*** Droid:** A Resource Suite for AI-Generated Code Detection

Daniil Orel¹, Indraneil Paul², Iryna Gurevych^{1,2}, and Preslav Nakov¹

Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), UAE
 Ubiquitous Knowledge Processing Lab (UKP Lab), Department of Computer Science
 TU Darmstadt and National Research Center for Applied Cybersecurity ATHENE, Germany {name.surname}@mbzuai.ac.ae; {name.surname}@tu-darmstadt.de

Abstract

We present **DroidCollection**^{1 2}, the most extensive open data suite for training and evaluating machine-generated code detectors, comprising over a million code samples, seven programming languages, outputs from 43 coding models, and three real-world coding domains. Alongside fully AI-generated examples, our collection includes human-AI co-authored code, as well as adversarial examples explicitly crafted to evade detection. Subsequently, we develop DroidDetect, a suite of encoderonly detectors trained using a multi-task objective over DroidCollection. Our experiments show that existing detectors' performance fails to generalise to diverse coding domains and programming languages outside of their narrow training data. We further demonstrate that while most detectors are easily compromised by humanising the output distributions using superficial prompting and alignment approaches, this problem can be easily amended by training on a small number of adversarial examples. Finally, we demonstrate the effectiveness of metric learning and uncertainty-based resampling as way to enhance detector training on possibly noisy distributions.

1 Introduction

In recent years, language models (LMs) for code generation (Code-LMs) have become a near-indispensable accessory in a developer's toolbox. Their enhancement of productivity has proliferated into most of the software development lifecycle, including automating unit test generation (Jain et al., 2025), code infilling (Bavarian et al., 2022), predicting build errors, and code refactoring, *inter alia*, propelling their broad adoption in production (Dunay et al., 2024; Froemmgen et al., 2024; Murali et al., 2024).

However, the code authoring and refinement abilities of these models present issues with respect to domains where the human authorship of the generated artefacts is paramount and the consequences of limited human supervision are of concern.

Despite the well-documented productivity benefits of using AI assistance for knowledge workers (Weber et al., 2024b; Li et al., 2023a), there exists a wide range of scenarios where ensuring the human authorship of artefacts is vital, resulting in the need for robust detectors of machine-assisted code. For instance, in academia, students' reliance on LMs for assignments undermines educational integrity, since students persist in using them even while recognizing that such use constitutes cheating (Sullivan et al., 2023). Similarly, conducting technical hiring fairly and human code annotation studies accurately requires the ability to ensure that the submitted artefacts are authentically human-authored (Veselovsky et al., 2023).

The subtle failure patterns in the outputs of code LMs demonstrate the need for strong detection mechanisms as part of the workflow in order to safeguard against unforeseen side effects. For instance, machine-generated code can introduce serious vulnerabilities (e.g., insecure logic, hidden backdoors, or injection flaws), which can jeopardise software reliability (Bukhari, 2024) and data security (Pearce et al., 2025). It can also facilitate obfuscation, producing code that is harder to parse (Vaithilingam et al., 2022), thus effectively hiding malicious functionality and complicating debugging (Nunes et al., 2025). These weaknesses can get amplified over time, creating a dangerous feedback loop where (possibly deficient) AIgenerated code enters public repositories and is leveraged for subsequent training runs, thus increasing the risk of degraded data quality (Ji et al., 2024) or, even worse, collapsing models (Shumailov et al., 2024).

Despite the increasing interest in detecting AI-generated code, most current work has notable limitations. Existing work usually covers fewer than three programming languages (Xu et al., 2025) and focuses on a narrow set of API-based code generators (Yang et al., 2023). Moreover, detectors typically address the problem as a binary classification task: machine-generated vs. human-written code (Jawahar et al., 2020). This ignores common hybrid operating modes where code is coauthored by humans and LMs or adversarial scenarios where models are prompted or tuned to evade detection (Abassy et al., 2024).

Our work addresses these limitations with a comprehensive and scalable approach to AI-generated code detection. Our contributions are as follows:

- We compile and open-source DroidCollection, an extensive suite of multi-way classification data for training and evaluating AI-generated code detectors. DroidCollection contains over 1 million instances sampled from 43 LMs (spanning 11 model families), 7 programming languages, and multiple coding domains.
- We propose a novel task: detection of code generated by adversarially trained LMs, which mimics intentional obfuscation and evasion behaviours. To this end, we compile and release DroidCollection-Pref, a preference corpus of 157k response pairs designed to encourage language models to produce responses that closely resemble those of humans.
- We open-source DroidDetect-Base and DroidDetect-Large, two state-of-the-art AI-generated code detectors fine-tuned from ModernBERT (Warner et al., 2024) Base (149M), and Large (396M) models, respectively, using DroidCollection.
- We conduct extensive out-of-distribution performance analysis across languages, coding domains and detection settings. Our evaluation results demonstrate that there is positive transfer across related programming languages (Martini, 2015) and across domains. We also find that most existing models struggle when tasked with detecting machine-refined code and are almost entirely unusable against adversarially humanised modelgenerated code. However, we show that this can be rectified by incorporating modest amounts of such data during training.

2 Related Work

We briefly outline three relevant lines of existing work: 1) AI-generated text detection, 2) AI-generated code detection, and 3) adversarial evasion of AI-generated content detectors.

