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Abstract

Discrete diffusion models are a new class of
text generation models that offer advantages
such as bidirectional context, parallelizable
generation, and flexible prompting compared
to autoregressive models. However, a critical
limitation has been the inability to perform
flexible-length or flexible-position text infill-
ing without access to ground-truth positional
data. We introduce DDOT1 (Discrete Diffusion
with Optimal Transport Position Coupling), a
discrete diffusion model that overcomes this
limitation by jointly denoising token values and
token positions using a novel sample-level op-
timal transport coupling. This coupling pre-
serves relative token ordering while dynam-
ically adjusting the positions and lengths of
infilled segments. DDOT is orthogonal to ex-
isting discrete text diffusion methods and is
compatible with various pretrained text de-
noisers. On text-infilling benchmarks such
as One-Billion-Word and Yelp, DDOT outper-
forms naive diffusion baselines and achieves
performance on par with state-of-the-art non-
autoregressive models, while improving train-
ing efficiency and prompting flexibility.

1 Introduction

While autoregressive (AR) models are effective,
they also involve highly sequential sampling, can-
not use bidirectional context, and constrain archi-
tectures by requiring a decoder mask. In contrast,
discrete diffusion models (Lou et al., 2024; Sahoo
et al., 2024) can parallelize generation by denoising
multiple tokens simultaneously, use bidirectional
context, do not need a decoder mask, and allow for
more controllable generation. Previous work (Gat
et al., 2024; Shi et al., 2024) has demonstrated that
discrete diffusion models can handle prompts at
arbitrary locations, whereas autoregressive models
are only capable of left-to-right text completion.

1Project page: https://andrew-zhang.github.io/
ddot-page
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Figure 1: Our diffusion across token positions enables
dynamic token movement for infilling. Unlike prior
methods, DDOT learns to move masked tokens to appro-
priate locations, such as to the right of “brown,” even if
that position was not initially masked. The OT coupling
(colored lines) simplifies this learning by drastically re-
ducing the set of possible permutations.

However, this advantage has a significant limita-
tion: existing diffusion models cannot alter the dis-
tances between these prompt tokens. Consequently,
existing text diffusion models cannot generate the
ground-truth sample without access to the oracle
positions of the prompt and infilled text.

We solve this issue by enabling discrete diffu-
sion models to learn where to move tokens. Specif-
ically, we design a diffusion process that operates
across token positions (in addition to token val-
ues), allowing the model to vary the positions and
lengths of infilled spans (Figure 1). Furthermore,
given the importance of token positioning in pre-
serving semantic meaning (He et al., 2020), we
incorporate sample-level OT coupling (Tong et al.,
2024) to maintain relative token ordering through-
out the diffusion process. Even minor positional
changes can dramatically alter meaning, as seen
in phrases like “The child’s green coat” and “The
green child’s coat.” DDOT’s OT coupling preserves
this relative ordering throughout the diffusion pro-
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cess while supporting flexible-length text infilling.
Our OT coupling prevents such swaps and dras-
tically improves DDOT’s training efficiency and
downstream performance across all studied bench-
marks and metrics. Extensive experiments show
that DDOT outperforms naive diffusion baselines
and achieves performance on par with state-of-the-
art non-autoregressive (NAR) models.

In summary, our contributions are as follows:

• We propose DDOT, the first discrete text dif-
fusion method for infilling arbitrary text se-
quences without ground-truth span lengths.

• We provide extensive experiments on DDOT
that show it outperforms diffusion baselines
and achieves performance on par with state-
of-the-art NAR models.

• We provide detailed ablations and visualiza-
tions that verify DDOT’s effectiveness in ad-
justing the positions and lengths of infilled
text spans and provide insights into our novel
sample-level OT coupling. The OT coupling
significantly outperforms naive diffusion base-
lines across all tested benchmarks and metrics.

2 Related Work

2.1 Lexically Constrained Generation
Constrained text generation has been explored
through a variety of approaches, including AR and
NAR methods (Zhang et al., 2020; Iso, 2024; He,
2021; Stern et al., 2019; Lu et al., 2022). POINTER
(Zhang et al., 2020) enables flexible token gen-
eration through iterative insertion, though it still
depends on sequential token prediction and mul-
tiple forward passes. AutoTemplate (Iso, 2024)
approaches constrained text generation by feeding
the prompt tokens into an encoder–decoder-style
model. CBART (He, 2021) extends the POINTER
architecture by moving to an encoder–decoder
model. Autoregressive methods, while effective for
their specific use cases, inherit fundamental limita-
tions: they require sequential generation that scales
linearly with sequence length, and their causal at-
tention masks prevent the full use of bidirectional
context during generation. Most critically, for text
infilling tasks, these approaches struggle to con-
sider both past and future contexts simultaneously
when generating intermediate content (Cao et al.,
2023). Furthermore, to allow for flexible positions,
autoregressive methods often regenerate the entire

sequence instead of only inserting tokens, leading
to wasted compute (Iso, 2024).

2.2 Discrete Diffusion Models

Discrete diffusion models offer an innovative ap-
proach to text generation, addressing key limita-
tions of autoregressive methods (Lou et al., 2024;
Ren et al., 2024; Gong et al., 2024; Sahoo et al.,
2024). These models denoise corrupted text se-
quences, enabling parallel updates of multiple to-
kens rather than the token-by-token process of au-
toregressive methods, thereby reducing the number
of forward passes. Additionally, their bidirectional
nature allows them to leverage both past and future
context, in contrast to the causal masking that con-
strains autoregressive models. Early frameworks
like D3PM (Austin et al., 2021) adapted continuous
diffusion to discrete tokens by assigning probabil-
ity that a token corrupts by either turning into a
mask token or random token.

