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Abstract

Insensitivity to semantically-preserving varia-
tions of prompts (paraphrases) is crucial for
reliable behavior and real-world deployment
of large language models. However, language
models exhibit significant performance degra-
dation with semantically equivalent but differ-
ently phrased prompts, and existing solutions
either depend on trial-and-error prompt engi-
neering or require computationally expensive
inference-time algorithms. In this study, built
on the key insight that worst-case prompts ex-
hibit a drift in embedding space, we present
Latent Adversarial Paraphrasing (LAP), a dual-
loop adversarial framework that optimizes a
trainable perturbation as “latent continuous
paraphrase” and language model performance
on these perturbations iteratively. Extensive
experiments are conducted to demonstrate the
effectiveness of LAP across multiple back-
bones on the RobustAlpaca benchmark with a
0.5% ∼ 4% absolution improvement on worst-
case win-rate.

1 Introduction

Large language models (LLMs) (OpenAI, 2023;
Dubey et al., 2024; Reid et al., 2024; Team, 2024)
have demonstrated remarkable capabilities across
diverse applications (Rozière et al., 2023; Azer-
bayev et al., 2023). However, these models exhibit
a critical sensitivity to semantically-preserving vari-
ations in prompts (Cao et al., 2024). Our analysis
using Llama-2-13b-chat (Touvron et al., 2023) on
RobustAlpaca (Cao et al., 2024) reveals that the
best-case reward can be twice as large as the worst-
case reward for semantically equivalent prompts, as
shown in Figure 1, which poses a significant chal-
lenge for real-world applications where consistent
performance is crucial.
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Figure 1: Distribution of the ratio between the highest
and lowest reward scores (the highest and lowest reward
among model response to different paraphrases of user
queries) for Llama-2-13b-chat on RobustAlpaca. A
higher ratio indicates greater performance variability
across semantically equivalent paraphrases.

Previous approaches have attempted to address
this problem by searching for an optimal prompt
with prompt engineering and template optimiza-
tion (Shin et al., 2020; Prasad et al., 2023; Zhou
et al., 2023). However, these solutions present sig-
nificant limitations in practical applications, and it
is infeasible to expect users to master the intrica-
cies of prompt design, which contradicts the goal of
making LLMs accessible and reliable. Meanwhile,
a concurrent line of work adopts inference-time
algorithms to improve response quality through
prompt rewriting (Cao et al., 2024) or response
revision (Anonymous, 2025), which introduce sub-
stantial computational overhead and extra inference
latency. Therefore, in this study, we take a different
pathway and aim to optimize LLM on the worst-
case paraphrasing to enhance the inherent robust-
ness of LLM to prompt variation, especially the
paraphrasing of the user query.

However, identifying worst-case paraphrasing
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that preserves the same semantic meaning but
yields the worst performance remains challenging.
Prior research (Cao et al., 2024) indicates that these
worst-case paraphrasing are model-dependent and
hardly detectable through conventional metrics
such as perplexity (Gonen et al., 2023) or min-k
probability (Shi et al., 2023a), even if the model pa-
rameters and internal representations are accessible.
To deal with this challenge, we have uncovered a
key insight into the drift in the embedding distance
caused by worst-case paraphrasing. Specifically,
exceptionally poor-performing paraphrases tend to
exhibit larger Euclidean distances from the original
prompt in the hidden space, despite maintaining
semantic equivalence. This observation suggests
that controlling the geometry of prompt representa-
tions in the embedding space could be crucial for
enhancing model robustness.

Nevertheless, directly manipulating these dis-
tances while preserving semantic meaning presents
significant technical challenges, particularly when
relying on external language models like GPT-
4o (Hurst et al., 2024) for paraphrase genera-
tion. To systematically address this challenge,
we get inspiration from latent adversarial training
(LAT) (Sheshadri et al., 2024; Casper et al., 2024;
Xhonneux et al., 2024) and propose an adversarial
framework termed Latent Adversarial Paraphrasing
(LAP). Our approach employs a novel dual-loop
architecture: given a user query in an instruction-
following dataset, we first learn a latent perturba-
tion and incorporate it into the hidden layers of
the language model to serve as a continuous para-
phrasing of the original query (inner loop). Then
we fix the perturbation and optimize the LLM pa-
rameters to minimize the language modeling loss
with the existence of the perturbation (outer loop).
Extensive experiments across various LLM archi-
tectures demonstrate LAP’s effectiveness in im-
proving model robustness.

Our key contributions are:
• Identifying embedding distance between the orig-
inal query and paraphrase as a key indicator for the
worst-case prompt.
• Developing LAP, an adversarial training frame-
work for enhancing prompt robustness of LLM
without locating the specific worst-case prompt.
• Demonstrating on various backbones that our
new approach could improve the worst-case win-
rate and the average win-rate without additional
paraphrase data or inference latency.