2.1 AI-Generated Text Detection

Early research on synthetic data detection has focused on detecting AI-generated text in specific, fundamental tasks such as question answering (Guo et al., 2023), translation, summarisation and paraphrasing (Su et al., 2023). Major early contributions to creating comprehensive benchmarks include M4 (Wang et al., 2024), which introduced a multilingual, multi-generator and multidomain benchmark consisting of 122,000 humanwritten and machine-generated texts. MULTI-TuDE (Macko et al., 2023) featured a multilingual dataset with over 70,000 samples of AI and humanwritten texts across 11 languages. Additionally, MAGE (Li et al., 2024) concentrated on Englishonly scenarios, but emphasised evaluating model robustness by testing across eight distinct out-ofdomain settings to simulate real-world scenarios. The advancement of this field has been further stimulated by numerous competitions and shared tasks dedicated to AI-generated text detection, including RuATD (Shamardina et al., 2022), a shared task at COLING'2025 (Wang et al., 2025), a shared task at ALTA (Mollá et al., 2024), and DagPap (Chamezopoulos et al., 2024).

Tools such as MOSS (Puryear and Sprint, 2022) have shown some effectiveness in identifying AIgenerated code, since their style is out of the ordinary distributions of student solutions. However, Pan et al. (2024) and JianWang et al. (2024) have shown that detectors such as GPT-Zero often fail when applied to code rather than text. This critical observation, backed up by our experiments in Section 4, highlights the inadequacy of directly porting generic text-based models to the code domain and strongly motivates the creation of code-specific detection strategies and specialised datasets. Our work responds to this need by providing a largescale, multifaceted suite specifically curated for AI-generated code, designed to foster the development and rigorous testing of detection techniques attuned to the unique characteristics of programming languages and AI-generated software.

2.2 AI-Generated Code Detection

Early attempts at AI-generated code detection using decision tree learning methods, such as Idialu et al. (2024) and Li et al. (2023b), demonstrated that code-level statistics (e.g., number of lines, Abstract Syntax Tree (AST) depth, identifier length) can serve as reliable indicators of authorship. However, more sophisticated detection requires a more involved feature engineering, which is best performed using deep learning methods (Tulchinskii et al., 2023). Thus, recent efforts have mainly focused on training text-based LMs to detect AI-generated code. A common approach in existing work, such as GPTSniffer (Nguyen et al., 2024) and GPT-Sensor (Xu et al., 2025) is to extract human-written functions from the Code-SearchNet dataset (Husain et al., 2019) and then to prepare machine-generated counterparts to them using ChatGPT. Although similar in their dataset construction, these two works differ in modelling. GPTSniffer uses a multi-class classification loss, whereas GPT-Sensor applies a cosine similaritybased loss to better separate the embeddings of AI-generated and human-written code, aiming at learning more discriminative representations.

To address the overdependence on CodeSearch-Net in prior work, Orel et al. (2025) source additional code from LeetCode and CodeForces. They evaluated a wide range of locally deployable LMs as code generators and provided a systematic analysis of out-of-distribution (OOD) detection performance across different settings. Importantly, they go beyond binary classification by introducing more nuanced scenarios, such as collaborative (or hybrid) settings where LMs complete or rewrite human-written programs.

CodeMirage (Guo et al., 2025), another benchmark released concurrently with ours, also includes rewritten code. However, these works lack diversity in terms of generators: CoDet-M4 covers only 5 generators, while CodeMirage covers 10. Furthermore, they overlook the importance of diverse sampling strategies in the detection of machinegenerated codes and do not consider more adversarial settings where the model-generated code is artificially humanised. Our work builds upon and extends the progress of previous works by further increasing the scale and diversity: we incorporate three distinct domains – competitive programming solutions (e.g., LeetCode), open-source GitHub repositories, and code from research papers.

We use 43 generative models, and cover seven programming languages. Notably, unlike Codet-M4 or CodeMirage, our dataset is the first in this domain to systematically integrate diverse sampling strategies using varied generation settings and adversarial data generation scenarios.

2.3 Adversarial Evasion of AI-Generated Content Detectors

Although specialized detectors for AI-generated code can be effective against honest actors, their straightforward training on machine-generated and machine-refined data makes them vulnerable to adversarially perturbed or humanised text, modified to evade detection (He et al., 2024; Masrour et al., 2025). Currently, RAID (Dugan et al., 2024), one of the most extensive benchmarks in AI-generated text detection, is notable in being one of the few efforts exploring adversarial detection settings with various attack methods such as paraphrasing and synonym substitution. Our work in AI-generated code detection builds upon this important aspect. We extend this focus to the code modality by incorporating a diverse set of adversarial attack scenarios specifically engineered to challenge detectors. Moreover, we move beyond the language manipulations considered by RAID to address the possibilities of adversarial training using targeted mining of paired preference data and a dedicated collection of adversarial prompting, which are all aspects that are vital for assessing detector robustness under more challenging conditions.

3 The DroidCollection Corpus

We compare our dataset with existing ones in Table 1, which shows that our dataset is not only among the largest to date, but also captures a broader range of variations. Additional details about key characteristics are provided in Appendix B.3. In this section, we detail the curation of the human-generated, machine-generated, and machine-refined splits of DroidCollection. The adversarially humanised data collection is deferred to Section 3.4.

3.1 Human-Authored Code Acquisition

In order to build the dataset, we collected human-written samples from multiple sources, covering C++/C, C#, Go, Java, JavaScript and Python languages. Then, we generated code, using base and instruction-tuned LLMs from eleven model families.

