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Abstract

Temporal relation extraction (TRE) is a fun-
damental task in natural language processing
(NLP) that involves identifying the temporal
relationships between events in a document.
Despite the advances in large language mod-
els (LLMs), their application to TRE remains
limited. Most existing approaches rely on pair-
wise classification, where event pairs are clas-
sified in isolation, leading to computational
inefficiency and a lack of global consistency
in the resulting temporal graph. In this work,
we propose a novel zero-shot method for TRE
that generates a document’s complete tempo-
ral graph in a single step, followed by tempo-
ral constraint optimization to refine predictions
and enforce temporal consistency across rela-
tions. Additionally, we introduce OmniTemp,
a new dataset with complete annotations for
all pairs of targeted events within a document.
Through experiments and analyses, we demon-
strate that our method outperforms existing
zero-shot approaches and offers a competitive
alternative to supervised TRE models.

1 Introduction

Temporal relation extraction (TRE) is a founda-
tional task in natural language processing (NLP)
that supports applications such as event forecasting
(Ma et al., 2023), misinformation detection (Lei
and Huang, 2023), and medical treatment timeline
construction (Yao et al., 2024).

The TRE task is formulated as follows: given
a pair of event mentions, identify the temporal
relation between them (e.g., before, after, equal,
include, is included, vague). The task has seen
significant progress in recent years with the de-
velopment of supervised models (Tan et al., 2023;
Niu et al., 2024). However, these models require
large amounts of training data, which is scarce in
most domains and languages, and difficult to obtain
due to the complexity of manually annotating such
relations (Pustejovsky and Stubbs, 2011).

kfir.bar@runi.ac.il

Recent advances in large language models
(LLMs) have shown strong capabilities in capturing
linguistic patterns (Brown et al., 2020), perform-
ing multi-step reasoning (Wei et al., 2022), and
applying temporal commonsense knowledge (Jain
et al., 2023), positioning them as promising tools
to address data scarcity through zero-shot learn-
ing (Kojima et al., 2022). However, existing zero-
shot LLM-based TRE work has focused on pair-
wise classification (Yuan et al., 2023; Chan et al.,
2024). Pairwise methods face significant computa-
tional challenges, particularly in real-world scenar-
ios where the goal is to construct a complete time-
line of events from a document. In such cases, all
event pairs must be classified, resulting in O(n?) in-
ference calls for n events. This quadratic complex-
ity becomes impractical when using LLMs due to
their high computational cost per query. Moreover,
because pairwise approaches consider each event
pair in isolation, they fail to capture the global tem-
poral structure of the document, often leading to in-
consistent or contradictory temporal graphs (Wang
et al., 2020). As a result of these challenges, zero-
shot applications of LLMs to TRE have largely
been regarded as ineffective (Wei et al., 2024; Niu
et al., 2024; Chan et al., 2024; Ning et al., 2024).

In contrast, global TRE involves predicting the
complete set of temporal relations between all
event pairs in a document, resulting in a temporal
graph that captures the holistic temporal structure.
This approach enables models to enforce global
consistency and jointly reason about relations, es-
sential for accurate temporal understanding. In
doing so, it also provides a more scalable alterna-
tive to the computational inefficiencies of pairwise
modeling.

A critical obstacle for global TRE research is the
lack of datasets with complete temporal relation
annotations for all event pairs. Manual annotation
of full temporal graphs is notoriously challenging
and traditionally considered infeasible (Naik et al.,
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<eventName(identifier)>, for each pair of events listed below,
determine the temporal relationships (before, after, equal,
vague) between them.

The output should be in two steps:
First: provide a detailed explanation of the story timeline based
on the events marked in it.

Then:
Based on your explanation, provide the temporal relationship
between the events in the following DOT format:

strict graph {

"Event1(id)" -- "Event2(id)" [rel=LABEL]; n

"Event1(id)" -- "Event3(id)" [rel=LABEL];

}

— Otto Warmbier is dead less than a week after <returning(39)>
to the US from North Korea <The rest of the text is omitted to
fit in Figure>...

Pairs require classification:

returning(39) -- detention(14)
returning(39) -- lived(3)

/~ Given the document below where each event is marked with "\ /

) : . A .
\_ The rest of the relations are omitted to fit in Figure>... J K

relt 1 [ [ [
E et 02 06 02 0
rel2 0 1 0 0
N e e 1 e ‘reIZOOAOOS
A 04 0 06 0
/
’ B A E V
/
/
/
II ,”N\Z 0 1 0 0
/ o
/
’ e 0 0 1 0
J s
g ¢
7o
I//
—> (39 B A E V
Y Sa Pt 10 0o

Transitive Constraints
(Ning etal.,)

\ B E v
2l o |10l rell | 0 1 0 0

M 1 0 0 O
e . ol olol1lo rel2| 0 1 | 0 0
0 0 1 0

/

Figure 1: Illustration of the pipeline approach (§4): [1] We send the same prompt to the model to generate separate
instances of the document’s complete temporal graph. [2] We extract the relation distribution as one-hot vectors over
the temporal classes for each relation in each generation. [3] We sum and normalize the predictions into a single
vector representing the joint prediction over the document’s temporal graph. [4] We apply an ILP optimization
algorithm to this vector. [5] The final temporal graph is obtained.

2019). Most TRE datasets therefore provide labels
only for a subset of event pairs, often limited to
events in consecutive sentences (Chambers et al.,
2014; Ning et al., 2018b). This partial coverage
constrains models to pairwise strategies and com-
plicates evaluation of long-range temporal reason-
ing. Alternative automated labeling approaches
(Naik et al., 2019; Alsayyahi and Batista-Navarro,
2023) mitigate annotation costs but risk introduc-
ing biases inherent to the automated annotation
methods themselves.

To address the scarcity of fully annotated
datasets, and the inefficiency and global inconsis-
tency of pairwise classification in zero-shot set-
tings, we make the following contributions:'

* We propose a novel zero-shot LLM method
that generates the entire temporal graph in a
single inference step. Our method prompts
the model to produce a free-form summary
of the event timeline to guide reasoning or
“thinking”, followed by classification of all
event pairs, aggregated via a global tempo-
ral constraints optimization algorithm to en-
sure consistency (Figure 1, and §4). This ap-
proach significantly reduces computational

'OmniTemp and all experimental code are pub-

licly available at https://github.com/AlonEirew/
GlobalZeroShotTRE.

cost compared to pairwise methods while
achieving performance competitive with su-
pervised models (§6).

* To support global temporal graph extraction,
we introduce OmniTemp, a new dataset with
exhaustive temporal relation annotations for
all event pairs (§3).

