biased assumptions. Bias in LLMs related
to text complexity is especially concerning, as re-
cent work (Ahmed et al., 2022) found correlations
between readability and socio-economic status on
social media. In the following section, we detail
the methods we used to enrich the existing datasets
with these sensitive attributes.

3.1.1 African vs Standard American English
To infer the nature of the language, we propose
to leverage the model3 proposed by Blodgett et al.
(2016) as was done to build the MOJI dataset. This
model takes a text as input and returns a proba-
bility for four possible forms of English, labeled
as "African-American", "Hispanic", "Asian", and
"Standard". We label every text with the category
with the highest probability. In our study, we focus
on "African-American" and "Standard American"
(SAE).

"Okay then, I’m on it!!! And remember
folks, Greg Gutfeld says he’s never met a
Biden supporter. #ImABidenSupporter!"

Example of a text from the PStance dataset labeled as SAE

3https://github.com/slanglab/twitteraae

Figure 1: Proportion of SAE and AAE tweets in the
PStance dataset for each political figure

"Nope that’s NOT true we would be re-
spected around the world with @Joe-
Biden we suffered a recession under
@BarackObama guess wat he got us out
of that with u only DOWN"

Example of a text from the PStance dataset labeled as AAE

3.1.2 Text Complexity
To measure the text complexity of a given text,
we use the Flesch–Kincaid readability test (Kin-
caid, 1975). This test measures the readability of
a text by evaluating the average sentence length
and the average number of syllables per word.
The resulting score corresponds to a reading ease
scale, where higher scores indicate easier readabil-
ity. This approach has been widely used in read-
ability research and serves as a reliable indicator of
the text’s complexity. The Flesch-Kincaid score is
computed as follows:

206.835− 1.015× W

Se
− 84.6× Sy

W
(1)

with Se the number of sentences in the text, W the
total number of words and Sy the total number of
syllables.

We discretize this score in four groups follow-
ing previous works: Easy (or low complexity),
Medium, Difficult readability and Very Difficult
readability (or very high complexity, see Table 1
for details).

We hypothesized that the complexity of a text,
measured by the F-K readability tests, could po-
tentially affect the model’s assumptions about the
writer’s writing skills. In other words, a high or
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Flesch Score Readability
≥ 80 Easy

≥ 60, < 80 Medium
≥ 30, < 60 Difficult

< 30 Very difficult

Table 1: Discretization of Flesch-Kincaid Score

low language complexity (the quality of writing)
of a text might result in biased decisions about its
stance.

"I believe that they should be able to
because it is their right. Just like we
have the right to marry one another they
should be able to. How about this put
yourself in their shoes how would you
like it if you were in love with the same
sex and you 2 decide to get married but
you couldn’t then what? You would be
pretty mad wouldn’t you?. I know that I
would. So to me I think they should be
able to get married. "

Example of text from SCD labeled “Low text complexity”

"To say that two men or two women nec-
essarily can’t raise a child as well as a
one-man-one-woman couple is sexist and
inaccurate. We all know there are some
heterosexual couples who are clearly un-
qualified to raise children. Restrictions
on adoption should depend on the in-
dividual circumstances of the adopting
family, not on generalized statements
about the differing parenting styles of
men and women."

Example of text from SCD labeled “Very high text
complexity”

3.2 Datasets Used

For this study, we use existing stance detection
datasets for which we create sensitive attributes
using the aforementioned methods. We use one
dataset for the stereotypical bias toward language
variety (SAE vs AAE) and two datasets for the bias
toward text complexity.

For the language varieties experiment, we use
the PStance dataset (Li et al., 2021), a stance detec-
tion dataset composed of a large number of posts
retrieved from X (formerly Twitter) in the politi-
cal domain. Specifically, this dataset focuses on

Figure 2: Proportion of readability classes in the SCD
dataset for each topic

Figure 3: Proportion of readability classes in the KE-
MLM dataset for each political figure

three American political figures: Bernie Sanders,
Joe Biden and Donald Trump.

After running our sensitive attribute annotation
protocol on this dataset, a clear imbalance was
shown, with a large majority of the dataset being
labeled as SAE tweets, and only a small portion
of the dataset being labeled as AAE (see Figure 1).
However, we deemed the numbers sufficient and
went ahead with the experiment. For the experi-
ments, we balance the dataset by downsampling
the majority group, so that there are as many AAE
tweets as SAE tweets in our study, and the same
proportion of favorable tweets in both groups.