Name	Size	Supported Domains	No. of Models	Supported Languages	Varied Sampling	Machine Refined Data	Adversarially Humanized Data
GPT-Sniffer (Nguyen et al., 2024)	7.4k	1	1	1	×	X	×
CodeGPTSensor (Xu et al., 2025)	1.1M	1	1	2	Х	Х	×
Whodunit (Idialu et al., 2024)	1.6k	1	1	1	Х	Х	×
CoDet-M4 (Orel et al., 2025)	501K	2	5	3	Х	✓	×
CodeMirage (Guo et al., 2025)	210k	1	10	10	Х	✓	×
DroidCollection	1.06M	3	43	7	✓	✓	✓

Table 1: Comparison of DroidCollection to other AI-generated code detection datasets shows broader domain and model coverage, as well as unique inclusion of varied sampling strategies and adversarially humanized data.

We experimented with Llama (Grattafiori et al., 2024), CodeLlama, GPT-40, Qwen (Qwen et al., 2024), IBM Granite (Mishra et al., 2024), Yi (AI et al., 2024), DeepSeek (Guo et al., 2024), Phi (Abdin et al., 2024), Gemma (Gemma et al., 2024), Mistral (AI, 2025), Starcoder (Li et al., 2023c). The list of generators per model family is detailed in Appendix A. Our dataset covers three domains: general use code, algorithmic problems, and research/data-science code.

General Use Code This type of code is normally deployed for disparate use cases such as web serving, firmware, game engines, etc. These are largely hosted on GitHub, and mainly obtained from StarcoderData (Li et al., 2023c), and The Vault (Nguyen et al., 2023) datasets.

Algorithmic Problems This category contains code solutions to competitive programming problems – algorithmic challenges designed to test problem-solving skills, commonly featured in competitions. These are retrieved from multiple sources such as TACO (Li et al., 2023d), CodeNet (Puri et al., 2021) (mainly AtCoder³ and AIZU⁴ platforms), LeetCode and CodeForces, from the work of Orel et al. (2025). Its primary distinguishing feature is its tendency to contain simple and self-contained routines.

Research Code This data subset is sourced from the code repositories of research papers, collected in ObscuraCoder (Paul et al., 2025). To enrich the variety, we further augmented it with mathematical and data science code from the work of Lu et al. (2025). Compared to production or educational code, this subset is less structured, with minimal modularity, a predominance of procedural styles, and extensive comments about experiments, results, or even the authors' institutional affiliations.

3.2 AI-Authored Code Generation

Generation via Inverse Instruction Since the data from sources such as CodeNet and Starcoder-Data do not contain any instructions, we decided to apply inverse instructions to transform code from these datasets into instructions, which can be used to prompt LMs. In our case, the method of preparing inverse instructions was similar to that described in InverseCoder (Wu et al., 2025): we passed the code snippets to an LM, asking it to build a summary, and a step-by-step instruction that can be given to an LM to generate a similar code. The main difference between our approach and that of InverseCoder is that we sought to minimise the costs of the generation and did not split the summarisation and instruction generation into separate LM calls. However, in cases where a summary could be extracted from the response but the instruction could not, we used the summary to regenerate the instruction. This experiment with details about the prompts and the models we used is illustrated in Appendix B.1. This type of generation allows us to cover a wide range of prompts, simulating a diversity of user-LM interactions, which is common in the real world.

Generation Based on Comments Some of the data sources used in our study provide docstrings (The Vault Class and Function) or comments (The Vault Inline) that describe the given code. In this case, we mainly used base models, which were prompted with the first line of code and the docstring or comment for generation. Instruct models were given only the docstring and a task to implement the desired class or function.

Generation Based on a Task The examples from platforms with algorithmic problems mainly come with a precise task description or a problem statement. In this case, we only used the description to prompt the LMs for generation.

³https://atcoder.jp/

⁴https://onlinejudge.u-aizu.ac.jp/home

Unconditional Synthetic Data This data is not conditioned on prior human generations. The rationale behind this is that the machine-generated data used to train the majority of AI-generated content detectors is acquired in a biased manner. It usually involves completing incomplete humanwritten samples or responding to prompts conditioned on existing human generations. This bias, though rather subtle, leads to a situation where detectors are only exposed to the kinds of synthetic data that are easiest for the models to learn (Su et al., 2025). Hence, we seek to obtain synthetic data that is not conditioned on prior human generations. Following prior work⁵, we create synthetic user profiles on which we condition coding tasks and, in turn, the final generated code.

To explore how large language models can simulate the behaviour profiles of real programmers, we took inspiration from the PersonaHub dataset (Ge et al., 2024). We first generated a diverse set of programmer profiles, and then used an LM to create programming tasks that can typically be performed by programmers of such types. These tasks, along with their corresponding descriptions, termed DroidCollection-Personas, were then used to generate code samples. More details about the DroidCollection-Personas are outlined in the Appendix B.2.

3.3 Machine-Refined Data

In practice, purely AI-generated code is rare. Developers typically collaborate with LMs, starting with human-written code and asking the model to modify or extend it. This makes binary classification (human vs. machine) insufficient for real-world scenarios. Instead, introducing a third class to capture human-LLM collaboration, as proposed by Orel et al. (2025), offers a more realistic and useful approach.

To generate such samples, we designed three scenarios: (i) Human-to-LLM continuation: A human initiates the code, and the LM completes it. We simulated this by preserving the first N% ($N \in [10,85]$) of the code lines and asking the model to complete the rest. (ii) Gap filling: The model generates a missing middle segment given the beginning and end; (iii) Code rewriting: The LM is asked to rewrite human-authored code, either with no specific prompt or with an instruction to optimise it.