We discuss how annotation scope and guide-
line inconsistencies affect zero-shot model as-
sessment. We show that limiting annotations
to short-distance event pairs, as well as dis-
crepancies between widely used datasets such
as MATRES and TB-Dense, can hinder fair
and reliable evaluation of TRE models in zero-
shot settings.

2 Background

This section provides relevant background on
datasets and zero-shot methods for the temporal
relation extraction task.

2.1 Temporal Relation Extraction Datasets

The temporal relation extraction task aims to de-
termine the temporal order between pre-extracted
events in a text (Pustejovsky et al., 2003). For fair
and unbiased model evaluation, datasets should pro-
vide gold labels for all event pairs or, at a minimum,
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be randomly sampled from the full set. However,
most existing datasets for temporal relation extrac-
tion provide only partial annotation due to the com-
plexity and cost of the process (Pustejovsky and
Stubbs, 2011; Naik et al., 2019). As a result, the
two most widely used datasets, MATRES (Ning
et al., 2018b) and TimeBank-Dense (TB-Dense)
(Chambers et al., 2014), annotate only relations
between events in consecutive sentences.

Recently, the NarrativeTime project (Rogers
et al., 2024), a large effort of expert annotation,
released a comprehensive, re-annotation of the TB-
Dense corpus, covering all possible event pairs.
The dataset includes seven relation types: before,
after, includes, is-included, equal, overlap, and
vague. Temporal relations are established based
on event start times, end times, and durations. No-
tably, the vague relation indicates that the temporal
relation cannot be determined from the provided
context or where annotators disagree, and it is cru-
cial for complete annotation, as it confirms that the
pair was considered during annotation and deemed
inconclusive, rather than ignored.

While NarrativeTime provides an exhaustively
annotated dataset, it follows complex annotation
guidelines similar to those of TB-Dense. MATRES
refines these guidelines by focusing on a subset of
events, annotating relations only based on event
start times, and reducing the label set to before, af-
ter, equal, and vague. These refinements improve
inter-annotator agreement and offer a more accessi-
ble setting for the task. However, MATRES is not
exhaustively annotated. To bridge this gap, we de-
velop OmniTemp, a dataset that adopts the refined
MATRES scheme while ensuring complete cover-
age of all event pairs across entire texts. Further
details are provided in §3.

2.2 Zero-Shot Methods

Recent advancements in LL.Ms offer an opportunity
to leverage their vast knowledge for zero-shot ap-
proaches (Kojima et al., 2022), enabling solutions
without training data (Zhao et al., 2023). How-
ever, few studies have explored LLMs for tempo-
ral relation extraction in zero-shot settings. The
most notable and best-performing approach is by
Yuan et al. (2023), who applied a simple zero-shot
chain-of-thought (CoT) method. In this method,
the model is sequentially asked about each possi-
ble relation for a given event pair (e.g., “Is event-a
before event-b?”’; if “no,” then “Is event-a after
event-b?”) until the model answers “yes.” We use

Yuan et al. (2023) method as the zero-shot baseline
in our experiments. Another effort by Chan et al.
(2024) experimented with prompt engineering and
in-context learning. Both methods employed a pair-
wise approach and achieved suboptimal results on
the MATRES and TB-Dense datasets. Additionally,
the pairwise approach makes these methods cost-
and time-inefficient.

The main goal in this work is to provide a more
efficient and effective alternative to pairwise ap-
proaches by processing the entire document glob-
ally in a single step (see §4).

3 The OmniTemp Dataset

OmniTemp? is built following the MATRES (Ning
et al., 2018b) approach (§2.1); however, instead
of annotating events only in consecutive sentences,
the annotation is complete, covering all event pairs
across the entire document. OmniTemp consists
of a set of 30 human-generated English news
summaries (Newser . com), derived from the Multi-
News dataset (Fabbri et al., 2019). We select sum-
maries that depict major events (e.g., a presidential
visit abroad, a mass shooting, a major earthquake),
as these are typically rich in informative sub-event
mentions that describe the event timeline. Each
summary contains a set of event mentions, with
every pair assigned one of the following relations:
before, after, equal, or vague. We now describe
OmniTemp’s annotation process (§3.1) along with
dataset statistics (§3.2).

3.1 Annotation Process

For the annotation process, we hired three non-
expert, native English-speaking annotators (stu-
dents) to label 30 news summaries (~500 words
each) for temporal relations (before, after, equal, or
vague) between salient events, following MATRES
guidelines and using the EventFull tool (Eirew
et al., 2025).> Starting from ~60 auto-detected
event mentions per document, extracted using Cat-
tan et al. (2021), annotators selected 15—18 salient
events for full-pair annotation, balancing coverage
and annotation quality, as prior work shows agree-
ment declines beyond this range for non-expert
annotators (Eirew et al., 2025). Final labels were
determined by majority vote; in cases of disagree-

*Released under a custom license that permits free aca-
demic use (see Appendix G).

3The complete annotation guidelines are available within
the EventFull annotation tool and GitHub repository https:
//github.com/AlonEirew/EventFull.
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‘ Train  Test ‘ All
Documents 20 10 30
Events 319 151 470
before 1,119 419 | 1,538
after 916 431 | 1,347
equal 90 60 150
vague 276 172 448
Total Relations ‘ 2,401 1,082 | 3,483

Table 1: OmniTemp dataset statistics.

ment, the label was set to vague. Further details
on the annotation methodology and protocol are
provided in Appendix E.

3.2 Dataset Statistics and Comparison

Table 1 summarizes the OmniTemp dataset’s statis-
tics. Overall, OmniTemp consists of 30 documents,
corresponding to 470 event mentions and 3,483
relations. Table 9 in Appendix I, presents the statis-
tics of prominent datasets for the temporal relation
extraction task alongside OmniTemp.

The agreement among our annotators averaged
0.72 kappa (Fleiss and Cohen, 1973), correspond-
ing to substantial agreement and is comparable
to that of TB-Dense (Chambers et al., 2014)
(0.56x-0.64k), NarrativeTime (Rogers et al., 2024)
(0.68k), TDD-Manual (Naik et al., 2019) (0.69«),
and MATRES (Ning et al., 2018b) (0.84x). Ad-
ditionally, to verify annotation accuracy, one of
the authors re-annotated 50 random pairs, with 46
matching the majority vote of the annotators, fur-
ther confirming the high quality of the annotations.