For the text complexity experiment, we use
the SCD Dataset (Hasan and Ng, 2013), which
consists of posts taken from the CreateDebate
website. These posts are part of debates about
four themes: Abortion, Gay rights, Marijuana and
Barack Obama. Since this dataset is sourced from
a debating website and consists of long texts, the
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Flesch-Kincaid reading ease test is more applicable.
The proportion of texts for each readability class
in the SCD dataset after annotation can be seen
in Figure 2. Additionally, we use the KE-MLM
dataset (Kawintiranon and Singh, 2021), another
dataset about two political figures, Donald Trump
and Joe Biden, which contained substantial num-
bers of tweets from all four text complexity classes,
making it usable to evaluate models’ bias. The pro-
portion of tweets for each readability class in the
KE-MLM dataset after annotation can be seen in
Figure 3.

The choice to use the PStance, SCD, and KE-
MLM datasets in different contexts was driven by
the specific characteristics of each dataset and the
requirements of our experiments. The PStance
dataset was ideal for language variety experiments
due to its focus on diverse linguistic expressions
across various stances. For text complexity ex-
periments, the SCD dataset was initially selected
because it contains longer texts, making it more
suitable for applying the Flesch-Kincaid readabil-
ity test effectively. Later, we incorporated the KE-
MLM dataset for text complexity experiments to
explore whether similar patterns observed in longer
texts could also emerge in shorter, more dynamic
texts like tweets. The PStance dataset, however,
did not yield meaningful results for the text com-
plexity experiments due to a large over represen-
tation of medium- and low-complexity levels, ren-
dering it unsuitable for our analysis. In contrast,
while the KE-MLM dataset also consists of tweets,
the Flesch-Kincaid test provided a more balanced
group distribution (see Figure 2). However, the
SCD and KE-MLM datasets included an insignifi-
cant proportion of AAE texts, making our study on
language varieties inapplicable to them.

For all datasets, we balance the data to ensure an
equal proportion of favorable and unfavorable posts
for each class. Although this results in smaller
datasets, it mitigates the potential bias caused by
class imbalance. The initial statistics for each
dataset are provided in the Appendix.

3.3 Language Model and Prompting
As we evaluate zero-shot stance detection, we
use one closed model, GPT-3.5-turbo-0125, and
four open models, Llama3-8B-Instruct, Mistral-7B-
Instruct-v0.2, Falcon-7b-instruct and FLAN-T5-
large. We provide URLs in the Appendix.

Several prompting methods can be used to per-
form stance detection with LLMs. Among those

described by Cruickshank and Ng (2024), we em-
ploy the Context Analyze and Zero-shot Chain-
of-Thought methods, as both demonstrated supe-
rior results with Mistral compared to other ap-
proaches. Since both methods yielded similar
outcomes in preliminary experiments, we opted
for the Context Analyze method due to its signifi-
cantly faster performance compared to Zero-Shot
Chain-of-Thought. Following the Context Analyze
method we use the prompt:

Stance classification is the task of deter-
mining the expressed or implied opinion,
or stance, of a statement toward a cer-
tain, specified target.
Analyze the following social media state-
ment and determine its stance towards
the provided [target]. Respond with a
single word: FAVOR or AGAINST. Only
return the stance as a single word, and
no other text.
[target]: TARGET
Statement: TEXT

with:

• TARGET replaced with the subject we want
to detect the stance about

• TEXT replaced with the full text

3.4 Measures
As done in previous works, we rely on weighted
F1 as a measure of performance for the (binary)
stance detection evaluation, 1 being the best score.
With regard to fairness, we rely on Equal Opportu-
nity (EO), and extend to Demographic Parity and
Predictive Parity in the Appendix C (Alves et al.,
2023). In the sequel, y denotes the stance label,
ŷ the prediction made by the model, s a sensitive
attribute, taking values corresponding to different
groups (a and ā). Equal Opportunity (EO) is de-
fined by:

EO = p(ŷ = 1|y = 1, s = a)

− p(ŷ = 1|y = 1, s = ā)
(2)

EO ranges from −1 to 1, with 0 being the fairer
result, −1 meaning that group a is discriminated
by the model (less likely to predict 1 for examples
labeled 1 and with sensitive attribute value a) and
1 meaning that group a is privileged by the model
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(more likely to predict 1 for examples labeled 1 and
with sensitive attribute value a). Equal Opportu-
nity (Hardt et al., 2016) allows us to compare the
probability of labeling a text 1 with property a to
the probability of labeling 1 a text without prop-
erty a, knowing that the true label of the text is 1.
In our experiment, we present EO in both ways:
with label 1 corresponding to "favor" and then to
"against".

We also provide an aggregated version of EO,
by computing the average of absolute values of EO
for each class, dataset and stance, allowing us to
compute the overall language model bias for the
considered sensitive attributes.