3.4 Adversarial Samples

With the development of advanced post-training techniques such as PPO (Schulman et al., 2017), DPO (Rafailov et al., 2023), and GRPO (Shao et al., 2024), it has become possible to set up the training in adversarial ways that enable language models to evade AI-generated code detectors. Prior work by Shi et al. (2024) and Sadasivan et al. (2023) has shown that LM-generated content detectors are vulnerable to adversarial attacks and spoofing. This motivated us to include adversarial examples in DroidCollection in order to improve model robustness.

To this end, we introduce two types of adversarial attacks: prompt-based attacks and preferencetuning-based attacks. In the prompt-based setting, we construct adversarial prompts by instructing the model to "write like a human" in multiple ways, relying on the models' parametric knowledge of how to produce outputs that mimic humanauthored code and thus challenge detection systems. In the preference-tuning-based setting, we curate DroidCollection-Pref, a dataset of 157K paired examples consisting of human-written and LMgenerated code responses to the same prompt. Using DroidCollection-Pref, we train LMs with up to 9B parameters – including LLaMA, Qwen, and Yi –using LoRA (Hu et al., 2022) with rank 128 and DPO for two epochs. These models' output distributions are, in effect, steered towards preferring human-like code, making them less likely to contain the stylistic features of machine-generated code. Once trained, the models are used to generate new "machine-humanised" code samples. We filter their outputs in the same was as described in Section 3.6 to keep only high-quality adversarial examples that are in the same distribution as the rest of the data. Finally, we obtained a nearly 1:1 ratio of prompt-based vs. preference-tuning adversarial attacks.

3.5 Varying Decoding Strategies

It was previously shown by Ippolito et al. (2020) that it is easier to detect AI-generated texts after greedy decoding compared to when other decoding techniques have been used. In order to capture this challenging behaviour and reflect the diversity of generative systems, we further experimented with a variety different decoding strategies, as shown in Table 2.

⁵https://huggingface.co/blog/cosmopedia

Strategy	Attribute	Range
Greedy Decoding	-	_
	Temperature	{0.1, 0.4, 0.7, 1.0, 1.5, 2.0}
Sampling	Top-k	{10, 50, 100}
	Top-p	{1.0, 0.95, 0.9, 0.8}
Beam Search	Beam Width	{2, 4, 6, 8}

Table 2: Decoding settings used for the AIgenerated, AI-refined, and AI-humanised splits of DroidCollection.

3.6 Data Filtering

To ensure the quality of our DroidCollection dataset, we applied a series of filtering criteria, commonly used in other code-related works (Lozhkov et al., 2024; Li et al., 2023c; Paul et al., 2025). First, we removed code samples that could not be successfully parsed into an abstract-syntax tree (AST). We also filtered samples based on the AST depth, keeping only those with the depth between 2 and 31, to avoid too simple or too complex codes. We restricted each sample's maximum line length to be between 12 and 400 characters, and the average line length to fall between 5 and 140 characters, and used only samples with between 6 and 300 lines of code. Moreover, we filtered samples according to the fraction of alphanumeric characters, retaining only those between 0.2 and 0.75, to avoid the usage of configs and auto-generated files. To ensure English documentation, we used the Lingua language detector⁶ and retained only samples where the docstrings showed greater than 99% confidence of being English. Finally, we removed duplicate or near-duplicate samples; for this, we used Min-Hash (Broder, 1997), with a shingle size of 8 and a similarity threshold of 0.8.

Note that we did not filter out the human-written codes which were sourced after the coding copilots became popular. This means that there is a possibility that among human written codes there could be samples created with the help of LLMs. This potential issue is tackled in Section 5.

Detection Experiments

Experimental Setup

We begin by evaluating a diverse set of detectors in order to better understand the strengths and limitations of current approaches to identifying AIgenerated code. Our evaluation includes several off-the-shelf detectors, which serve as zero-shot baselines, as well as models that have been finetuned on DroidCollection.

into binary targets for fair comparison. in Appendices C.1 and C.2 and section 5.

related papers: (i) GPT-Sniffer (Nguyen et al., 2024), a CodeBERT-based binary classifier fo AI-Generated code detection; (ii) CoDet-M4(Orel et al., 2025), a UnixCoder model trained on outputs from multiple code generators; (iii) M4 classifier(Wang et al., 2024), for general AI-generated text detection; (iv) Fast-DetectGPT(Bao et al., 2024), a distribution-based zero-shot detector; and (v) **GPT-Zero**⁷, an API-based detector (as this API is paid, we evaluated it on a representative sample of 500 code snippets for each label-language and label-domain pair). Since most of these baselines use binary classification, we map our ternary labels (human-written, AI-generated, AI-refined) Additionally, we train other models directly on

The baselines include models widely used in

our dataset using a multi-class objective: (i) a simple GCN(Kipf and Welling, 2017); (ii) a CatBoost classifier(Prokhorenkova et al., 2018), following procedures similar to the Whodunit paper; and (iii) two encoder-only transformers, ModernBERT-Base and ModernBERT-Large (Warner et al., 2024), denoted as $DroidDetect_{CLS}$ -Base and DroidDetect_{CLS}-Large. Full details are provided

RQ1: What is the Value of Extensive Data **Collection for Training Robust Detectors?**

Table 1 highlights a key limitation of existing datasets: they often lack diversity. Tables 3 and 4 show that this limitation significantly impacts detector performance in realistic settings. Baseline detectors - the ones illustrated in Zero-Shot Baselines section of the tables - underperform on our test split compared to even simple fine-tuned baselines like GCN and CatBoost. Among the baselines evaluated, zero-shot Fast-DetectGPT consistently yields strong performance across both languages and domains, outperforming all other baselines. In contrast, pre-trained models usually perform well only on languages and domains that are closely aligned with their original training data. This highlights the limitations of previously collected datasets, which do not cover the diversity of generations in DroidCollection, and hence are far from being useful in real-life scenarios.