Finally, we assess whether transitivity can
compensate for the limited annotation scope in
datasets like MATRES and TB-Dense, where only
consecutive-sentence pairs are annotated. Using
the NarrativeTime dataset, we consider only intra-
and consecutive-sentence relations, then apply a
transitive closure algorithm (Warshall, 1962) to
infer additional links. While some long-distance
relations are recovered, most inferred relations re-
main local and sparse (as illustrated in Figure 11 of
Appendix I), further highlighting the importance of
exhaustive annotation.

4 Zero-Shot Temporal Graph Generation

4.1 Prompt Structure

Our zero-shot approach, referred to as GlobalCon-
sistency, begins with a straightforward yet powerful
idea: prompting an LLM to generate the full tempo-

ral graph of a document in a single call (Figure 1).
The process starts with a general instruction outlin-
ing the task. We then employ a two-step procedure,
motivated by the observation that directly prompt-
ing the model to classify all event pair relations
results in a more inconsistent outputs. To address
this, and inspired by reasoning-based prompting
techniques (Wang et al., 2023a; Sun et al., 2024),
we first prompt the model ([1] in Figure 1) to con-
struct a free-form timeline that summarizes the
temporal flow of the marked events. This primes
the model with a broader understanding of event or-
der before making explicit classification decisions.
We then instruct the model to predict temporal re-
lations between all event pairs. The input includes
the full document with event mentions highlighted
using angle brackets and unique identifiers (e.g.,
<attack(7)>), followed by a list of all possible
event pairs.

For the output, we instruct the model to repre-
sent relations as a graph, where events serve as
nodes and relations as edges, formatted in the DOT
language (Gansner, 2006), which helps suppress
free-text explanations and facilitates parsing (an
example of the generated timeline is presented in
Appendix I, Figure 10).

In documents containing many events that may
exceed the model’s input capacity, we generate
the complete set of pairs and split them evenly for
separate processing. Each split receives the same
instructions and the full report with all event men-
tions marked in it, this is followed by only the
relevant subset of event pairs for that split. The pre-
dictions are then merged back in post-processing
(Further details are provided in Appendix A)

4.2 Post Process

LLMs are inherently stochastic and may produce
different labels for the same input when run mul-
tiple times, leading to unstable outputs, especially
for ambiguous event pairs. To address this, in-
spired by self-consistency methods (Wang et al.,
2023b) and temporal graph consistency optimiza-
tion techniques (Ning et al., 2018a), we run the
model M = 5 times per document, as experimen-
tal results show that performance saturates after five
generations (see Figure 5 in Appendix A), and ag-
gregate the predicted relation labels into a distribu-
tion p;; € RI®! for each event pair (e;, ¢;) € £ x &,
where £ denotes the set of events, and p;; repre-
sents the empirical likelihood of label € R across
runs. ([2,3] in Figure 1).
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We then apply the Integer Linear Programming
(ILP) formulation of Ning et al. (2018a) to obtain a
globally consistent graph. Specifically, we define
binary variables Z,-(i, j) € {0, 1} for each relation
r and pair (e;, ej), and optimize for enforcing key
structural constraints: uniqueness (only one rela-
tion per pair), symmetry (e.g., if 7 = BEFORE, then
its inverse holds for the reverse pair), and transi-
tivity (e.g.,if A > B — C, then A — C) ([4] in
Figure 1). The result is the optimal temporal graph
that maximizes model confidence while ensuring
global coherence. Further details are provided in
Appendix F.

5 Experimental Setting

We describe the datasets and models used in our
experiments. Technical details are in Appendix A.

5.1 Datasets

In our experiments, we use our own OmniTemp
and three additional datasets: MATRES, TB-Dense,
and NarrativeTime.* Notably, TCR (Ning et al.,
2018a) and TDD-Manual (Naik et al., 2019), two
additional datasets for the TRE task, are excluded
from our experiments as they omit the vague rela-
tion. Since we generate relations for all possible
event pairs, the vague label is essential to avoid
forcing incorrect relations when context is insuf-
ficient. Below, we provide details on the datasets
used in our experiments. For our own OmniTemp,
we use the first 10 documents as the test set and the
remaining documents as the training set, while for
all other datasets, we follow their predefined splits.

MATRES. In MATRES, only events within con-
secutive sentences are annotated. The dataset in-
cludes four relation types: before, after, equal, and
vague, with temporal relations determined based
on event start times.

TB-Dense. Similar to MATRES, only events
within consecutive sentences are annotated in the
TB-Dense dataset. It includes six relation types, the
four from MATRES plus includes and is-included.
Temporal relations are determined based on event
start and end times as well as their duration.

NT-6. The NarrativeTime (NT) dataset, previ-
ously introduced in §2.1, features seven relation
types, including the six from TB-Dense and the
overlap relation. However, we exclude the over-
lap relation as it is incompatible for the tempo-
ral consistency methods, given that the symmetric

“Dataset license details are in Appendix G.

counterpart was not annotated. Additionally, NT
documents contain an average of 50 events, corre-
sponding to 1,200 relations, per document. Due to
LLM context limits, we randomly select 18 events
per NT document.

5.2 Baseline and State-of-the-Art Models

We compare our GlobalConsistency method with
four models, reproducing state-of-the-art (SOTA)
supervised models and a zero-shot chain-of-
thought (CoT) baseline method.

Bayesian (Tan et al.,, 2023). Bayesian-
Translation is the current publicly available state-
of-the-art pairwise model for temporal relation ex-
traction. It leverages a COMET-BART encoder
(Hwang et al., 2020) and a graph translation model
(Balazevic et al., 2019) to incorporate prior knowl-
edge from the ATOMIC commonsense knowledge
base, refining event representations for relational
embedding learning. Additionally, it employs a
Bayesian framework to estimate the uncertainty of
the learned relations.

RoBERTza (Tan et al., 2023). A strong pairwise
model for temporal relation extraction, similar in
architecture to the Bayesian model described above,
but replacing the COMET-BART encoder with a
RoBERTa-large encoder (Zhuang et al., 2021). We
use this model as it represents a strong, purely su-
pervised approach, allowing for a direct compari-
son without the influence of external knowledge.

Bayesian + Constraints. We extend the
Bayesian model with the temporal constraints opti-
mization algorithm (Ning et al., 2018a), the same
algorithm used in our GlobalConsistency method,
applying it at inference time to enable a more direct
comparison with our methods.

CoT (Yuan et al., 2023). As a baseline model,
we re-implemented the CoT model (Yuan et al.,
2023) using GPT-40 and DeepSeek-R1, replacing
the original implementation, which used ChatGPT.
To the best of our knowledge, this is the strongest
zero-shot approach for temporal relation extraction.
Unlike our method, which generates relations for
all event pairs, the CoT baseline is applied only to
event pairs with gold annotations, due to its high
computational cost.