4 Results

4.1 Stance Detection Capabilities

The weighted F1-score of each model on each
dataset can be found in Table 2. To put these results
into perspective, we also provide the percentage of
"Neutral" predictions made by each model on each
dataset in the Appendix (F1-score is computed only
on the favor and against stances).

The results from Table 2 indicate a clear per-
formance hierarchy among the evaluated models.
Falcon is the least effective model, demonstrat-
ing the lowest performance. In contrast, Llama
achieves good results in terms of F1-score. How-
ever, Llama generates a high number of neutral
predictions, which raises concerns about its over-
all reliability and effectiveness for this task. This
tendency towards neutrality suggests that Llama
may struggle to predict stance in zero-shot settings,
limiting its practical application.

Flan shows above-average capabilities, indicat-
ing it is a strong contender for stance detection
tasks. Its performance is consistently reliable, mak-
ing it a dependable choice for researchers and prac-
titioners. However, Flan does not outperform the
top models, Mistral and GPT-3.5, which demon-
strate superior performance in the task.

Mistral and GPT-3.5 emerge as the best mod-
els for stance detection. Among these, GPT-3.5 is
particularly noteworthy for its significantly lower
number of neutral predictions. This characteristic
indicates that GPT-3.5 is more decisive and confi-
dent in its classifications, making it highly effective
for tasks requiring clear and definitive stances.

Mistral Llama Falcon Flan GPT

PStance 0.804 0.711 0.477 0.693 0.787

SCD 0.637 0.617 0.513 0.591 0.685
KE-MLM 0.671 0.639 0.494 0.623 0.695

Table 2: Weighted F1 for each dataset and LLM

Figure 4: Equality of Opportunity on Joe Biden on
the PStance dataset. SAE stands Standard American
English, AAE for African American English. In green,
EO for the label "favor", in red for “against”.

4.2 Biases of LLMs

All fairness results have been computed by averag-
ing the metrics on 1000 balanced samples randomly
taken from the dataset. Each sample contains an
equal number of texts for each class, and as many
favorable and unfavorable texts in each class. The
same samples have been used for the 5 models. We
provide the average EO (with standard deviation)
per group for each class and target. More precisely,
a dot indicates the average result (the value is given
on the bottom) and the whiskers represent standard
deviation (mean -/+ sd). On top of each EO plot,
we provide results in green when "favor" is con-
sidered as label 1, and on the bottom in red when
“against” is considered as label 1. This allows to
show the bias toward each target in a single plot.
For instance, in Figure 10 related to abortion, with
EO values around 0, LLMs demonstrate limited
biases w.r.t. the text complexity.

On AAE vs SAE bias Figures 4, 5 and 6 present
the results on the PStance dataset. Surprisingly, re-
sults seem to show very little bias based on African
American English. The only low magnitude bi-
ases we observe are the following: the FLAN
model seems to associate more easily SAE as being
against Biden than AAE. Similarly, FLAN seems to
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Figure 5: Equality of Opportunity on Bernie Sanders
on the PStance dataset. SAE stands Standard American
English, AAE for African American English. In green,
EO for the label "favor", in red for “against”.

Figure 6: Equality of Opportunity on Donald Trump
on the PStance dataset. SAE stands Standard American
English, AAE for African American English.In green,
EO for the label "favor", in red for “against”.

associate AAE more easily as being against Trump
than SAE.

Stereotype 1: Low complexity text means in fa-
vor of Marijuana - Complex text means against.
By examining Figure 8, LLMs demonstrate clear
biases for all models except Llama and to a lesser
extent Falcon on the "against marijuana" target (bot-
tom plots), with values reaching -0.4 for Mistral.
The models show a lower probability of predicting
low complexity texts as being against marijuana,
compared to other groups. In contrast, the models
are more likely to predict high complexity texts as
being against marijuana. This trend is further sup-
ported by additional fairness metrics (see Appendix
D), demonstrating that LLMs tend to associate a
highly complex text with opposition to marijuana

Figure 7: Equality of Opportunity on Barack Obama
on the SCD dataset. L, M, H, and VH stand for Low
- Medium - High and Very High Text Complexity. In
green, EO for the label "favor", in red for “against”.

Figure 8: Equality of Opportunity on Marijuana on the
SCD dataset. L, M, H, and VH stand for Low - Medium
- High and Very High Text Complexity, respectively. In
green, EO for the label "favor", in red for “against”.

and a lower complexity with support toward it.