2 Related Work

Latent Adversarial Training: Prior studies have
shown that LLMs are sensitive to perturbations in
their inner representation (Fort, 2023), and high-
level behaviors of LLMs can be effectively manip-
ulated by representation engineering (Zou et al.,
2023; Li et al., 2023; Wang and Shu, 2024). To im-
prove model robustness, Latent Adversarial Train-
ing (LAT) (Sankaranarayanan et al., 2018; She-
shadri et al., 2024; Casper et al., 2024) is proposed
as a bi-level optimization framework in which a
learned perturbation is incorporated into the hid-
den states of LLM and trained towards a malicious
goal while the LLM in the outer-loop is optimized
against the perturbation. LAT is widely adopted for
defending against jailbreaking prompt (Xhonneux
et al., 2024; Sheshadri et al., 2024), data poisoning
attack (Zeng et al., 2024), eliciting of unlearned
knowledge (Barez et al., 2025), and harmful fine-
tuning (Huang et al., 2024). Our work is closely
related to Casper et al. (2024) that targets unfore-
seen classes of threat and attack. However, to our
best knowledge, existing works employ LAT to de-
fend against malicious attacks, while the potential
of LAT to enhance the prompt robustness of LLM
is less discussed.

Prompt robustness of LLM: Prompt robust-
ness of LLMs has two aspects: robustness to
template formatting and robustness to query para-
phrasing. Robustness to template formatting con-
cerns how task instructions and few-shot examples
form prompts for in-context learning or instruc-
tion tuning, where slight changes in instruction
wording (Weber et al., 2023; Sun et al., 2024; Gu
et al., 2023; Mizrahi et al., 2024) or field names
and separators in demonstrations (Sclar et al., 2024;
Voronov et al., 2024; Salinas and Morstatter, 2024)
can drastically alter model performance and lead
to opposite conclusions when comparing models.
To mitigate performance variance caused by tem-
plate formatting, multi-prompt evaluation (Sclar
et al., 2024; Mizrahi et al., 2024; Polo et al., 2024b)
has been proposed for comprehensive assessment.
Meanwhile, an alternative line of work optimizes
prompts using gradient-based methods (Shin et al.,
2020; Shi et al., 2023b; Li and Liang, 2021; Qin
and Eisner, 2021; Lester et al., 2021) or gradient-
free methods leveraging LLMs as prompt optimiz-
ers (Prasad et al., 2023; Cheng et al., 2024; Zhou
et al., 2023; Yang et al., 2024; Ma et al., 2024). Ro-
bustness to query paraphrasing, on the other hand,
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Figure 2: The correlation between the worst embed-
ding distance (worst distance) and the performance dif-
ference between the original query and the worst-case
paraphrasing. The worst distance is correlated with
the performance drop.

examines how aligned LLMs respond to reworded
user queries and how performance fluctuates (Cao
et al., 2024). In this study, we primarily focus on
query paraphrasing robustness.

3 Methodology

In this section, we first give a brief introduction
to LAT in Section 3.1 and present our observation
on the worst-case prompt in Section 3.2. Based
on our observation, we propose our LAP frame-
work for enhancing the LLM robustness of prompt
in Section 3.3. The workflow of our approach is
illustrated in Figure 4.

3.1 Latent Adversarial Training Background
LAT is a bi-level optimization framework featur-
ing two trainable modules, a language model with
parameter θ and a perturbation δ. The computa-
tion performed by the language model for a given
sequence x is denoted as a composition of L + 1
functions fθ

L ◦ fθ
L−1 ◦ . . . ◦ fθ

1 ◦ gθ(x), where fi
denotes the i-th transformer layer and g is the word
embedding layer with L the number of transformer
layers. Specifically, fθ

i→j denotes the composition
from the i-th transformer layer to j-th transformer
layer, and therefore the language model can be re-
ferred to as fθ

1→L ◦ gθ(x). LAT inserts a trainable
input-specific perturbation δ(x) into the intermedi-
ate hidden states and intervenes in the computation
of the language model. Mathematically, with the
inserted perturbation after layer l, the forward com-
putation of the language model becomes F (x) =
fθ
l+1→L

(
fθ
1→l ◦ gθ(x) + δ(x)

)
. As a special case,

the perturbation can also be incorporated into the
word embedding layer fθ

1→L◦
(
gθ(x) + δ(x)

)
. Af-

ter the insertion of the perturbation, in the inner
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Figure 3: The distribution of the embedding distance be-
tween any two paraphrases of a query (average distance)
and the distance between the original query and the
worst-case paraphrasing (worst distance). The worst
distance is generally larger than the average distance
with a drift in their distribution.

loop of the framework, the perturbation is opti-
mized toward an adversarial goal such as maximiz-
ing the likelihood of a misaligned output y′. Mean-
while, the perturbation is constrained in Lp-norm
with a pre-defined threshold ϵ. In the outer loop,
the perturbation is frozen and the model parame-
ter θ is optimized towards the opposite direction.
Therefore, the overall objective of the LAT is

min
θ

E(x,y)∼D max
δ(x)
L
(
F (x),y′) ,

s.t.∥δ(x)∥p ≤ ϵ
(1)

with loss function L and a instruction-following
dataset D. Notably, the Lp-norm constraint is usu-
ally implemented as L2 norm and satisfies by the
projected gradient descent (Geisler et al., 2024;
Madry et al., 2018).