For evaluation, we report the F1 score on all
datasets following the definition in (Ning et al.,
2019), where the vague relation is excluded from
true positive predictions. Additionally, we report a
Temporal Inconsistency (TI) measure by applying
a transitive closure algorithm (Warshall, 1962) and
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Non-Exhaustive ‘ ‘ Exhaustive

MATRES | TB-Dense NT-6 OmniTemp
F1 TI | F1 TI F1 TI | F1 TI

Supervised SOTA Pairwise Models

* ROBERTa (Tan et al.) 80.4 24 | 60.5 107 || 59.3 105 | 73.6 143
+ Bayesian (Tan et al.) 82.7 16 | 650 87 | 649 203 | 78.7 166
+ Constraints - - - - 656 O 80.7 0

Zero-Shot Prompting with GPT-4o

CoT (Yuan et al.) | 566 - | 428 - | 493 461|672 374
ZSL-Global (Ours) 59.0 73 [ 37.7 250 || 484 300|623 161
ZSL-Timeline (Ours) 584 81 |39.1 225|522 309|685 157
SelfConsistency (Ours) | 60.1 50 | 41.2 122 || 556 305|710 128
GlobalConsistency (Ours) | 63.0 0 | 42.8 0 584 0 | 73.6 0
Zero-Shot Prompting with DeepSeek-R1
CoT (Yuan et al.) 703 - | 508 - | 579 360|784 254
ZSL-Global (Ours) 610 82 | 446 276 || 57.0 262|705 167
ZSL-Timeline (Ours) 59.0 82 | 444 261 | 594 185|746 90

SelfConsistency (Ours) 61.2 58 | 468 152 | 62.1 144 | 78.7 79
GlobalConsistency (Ours) | 66.4 0 | 49.0 O 641 0 | 792 0

Table 2: F1 and Transitive Inconsistency (TI) scores of all models on four datasets, grouped into Non-Exhaustive
Annotation (MATRES, TB-Dense) and Exhaustive Annotation (NT-6, OmniTemp). We use the F1 definition from
Ning et al. (2019), and compute the average number of TI edges per test document by applying a transitive closure
algorithm (Warshall, 1962) and counting transitive contradictions. (x) For MATRES and TB-Dense with supervised
models, we report results from Tan et al. (2023) as our reproductions were slightly lower; TI is based on our
retrained models. Constraints are not reported for these models as they did not improve results. (-) TI is not reported
for CoT on MATRES and TB-Dense, as it only predicts gold-labeled pairs and cannot construct a complete graph.
Computing TI for CoT would require multiple generations over the full set of pairs, which is prohibitively expensive
(see Table 3). Further details are provided in Appendix C.

counting transitive contradictions (further details 6 Results

in Appendix C.2).
Our results are presented in Table 2, with super-

5.3 Ablation Study Design vised SOTA pairwise models shown in the up-

To investigate the contribution of each component ~ P€" section, and the results of our zero-shot meth-

in our method to the overall performance, we de- ods, using GPT'4(,)5 and DeepSe?k—Rl, shown in
sign the following three ablation models: the lower section.” Overall, using GPT-40, our

ZSL-Global. This zero-shot learning (ZSL) con- GlobalCon.sistency approach (34) outperforms the
CoT baseline (Yuan et al., 2023) by a large mar-
gin across all datasets except TB-Dense. Using
DeepSeek-R1, our GlobalConsistency method out-
performs the CoT baseline on the densely annotated
datasets, NT-6 and OmniTemp, but shows lower
performance on the sparsely annotated datasets,
MATRES and TB-Dense (further analyzed in §7).
However, the improved performance of the CoT
method comes at a significant cost, ~7 X more ex-
pensive (Table 3), and requires more time, partic-
ularly in the DeepSeek-R1 experiments (Table 4).

figuration prompts the LLM once to generate the
entire temporal graph directly, ommiting the in-
struction to generate the timeline of events before
classification.

ZSL-Timeline. This ZSL configuration includes
only the prompting step (with timeline generation)
but omits the post-processing step that enforces
global consistency.

SelfConsistency. This configuration replaces
our global consistency optimization with a sim-
pler self-consistency approach (Wang et al., 2023b),
where the final label for each event pair is selected * SDetails on additional models and datasets evaluated are
by majority vote from the five generated outputs. provided in Appendix B.
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Figure 2: Impact of event count per document on Glob-
alConsistency performance, evaluated on MATRES and
TB-Dense. The x-axis is cumulative, and the y-axis
shows the F1 score per subset.

Furthermore, time and cost differences between
CoT and our method do not scale linearly with
graph size. This is evident in Table 3, where NT-
6, with only two more events per document than
OmniTemp, incurs higher costs with CoT.

Notably, on the dense datasets, NT-6 and Om-
niTemp, GlobalConsistency using DeepSeek-R1
matches supervised models (79.2 vs. 80.7 for
OmniTemp, 64.1 vs. 65.6 for NT-6), while pro-
ducing more consistent graphs with lower transi-
tive inconsistency (TI) scores reported in the ta-
ble. Moreover, our approach requires no training
data and does not rely on a substantial external
commonsense knowledge base (as required by the
Bayesian-Trans model for example), which may
not be applicable across many domains and lan-
guages. This positions GlobalConsistency as an
appealing zero-shot alternative for TRE in scenar-
ios where labeled training data or comprehensive
knowledge resources are rare or unavailable.

7 Discussion

Event Mentions Count. We investigate how the
number of events in a document impacts the perfor-
mance of our GlobalConsistency method. Our hy-
pothesis is that models encoding global information
are more sensitive to event count, as they must pro-
cess more information simultaneously. In contrast,
pairwise methods, which consider one event pair
at a time, are likely less affected. Figure 2 shows
MATRES and TB-Dense documents grouped by

‘ CoT ‘ GlobalConsistency

| GPT-40 | DeepSeck-R1 | GPT-40 | DeepSeek-R1
MATRES 50 69 6 9
TB-Dense 71 99 9 17
NT-6 15 21 2 3
OmniTemp 12 16 2 3

Table 3: Approximate costs (USD) for the full dataset
are shown. For GlobalConsistency, the cost reflects five
generations of the complete set of relations. For the CoT
method, to reflect a real-world scenario, we generate
the complete set of relations once—rather than just the
gold ones. Costs are computed using token counts (via
OpenAl’s tiktoken, and DeepSeek official tokenizer)
and official model pricing.