Stereotype 2: Complex text is expressing sup-
port to Obama. By examining Figure 7, we ob-
serve an interesting pattern concerning the target
"Barack Obama" on the SCD dataset. All mod-
els, except Llama, exhibit biases. Notably, Falcon
shows an opposite bias compared to Mistral, Flan,
and GPT-3.5 when predicting the label "favor". The
latter models tend to predict that high complexity
texts favor Obama, while Falcon is more likely to
predict that low complexity texts are in favor, and
high complexity texts are against.

Stereotype 3: Highly complex text is not express-
ing a stance against Biden. Analyzing Figure 11,
we observe that all models show a bias toward pre-
dicting that very high complexity texts are less
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Figure 9: Equality of Opportunity on gay rights on the
SCD dataset. L, M, H, and VH stand for Low - Medium
- High and Very High Text Complexity, respectively. In
green, EO for the label "favor", in red for “against”.

Figure 10: Equality of Opportunity on abortion on the
SCD dataset. L, M, H, and VH stand for Low - Medium
- High and Very High Text Complexity, respectively. In
green, EO for the label "favor", in red for “against”.

likely to oppose Biden. This bias is most pro-
nounced in Flan and GPT-3.5, where the probability
of classifying highly complex texts as being against
Biden is much less than for other complexities. No-
tably, Falcon once again exhibits an opposite bias
for very high complexity and "favor" (shown in
green).

Stereotype 4: GPT-3.5 and Llama believe highly
complex text expresses a stance against gay
rights. In Figure 9, a significant bias is observed
in GPT-3.5 and Llama predictions related to the
stance of high complexity texts on gay rights.
These models disproportionately predict that high
complexity texts are against gay rights compared
to low complexity texts.

Figure 11: Equality of Opportunity on Joe Biden on
the KE-MLM dataset. L, M, H, and VH stand for Low
- Medium - High and Very High Text Complexity. In
green, EO for the label "favor", in red for “against”.

Figure 12: Equality of Opportunity on Donald Trump
on the KE-MLM dataset. L, M, H, and VH stand for
Low - Medium - High and Very High Text Complexity.
In green, EO for the label "favor", in red for “against”.

Stereotype 5: Falcon associates low complexity
with partisanship, high complexity with opposi-
tion Interestingly, Falcon demonstrates a similar
pattern for all three political figures (Figure 11, 7,
12) in the KE-MLM dataset: in green, it assigns
a much higher probability for texts with low com-
plexity to be in favor of the politician than for those
with high or very high complexity, regardless of
political party. This could suggest that it is more
likely to associate simpler text with partisanship
and complex posts with opposition.

Comparison between Language Models Ta-
ble 3 provides the average EO for each model and
studied attribute. Falcon demonstrates the maxi-
mum bias overall, followed by Mistral, Flan, Llama
and GPT-3.5. As models are based on a similar ar-
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Mistral Llama Falcon Flan GPT

Complexity 0.12 0.07 0.20 0.12 0.08
A/SAE 0.09 0.08 0.07 0.08 0.04

Table 3: Average absolute value of EO for each model
and demographic group.

chitecture, this difference might stem from either
the pre-training corpus or the instruction data, as
we used instruction-tuned open models.

5 Discussion and Conclusion

Our study revealed that Large Language Models
consistently (across topics and models) exhibit sig-
nificant biases in zero-shot stance detection, with
stereotypes influencing their predictions based on
English dialect and text complexity. This aligns
with the work of Feng et al. (2023), which traces
political and social biases. We hypothesize that
differences in bias between models are likely due
to variations in their training data composition and
instruction tuning strategies. These biases, which
manifest in politically sensitive contexts, highlight
the need for closer scrutiny of LLM behavior, par-
ticularly in zero-shot settings. Our findings em-
phasize the importance of developing more robust
and equitable stance detection models to mitigate
the harmful impacts of such biases. This could be
achieved using fairness-aware prompting or cali-
bration, such as discussed in Li et al. (2024), to
reduce bias in predictions or by causal modeling,
like counterfactual inference (Yuan et al., 2022),
to isolate the contribution of sensitive attributes.
Finally, note that our protocol could be general-
ized to any other group categorization, e.g. gender.
This being said, a promising line of research would
be to combine static and LLM-based metrics for
automatic group categorization.

Limitations

The methods used to create and balance our
datasets resulted in relatively small sample sizes.
While these sizes are sufficient to demonstrate bias,
a study with a larger dataset would be beneficial.

Additionally, the Mistral and Llama versions
used in this study have a limited number of param-
eters. While this allows their use, larger model
variants may perform better on the stance detection
task and reveal additional biases.