Recent work on score-based discrete diffusion
has further advanced the field by providing analyti-
cal solutions for the denoising process. Instead of
directly modeling transition probabilities, SEDD
(Lou et al., 2024) uses a score-based approach that
learns the gradient of the log-probability and intro-
duces an entropy-based loss function, narrowing
the gap to autoregressive models.

However, despite these advantages, current dis-
crete diffusion models face a significant limitation:
they require fixed token positions throughout the
generation process. This constraint makes them
unsuitable for flexible-length text infilling, where
the length of the generated text might differ from
the original masked region.

2.3 Optimal Transport Coupling for Flexible
Generation

OT (Villani et al., 2009) coupling has been well
studied in continuous diffusion. Tong et al. (2024)
introduce minibatch couplings—either independent
(random) or determined by OT—that regularize
training and encourage near-straight trajectories.
We adopt the term "coupling" from Tong et al.
(2024) to denote a matching between an source
and target distribution. By incentivizing straighter
paths, minibatch OT coupling yields practical bene-
fits such as faster sampling, a pattern also observed
in OT-inspired methods like Rectified Flow (Liu
et al., 2023) and Stochastic Interpolants (Albergo
and Vanden-Eijnden, 2023).
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Figure 2: DDOT learns to vary infilled span lengths and positions, unlike prior fixed-position diffusion methods.
(Left) We compute two separate intra-set OT couplings within the prompt positions and the response positions,
which drastically simplifies the set of possible permutations. (Right) Given a time step t, we predict the token and
position.

Our OT coupling differs in scope and granular-
ity: we construct a sample-level coupling within
each sequence, aligning token positions between
an initial state and a target ordering. We instantiate
this coupling via OT (and compare to independent
coupling in ablations), which preserves relative
order and guides tokens along predictable paths
while still allowing the inter-set crossings needed
for flexible-length infilling. Unlike minibatch cou-
plings aimed primarily at accelerating continuous
diffusion models, our coupling enables joint opti-
mization of content and placement of tokens for
discrete text diffusion, retaining parallel and bidi-
rectional conditioning and permitting dynamic ad-
justment of span lengths and token spacing.

3 Background: Masked Text Diffusion

Discrete diffusion adapts the continuous nature of
diffusion processes to text. The simplest and most
performant version of discrete diffusion is masked
diffusion (Lou et al., 2024; Shi et al., 2024; Sahoo
et al., 2024). Rather than adding Gaussian noise
to continuous values such as pixels, masked text
diffusion assigns a probability of masking tokens
throughout the forward diffusion process. For the
purposes of this paper, masked diffusion can be
seen as a masked language model (like BERT (De-
vlin et al., 2019)) that operates at progressively
decreasing masking ratios to generate text. Specifi-
cally, our text diffusion process follows Score En-
tropy Discrete Diffusion (SEDD) (Lou et al., 2024),
which models a score function over a support of
N states (token values). The forward diffusion
process is described by a continuous-time Markov

chain (CTMC):

dpt
dt

= Qtpt p0 ≈ pdata, (1)

where pt ∈ RN is the column vector of state proba-
bilities at time t ∈ [0, T ], Qt ∈ RN×N is the (time-
dependent) transition matrix (its columns sum to 0),
and pdata ∈ RN is the empirical token distribution
at t = 0. In masked diffusion we include the mask
token among the N states and make it absorbing:
each non-mask column has −1 on its diagonal and
+1 in the mask row, while the mask column is all
zeros, so columns sum to 0 and probability flows
from non-mask tokens into the mask token.

SEDD reverses the text diffusion dynamics by
learning the score sθ(x)y of a transition from token
x to token y via an entropy-based loss:

Ltok =

∫ T

0

Ext∼pt|0(·|x0)

∑

y ̸=xt

Qt(xt, y) (sθ(xt, t)y−

pt|0(y|x0)

pt|0(xt|x0)
log sθ(xt, t)y +K

(
pt|0(y|x0)

pt|0(xt|x0)

))
dt (2)

where x0 is the start token, xt is the token at time t
under the forward CTMC with marginal pt|0(·|x0),
Qt(xt, y) denotes the (row xt, column y) entry of
Qt, and K(a) = a(log a−1) is a scalar regularizer;
Finally, to simulate the reverse diffusion process,
we either take Euler steps or use an analytical de-
noiser (Lou et al., 2024).

4 Approach

Prior discrete diffusion models fix token positions
during denoising and therefore require oracle posi-
tions to infill masked spans. We introduce DDOT,
which jointly denoises discrete token values and
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continuous token positions so infilled spans can
move and change length during generation. This
enables flexible-length, flexible-position infilling
from arbitrary prompts while preserving the paral-
lel, bidirectional nature of discrete diffusion. Fig-
ure 2 summarizes DDOT.

4.1 Token Value Diffusion
We partition token values into three disjoint subsets
x = (xp, xr, xpad), which are described as follows:
(i) Prompt (xp): these slots are clamped to their
ground-truth tokens for all t; we never mask or re-
sample them, and they serve purely as conditioning
during denoising. (ii) Response (xr): these are the
real tokens to be infilled. They start at ground truth
and follow the masked-diffusion forward process
from section 3, progressively transitioning toward
[MASK] as t increases; the reverse chain denoises
them back to tokens. (iii) Pad (xpad): these slots
hold the vocabulary token [PAD] (distinct from
[MASK]), are not part of xr, and exist only to main-
tain a fixed length L. Under the forward process
(section 3), [PAD] may corrupt to [MASK]; in the
reverse process, [MASK] on these slots denoises
back to [PAD].