‘ CoT ‘ GlobalConsistency

| GPT-40 | DeepSeek-R1 | GPT-40 | DeepSeek-R1
MATRES 297 2,789 250 363
TB-Dense 426 4,004 360 521
NT-6 89 838 75 110
OmniTemp 70 658 60 86

Table 4: Time (in minutes) to generate the full set of
temporal relations for each test set. For GlobalConsis-
tency, this includes five generations; for CoT, it reflects
a single pass over all relations (not just gold) to simulate
real-world use.

increasing event counts.® With the exception of
DeepSeek-R1 on MATRES, which demonstrates
resilience to large event counts, the results show
a performance decline as the number of events in-
creases. This supports our hypothesis and may
help explain the performance gap between the CoT
method and the ZSL-Global variant in most tests.”

Event Pair Distance. We examine whether the
annotation distance restriction, where events are
annotated only if they are at most one sentence
apart, as in MATRES and TB-Dense, can affect
model evaluation. To explore this, we evaluate all
zero-shot methods on three subsets of OmniTemp
and NT-6: the full dataset, event pairs with a sen-
tence distance of at most one (consecutive sen-
tences like in MATRES and TB-Dense), and event
pairs with a sentence distance greater than one (non-
consecutive sentences). See Figure 3.

Our findings show that on the four-relation Om-
niTemp dataset, the CoT baseline performs con-
sistently across all sentence distances, while our

®The other datasets we experimented with contain a limited
number of events per instance.

"In TB-Dense, performance drops sharply for documents
with over 25 events. For further analysis, see Appendix C.3.
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Figure 3: DeepSeek-R1 model performance across dif-
ferent relation subsets: (1) consecutive-sentence event
pairs, (2) non-consecutive-sentence event pairs, and (3)
full-document event relations. A similar figure for GPT-
4o is presented in Figure 6 in Appendix I.

global methods achieve higher performance on
consecutive-sentence pairs. In contrast, on the
more challenging six-relation NT-6 dataset, CoT
performs notably better on consecutive-sentence
pairs than on long-distance pairs. These findings
highlights the importance of document-level an-
notations for reliable evaluation of temporal rela-
tion classification—especially in zero-shot settings,
where models cannot realistically rely on distribu-
tion patterns in the annotations.

Label Inconsistency. The performance gap be-
tween our methods and the supervised models
varies across datasets, being more pronounced in
MATRES and TB-Dense than in NT-6 and Om-
niTemp. To better understand this gap, we ana-
lyze the ZSL-Timeline variant (chosen to isolate
the model’s performance without the influence of
post-processing) by examining results per label and
grouping datasets with similar label sets, as shown
in Figure 4. Our ZSL-Timeline method performs
significantly worse on MATRES and TB-Dense
than on OmniTemp and NT-6.

To investigate this further, we examine label con-
sistency in documents and event pairs shared be-
tween TB-Dense and MATRES, which annotated

(a) NarrativeTime Vs. TimeBank-Dense.
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(b) OmniTemp Vs. MATRES.
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Figure 4: We examine the performance of our prompt-
ing method (i.e., ZSL-Timeline) by relation type across
two groups of datasets with similar annotation schemes:
six-label datasets (TB-Dense and NT-6) and four-label
datasets (MATRES and OmniTemp), using DeepSeek-
R1. Similar results are observed with GPT-4o, as pre-
sented in Figure 7 in Appendix I. The relation labels are:

= after, B = before, 1 = includes, 11 = is-included, E =
equal, and V = vague.

the same corpus. There are 983 such event pairs.
While these datasets follow different annotation
guidelines, certain labels should remain consistent.
For instance, if an event pair is labeled equal in
TB-Dense, indicating that both the start and end
times of the two events are the same, then the rela-
tion should also be equal in MATRES. Measuring
consistency across the four shared relations, we
find strong agreement for before and after, with
before being the most consistently annotated. How-
ever, significant inconsistencies were evident in
vague and equal (detailed results are provided in
Appendix D). Since in zero-shot settings the model
is not trained on a dataset, it does not learn dataset-
specific annotation biases. The annotation inconsis-
tency between MATRES and TB-Dense may partly
explain the performance drop on these datasets, par-
ticularly for vague and equal relations, as well as
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the lower performance on after compared to before.

This analysis, together with the pair distance
analysis, may help explain the gap observed be-
tween the zero-shot and supervised methods on
MATRES and TB-Dense, raising a broader ques-
tion about the reliability of evaluating zero-shot
approaches on partially annotated or inconsistent
resources.

8 Conclusion

In this work, we introduced a novel zero-shot
LLM approach for temporal relation extraction
that generates the entire temporal graph at once.
Our method moves beyond traditional pairwise ap-
proaches, which suffer from computational ineffi-
ciency and lack of global consistency. To ensure
temporal consistency, we incorporated temporal
constraints optimization, significantly improving
both accuracy and efficiency while generating re-
lations completely free of inconsistencies. Our
results show that zero-shot LLMs, when prompted
to generate the timeline of events in free-form lan-
guage before assigning labels to event pairs and
extended with a global constraints algorithm, can
serve as a competitive alternative to supervised
models, especially in low-resource or cross-domain
settings where training data is scarce. Addition-
ally, we introduced OmniTemp, a new dataset with
complete annotations for all event pairs, follow-
ing the refined annotation guidelines of MATRES.
By providing gold labels for every event pair in a
document, this dataset enables a fair evaluation of
zero-shot approaches.

Limitations

While our proposed zero-shot temporal graph gen-
eration approach demonstrates significant advan-
tages over pairwise methods, several limitations
remain that warrant further investigation.

First, closed LLMs such as GPT-4o0 and
DeepSeek-R1 do not disclose their training data.
Therefore, results on the three datasets we investi-
gate may be affected by potential data contamina-
tion if their test sets were included in the training
phase. However, OmniTemp is a completely new
resource that is not yet publicly available, ensuring
uncontaminated results.

Second, although self-consistency prompting
mitigates stochasticity to some extent, the model’s
responses can still be inconsistent, especially when
handling long-distance temporal dependencies or

ambiguous event relations.

Finally, the computational cost of using LLMs
for large-scale inference remains a challenge.
While our approach significantly reduces costs
compared to pairwise methods, generating a full
temporal graph for documents with many events
can still be time-intensive and expensive.