The Full Training section show Zero-Shot Baselines trained on DroidCollection, surpassing GCN and CatBoost but not Droid-Detect_{CLS}.

⁶GitHub: pemistahl/lingua-py

⁷https://gptzero.me/

	Model		2-C1	ass	3-Class				
		General	Algorithmic	Research/DS	Avg.	General	Algorithmic	Research/DS	Avg.
	Fast-DetectGPT (Bao et al., 2024)	75.07	63.05	65.43	67.85	66.43	62.90	64.30	64.54
	CoDet-M4 (Orel et al., 2025)	53.41	44.63	65.43	54.49	41.90	46.06	55.43	47.86
Zero-Shot Baselines	M4 (Wang et al., 2024)	50.17	57.91	44.67	50.92	56.46	58.13	51.21	55.27
	GPTSniffer (Nguyen et al., 2024)	54.25	36.85	32.10	41.07	45.22	31.75	39.88	38.95
	GPTZero	54.05	71.96	44.73	56.91	50.56	66.13	30.62	49.16
	DroidDetect _{CLS} -Base _{General}	99.30	53.73	76.46	76.50	93.05	46.22	76.99	72.09
00D Evaluation	DroidDetect _{CLS} -Base _{Algorithmic}	49.63	98.26	60.78	69.56	47.86	92.84	56.58	65.76
	${\tt DroidDetect}_{\tt CLS} \hbox{-} {\tt Base}_{\tt Research/DS}$	47.01	48.02	72.55	55.86	47.86	38.73	59.97	48.85
Fine-Tuned Baselines	GCN	78.57	60.61	67.79	68.99	56.85	46.91	51.13	51.63
rine-Tuned baselines	CatBoost	89.69	87.29	77.21	84.73	78.86	74.01	64.07	72.31
	M4 _{FT}	92.99	89.36	73.99	85.45	80.98	80.72	58.80	73.50
	GPT-Sniffer _{FT}	97.72	96.52	80.46	91.56	89.42	88.12	70.72	82.75
Full Training	CoDet-M4 _{FT}	98.89	98.23	83.77	93.63	85.46	90.41	73.88	83.25
	DroidDetect _{CLS} -Base	99.22	98.22	87.57	95.00	92.78	93.05	74.46	86.76
	DroidDetect _{CLS} -Large	99.38	98.39	93.24	97.00	93.08	92.86	80.42	88.78

Table 3: Comparison of models in 2-Class (human- vs machine-generated) and 3-Class (human- vs machine-generated vs machine-refined) classification setups across programming languages in terms of weighted F1-score. In the OOD section, we show models trained on each domain individually. FT subscript in Full Training section means that this model was fine-tuned on DroidCollection The best results are shown in **bold**.

DroidDetect_{CLS} models trained on our extensive training split consistently outperform all baselines, achieving near-ideal scores in both binary and ternary tasks. Notably, the larger backbone (DroidDetect_{CLS}-Large) dominates across all settings, demonstrating that both model size and diverse training data are crucial for high classification performance.

4.3 RQ2: How Well Do Models Generalise in OOD Settings?

We evaluated the $DroidDetect_{CLS}$ -Base backbone in OOD settings under language shift and domain shift conditions: training it on a single programming language or domain. Comparing the multidomain and the multi-lingual performance of the baselines to our backbone models trained in such restricted conditions allows us (i) to uncover possible shortcomings in the training data curation process of popular baseline models, as they can be compared head-to-head to both the split-specific and fully-trained variants of our backbone, and (ii) to assess the inherent ease with which models are robust to transfer along these settings, by-proxy outlining the value of extensive training data curation. We selected the base version of the backbone for this restricted training scenario since it was comparable to most of the chosen baselines in terms of its size.

Table 4 shows that, under restricted training conditions, models tend to generalise better to syntactically similar languages. For example, a model trained on C/C++ performs reasonably well on C# and Java.

However, for typologically isolated languages such as Python or JavaScript, all models not trained specifically for it tend to struggle in this setting. Table 3 illustrates that the models trained on a single domain have a high discrepancy in scores for other domains. For example, as can be seen in the OOD Evaluation section, the classifiers trained on algorithmic problems suffer with the general codes, and show comparable low performance on Research/DS codes, and vice versa.

4.4 RQ3: How Robust are Models to Adversarial Samples?

Finally, we test adversarial robustness using challenging samples designed to evade detection (Table 5). Here, many baseline detectors struggle: for instance, GPT-Zero achieves only 0.10 recall. M4 and CoDet-M4 show higher recall on adversarial samples but also have high false positives, misclassifying human-written code. Interestingly, fine-tuning on DroidCollection also improves the recall of baselines for human-written cases. Remarkably, the recall of M4 on adversarial cases drops from 0.73 to 0.67, while the recall on human-written cases increases significantly from 0.40 to 0.91. A similar pattern is observed for CoDet-M4, while for GPT-Sniffer, both scores increase.

In contrast, DroidDetect_{CLS}-Base, trained with explicit exposure to such samples, maintains strong performance with a recall above 0.9. This shows that training on diverse, adversarially crafted examples further enhances robustness and reduces susceptibility to trivial evasion strategies.