4.2 Continuous Position Diffusion
To enable diffusion models to move masked to-
kens to regions that require infilling, DDOT also
diffuses positions. Similar to token values, we
partition positions into three disjoint subvectors
zt = (zpt , z

r
t , z

pad
t ) for prompt, response, and pad

positions. Let ℓ = |xp| + |xr| be the number of
real tokens, with per-subset counts ℓp = |xp| and
ℓr = |xr| = ℓ− ℓp; there are L− ℓ pad slots.

The noisy positions are sampled i.i.d. as zT ∼
U(−1, 1)L (so zpT , z

r
T , z

pad
T are slices of a single

length-L vector). We define the ground-truth posi-
tions for the real (non-pad) tokens as the length-ℓ
subvector over the union of prompt and response
indices, zp∪r0 ∈ Rℓ (equivalently zp∪r0 = (zp0 , z

r
0)),

evenly spaced and scaled to the true length:

zp∪r0,i =
ℓ

L

2i− (ℓ− 1)

max{1, ℓ− 1} , i = 0, . . . , ℓ− 1.

(3)
so real tokens occupy the sub-interval
[−ℓ/L, ℓ/L] ⊂ [−1, 1].

Linear position paths. Following Albergo and
Vanden-Eijnden (2023) and Liu et al. (2023), posi-
tions follow straight, noise-free interpolation:

zt = (1− t) z0 + t zT . (4)

Pad tokens. Pad tokens are part of the ground-
truth vocabulary (distinct from [MASK]). Pad po-
sitions remain stationary up to the same global
scaling:

zpad0 =
ℓ

L
zpadT (5)

Together with the zp∪r construction in Equation 3,
this induces the full length-L slot vector z0 =
(zp0 , z

r
0, z

pad
0 ).

4.3 Positional Optimal Transport Coupling

Our preliminary experiments (Table 4) show that
naively diffusing continuous token positions per-
forms poorly. It induces a combinatorial explo-
sion of permutations, weakens supervision from the
ground truth, and leads to invalid infilling results.
We therefore use sample-level optimal-transport
(OT) coupling. In particular, we find an OT cou-
pling independently within each set zp and zr. Our
sample-level OT coupling has the following bene-
fits:

(a) Reduces the permutation space. OT yields
order-preserving, non-crossing trajectories
within each set (prompt or response), drasti-
cally shrinking the search over permutations.
Concretely, for either set S ∈ {p, r} and in-
dices 1 ≤ i < j ≤ ℓS in that set’s ground-
truth order, we have z

S,(i)
t ≤ z

S,(j)
t for all

t ∈ [0, 1], so within-set crossings cannot oc-
cur (while inter-set prompt–response crossings
remain allowed), avoiding the combinatorial
explosion from arbitrary permutations.

(b) Preserves supervision signal. Small word-
order changes can flip semantics; The OT
coupling between zT and z0 preserves relative
order throughout diffusion and thus maintains
a stable learning signal from the ground-truth
sequence rather than forcing the model to infer
order from noisy, permuted trajectories.

(c) Prevents invalid permutations. In infilling
tasks, the prompt’s relative order is part of the
conditioning; any output that reorders prompt
tokens is an invalid infilling result. We feed the
prompt tokens at the terminal state T in their
given order. With OT coupling, the forward
0 → T paths are order-preserving within the
prompt set (non-crossing), so the reverse
diffusion returns the same within-set order at
t = 0. Without coupling, trajectories can cross
and swap prompt order, yielding invalid infills.
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Assignment formulation (per set). We com-
pute the optimal transport coupling within prompt
and non-prompt sets. From the noisy positions
zT ∈ RL, sample ℓp entries to form the prompt
slice zpT ; the remaining L−ℓp entries form the non-
prompt slice znpT . We compare ground-truth posi-
tions (rescaled to [−1, 1]) directly to these slices.
Prompt OT (balanced). One-to-one match: each
of the ℓp prompt positions at t = 0 is assigned
to exactly one sampled prompt position at t = T ,
minimizing total displacement:

πp = argmin
π∈Sℓp

ℓp∑

i=1

∣∣∣Lℓ z
p
0,i−zpT,π(i)

∣∣∣, z̃pT = zpT [π
p].

(6)
Where Sℓp is the set of permutations of [ℓp] and,
for any vector v, v[π] denotes reindexing by π:
(v[π])i := vπ(i).
Response OT (unbalanced). Injective match: the
ℓr response positions at t = 0 are assigned into the
non-prompt pool znpT of size L− ℓp, each slot used
at most once; unassigned slots become pads:

πr = argmin
π∈ΠL−ℓp

ℓr

ℓr∑

i=1

∣∣∣Lℓ zr0,i−znpT,π(i)

∣∣∣, z̃rT = znpT [πr].

(7)
Here Sℓp is the set of all permutations of [ℓp], and
ΠL−ℓp

ℓr is the set of injective maps [ℓr] ↪→ [L− ℓp].
Pads (leftover positions). The L− ℓ non-prompt
positions not selected by πr constitute zpadT . Pads
are excluded from OT and follow the stationary
path in Equation 5.