Despite these limitations, our study highlights
promising directions for leveraging LLMs in struc-
tured event reasoning and lays the groundwork for
future improvements in temporal relation extrac-
tion.
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A Experimental Details

For all supervised model experiments, we follow
the experimental setup of Tan et al. (2023). To
this end, we conducted a grid search to determine
the optimal hyperparameters and embedding di-
mensionality for each test. Each training episode
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Figure 5: Effect of increasing the number of generated
instances and applying GlobalConsistency with GPT-4o.
Results show improved performance, with saturation
observed after about five generations in most datasets.

was run for 50 epochs on a single A100 GPU,}
with the best-performing epoch on the develop-
ment set selected for evaluation. For the GPT-40
experiments, we use ‘gpt-40-2024-08-06" version
through OpenAl API, and used Together.ai API, for
the DeepSeek-R1 experiments. We set the number
of generations to five, based on tuning experiments
with GPT-40 on the OmniTemp and NT-6 devel-
opment sets (illustrated in Figure 5). In all exper-
iments, we provide the model with all event pairs
combinations, and evaluate on the available gold la-
bels. For the MATRES and TimeBank-Dense (TB-
Dense) datasets, we evenly divide the set of pairs
in documents containing more than 20 events. In
TB-Dense, for documents exceeding 40 events, we
further group the pairs into sets of 100. Finally, In
cases the generation missed pairs or is malformed,
we regenerate the document or its respective split.
For temporal constraint optimization, we employ
the Gurobi Optimizer (Gurobi Optimization, LLC,
2024). Finally, the total experimental cost of this
research—including CoT, ablation, and final re-
sults—using LLMs via OpenAl, Google, and To-
gether.ai was approximately $400 (USD).

B Additional Experiments

B.1 Additional Tested LLMs

Beyond our main experiments with GPT-40 and
DeepSeek-R1, we also evaluated our model with
additional LLMs, summarized in Table 5 together

8Experiment GPU time varies depending on the size of
the training set, ranging from 1 to 20 hours for a full training
episode.

Model NT-6 OmniTemp

DeepSeek-R1 64.1 79.2
DeepSeek-V3 55.1 74.4
GPT-03-mini 55.5 78.1
GPT-40 58.4 73.6
Llama-3.1 405B Instruct | 42.6 57.9
Llama 3.3 70B-Instruct 40.7 44.3
Gemini-flash 2.0 32.1 47.3

Table 5: Additional results of our GlobalConsistency
approach when applying different LLMs, evaluated on
the OmniTemp and N'T-6 datasets.

| GPT-40 | DeepSeek-R1
712 | 649

GlobalConsistency |

Table 6: Results on the validation set of MAVEN-ERE
(Wang et al., 2022) on the sub-set of relations we se-
lected.

with GPT-40 and DeepSeek-R1 for ease of com-
parison. GPT-03-mini and DeepSeek-V3 achieved
promising results on both NT-6 (55.1 and 55.5)
and OmniTemp (74.4 and 78.1). Additionally, we
tested our method with several contemporary mod-
els accessed via the Together.ai and Google Gem-
ini APIs, including LLaMA (v3.1 405B, v3.3 70B)
and Gemini (Flash-2.0, Pro-1.5). Our findings sug-
gest that while all of these models (except Gemini
Pro-1.5, which truncated the generation with the
message: “rest of the pairs are similar, and the
logic should follow the timeline explanation.”) are
capable of generating a complete set of temporal
relations in a single step, they achieved much lower
results. This indicates that our method for generat-
ing complete temporal graphs currently performs
best with more advanced models.

B.2 Additional Tested Dataset

We conducted an additional experiment with our
GlobalConsistency method on the MAVEN-ERE
(Wang et al., 2022) dataset, which introduces an ad-
ditional domain, as it was curated from Wikipedia
(in contrast to the newswire datasets used in our
main experiments). MAVEN-ERE includes multi-
ple relation categories, such as temporal, coref-
erence, causal, and sub-events. In our setting,
we used only the temporal relations portion of
the dataset. For temporal relations, MAVEN-
ERE defines six relation types: BEFORE, CON-
TAINS, OVERLAP, BEGINS-ON, ENDS-ON, and
SIMULTANEOUS. To manage costs, we ran an
experiment on the validation set, selecting docu-
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ments with fewer than 200 pairs and considering
only the BEFORE and SIMULTANEOUS relations.
We applied the four-relations instruction (before,
after, equal, and vague in our setting). The re-
sults are shown in Table 6, and we observe that the
GlobalConsistency method achieves results com-
parable to those reported on the four-relation news
datasets, further confirming the method’s transfer-
ability across domains.

C Further Main Result Table Details

In this section we provide further details on the
results and measurements presented in Table 2

C.1 Further Details on Reported Results

We provide further details on the results presented
in Table 2. For the supervised models—RoBERTa,
Bayesian, and Bayesian + Constraints—we report
the best results achieved following a hyperparam-
eter search (further detailed in Appendix A). For
the CoT experiment, we conducted a single eval-
uation run for each dataset and used this result.
Constructing an ensemble or computing the mean
for this experiment across multiple runs was be-
yond our budget. In Table 7, we report the results
for ZSL-Global and ZSL-Timeline, presenting the
mean result obtained from five generations along
with the standard deviation. For SelfConsistency
and GlobalConsistency, we conducted a single run
for each experiment, similar to CoT, as these exper-
iments are more costly, and the observed standard
deviation does not justify the additional expense.

C.2 Transitive Inconsistency (TI) Details

For the Transitive Inconsistency (T1) measure re-
ported in the table, we compute the average number
of transitive-inconsistent edges per test document.
We adopt a standard transitive closure algorithm
(Warshall, 1962), which is typically used to con-
struct transitive relations. In our case, for any in-
ferred path that implies a transitive relation, we
verify whether the resulting relation is among the
set of transitively allowed relations, as defined in
(Allen, 1984; Ning et al., 2018a) and related work.
If the inferred relation violates this constraint, it is
counted as a transitive inconsistency.

C.3 Further Details on Event Count

In Figure 3, TB-Dense performance drops sharply
for documents with over 25 events. Further analysis
reveals that these documents predominantly con-
tain vague relations—considered more challenging

Model | MATRES | TB-Dense || NT-6 | OmniTemp
ZSL-Global (Ours) | 59.0+1.4 | 37.7+1.8 | 484425 | 62.320.5
ZSL-Timeline (Ours) | 58.4+2.4 | 39.1£0.7 || 52.2+2.8 | 68.5+1.0

Table 7: F1 scores of ZSL-Global and ZSL-Timeline
are reported along with the standard deviation.

| Train Dev Test

MATRES 13,577 NA 837
TB-Dense 4,205 649 1,451
NarrativeTime | 68,317 2,759 7,925

Table 8: Statistics of event-event relations in the datasets
used in this study.

and often associated with annotator disagreement
(Chambers et al., 2014). ZSL-Timeline struggles
with these relations (Figure 4), particularly in TB-
Dense and MATRES. As the frequency of vague
relations decreases beyond this threshold, perfor-
mance improves.