	Model				2-Class	3						3-Class	5		
		C/C++	C#	Go	Java	Python	JS	Avg.	C/C++	C#	Go	Java	Python	JS	Avg.
	Fast-DetectGPT (Bao et al., 2024)	81.33	72.77	81.16	76.03	73.60	74.59	76.58	77.85	66.37	72.73	69.45	70.34	69.11	70.98
	CoDet-M4 (Orel et al., 2025)	61.12	50.68	19.66	56.15	58.75	41.44	47.97	53.81	40.74	18.28	45.26	53.51	36.09	41.28
Zero-Shot Baselines	M4 (Wang et al., 2024)	62.22	40.73	57.59	48.39	61.47	64.44	52.81	65.33	50.38	60.49	56.25	61.21	53.64	57.92
	GPTSniffer (Nguyen et al., 2024)	63.02	48.90	79.89	40.30	38.34	45.94	52.40	64.18	42.29	76.19	34.94	34.94	47.22	49.96
	GPTZero	58.32	45.69	13.64	74.65	73.19	63.16	54.81	61.00	50.38	28.89	61.25	52.63	54.78	51.48
	DroidDetect _{CLS} -Base _{C/C++}	98.98	96.59	67.32	96.97	74.45	91.15	87.58	92.62	81.67	56.43	79.45	56.43	69.72	72.72
	DroidDetect _{CLS} -Base _{C#}	93.66	99.20	78.89	95.20	71.13	89.87	87.99	80.95	92.93	57.74	84.17	54.25	65.18	71.04
00D Evaluations	DroidDetect _{CLS} -Base _{Go}	93.33	86.00	98.94	89.97	71.45	88.72	88.07	80.74	63.61	92.93	74.18	50.38	65.37	71.20
OUD EVALUATIONS	DroidDetect _{CLS} -Base _{Java}	95.53	96.42	94.57	99.31	75.59	80.26	90.28	85.00	84.43	58.85	93.38	63.25	64.57	74.91
	DroidDetect _{CLS} -Base _{Python}	80.27	85.48	82.28	88.80	98.85	86.62	86.75	67.59	75.56	53.70	79.31	93.08	69.96	73.20
	DroidDetect _{CLS} -Base _{JS}	95.76	97.38	75.27	96.45	68.98	97.80	88.61	87.96	87.58	52.78	86.32	60.78	89.67	77.52
Fine-Tuned Baselines	GCN	79.06	78.33	84.33	80.04	72.49	69.69	77.32	65.97	58.03	65.20	60.13	55.22	54.72	59.88
rine-Tuned Baselines	CatBoost	94.00	91.20	90.57	92.26	89.51	82.55	90.02	84.57	81.32	81.54	82.42	78.15	70.98	78.83
	M4 _{FT}	94.18	89.98	92.19	92.63	87.19	93.61	91.63	79.56	75.55	77.63	79.55	69.63	77.53	76.57
	GPT-Sniffer _{FT}	97.64	97.36	97.33	97.96	95.07	97.94	97.22	85.14	85.75	85.78	86.97	79.02	88.28	85.16
Full Training	CoDet-M4 _{FT}	99.36	99.22	99.31	99.04	98.28	99.24	99.08	89.98	88.94	89.73	91.70	85.80	91.46	89.60
	DroidDetect _{CLS} -Base	99.29	99.33	99.32	99.45	98.87	98.38	99.11	94.43	94.06	93.98	93.93	93.95	90.99	93.56
	DroidDetect _{CLS} -Large	99.31	99.51	99.32	99.45	99.11	98.67	99.23	94.24	93.87	94.42	94.05	94.13	91.27	93.66

Table 4: Comparison of models in 2-class (human- vs. machine-generated) vs. 3-class (human- vs. machine-generated vs. machine-refined) classification setups across programming languages in terms of weighted F1-score. In the OOD section, we train on each programming language individually. The best results are highlighted in **bold**.

	FastDetectGPT	GPTSniffer	M4	CoDet-M4	GPT-Zero	M4 _{FT}	GPT-Sniffer _{FT}	CoDet-M4 _{FT}	DroidDetect _{CLS} -Base	DroidDetect _{CLS} -Large
Human-written	0.84	0.65	0.40	0.38	0.53	0.91	0.97	0.96	0.93	0.98
Adversarial samples	0.48	0.49	0.73	0.63	0.10	0.67	0.55	0.51	0.92	0.92

Table 5: Recall for human-written vs. adversarial examples. The red cells show that despite having high recall on adversarial samples, M4 and CoDet-M4 struggle to detect human-written code. The best results are in **bold**.

5 Detector Training and Ablations

We conducted a series of ablation experiments starting from our DroidDetect_{CLS} backbone to systematically identify the most effective model architecture and training strategy.

As an architectural ablation, we explore whether incorporating the structural representation of code could improve the detector's performance. Specifically, we trained a 4-layer Graph Convolutional Network over the AST representation of codes to evaluate its ability to distinguish AI-generated from human-written code. The results are shown in Appendix C.1. We can see that while structural signals are informative, GCNs alone are not sufficient to achieve strong generalisation.

Next, we explored early fusion of textual and structural representations by combining a text encoder with a GCN encoder. For text encoding, we used the base (149M) and large (396M) variants of ModernBERT (Warner et al., 2024), a transformer pre-trained on natural language and code. This model was selected for inference efficiency (Warner et al., 2024) and suitability for coderelated tasks. However, as shown in Appendix C.3, this fusion strategy yielded only a marginal or no improvement at all. Consequently, we decided to use a text-only encoder for the final model.