After solving the assignments, we reorder the
sampled positions and use the reordered slices for
interpolation:

zSt = (1− t) zS0 + t z̃ST , S ∈ {p, r}. (8)

This per-set OT coupling induces order-preserving,
non-crossing trajectories within prompt and re-
sponse (by construction of z̃ST and linear paths),
while allowing inter-set crossings between prompt
and response. See subsection A.4 for visualiza-
tions.

Computation. All couplings are computed per
sequence in one dimension, using absolute distance
between rescaled ground-truth positions and sam-
pled positions. This choice lets us avoid forming
dense cost matrices that are typically used when
calculating OT and enables simple, fast implemen-
tations that scale favorably in the sequence length.

Prompt OT computation. For the prompt set we
must match ℓp ground-truth positions zp0 to ℓp sam-
pled positions zpT in a one-to-one manner. In 1D
with convex costs, the optimal assignment is equiv-
alent to sorting both vectors and pairing by index.
Therefore, we sort zp0 and zpT once and obtain the
permutation πp that maps each sorted index in zp0
to the corresponding rank in zpT . This procedure
achieves the exact minimum from Equation 6, runs
in O(ℓp log ℓp) time, and does not materialize a
cost matrix.
Response OT computation. We sort a = zr0 and
b = znpT in ascending order, then compute the injec-
tive, order-preserving match with a standard global-
alignment dynamic programming solution (Needle-
man and Wunsch, 1970). This exactly minimizes
Equation 7 and runs in O(ℓr(L − ℓp)) time and
O(L− ℓp) memory.
Complexity and practical overhead. The total
per-sequence cost is O(ℓp log ℓp+ℓr(L−ℓp)) time
and O(L) memory. For the context sizes consid-
ered (L ≤ 1024), the coupling time is negligible
compared to a single denoiser forward pass. In
practice we precompute several OT couplings in
advance on the CPU and stream the dataset to the
GPU, leading to negligible overhead, as seen in
subsection 5.3

4.4 Training Objective
At each update we draw a time t ∼ U(0, 1), sample
noisy positions zT ∼ U(−1, 1)L, and form the
matched targets z̃T = (z̃pT , z̃

r
T , z

pad
T ) by solving

Equation 6–Equation 7 (pads follow Equation 5).
We then construct the per-set paths (Equation 8).
Independently, for token values we follow SEDD’s
forward process (Sec. 3) to obtain xt from x0 at the
same t.

Position loss. We supervise the position head
(Figure 2) on all L slots with a simple MSE to-
ward the straight-path target:

Lpos(θ) = Et

[ ∥∥ vθ(zt, xt, t) −
(
z0 − z̃T

)∥∥2
2

]
.

(9)

Token loss. For tokens we use the SEDD score-
entropy objective from section 3, denoted Ltok(θ).

Total loss. The final objective is a weighted sum

L(θ) = Ltok(θ) + λLpos(θ), (10)

with λ controlling the relative weight of position
supervision.
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Initialization: DDOT-R vs. DDOT-U. During
inference we manipulate how we sample zT . By de-
fault (DDOT-R), we randomly sample a full length-
L terminal vector zT ∼ U(−1, 1)L, reserve any ℓp

entries as the prompt slice zpT . However, random
sampling can produce high-density regions that
tend to map to pad tokens because there are fewer
tokens in the corresponding ground-truth region.

To mitigate this, DDOT-U places terminal posi-
tions on uniform grids for each set:

zpT,i =
2i− (ℓp − 1)

max{1, ℓp − 1} , i = 0, . . . , ℓp − 1,

znpT,i =
2i− (ℓnp − 1)

max{1, ℓnp − 1} , i = 0, . . . , ℓnp − 1.

(11)
Uniform spacing avoids random clustering, reduces
pad spillover, and yields more stable placements.

Reverse-time updates. During sampling, posi-
tions follow near-straight trajectories because the
learned velocity field approximates the constant
ground-truth direction z0 − z̃T . We therefore up-
date positions with a simple Euler step at each
τ -leap of the SEDD reverse process, while keeping
prompts clamped and pads stationary (Equation 5).

4.5 Simultaneous Text & Position Diffusion

DDOT performs discrete text and continuous po-
sition diffusion simultaneously, as these processes
operate independently in continuous time. We
therefore predict both token-value scores and posi-
tion velocities in a single forward pass. This inde-
pendence also enables simulation-free training by
sampling token and position states independently
at arbitrary time steps. We summarize the training
procedure in algorithm 1.

Algorithm 1 DDOT Training
Require: batch (x0, z0); loss weight λ
1: Sample t ∼ U(0, 1)
2: Build terminal positions: sample zT ∼ U(−1, 1)L and

split (zpT , z
np
T ), or use uniform grids from Equation 11

3: Compute within-set OT: πp via 1D sort-match (Equa-
tion 6); πr via injective matching (Equation 7); set
z̃pT = zpT [π

p], z̃rT = znpT [πr], leftovers → zpadT

4: Form paths zSt = (1 − t)zS0 + t z̃ST for S ∈ {p, r}; set
pads via Equation 5

5: Sample token states xt from the SEDD forward at time t
6: Predict sθ(xt, t) and vθ(zt, xt, t)
7: Compute Ltok (Equation 2) and Lpos (Equation 9)
8: Update θ on Ltok + λLpos (Equation 10)

4.6 Implementation Details
We extend SEDD, which is based on the Diffusion
Transformer architecture (Peebles and Xie, 2023),
with two additional modules. First, we introduce
a learnable type embedding applied directly after
the token-embedding lookup. This embedding in-
dicates whether a token is part of the prompt or the
masked response (xi ∈ xp or xi ∈ xnp), which is
critical for assigning each token to the correct OT
flow. Second, we add a linear head at the end of the
Diffusion Transformer to compute vθ(zt, t). The
model architecture is available in Figure 2.