D Label Inconsistency Evaluation

We describe the Label Inconsistency experiment
detailed in §7. MATRES (Ning et al., 2018b) and
TB-Dense (Chambers et al., 2014) annotate the
same set of 35 documents but follow different an-
notation schemes. MATRES considers only event
start times to determine temporal order, while TB-
Dense accounts for event start times, end times,
and durations.

To i1solate this difference, we define the follow-
ing ground truth for each relation: (1) If a pair is
marked as vague in MATRES, meaning the event
start time is unclear, the same pair should also be
vague in TB-Dense since both the start time and
duration are uncertain. (2) If a pair in TB-Dense
is annotated as before, after, or equal based on
both start and end times, the corresponding MA-
TRES annotation should reflect the same relation
when considering only event start times. Figure 8
presents our findings in terms of label consistency
and inconsistency between the two datasets.

E OmniTemp Annotation Proccess

For the annotation process of OmniTemp (detailed
in §3.1), we hired three annotators (two males and
one female), all non-expert native English speakers
and either undergraduate or graduate students. We
instruct annotators to follow the MATRES annota-
tion guidelines, considering only “actual” events
(e.g., they won the game). Events that are “non-
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actual”, such as intentional, negated, recurring, con-
ditional, or wishful (e.g., I wish they win the game),
are excluded from annotation. Additionally, only
the starting time of events is considered when es-
tablishing temporal relations.

The actual annotation was done on 30 news sum-
maries, each containing approximately 500 words.
The annotators used the EventFull annotation tool
(Eirew et al., 2025), with all events in each docu-
ment already highlighted. These events were ex-
tracted using the event detection method proposed
by Cattan et al. (2021), which identifies all types
of events (actual and non-actual) and extracts an
average of 60 event mentions per document, form-
ing the initial set of events. We follow the same
annotation protocol as proposed in EventFull. First,
the annotation process begins with the selection of
15 to 18 of the most salient “actual” events from
each story, following Eirew et al. (2025) which
found that beyond 18 events, annotation becomes
challenging for non-expert annotators. This event
reduction aligns with previous efforts to decrease
annotation workload by limiting the number of
events considered (Chambers et al., 2014; Ning
et al., 2018b; Tan et al., 2024). After selecting
these events, each document was annotated for tem-
poral relations (before, after, equal, or vague) by
all three annotators. Finally, majority voting was
used to determine the final relation, and in cases of
disagreement, the relation was labeled as vague.

Finally, the total annotation time for OmniTemp,
including onboarding, amounted to 85 hours, with
each worker paid $15 per hour (which is considered
a fair market value in their region).

F Formal Description of
GlobalConsistency

GlobalConsistency is formulated as follows: we
run the ZSL-Timeline method five times on each
input as described in §4, generating five tem-
poral graphs per document, denoted as G =
{g1,...,95} where each g,, represents a labeled di-
rected graph parsed from the DOT-language output.
Each graph consists of a set of predicted event-pair
relations: g, = {p12,P13,---,P23, P24, - - s Pum }
where each relation p;; is represented as a one-hot
vector over the six relation types. We then sum
these vectors element-wise across all five graphs
and normalize them to obtain a single distribution
per event pair: d;; = % Zi:l pgl) where each d;;
represents the normalized label distribution for the

event pair (e;, e;). Instead of selecting the most
frequent relation via majority voting, we apply a
temporal constraints optimization algorithm, which
returns a temporally consistent graph. We call this
final method GlobalConsistency (Figure 1).

To perform this optimization, we define a binary
decision variable Z,.(4, j) € {0, 1} for each relation
r € R and event pair (e;, e;), where R is the set of
possible temporal relations. The ILP objective is
to maximize agreement with the model’s predicted
distributions:

miaxz > IL(i,g) - dy;

i#j r€ER
subject to the following constraints:

* Uniqueness: Each event pair must be as-
signed exactly one relation:

SN L, j)=1 Vi#j

reR

e Symmetry: For all inverse relations r and
r~1, we ensure consistent labeling for reverse

pairs:

Z.(i,j) =T,-1(j4,i) VremR

* Transitivity: For all event triplets (e;, e;, ex),
if Z,.(i,7) = 1 and Zs(j,k) = 1, then
Zi(i,k) = 1 for some t € C(r,s), where
C(r,s) € R defines the transitive closure over
r and s, as specified in (Ning et al., 2018a).

This optimization ensures that the final output
graph is both globally coherent and aligned with
the model’s confidence across multiple generations.

G Dataset Licenses and Sources

In our experiments, we use the following com-
monly used datasets for evaluating the temporal
relation extraction task: MATRES (Ning et al.,
2018b), provided without a license; TimeBank-
Dense (Chambers et al., 2014), provided without
a license; and NarrativeTime (Rogers et al., 2024),
provided under the MIT license. Additionally, Om-
niTemp uses summaries from the Multi-News cor-
pus (Fabbri et al., 2019), which is distributed under
a custom license that permits free academic use.
All datasets were downloaded from official reposi-
tories, and used appropriately. OmniTemp will also
be released under a free-to-use academic license.
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Figure 6: Similar to Figure 3, we examine the perfor-
mance across different relation subsets for GPT-4o.

H Adjustments to the NarrativeTime
Dataset

The NarrativeTime (NT) dataset, introduced in
§2.1, features seven relation types, including the
six from TB-Dense and the overlap relation. Our
temporal consistency algorithm relies on Allen’s
transitivity laws (Allen, 1984), which require each
relation type to have a symmetric counterpart (e.g.,
if event A occurs before event B, then B must oc-
cur after A). However, the overlap relation in NT
lacks a symmetric counterpart, making it incompat-
ible for temporal consistency methods. Therefore,
before using NT, we exclude event pairs labeled
with the overlap relation. Additionally, NT docu-
ments contain an average of 50 event mentions per
document, corresponding to approximately 1,100
relations, which makes them difficult to process
with LLMs due to context length limitations. Han-
dling such documents requires segmenting them
and making individual calls to the model for each
segment, which increases costs, as discussed in §4.
To avoid segmentation and reduce costs, we ran-
domly select 18 events per document from the test
set, along with all their associated relations. The
choice of 18 events was based on empirical obser-
vations, as it represents the maximum number that
can typically fit within the model’s context window
without requiring segmentation. This reduction is

(a) NarrativeTime Vs. TimeBank-Dense.
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(b) OmniTemp Vs. MATRES.
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Figure 7: Similar to Figure 4, we examine the perfor-
mance of our prompting method (i.e., ZSL-Timeline)
by relation type using GPT-4o.

not applied to the training set, which we use to
fine-tune the supervised models. We refer to this
pre-processed version as NT-6, as it retains only
six relation types.