3.2 Observation: Embedding Distance is
Predictive of Worst-case Prompt

Cao et al. (2024) has shown that worst-case
prompts are difficult to detect using common met-
rics such as prompt perplexity (Gonen et al., 2023),
Min-k probability (Shi et al., 2023a), principal com-
ponent analysis of hidden states, or even the LLM’s
own preference. This suggests that identifying ad-
versarial prompts remains a challenging problem.
However, inspired by Zeng et al. (2024), we investi-
gate the relationship between the distance of model
hidden states and variations in model performance.

Setup Specifically, we use Llama-2-13b-
chat(Touvron et al., 2023) to generate responses
for the 100 test cases in RobustAlpaca (Cao et al.,
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2024), where each case consists of an original user
query (x0) and 10 paraphrases (x1,x2, . . . ,x10).
To evaluate response quality, we employ Ar-
moRM (Wang et al., 2024b,a), a top-performing
reward model from RewardBench (Lambert et al.,
2024). We input both the original query and its
paraphrases into Llama-2-13b-chat and extract
the hidden states from the 20th layer (out of 40
total layers), using the last token’s hidden state as
the sequence embedding. The Euclidean distance
(L2 distance) is then computed between these
embeddings. In Figure 3, we show the distributions
of: (1) the average pairwise distance between
paraphrases of the same query (average distance),
and (2) the distance between the original query
and its worst-case paraphrase (worst distance).
Additionally, Figure 2 illustrates the correlation
between worst distance and performance degra-
dation when comparing the original query to its
worst-case paraphrase.

Observation Figure 3 shows that the worst dis-
tance displays a significantly larger mean value
over the average distance (student test, p < 0.05).
Additionally, Figure 2 further verifies that the worst
distance is correlated with the performance deterio-
ration caused by the worst-case paraphrasing. The
spearman’s correlation coefficient is 0.36 (student
test, p < 0.05). Overall, the distance between
a paraphrase and the original query can be an
indicator for the worst-case prompt, and the
worst-case prompt tends to be located in a rela-
tively distant region from the original query.

3.3 Our Method: Latent Adversarial
Paraphrasing

Motivation Intuitively, if the worst-case para-
phrasing of the user query is found, we could opti-
mize the language model on it to improve the lower
bound of instruction-following performance. How-
ever, even with the general pattern observed in Sec-
tion 3.2, it is still a non-trivial task to construct the
worst-case paraphrasing by prompting a powerful
LLM since we can hardly control the embedding
distance of the paraphrasing. Therefore, instead of
synthesizing a human-readable textual paraphrase,
we alternatively pursue a continuous paraphrase in
the latent space with the LAT framework. Namely,
the perturbed hidden states could act as the latent-
space paraphrasing. However, the LAT framework
is unable to constrain the perturbation to preserve
the semantics of the original user query. In light of

Embedding

Transformer 
Layer 1 ∼ 𝑙

Transformer 
Layer 𝑙 + 1~𝐿

Linear and 
Softmax

𝜆 +

Lagrange 
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Perturbation 𝛿

Inner loop. Step 1:

Inner loop. Step 2
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optimize 𝛿 and fix 𝜆

optimize 𝜆    and fix 𝛿

optimize the LLM 𝜃

𝛿𝑡+1 = 𝛿𝑡 − 𝜂∇𝛿 𝐿(𝛿𝑡, 𝜆)

log 𝜆𝑡+1 = log 𝜆𝑡

+𝛼𝜆𝑡(𝐽𝛿 − 𝐽0 − 𝜖)

… …

Figure 4: The workflow of our proposed LAP frame-
work consists of an inner loop and an outer loop. For
the inner loop, two steps are conducted iteratively to
update the perturbation δ and the Lagrangian multiplier
λ respectively, while for the outer loop the language
model parameter θ is optimized.

this, we propose our LAP framework.
Specifically, in the inner loop we target enlarg-

ing the embedding distance between the original
query and the continuous paraphrasing in the latent
space by maximizing the L2-norm of the perturba-
tion. Meanwhile, to preserve the original semantics,
we additionally add a constraint on the increment
of language modeling loss caused by the pertur-
bation. The intuition behind this is that semantic-
preserving paraphrasing generally will not increase
the model perplexity or language modeling loss by
a large margin (Liu et al., 2024). Mathematically,
the optimization of our objective is:

max
δ(x)

E(x,y)∼D∥δ(x)∥p

s.t.|Jδ(x) − J0| ≤ ϵ,
(2)

where J0 and Jδ(x) are the original loss and the
loss with perturbation respectively:

J0 = L
(
fθ
1→L ◦ gθ(x),y

)