To incorporate continuous positional informa-
tion, we scale zt from [−1, 1] to match the context
length of the original pretrained model (1024). We
then use Rotary Position Embeddings (Su et al.,
2024), a standard technique in discrete diffusion
models. Implementation details can be found in
Subsection A.3.2.

5 Experiments

5.1 Experimental Setup
Datasets We evaluate our approach on the One-
Billion-Word and Yelp datasets, following the pre-
processing steps outlined in prior work on infilling
and lexically constrained generation (Miao et al.,
2019; Zhang et al., 2020; Iso, 2024). These datasets
consist of examples with 1 to 6 keywords that must
be infilled while maintaining their relative order
to generate coherent sentences. In addition to ran-
domly masking positions, we also introduce a block
masking method that masks a single continuous
span of text ranging from 0 to L/2 tokens (32
for One-Billion-Word and Yelp; 512 for CodePar-
rot). Finally, we apply the aforementioned masking
methods to the Python subset of the CodeParrot
dataset. Table 1 illustrates examples of this lexi-
cally constrained generation task.

Keywords: earned , cents , share , costs

One-Billion-
Word-Random:

It earned 28 cents a share , exclud-
ing restructuring costs .

Keywords: we are so incredibly wedding .

Yelp-Block: we are so incredibly happy we chose

this venue for our wedding .

Table 1: Example generations for the keywords-to-
sentence generation on One-Billion-Word and Yelp.
Training Details To align the position-prediction
modules, we first fine-tune SEDD with the added
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Model One Billion Word–Block Yelp-Block CodeParrot-Block CodeParrot-Random
B2/B4 N2/N4 M SR B2/B4 N2/N4 M SR B2/B4 CB SR B2/B4 CB SR

LC 55.1/47.9 4.38/4.40 37.4 54.7 59.1/51.7 7.77/8.48 37.9 60.3 51.0/49.4 53.3 16.9 15.4/24.8 19.4 0.
PoP 59.2/50.0 8.43/8.77 37.1 58.6 64.9/48.6 7.81/8.47 38.1 67.1 29.4/13.3 21.7 0.34 12.5/2.75 13.9 0.
DDOT-R 62.2/57.1 7.42/8.16 42.1 99.7 62.5/57.3 7.50/8.24 42.2 99.8 47.2/41.1 38.5 1.01 57.2/43.5 39.2 3.53
DDOT-U 63.7/58.4 8.40/8.79 42.1 100. 64.9/59.5 8.06/8.86 42.9 100. 53.7/51.0 50.5 10.8 58.2/40.4 45.4 11.2

Table 2: DDOT outperforms diffusion baselines on standard sequences (0-32 prompt tokens). Metrics are
BLEU (B2, B4), NIST (N2, N4), METEOR (M), and Success Rate (SR). Top scores are bolded.

Model One Billion Word–Random Yelp-Random
B2/B4 N2/N4 M SR B2/B4 N2/N4 M SR

Autoregressive Models

GBS (Hokamp and Liu, 2017) 10.1/2.8 1.49/1.50 13.5 ≤ 100. 13.6/4.5 1.68/1.71 15.3 ≤ 100.
InstructGPT (Ouyang et al., 2022) 10.1/2.8 1.72/1.73 13.0 92.33 9.3/2.4 1.42/1.44 13.6 92.17
AutoTemplate-small (Iso, 2024) 16.4/6.1 3.11/3.15 15.5 100. 22.5/9.5 3.51/3.63 17.1 100..
AutoTemplate-base (Iso, 2024) 18.3/7.6 3.39/3.45 16.0 100. 23.7/10.8 3.62/3.76 17.8 100..
AutoTemplate-large (Iso, 2024) 18.9/8.1 3.49/3.54 16.2 100. 24.1/11.1 3.68/3.83 17.9 100..

Non-Autoregressive Models

Traditional Models
SeqBF (Mou et al., 2016) 4.4/0.7 0.62/0.62 7.0 ≤ 100. 6.9/2.1 0.52/0.53 8.7 < 100.
CGMH (Miao et al., 2019) 9.9/3.5 1.15/1.17 13.1 100. 12.3/4.6 1.41/1.45 14.6 ≤ 100.
POINTER (Zhang et al., 2020) 8.7/1.6 2.11/2.12 14.3 100. 10.6/2.4 2.14/2.16 16.8 100.
CBART (He, 2021) 15.6/6.6 2.16/2.19 15.2 100. 19.4/9.0 2.54/2.64 17.4 100.

Diffusion Models
LC 15.36/6.52 2.02/2.05 14.99 99.82 20.55/9.66 2.76/2.87 17.58 99.75
PoP 16.59/5.66 3.06/3.09 15.15 99.05 21.13/7.97 3.31/3.40 17.90 98.87
DDOT-R (Ours) 15.7/5.1 3.17/3.21 14.6 99.60 19.7/7.0 3.26/3.34 17.4 99.77
DDOT-U (Ours) 16.3/5.2 3.13/3.17 15.0 100. 21.2/7.9 3.43/3.52 17.7 100.

Table 3: DDOT performs on-par with state-of-the-art NAR models on
short sequences (1–6 prompt tokens). Top NAR scores are bold; second-
best are underlined. Since SOTA NAR backbones (e.g. diffusion) still lag
behind AR backbones, we focus on NAR comparisons.