We then address the issue of class separability, which can arise because adversarial and refined code is similar to human-written code. We explore training our models using triplet loss (Hoffer and Ailon, 2015) in a supervised contrastive (Khosla et al., 2020) setup using the class labels. This metric-learning approach encourages the model to place samples of the same class closer to each other in the embedding space while pushing dissimilar samples apart, and it has been demonstrably effective in other detection scenarios that require high precision (Deng et al., 2019; Li and Li, 2024). We refer to these models as DroidDetect_{SCL}. Table 6 demonstrates the small but consistent performance gain unlocked using metric learning.

Finally, we addressed the problem of noisy and mislabelled training data. Despite data filtering, it is possible that some code samples curated as human-written may have been generated by coding-copilots. The presence of such examples could negatively impact training. To address this, we applied MC Dropout (Hasan et al., 2022) to estimate the uncertainty of the model on the human-written portion of the training set. As a result, we identified that the top 7% most uncertain samples—those for which a pre-trained model exhibited low prediction confidence—and resampled the dataset, removing them.

Model Variant	2-c	2-class		lass	4-class		
	Base	Large	Base	Large	Base	Large	
DroidDetect	99.18	99.25	94.36	95.17	92.95	94.30	
- Resampling [DroidDetect _{SCL}]	99.15	99.22	93.86	94.43	92.52	93.14	
- Triplet Loss [DroidDetect _{CLS}]	99.14	99.18	90.51	94.07	89.63	92.65	

Table 6: Weighted F1-score for DroidDetect across training ablations. The best results are shown in **bold**.

We then retrained the model on the remaining data, thereby getting rid of the influence of potentially mislabelled or ambiguous samples. This manner of self-bootstrapping datasets has an extensive track record in image (Yalniz et al., 2019; Xie et al., 2020) and text (Wang et al., 2022) representation learning, relying on the tendency of neural networks to understand patterns in clean labels before they overfit to noisy data (Feldman and Zhang, 2020). Incorporating this filtering into our training yielded our final DroidDetect models, which, as shown in Table 6, perform the best across the classification settings.

We trained all models for three epochs, using the AdamW (Loshchilov and Hutter, 2019) optimiser, setting the top learning rate to 5e-5, and applying the linear warmup (proportion 0.1) with a cosine decay learning rate scheduler. The batch size is 64 for DroidDetect-Base and 40 for DroidDetect-Large.

6 Conclusion and Future Work

We have presented DroidCollection, a new large and diverse suite of datasets that facilitate the training and evaluation of robust AI-generated code detectors. DroidCollection aims to support the most common modes of operation of LLM code copilots, i.e., for code completion and rewriting, as well as potentially adversarial use cases. Compared to previously existing openly available corpora for training AI-generated content detectors, DroidCollection offers the most exhaustive coverage with respect to number of generators, generation settings, programming languages, and number of domains covered. Based on DroidCollection, we further developed DroidDetect, a suite of AIassisted code detection models in two sizes (base and large), compared them to existing models (which showed superior performance on variety of tasks), and conducted extensive ablation studies to evaluate which training strategies yield the most effective results for this task.

In future work, we plan to enhance the coverage of DroidCollection and the robustness of DroidDetect. We will incorporate code samples from more closed-source API-based generators, broadening the diversity of the code samples. We will also add generations from reasoning LMs to enhance the applicability of our detectors. Finally, we plan to expand language coverage to include languages such as PHP, Rust, and Ruby, thus making our benchmarks more representative.

Limitations

Corpus Updates and Coverage Possessing a perfect coverage over all major models in the current fast-paced release environment is an intractable task. We acknowledge that the release of new model families with unseen output distributions presents a challenge for all AI-generated content detectors. Since we have mature pipelines for machine-generated, machine-refined and adversarially-humanised data acquisition, we plan to update DroidCollection with generations sourced from future model releases.

Cost Effectiveness Owing to cost realities, the majority of training samples in our study are sourced from locally deployable models. The high costs of API invocations are the primary reason why our study leaves data collection from recently released reasoning/thinking models such as Anthropic's Claude 3.7, DeepSeek R1, and Google's Gemini 2.5 for future work. For similar reasons, our evaluation of API-based detectors such as GPTZero was limited to a subset of the test set.

Potential Data Contamination In spite of the thorough curation and extensive filtering undertaken for DroidCollection, we acknowledge the possibility that a small number of AI-generated or AI-assisted code samples may still be mislabeled as human-authored, due to the inherent nature of the data sources used for the dataset construction. Seeking to limit the negative effects of mislabeled or noisy data, our work explores uncertainty-based dataset re-sampling using a pre-trained classifier, which we show to be effective in improving the model's performance by identifying ambiguous samples to discard during training. In the released dataset, we include flags for code snippets identified as suspicious, enabling downstream users to apply additional filtering or analysis as needed.

Ethics Statement

The human-written code samples in our dataset are sourced exclusively from publicly available code corpora vetted for appropriate licensing and PII removal. Additionally, all code generation was conducted in compliance with the terms of use of the respective model providers.

DroidDetect and DroidCollection aim to promote transparency in code authorship, especially in academic and research settings. While there is a risk that they could be misused to train models to evade detection, we strongly discourage any malicious or privacy-invasive applications.

Acknowledgements

At TU Darmstadt, this research has been supported by the German Federal Ministry of Research, Technology and Space and the Hessian Ministry of Higher Education, Research, Science and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE and by HUAWEI Technologies (Ireland) Co., Ltd.