Jδ(x) = L
(
fθ
l+1→L

(
fθ
1→l ◦ gθ(x) + δ(x)

)
,y

)

(3)
During the training of the perturbation, the pa-

rameters of the language model are fixed. Then
after the inner loop is optimized, the input-specific
perturbation is fixed and the language model is op-
timized to minimize the language modeling loss
with the inserted perturbation:

min
θ

E(x,y)∼DJδ(x) (4)

While the outer loop is straightforward, the inner
loop is more complex. Different from the LAT
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framework, the constraint within the inner loop
cannot be implemented with the projected gradient
descent. Therefore, to satisfy the constraint, we
leverage the Lagrangian method (an optimization
technique for finding the local minima of a function
over a constraint set) to convert the constrained
primal inner loop problem into its unconstrained
Lagrangian counterpart:

E(x,y)∼D min
δ(x)

max
λ(x)≥0

L(δ(x), λ(x))

L(δ(x), λ(x)) = −∥δ(x)∥p + λ(|Jδ(x) − J0| − ϵ),
(5)

where λ ≥ 0 serves as the Lagrange multiplier.
The constraint is transformed as a penalty term

in the objective which can be dynamically mod-
ulated via the parameter λ and the perturbation
δ. Specifically, to optimize the objective in Equa-
tion 5 during the min-max game, the perturbation
is updated with

δ(x)t+1 = δ(x)t − η∇δ(x)L (δ(x), λ(x)) (6)

Then the multiplier is optimized with

log λ(x)t+1 = log λ(x)t + αλt(x)
(
Jδ(x) − J0 − ϵ

)
(7)

Through the min-max game between the per-
turbation and the Lagrangian multiplier, the trans-
formed objective ensures that the violation of the
constraint would incur a high value of λ. Since the
perturbation δ and the λ have opposite objectives,
consequently, the trained perturbation is adjusted
to meet the constraint.

Apart from the inner loop optimization of per-
turbation δ and the outer loop optimization of the
language model θ, we additionally introduce SFT
on instruction-following data as in Equation 3 into
our framework. We summarize the workflow of
our approach in Algorithm 1.

4 Experiment

Backbone and Dataset We use Llama-3-
8b (Dubey et al., 2024) and Mistral-7b-v0.3 (Jiang
et al., 2023) as backbones for experiments.
But LAP is agnostic to the base model back-
bone and can be applied to any pre-trained
auto-regressive language model. The models
are fine-tuned on the “chosen” completion of
ultrafeedback_binarized1, a pair-wise prefer-
ence dataset preprocessed from UltraFeedback (Cui
et al., 2024).

1
https://huggingface.co/datasets/HuggingFaceH4/

ultrafeedback_binarized

Benchmark and Metrics To evaluate the prompt
robustness of LLM, we leverage the RobustAlpaca
benchmark (Cao et al., 2024). Established based on
the TinyAlapca (Polo et al., 2024a), the benchmark
contains 100 cases with each case containing the
original user query x0 and 10 semantic-preserving
paraphrases x1, x2, . . . , x10. Response of GPT-4
to the original query yb serves as the baseline for
computing win-rate. Specifically, y0, y1, . . . , y10
are generated based on x0, x1, . . . , x10 respectively
and we use the original win-rate pw(x0, y0, yb),
the best win-rate maxi pw(x0, yi, yb), the worst
win-rate mini(x0, yi, yb), and average win-rate
1
n

∑
i pw(x0, yi, yb) as our evaluation metric,

where pw(x, y1, y2) is the probability of y1 is pre-
ferred over y2 given the query x. We use GPT-4o-
mini as our evaluator for its advantage over GPT-4
in LMSYS benchmarks (Chiang et al., 2023).

Baseline Method To verify the effectiveness of
the proposed LAP, we draw a comparison with
existing baseline methods. Apart from vanilla SFT,
we also consider:
• Data Augmentation diversities the instruction-
following data with augmented paraphrases.
Specifically, we sample 10k queries from Ultra-
Feedback, synthesize a paraphrase for each query
with a proprietary LLM, and augment the synthe-
sized paraphrases into the instruction-following
data. The template for prompting paraphrase gen-
eration is borrowed from Cao et al. (2024).
• Prompt Consistency (Zhou et al., 2022) design a
loss function to minimize the divergence of model
outputs on different paraphrases. In our implemen-
tation, we reuse the 10k augmented paraphrases
and distill the model response from one query to
its paraphrase.
• Latent Adversarial Training (LAT) (Casper
et al., 2024) includes a trainable perturbation into
the hidden states and optimize the language model
parameters to minimize the language modeling loss
at the existence of perturbation.
Meanwhile, we also compare our approach with
several inference-time algorithms including
• Self-Refinement (Cao et al., 2024) prompts the
SFT-ed language model to first rewrite the query
according to its own preference before generating
a response to the query.
• Universal Self-Consistency (USC) (Chen et al.,
2024) first generates multiple draft responses with
different hyper-parameter settings using the SFT-ed
language model and then prompts the same SFT-ed
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Llama-3-8b Mistral-7b-v0.3