Figure 3: Success rate on block
datasets. LC and PoP increasingly
generate invalid responses (missing or
swapping prompt tokens) as the num-
ber of prompt tokens grows.

modules on FineWeb-Edu (Penedo et al., 2024).
Afterward, we further fine-tune on the One-Billion-
Word and Yelp datasets. For simplicity, we keep
all parameters unfrozen and optimize Ltok and Lpos
simultaneously.

In line with SEDD, we train our model in
two configurations: small (90M non-embedding
parameters) and medium (320M non-embedding
parameters). DDOT-medium is on the same scale
as CBART (406M parameters) and AutoTemplate-
base (220M parameters). Following SEDD, we
use the AdamW optimizer with a learning rate
of 3 × 10−5. We set λ = 10 for position-loss
weighting. For each experiment, we use either
48× L40 (48 GB), 80× A30 (24 GB), or 8× A100
(80 GB) GPUs.

Baselines We compare our method against strong
autoregressive (AR) and non-autoregressive (NAR)
baselines. AutoTemplate (Iso, 2024), a state-of-the-
art AR approach, leverages the T5 (Raffel et al.,
2020) family of pretrained models and parses the
lexically constrained generation task into a tem-
plate that is generated autoregressively from left to
right. The previous state-of-the-art NAR method,

CBART (He, 2021), is built on the pretrained
BART framework (Lewis et al., 2020) and itera-
tively inserts tokens into a sequence.

We also introduce two diffusion-based baselines
that follow the same training procedure as DDOT.
Left Context (LC) concatenates all prompt tokens
to the left of the sequence and generates the
response to the right of a separator token. Position
Prediction (PoP) uses a SEDD model with a linear
head that first predicts the positions of every token;
this sequence is then fed through a fine-tuned
fixed-position SEDD.

Distribution Annealing Many lexically
constrained generation baselines, including
AutoTemplate and CBART, use distribution-
annealing methods such as top-p, top-k, greedy
decoding, and beam search. To provide a parallel
to greedy decoding—which always takes the top
token probability—we anneal the token-value
distribution during sampling to include only the
most probable non-mask token. Specifically, given
the predicted probability that a token is the mask,
p̂(xmask), we assign 1− p̂(xmask) to the token value
with the highest probability excluding the mask
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token, and set the remaining token probabilities to
0. Greedy decoding in prior models (e.g., AR) is
deterministic, collapsing the tree of all generation
paths into a single path. However, our annealing
process maintains generation diversity (A.2.2)
because the model still samples from the annealed
distribution over the top token value and the mask
token. Whenever possible, we evaluate against the
greedy-decoding baseline.

Metrics Following prior work (Miao et al., 2019;
Zhang et al., 2020; Iso, 2024), we evaluate BLEU-
2/4 (Papineni et al., 2002), NIST-2/4 (Dodding-
ton, 2002), METEOR-v1.5 (Denkowski and Lavie,
2014), and success rate (SR), which is the percent-
age of responses that are valid infilling results. A
result is determined as invalid when any prompt
tokens in the generated sequence do not appear in
the same relative order that they were provided.

5.2 Main Results
We present lexically constrained generation re-
sults in Table 2. Our approach uses greedy an-
nealing and is compared against greedy decoding
wherever applicable, including the CBART greedy-
decoding baseline. Our method achieves competi-
tive performance with previous NAR models, ap-
proaching AR performance. Notably, our model
achieves state-of-the-art performance on most met-
rics among the diffusion baselines. Our method
performs well on block infilling, which may be
more useful in real-world applications. Further-
more, we observe that DDOT scales well to longer
sequences: it frequently generates valid responses
that include all prompt words in the same relative
order, as reflected in the SR. In contrast, diffusion
baselines quickly generate invalid responses as
the number of prompt tokens increases (Table 3, Ta-
ble 2). However, in benchmarks with six or fewer
prompt tokens, diffusion baselines maintain high
SR (Table 3). This may be because fixed-position
models have room to correct generation when the
ratio of prompt to response tokens is low.

Table 3 compares results with previous work
in lexically constrained generation. Since pre-
trained diffusion models currently lag behind AR
models—an issue not unique to DDOT—we fo-
cus on NAR models. DDOT performs on par
with previous state-of-the-art models and achieves
higher SR than all diffusion baselines. Although
DDOT underperforms LC and PoP on some met-
rics, we argue that the One-Billion-Word–Random

and Yelp–Random settings over-index on the un-
realistic task of generating text from only 1–6 ran-
domly spaced tokens. Furthermore, Table 3 shows
the broader trend when DDOT is scaled to a larger
number of prompt tokens.

5.3 Analysis

In this section, we investigate the effect of random
versus uniform position initialization, the inclusion
of OT coupling, and the impact of varying the
number of sampling steps.

Position Initialization In Table 2 and Table 3,
we also explore the difference between DDOT-R
and DDOT-U. In DDOT-R, pad tokens tend to
cluster in high-density regions because OT finds
no matches for them; in DDOT-U, pad tokens
tend to be evenly spaced. We find that DDOT-U
consistently outperforms DDOT-R.

OT Coupling To demonstrate the importance
of OT coupling between source and target posi-
tions, we retrain the small version of DDOT with-
out OT coupling and provide a quantitative com-
parison in Table 4. Models trained with OT cou-
pling consistently outperform those using indepen-
dent (random) coupling. We hypothesize that OT
coupling provides a stronger signal about token
ordering throughout the diffusion process. Specifi-
cally, DDOT guarantees that the relative ordering
of the prompt and generated tokens at any time
step matches the original ordering. In contrast,
independent coupling requires the model to infer
the original ordering—a challenging task given the
numerous plausible orderings that can result from
interspersed prompt tokens.