An important note: AAE is used in this work as
a linguistic marker of a dialect, not as a determinis-

tic racial classifier, which could be interpreted by
LLMs as a social signal, a central point of our bias
hypothesis. As cited previously, "Not all African
Americans speak AAE, and not all AAE speakers
are African American" (Blodgett et al., 2016).
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A Additional Implementation details

A.1 Language Models

We use the following url/sources for
each models: GPT-3.5-turbo-0125 https:
//platform.openai.com/docs/models/o1,
Llama3-8B-Instruct https://huggingface.
co/meta-llama/Meta-Llama-3-8B-Instruct,
Mistral-7B-Instruct-v0.2 https://huggingface.
co/mistralai/Mistral-7B-Instruct-v0.2,
Falcon-7b-instruct https://huggingface.co/
tiiuae/falcon-7b-instruct and FLAN-
T5-large https://huggingface.co/docs/
transformers/model_doc/flan-t5.

A.2 Resampling Statistics

We provide in Tables 4, 5 and 6 the resampling
statistics for our experiments.

Unbalanced Balanced
SAE 20,575 339
AAE 339 339

Table 4: PStance dataset balanced/unbalanced distribu-
tion

Complexity Unbalanced Balanced
Low 521 262
Medium 2071 262
High 1999 262
Very high 310 262

Table 5: SCD dataset balanced/unbalanced distribution

Complexity Unbalanced Balanced
Low 403 160
Medium 839 160
High 867 160
Very high 391 160

Table 6: KE-MLM dataset balanced/unbalanced distri-
bution

B Neutral Predictions

Some LMs fail to follow the prompt and output
neutral predictions. We provide the statistics in
table 8. "Neutral" refers to instances where the
model did not return "FAVOR" or "AGAINST" as
instructed in the prompt

C Additional Fairness Metrics

Disparate Impact measures the probability for a
text written by an author belonging to the modality

File Size Ratio Favor

KE-MLM 1603 0.45
Donald Trump 840 0.41
Joe Biden 763 0.50

PStance 20914 0.48
Bernie Sanders 6161 0.56
Donald Trump 7709 0.46
Joe Biden 7044 0.44

SCD 4901 0.59
Abortion 1915 0.56
Barack Obama 985 0.53
Gay rights 1375 0.64
Marijuana 626 0.71

Table 7: Dataset Size and Ratio

Mistral Llama Falcon Flan GPT

PStance 21.73 61.27 12.69 0.01 0.04

SCD 15.49 37.03 5.94 0.00 0.14
KE-MLM 65.96 63.84 20.00 0.00 0.12

Table 8: Percentage of neutral predictions made by
each model on the datasets. "Neutral" refers to in-
stances where the model did not return "FAVOR" or
"AGAINST" as instructed in the prompt

a to be classified as in favor of the target, compared
to a text written by someone else.

DI = p(ŷ = 1|S = a)

− p(ŷ = 1|S = ā)
(3)

Predictive Parity measures the probability for a
text written by an author belonging to the modality
a to be in favor of the target, compared to a text
written by someone else, knowing that the text was
classified as in favor of the target by the model.

PP = p(y = 1|ŷ = 1, S = a)

− p(y = 1|ŷ = 1, S = ā)
(4)

DI and PP range from -1 to 1, with 0 being the
fairer result, -1 meaning that the modality a is dis-
criminated by the model and 1 meaning that the
modality a is privileged by the model.

D Complete results
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Figure 13: Disparate Impact on Bernie Sanders on the
PStance dataset

Figure 14: Disparate Impact on Joe Biden on the
PStance dataset

Figure 15: Disparate Impact on Donald Trump on the
PStance dataset

Figure 16: Disparate Impact on abortion on the SCD
dataset

Figure 17: Disparate Impact on gay rights on the SCD
dataset

Figure 18: Disparate Impact on Barack Obama on the
SCD dataset
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Figure 19: Disparate Impact on marijuana on the SCD
dataset

Figure 20: Disparate Impact on Joe Biden on the KE-
MLM dataset

Figure 21: Disparate Impact on Donald Trump on the
KE-MLM dataset

Figure 22: Predictive Parity on Bernie Sanders on the
PStance dataset

Figure 23: Predictive Parity on Joe Biden on the PStance
dataset

Figure 24: Predictive Parity on Donald Trump on the
PStance dataset
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Figure 25: Predictive Parity on abortion on the SCD
dataset

Figure 26: Predictive Parity on gay rights on the SCD
dataset

Figure 27: Predictive Parity on Barack Obama on the
SCD dataset

Figure 28: Predictive Parity on marijuana on the SCD
dataset

Figure 29: Predictive Parity on Joe Biden on the KE-
MLM dataset

Figure 30: Predictive Parity on Donald Trump on the
KE-MLM dataset
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