original
win-rate

best
win-rate

worst
win-rate

average
win-rate

original
win-rate

best
win-rate

worst
win-rate

average
win-rate

Training algorithms
SFT 15.06 47.24 1.44 15.39 7.85 43.62 0.01 12.62
Data Augmentation 11.47 39.78 1.77 13.75 9.67 44.33 1.64 12.38
Prompt Consistency 10.78 37.76 3.09 11.64 8.68 42.85 1.00 10.50
LAT 10.97 45.23 2.04 14.98 11.02 37.32 1.38 12.06
Inference algorithms
USC 8.14 45.91 1.01 15.22 6.47 39.3 1.85 12.25
Self-Refinement 4.02 28.82 1.00 6.74 9.96 29.82 0.00 7.40
Mixture-of-Agents 6.19 40.33 0.00 12.19 5.51 32.04 0.00 8.18

LAP 12.56 49.79 1.99 15.48 11.05 41.93 1.59 14.05

Table 1: Evaluation performance on RobustAlpaca (Cao et al., 2024) with Llama-3-8b and Mistrail-7b-v0.3. The
numbers in bold are the best results and the numbers underlined are the second best results.

language model itself to choose the final output
from the candidates. We generate 4 draft responses
using different random seeds in out implementa-
tion.
• Mixture-of-Agents (Anonymous, 2025) is a re-
cently proposed inference algorithm with layers
of multiple agents and each agent provides a re-
sponse given all the draft responses generated by
the agents in the previous layers. We construct a
2-layer mixture-of-agents network with each layer
comprising 4 SFT-ed models.

Experimental Results We report the evaluation
performance of our proposed LAP and the baseline
methods on Table 1. From the table, we can ob-
serve that (1) Our approach obtains the best results
or the second best result for the original win-rate
and the average win-rate on two backbones, verify-
ing that our approach enhances model robustness to
different paraphrasing of user queries. (2) Contrary
to recent findings on the importance of inference-
time scaling, the inference-time algorithms in the
baseline methods do not exhibit an advantage over
vanilla SFT. Notably, Mixture-of-Agents and Self-
Refinement have the lowest results on the worst
win-rate, possibly because they both rely on exter-
nal capable LLM to aggregate the strengths and
weaknesses of draft responses. (3) Even with the
baseline methods or our proposed approach, there
is still a large margin between the best win-rate
and the worst win-rate, suggesting a large room for
further improvement.

5 Analysis

Ablation Study To evaluate the importance of
each module in our LAP framework and how
they contribute to the overall performance, we per-

original
win-rate

best
win-rate

worst
win-rate

average
win-rate

LAP 10.21 53.39 4.98 17.94

p = 0 14.52 48.55 4.67 17.49
p = 1 5.04 46.44 0.30 11.42
λ = 0 10.42 45.81 1.56 16.68

Table 2: Ablation experiments on RobustAlpaca with
Llama-3-8b backbone. Numbers in bold are best results.

form an ablation study on the following variants:
(1)λ = 0: we fix the value of λ to be zero and thus
invalidate the constraint on language modeling loss;
(2) p = 1: the supervised fine-tuning (line 15 in
Algorithm 1) is removed from our framework; (3)
p = 0: we do multi-tasking (line 15 in Algorithm 1)
and use every datapoint for both adversarial train-
ing and SFT.

The experiment results on Llama-3-8b is shown
in Table 2. From the table, we can observe that
our LAP obviously outperforms the λ = 0 variants
in most metrics, suggesting the necessity of the
constraint on language modeling loss. Moreover,
compared with the p = 0 variant that all data points
are trained with SFT and the p = 1 variant that
eliminates the SFT process, LAP obtains a better
balance between objectives.

Downstream Task Performance To examine
how our robustness enhancement approach affects
downstream task performance, we evaluate the ca-
pacity of LAP on several benchmarks from hug-
gingface open LLM leaderboard in comparison
with baseline training algorithms. The evaluation
results are shown in Table 3. Additionally, we
examine and compare their instruction-following
ability on MT-bench (Chiang et al., 2023), with
the evaluation results presented in Table 4. We use
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MMLU ARC-E ARC-C Hellaswag Winogrande TruthfulQA Average

SFT 61.86 80.30 50.17 60.13 74.27 32.44 59.86
Data Augmentation 62.08 80.64 50.09 60.07 74.66 31.82 59.89
Prompt Consistency 62.28 80.81 50.60 60.10 74.66 32.44 60.15
LAT 61.61 62.84 49.57 60.00 74.51 33.17 56.95

LAP 61.92 81.02 52.13 60.38 74.66 32.44 60.43

SFT 58.79 78.32 45.39 60.96 74.98 33.90 58.72
Data Augmentation 58.81 78.49 45.65 60.74 74.74 33.54 58.66
Prompt Consistency 59.24 78.24 43.94 60.75 74.51 33.05 58.29
LAT 57.42 76.94 45.14 59.98 74.35 30.97 57.47

LAP 58.72 77.36 44.97 60.74 73.95 34.39 58.36

Table 3: Down-stream task evaluation results on Llama-3-8b (upper block) and Mistral-7b-v0.3 (bottom block). Our
LAP preserves the performance on basic commonsense and knowledge, as the results are similar.