OT? B2 B4 N2 N4 M
One-Billion-Word

No OT 13.2 4.6 1.60 1.62 14.1
OT 15.7 5.1 3.2 3.2 14.6

Yelp
No OT 16.39 5.94 2.05 2.10 16.0
OT 18.6 6.9 3.13 3.21 16.6

Table 4: Our OT coupling drastically improves pre-
formance across all metrics. Ablation on OT coupling
with small model size.

Position Over Time We qualitatively compare
ground-truth token paths during training in
Figure 4. With OT coupling, token trajectories
exhibit significantly fewer crossings, maintaining
relative order throughout the generation process;
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Figure 4: (a) and (b) show ground-truth token positions over time. Without OT (a), many line crossings indicate
unstable permutations, whereas with OT coupling (b), trajectories are nearly straight throughout the denoising
process. (c) Performance tends to increase with more sampling steps.

in contrast, independent coupling frequently
permutes tokens. Visualizations of token paths
during inference are available in subsection A.4.

Number of Sampling Steps One advantage of
diffusion models over autoregressive models is the
ability to trade compute for accuracy by varying
the number of inference steps. Figure 4 shows how
the number of sampling steps influences lexically
constrained generation performance: as the number
of sampling steps increases, performance improves.

Wall-Time Analysis We evaluate the inference
speed of DDOT against the diffusion baselines on
the One-Billion-Word. Table 5 presents the wall-
clock time per batch alongside BLEU-2 and BLEU-
4 scores for increasing numbers of sampling steps.

DDOT demonstrates significantly better effi-
ciency. For any given number of sampling steps,
DDOT is not only faster than LC and competitive
with PoP in raw speed, but also achieves substan-
tially higher BLEU scores. Notably, LC must
regenerate prompt tokens and therefore requires
up to double the input sequence length. PoP also
requires an additional forward pass to predict
initial positions.

Efficiency Considerations The added modules
that enable position prediction are lightweight, con-
sisting of a linear head and two type embeddings.
By contrast, the LC baseline requires double the
context length of DDOT because it must regenerate
prompt tokens.

The OT calculation is highly efficient, taking 16
minutes, 11 seconds on an Intel Xeon 8462Y+ 64-
core processor for the 10-billion-token subset of
FineWeb-Edu. In practice, we stream the dataset,
caching several OT couplings in advance without

Model Number of Sampling Steps

2 4 8 16 32 64

LC (Left Context)
Time (s/batch) 0.71 1.43 2.86 5.72 11.5 22.9
BLEU-2 38.3 44.3 50.7 53.3 54.5 55.1
BLEU-4 27.5 33.9 41.9 45.3 47.0 47.9

PoP (Position Prediction)
Time (s/batch) 0.53 0.90 1.64 3.13 6.09 12.0
BLEU-2 45.4 59.5 59.5 59.4 59.3 59.2
BLEU-4 40.7 50.3 50.3 50.2 50.1 50.0

DDOT-Uniform (Ours)
Time (s/batch) 0.44 0.81 1.54 3.03 5.98 12.0
BLEU-2 59.4 61.2 62.4 63.1 63.5 63.7
BLEU-4 55.5 56.8 57.5 58.0 58.2 58.4

Table 5: DDOT achieves superior BLEU scores with
faster inference times. Inference speed (seconds per
batch) and BLEU scores on One-Billion-Word for vary-
ing numbers of sampling steps.

needing to preprocess them. With caching, it takes
4 minutes, 30 seconds to run 1,000 training steps
on an L40 GPU with a batch size of 256. Without
caching, it takes 4 minutes, 27 seconds—a negligi-
ble difference.

6 Conclusion

In this work, we introduce DDOT, the first dis-
crete diffusion model capable of flexible-length
text infilling by jointly denoising token values
and positions. By incorporating optimal-transport
coupling, DDOT preserves token order while en-
abling dynamic position adjustment, addressing
limitations in existing text diffusion models. Our
experiments show that DDOT outperforms diffu-
sion baselines and matches state-of-the-art non-
autoregressive models.
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Limitations

DDOT inherits many drawbacks from previous dis-
crete text diffusion methods (Lou et al., 2024; ?;
Sahoo et al., 2024). First, diffusion backbones still
lag behind autoregressive backbones. Since diffu-
sion for text is an emerging field, this performance
gap is expected. Similarly, the fine-tuned versions
of these models (e.g., DDOT vs. AutoTemplate)
exhibit the same gap. Second, unlike autoregres-
sive models, existing diffusion models cannot use a
KV cache to store previous activations. DDOT also
inherits risks common to large-scale text models.

Ethical Considerations

Artifacts The artifacts we used have public-use
licenses. Furthermore, we plan to release our code
artifacts for public use after acceptance.

Dataset Considerations We use publicly
available datasets that underwent safety checks,
such as FineWeb-Edu.

Documentation of Artifacts Our work generates
English text, and our codebase is primarily in
Python.

Use of AI Assistants We used AI assistants to
help write our code and revise our paper.

Package Usage We use NLTK for BLEU, NIST,
METEOR, and n-gram diversity. We use https://
pypi.org/project/codebleu/ for CodeBLEU.
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A Appendix

A.1 Overview

This appendix provides additional results, diversity analyses, hyperparameter sensitivity, path visualiza-
tions, and short implementation notes for reproducibility. We reuse notation from the main text and make
one explicit addition used below:

ℓnp = L− ℓp

denoting the number of non-prompt slots (response + pads). This matches the usage of znpT in the main
text.