I Additional Experiment Tables and
Figures

Figure 7 presents the relation-wise performance
of GPT-40, analogous to the results shown for
DeepSeek-R1 in Figure 4. Figure 6 presents the
model performance across different relation sub-
sets, analogous to the results shown for DeepSeek-
R1 in Figure 3. Table 9 presents a comparison be-
tween common datasets used for evaluating models
on the temporal relation task alongside OmniTemp.
Table 8 presents the split statistics of these datasets.
Figure 9 presents an example of the ZSL-Global
prompt. Figure 10 presents an example of the gen-
erated timeline using the ZSL-Timeline approach.
Figure 11 presents the experimental results for fill-
ing transitive relations in a dataset containing only
temporal relations between events up to one sen-
tence apart (similar to MATRES and TB-Dense).
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A B A B

(a) Before (b) After
. A B
A B
(c) Vague (d) Equal

Figure 8: Label Inconsistency: Each group, A and B, represents MATRES and TimeBank-Dense respectively. The
intersecting area indicates consistency in label annotation between the two datasets, with the number of such pairs
highlighted in the middle, while the non-intersecting areas represent pairs assigned different labels in each dataset.
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Given the document below where each event is marked with
<eventName(identifier)>, for each pair of events listed below,
determine the temporal relationships (before, after, equal,
vague) between them.

Answer in the following DOT format:

strict graph {
"Event1(id)" --
"Event1(id)" --

"Event2(id)" [rel=LABEL];
"Event3(id)" [rel=LABEL];

}

— Otto Warmbier is dead less than a week after <returning(39)>
to the US from North Korea <The rest of the text is omitted to
fit in Figure>...

Pairs require classification:

returning(39) -- detention(14)

returning(39) -- lived(3)

<The rest of the relations are omitted to fit in Figure>...

N )

Figure 9: An example of the ZSL-Global prompt.

MATRES | TB-Dense | TCR | TDD-Manual | NarrativeTime || OmniTemp

Datasets Statistics

Documents 275 36 25 34 36 30
Events 6,099 1,498 1,134 1,101 1,715 470
before 6,852 (50) | 1,361 (21) | 1,780 (67) 1,561 (25) 17,011 (22) 1,540 (44)
after 4,752 (35) | 1,182 (19) | 862 (33) 1,054 (17) 18,366 (23) 1,347 (39)
equal 448 (4) 237 (4) 4(0) 140 (2) 5,298 (7) 150 (4)
vague 1,525 (11) | 2,837 (45) - - 25,679 (33) 446 (13)
includes - 305 (5) - 2,008 (33) 5,781 (7) -
is-included - 383 (6) - 1,387 (23) 6,639 (8) -
overlaps - - - - 227 (0) -
Total Relations 13,577 6,305 2,646 6,150 79,001 3,483
Per Document Average Annotation Sparsity
Events 22.2 41.6 45.4 32.4 47.6 15.6
Actual Relations 494 183.7 105.8 180.9 1,110.1 114.9
Expected Relations 234.8 844.5 1,006.1 508.1 1,110.1 1149
Missing Relations ‘ 79% 78.3% 89.5% 64.4%
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Table 9: The upper part of the table presents the statistics of notable datasets for the temporal relation extraction
task alongside OmniTemp. In parentheses, the values indicate the percentage of each relation type relative to the
total relations in the dataset. The bottom part of the table summarizes the average percentage of missing relations
per document, calculated as the ratio of actual annotated relations to a complete relation coverage, referred to as
Expected Relations.



Explanation of the Story Timeline

The timeline of events regarding the downing of Malaysia Airlines Flight 17 and subsequent developments is as follows:

1. Downing of the Flight (downing(6), shot(24), fired(8)): The initial event is the shooting down of Malaysia Airlines Flight 17
over eastern Ukraine. This was carried out by a Soviet-era SA-11 Buk missile, which was fired (fired(8)), resulting in the
plane being shot down (shot(24)).

2. Rebel Reaction (realize(3), realize(3), react(44)): Following the downing, pro-Russia rebels reportedly realized that they had
not shot a military target but rather a civilian aircraft. This realization led to a reaction of horror (react(44)) among them.

3. Rebel Bragging (brag(33)): An intercepted call was released (released(25)) by Ukraine’s security services where pro-Russia
rebels initially bragged (brag(33)) about shooting down a plane.

4. Release of Recordings (released(25), recordings(21)): Ukraine's security services released (released(25)) these recordings to
demonstrate the rebels’ initial stance before they realized the gravity of their action.

5. Responses from World Leaders (response(14)): Following the incident and subsequent released recordings, global leaders,
including the Australian Prime Minister, conveyed strong dissatisfaction with Russia’s response to this tragic event.

6. Search and Recovery at Crash Site (search(16), wreckage(10), recovered(28)): In the aftermath, recovery operations
commenced at the crash site. Search teams looked for bodies (search(16)) among the wreckage (wreckage(10)), and by this
time over 100 bodies had been recovered (recovered(28)).

7. Rerouting and Avoiding the Airspace (rerouting(37), avoid(26)): In response to the tragedy, airlines began rerouting
(rerouting(37)) their flights to avoid (avoid(26)) the region’s airspace due to security concerns.

8. Rebels Finding the Black Boxes (found(45)): The rebels found (found(45)) the aircraft’s black boxes, which has significant
implications for the investigation.

9. Development of Crash Investigation (development(43), investigation(11)): Concerns arose about the integrity of the
investigation due to the rebels’ control over the area and their possession of the black boxes.

10. Blame Game (blaming(7)): Russia and Ukraine started blaming (blaming(7)) each other for the tragedy. Both agreed on the

weapon used but differed on who was responsible.

Temporal Relationships in DOT Format

Based on the timeline explanation, here are the temporal relationships between the events in DOT format:

dot strict graph {
\"response(14)\" -- \"downing(6)\" [rel=after];
\"response(14)\" -- \"released(25)\" [rel=after];

Figure 10: An example of a generated output when GPT-40 is prompted using the ZSL-Timeline method (with
the Markdown format retained from the original output). The full event list is generated; however, it is trimmed
(indicated by “...”) in this example to ensure the output fits within the figure.
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Figure 11: Illustration of the achieved relation distance after applying transitive closure in resources annotated
only between consecutive sentences. The blue bars represent the original set of relations in NarrativeTime, which
is exhaustively annotated between all events. The orange bars represent the version created by considering only
relations between events in consecutive sentences. The green bars represent the set of relations after applying a
transitive algorithm to infer additional relations.
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