1st turn 2nd turn Average

SFT 5.34 4.04 4.69
Data Augmentation 5.26 3.96 4.61
Prompt Consistency 5.15 4.10 4.63
LAT 5.19 4.25 4.72

LAP 5.11 4.23 4.67

Table 4: Evaluation results on MT-bench (Chiang et al.,
2023) using Llama-3-8b backbone. Our LAP preserves
the performance on instruction-following as the results
are similar.

original
win-rate

best
win-rate

worst
win-rate

average
win-rate

Training algorithms
SFT 12.47 37.03 0.04 13.24
Data Augmentation 8.43 40.36 2.50 13.34
Prompt Consistency 14.80 39.73 1.36 12.99
LAT 10.01 35.61 2.50 13.81

Inference algorithms
USC 6.74 44.95 1.77 14.81
Self-Refinement 2.55 23.49 2.50 5.64
Mixture-of-Agents 5.47 36.96 0.00 7.82

LAP 13.31 37.08 4.01 14.08

Table 5: Evaluation performance on RobustAlpaca (Cao
et al., 2024) with Llama-2-13b. The numbers in bold
are the best results and the numbers underlined are the
second best results.

GPT-4o-mini as evaluator on MT-bench. From the
two tables, we can observe that most baseline train-
ing algorithms will not result in a drastic change
either downstream tasks or instruction-following
benchmarks. As LAP is on par with and sometimes
outperforms the baseline training algorithms, it is
therefore verified that the improvement in robust-
ness brought by our approach is not at the cost of
performance deterioration on basic commonsense
or instruction-following ability.

Scalability on Larger Backbones To explore
whether the LAP framework could work on larger

LLM backbones, we perform the experiments on
Llama-2-13b (Touvron et al., 2023) and evaluate
their performance using 40 cases randomly sam-
pled from RobustAlpaca. The experimental re-
sults are presented in Table 5. As we can observe
from the table, LAP obtains the best result and the
second-best results on the original win-rate and the
average win-rate respectively, suggesting that our
approach remains effective on larger backbones.
Meanwhile, it is worth noting that USC is a com-
petitive baseline for Llama-2-13b, different from
the experiment results on smaller models in Ta-
ble 1. We gauge that Llama-2-13b is more capable
in summarizing and aggregating candidate answers
and therefore is able to obtain better performance
with USC.

Effect of Perturbation Position To understand
how the position of the perturbation (i.e., the trans-
former layer at which we incorporate the pertur-
bation) impacts the effectiveness of our approach,
we vary the positions of the perturbation among
transformer layers in Mistral-7b-v0.3 (Jiang et al.,
2023) and plot the trend of the best win-rate and
the average win-rate in Figure 6. From the figure, it
seems that Layer 12 and Layer 20 are slightly better
than other layers as suitable positions for perturba-
tion as the LAP optimization at the two positions
yields the maximum best win-rate and the maxi-
mum average win-rate respectively. But overall,
the performance on average win-rate is relatively
insensitive to the position of the perturbation. In
this study the perturbation is only inserted into one
layer following previous works in LAT (Casper
et al., 2024; Sheshadri et al., 2024). We leave the
multi-layer perturbation to future works.

Analysis on Training Dynamics. To gain insight
into the process of inner-loop optimization, we an-
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Figure 5: Training dynamics for the inner-loop optimization with different constraint margin ϵ on Llama-3-8b
backbone.
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Figure 6: The trend of average win-rate and the best
win-rate with the perturbation position on Mistral-7b-
v0.3 backbone.

alyze the iteration of multiple variables within the
training objective of Equation 5 and plot their trend
in Figure 5. Specifically, for different values of
the constraint margin (ϵ = 0.01, 0.05, 0.10), we
record the perturbation norm ∥δ∥2, Lagrange mul-
tiplier λ and the objective L(δ(x), λ(x)) for each
inner-loop iteration, and plot the trend of their aver-
age value among the instruction-following dataset.
Notably, a smaller value of ϵ means a more tight
constraint. As we can observe from Figure 5, the
strength of the constraint has little effect on the per-
turbation norm as the perturbation norm steadily
grows during the inner-loop training process what-
ever the value of ϵ is. However, the trend of La-
grange multiplier λ is obviously influenced by the
ϵ since there is a monotonic decrease of λ when
setting ϵ = 0.10 but an opposite trend of λ could
be observed when setting ϵ = 0.01. We gauge the
reason behind is that a tight constraint is harder to
satisfy and thus pushes the Lagrange multiplier to
be larger. It could also explain why a larger value
of ϵ corresponds to a larger inner-loop objective
in Figure 5c since the difference in objectives is
dominated by the second term or the penalty term.

original
winrate

best
winrate

worst
winrate

average
winrate

SFT+DPO 22.95 60.95 4.83 24.61
LAP +DPO 23.16 71.20 5.12 31.53

Table 6: The evaluation performance on RobustAlpaca
with subsequent preference learning on Llama-3-8b
backbone.