A.2 Additional Results

A.2.1 Size Comparison

Table 6 reports BLEU-2/4, NIST-2/4, and METEOR for DDOT small/medium and for DDOT-R vs. DDOT-U
on One-Billion-Word–Random and Yelp–Random. Uniform zT initialization (DDOT-U) consistently
outperforms random (DDOT-R), and scaling to the medium model further improves most metrics.

Model One-Billion-Word-Random Yelp-Random
B2 B4 N2 N4 M B2 B4 N2 N4 M

DDOT-R small (Ours) 15.7 5.1 3.16 3.19 14.6 18.6 6.9 3.13 3.21 16.6
DDOT-U small (Ours) 15.5 4.9 2.94 2.97 15.0 18.9 7.1 2.99 3.07 17.0
DDOT-R medium (Ours) 15.7 5.1 3.17 3.21 14.6 19.7 7.0 3.26 3.34 17.4
DDOT-U medium (Ours) 16.3 5.2 3.13 3.17 15.0 21.2 7.9 3.43 3.52 17.7

Table 6: Results on One-Billion-Word and Yelp. Metrics are BLEU (B2, B4), NIST (N2, N4), and METEOR (M).
Best results are highlighted in bold.

A.2.2 Generation Diversity

Table 7 compares diversity using D2/D4 (unique bigrams/four-grams). DDOT-U yields competitive
diversity relative to strong NAR baselines while maintaining ordering constraints.

Model One-Billion-Word-Random Yelp-Random
D2 D4 D2 D4

CBART (He, 2021) 49.2 82.1 38.1 92.6
LC 37.5 89.4 21.5 69.0
PoP 38.85 91.4 19.9 68.3
DDOT-R (Ours) 30.7 85.3 20.2 67.7
DDOT-U (Ours) 34.03 88.2 18.6 66.6

Table 7: Results on One-Billion-Word and Yelp dataset for generation diversity. Metrics include Diversity (D2, D4).
Best results are highlighted in bold.

A.3 Hyperparameter Sensitivity and Training Details

A.3.1 Loss Weight λ

We sweep λ to balance Ltok and Lpos. Results in Table 8 show stable performance across a range; λ≈10
is a good default used in the main results.

A.3.2 Training Hyperparameters

Table 9 lists optimizer, learning rate, weight decay, βs, batch sizes (by GPU), and schedules. Unless noted,
we follow SEDD defaults and fine-tune all parameters jointly.
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λ B2 B4 N2 N4 M

3 63.07 58.27 7.56 8.32 42.64
10 63.04 58.23 7.55 8.30 42.85
30 63.64 58.63 7.73 8.50 42.66
100 63.05 58.18 7.56 8.32 42.6
300 63.25 58.24 7.63 8.39 42.50
1000 63.53 58.46 7.74 8.51 42.50
3000 62.95 57.95 7.59 8.34 42.27

Table 8: Impact of different λ values on model performance metrics.

Hyperparameter Value

Batch size 128 (A30) / 256 (L40) / 512 A(100)
λ 300 (with scaling)
Weight decay 0.0
Learning rate 3e− 4
Optimizer AdamW
β1 0.9
β2 0.999

Table 9: Training hyperparameter specifications.

A.4 Path Visualizations
We visualize token-position trajectories during both inference (what the model actually does at test time)
and training (the straight paths used as supervision). We show two coordinate systems: scaled to [−1, 1]
(used in losses; cf. Equation 3) and unscaled in the model’s native context length (for intuition about
absolute movement). Unless noted, we split by set S ∈ {p, r} and index tokens within a set by their
ground-truth order.

Plot Explanation. Let {tu}Ku=0 be the reverse-time grid (left-to-right on the x-axis), with t0 = T and
tK = 0. For each token index i in set S, we plot its 1D position z

S,(i)
tu across u. Colors denote the token’s

state (masked vs. unmasked) at each step. During inference, ztu+1 is obtained by an Euler update using
the learned velocity vθ(ztu , xtu , tu) while clamping prompts and keeping pads stationary (Equation 5).
During training, targets follow straight paths zSt = (1− t)zS0 + t z̃ST from Equation 8.

Analysis. Within a set (prompt or response), desirable behavior is (i) order preservation (no within-set
crossings) and (ii) near-straight trajectories (little curvature). Inter-set crossings (prompt vs. response)
are allowed—and often required—to place response tokens between prompts during infilling.

A.5 Implementation Notes
Computing OT efficiently. Prompt matching is solved exactly in 1D by sorting zp0 and zpT and pairing by
rank; response matching uses order-preserving injective alignment via global-alignment DP against znpT .
Both avoid dense cost matrices and run in O(ℓp log ℓp + ℓr(L− ℓp)) time and O(L) memory.

Caching & streaming. For large corpora, precompute couplings on CPU and stream mini-batches; we
observed negligible overhead whether caching or computing couplings on the fly.
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Figure 5: Ablations on number of sampling steps without OT coupling. Paths curve and cross more often,
complicating learning and inference.
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Figure 6: With per-set OT coupling, trajectories are straighter and order-preserving within each set.
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Figure 7: Ground-truth token paths (scaled to [−1, 1]) used as supervision. Without OT (left), many crossings
indicate unstable matching; with OT (right), trajectories are nearly straight and order-preserving within each set.
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