Compatibility with Preference Learning. To
examine whether the proposed LAP framework is
compatible with existing preference learning tech-
niques, we perform direct preference optimization
(DPO) (Rafailov et al., 2023) on SFT-ed model and
the LAP-ed model to draw a comparison. As we
can observe from the table, with subsequent pref-
erence learning our approach outperforms vanilla
SFT by a large margin, verifying that our approach
does not interfere with and is compatible with the
subsequence preference learning.

6 Conclusion

In this study, we tackled the challenge of prompt
robustness in LLMs, particularly their sensitivity
to paraphrased user queries. Our findings revealed
that the Euclidean distance between a paraphrased
query and the original input correlates with re-
sponse quality. Leveraging this insight, we intro-
duced LAP, a novel adversarial framework that
continuously searches for latent paraphrases and
optimizes LLM parameters to enhance robustness.
Future work will explore extending LAP to more
models and datasets, investigating its applicability
to multi-turn dialogues, and refining adversarial
training techniques to further enhance model re-
silience.
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Limitations

The limitations of this study can be summarized as
below:

• In this work, we mainly consider improving
the prompt robustness of language models in
text modality, while the prompt robustness for
large vision-large model and other modalities
is left for future work.

• We generally utilize LoRA (Hu et al., 2022)
as a parameter-efficient fine-tuning (PEFT)
technique for SFT and do not perform exper-
iments with other PEFT techniques such as
adapter (Houlsby et al., 2019) or IA3 (Liu
et al., 2022) or full-parameter fine-tuning.

Ethical Considerations

This work on improving prompt robustness through
LAP has significant implications for the reliable
deployment of large language models in real-world
applications. By addressing the fundamental chal-
lenge of prompt sensitivity, this approach could
enhance the consistency and reliability of LLM
outputs across different but semantically equivalent
user queries. This improvement is particularly cru-
cial for high-stakes applications such as healthcare,
legal assistance, and educational systems, where
inconsistent responses could lead to harmful out-
comes. However, the development of more robust
LLMs also raises important ethical considerations.
While increased robustness could help prevent ac-
cidental failures and reduce unwanted biases trig-
gered by prompt variations, it might also make
models more consistently capable of harmful out-
puts if misused.
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Llama-3-8b Mistral-7b-v0.3 Llama-2-13b

Precision bfloat16 bfloat16 bfloat16
max sequence length 1024 1024 1024
Batch size 32 32 32
Optimizer AdamW AdamW AdamW
Adam (β1, β2) (0.9, 0.95) (0.9, 0.95) (0.9, 0.95)
Learning rate 1e-4 1e-4 1e-4
Warmup ratio 0.1 0.1 0.1
Decay style cosine cosine cosine
Weight decay 0.0 0.0 0.0
Training step 1 epoch 1 epoch 1 epoch
LoRA rank 64 64 64
LoRA alpha 16 16 16
LoRA dropout 0.05 0.05 0.05

LoRA modules
gate_proj,
up_proj,
down_proj

gate_proj,
up_proj,
down_proj

gate_proj,
up_proj,
down_proj

Table 7: Hyper-parameter settings for supervised fine-tuning and preference learning.

A Hyper-parameter Setting

Our experiments are conducted on a cloud Linux
server with Ubuntu 16.04 operating system. The
codes are written in Python 3.10 with the hug-
gingface libraries2. We run our experiments on an
Nvidia Tesla A100. The detailed hyper-parameter
settings for different backbones are shown in Ta-
ble 7, which mostly follows Lee et al. (2023) and
Ivison et al. (2023). At inference, we use nucleus
sampling with p = 0.9 and temperature T = 1.0.
vLLM 3 is adopted for accelerating response gener-
ation.

B Training Algorithms

The training algorithm for our proposed LAP is
shown in Algorithm 1.

C More Details About Baseline
Implementation

In this section, we elaborate on the template used
for inference-based algorithms and the template for
synthesizing paraphrases of user queries. Specifi-
cally, we adopt the template from Cao et al. (2024)
to produce semantic-preserving paraphrases and
the template is shown below.

2
https://github.com/huggingface/trl

3
https://github.com/vllm-project/vllm

Algorithm 1 The proposed LAP framework.
1: Input: An instruction-following dataset D, a

language model θ, the number of iterations in
the inner loop T , the sampling coefficient p.

2: for {(x,y)} ∼ D do
3: Sample I ∼ Bernouli(p)
4: if I = 1 then
5: **Perform Adversarial Training**
6: Compute the language modeling loss with

Eq 3.
7: **Inner loop**
8: for j ← 1 to T do
9: Fix the multiplier λ and optimize a per-

turbation δ using Equation 6.
10: Fix the perturbation δ and update the

multiplier λ according to Equation 7.
11: end for
12: **Outer loop**
13: Fix the perturbation δ and optimize the

language model θ following Eq. 2.
14: end if
15: if I = 0 or p = 0 then
16: **Perform Supervised Fine-tuning**
17: Optimize the language model θ on (x,y)

with language modeling loss following 3.
18: end if
19: end for
20: Return: language model θ.
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Prompt template for constructing semantic-preserving paraphrases.

Your task is to generate one unique paraphrase for the given query, ensuring that the meaning of
the paraphrase remains consistent, and the structure is significantly altered. Do not introduce any
new information that isn’t present in the original query, and avoid omitting any crucial information
from the original query, particularly any specific requirements about the output content, style,
format, options, or any numbers or data. The responses to your paraphrases and the original query
should be identical. If the original query contains quoted or referenced content, such as ’rewrite
the following sentence: ’<reference>’ and those enclosed in ’<br><br>’, you should retain this
referenced content in your paraphrases and rephrase the rest of the text. Your task is not to answer
the query, but solely to rephrase it. Please provide unique and creative rephrasing.
The examples provided below are for illustrative purposes only.
Examples:
Query: “Why is it that only proteins, carbohydrates and fats are deemed to have caloric
value?<br>Just to clarify - consider the hypothetical situation below:<br>100g of ’carbohydrates’
= 400kCal<br>100g of ’protein’ = 400kCal<br>100g of ’fat’ = 900kCal<br>100g of ’vitamins,
minerals and/or other electrolytes’ = ?”
Output: Why are proteins, carbohydrates, and fats the only substances considered to have caloric
value? To provide further clarification, let’s consider the hypothetical scenario below: If 100g
of carbohydrates provide 400kCal, 100g of protein provides 400kCal, and 100g of fat provides
900kCal, what would be the caloric value of 100g of vitamins, minerals, and/or other electrolytes?

Query: “I have this text: <br><br>We use professional processes. Use the photo deliv-
ery system, check the quality and send it to the customer immediately. We started editing digital
photos from the first wave of 2000. Started with editing personal photos, and then spread our
passion by editing wedding photos or restoring old photos for loved ones, friends and family.
friends and customers. 2005 started a local photo shop and started commercial photo editing,
and product photography for manufacturers. 2007 implemented online projects on freelancer
platforms.<br><br>Rewrite it in professional style to tell a touching story.”
Output: I possess this text: <br><br>We use professional processes. Use the photo delivery system,
check the quality and send it to the customer immediately. We started editing digital photos from
the first wave of 2000. Started with editing personal photos, and then spread our passion by editing
wedding photos or restoring old photos for loved ones, friends and family. friends and customers.
2005 started a local photo shop and started commercial photo editing, product photography for
manufacturers. 2007 implemented online projects on freelancer platforms.<br><br>Rephrase it in
a professional manner to narrate a moving story.

Query: “I want you to act as a Tiktok Ads Keywords generator. Your task is to come up
with keywords that can be used in Tiktok advertising campaigns. The keywords should be relevant
to the target audience and the product or service being advertised. Your responses should not
include more than 5 keywords per request.”
Output: Your role will be to serve as a TikTok Ads Keywords generator. Your objective is to
generate relevant keywords that can be utilized in TikTok advertising campaigns. These keywords
should effectively target the desired audience and align with the product or service being promoted.
Please provide no more than five keywords per request in your responses.
Now, please generate a paraphrase for the given query.
Query: {query}
Output:

Figure 7: Prompt template for constructing semantic-preserving paraphrases.
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Prompt template for Self-Refinement.

Given the following instruction: {query}, paraphrase the instruction to be more natural and then
generate a response. Start the paraphrase with “Paraphrase: ” and start your response with
“Response: ” (without quotes)

Figure 8: Prompt template for Self-Refinement (Cao et al., 2024).

Prompt template for USC.

Evaluate these responses.
Select the most consistent response based on majority consensus.
Answer with “The most consistent response is Response X” (without quotes).

Response 1: {draft response}
Response 2: {draft response}
Response 3: {draft response}
Response 4: {draft response}

Figure 9: The prompt template for USC (Chen et al., 2024).

Prompt template for Mixture-of-Agents.

You have been provided with a set of responses from various open-source models to the latest
user query. Your task is to synthesize these responses into a single, high-quality response. It is
crucial to critically evaluate the information provided in these responses, recognizing that some of
it may be biased or incorrect. Your response should not simply replicate the given answers but
should offer a refined, accurate, and comprehensive reply to the instruction. Ensure your response
is well-structured, coherent, and adheres to the highest standards of accuracy and reliability.

Responses from models:
Response 1: {draft response}
Response 2: {draft response}
Response 3: {draft response}
Response 4: {draft response}
Output the synthesized response directly without any prefix.

Figure 10: The prompt template for Mixture-of-Agents (Anonymous, 2025).
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