References

- Mervat Abassy, Kareem Elozeiri, Alexander Aziz, Minh Ngoc Ta, Raj Vardhan Tomar, Bimarsha Adhikari, Saad El Dine Ahmed, Yuxia Wang, Osama Mohammed Afzal, Zhuohan Xie, Jonibek Mansurov, Ekaterina Artemova, Vladislav Mikhailov, Rui Xing, Jiahui Geng, Hasan Iqbal, Zain Muhammad Mujahid, Tarek Mahmoud, Akim Tsvigun, and 5 others. 2024. LLM-DetectAIve: a tool for fine-grained machinegenerated text detection. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 336–343, Miami, Florida, USA.
- Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli Saarikivi, and 8 others. 2024. Phi-4 technical report. *Preprint*, arXiv:2412.08905.
- 01. AI, Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin Yang, Shiming Yang, Wen Xie, and 13 others. 2024. Yi: Open foundation models by 01.ai. *Preprint*, arXiv:2403.04652.
- Mistral AI. 2025. Mistral small a new balance of performance and efficiency. Online. Available at https://mistral.ai/news/mistral-small-3 (Accessed: 1 April 2025).

- Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. 2018. Towards better understanding of gradient-based attribution methods for deep neural networks. In *Proceedings of the International Conference on Learning Representations*, ICLR '18, Vancouver, BC, Canada.
- Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. 2024. Fast-DetectGPT: Efficient zero-shot detection of machine-generated text via conditional probability curvature. In *Proceedings of the International Conference on Learning Representations*, ICLR '24.
- Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry Tworek, and Mark Chen. 2022. Efficient training of language models to fill in the middle. *Preprint*, arXiv:2207.14255.
- Andrei Z. Broder. 1997. On the resemblance and containment of documents. In *Proceedings of Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171)*, pages 21–29.
- Sufiyan Ahmed Bukhari. 2024. *Issues in Detection of AI-Generated Source Code*. Master's thesis, University of Calgary, Calgary, Alberta, Canada.
- Savvas Chamezopoulos, Drahomira Herrmannova, Anita De Waard, Drahomira Herrmannova, Domenic Rosati, and Yury Kashnitsky. 2024. Overview of the DagPap24 shared task on detecting automatically generated scientific paper. In *Proceedings of the Fourth Workshop on Scholarly Document Processing*, SDP '24, pages 7–11, Bangkok, Thailand.
- Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. 2019. What does BERT look at? An analysis of BERT's attention. In *Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP*, pages 276–286, Florence, Italy.
- Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. 2019. ArcFace: Additive angular margin loss for deep face recognition. In *Proceedings of* the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR '19, pages 4690–4699. IEEE.
- Liam Dugan, Alyssa Hwang, Filip Trhlík, Andrew Zhu, Josh Magnus Ludan, Hainiu Xu, Daphne Ippolito, and Chris Callison-Burch. 2024. RAID: A shared benchmark for robust evaluation of machinegenerated text detectors. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*, pages 12463–12492, Bangkok, Thailand.
- Omer Dunay, Daniel Cheng, Adam Tait, Parth Thakkar, Peter C. Rigby, Andy Chiu, Imad Ahmad, Arun Ganesan, Chandra Maddila, Vijayaraghavan Murali, Ali Tayyebi, and Nachiappan Nagappan. 2024. Multiline AI-assisted code authoring. In Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering, pages 150–160, Porto de Galinhas, Brazil.

- Vitaly Feldman and Chiyuan Zhang. 2020. What neural networks memorize and why: Discovering the long tail via influence estimation. In *Proceedings of the Conference on Neural Information Processing Systems*, NeurIPS '20, Vancouver, BC, Canada.
- Alexander Froemmgen, Jacob Austin, Peter Choy, Nimesh Ghelani, Lera Kharatyan, Gabriela Surita, Elena Khrapko, Pascal Lamblin, Pierre-Antoine Manzagol, Marcus Revaj, Maxim Tabachnyk, Daniel Tarlow, Kevin Villela, Daniel Zheng, Satish Chandra, and Petros Maniatis. 2024. Resolving code review comments with machine learning. In *Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Practice*, ICSE-SEIP '24, page 204–215, Lisbon, Portugal.
- Kazuki Fujii, Yukito Tajima, Sakae Mizuki, Hinari Shimada, Taihei Shiotani, Koshiro Saito, Masanari Ohi, Masaki Kawamura, Taishi Nakamura, Takumi Okamoto, Shigeki Ishida, Kakeru Hattori, Youmi Ma, Hiroya Takamura, Rio Yokota, and Naoaki Okazaki. 2025. Rewriting pre-training data boosts LLM performance in math and code. *Preprint*, arXiv:2505.02881.
- Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. 2024. Scaling synthetic data creation with 1,000,000,000 personas. *Preprint*, arXiv:2406.20094.
- Team Gemma, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, and 89 others. 2024. Gemma: Open models based on Gemini research and technology. *Preprint*, arXiv:2403.08295.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, and 542 others. 2024. The Llama 3 herd of models. *Preprint*, arXiv:2407.21783.
- Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng Wu. 2023. How close is ChatGPT to human experts? Comparison corpus, evaluation, and detection. *Preprint*, arXiv:2301.07597.
- Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. 2024. DeepSeek-Coder: When the large language model meets programming the rise of code intelligence. *Preprint*, arXiv:2401.14196.
- Hanxi Guo, Siyuan Cheng, Kaiyuan Zhang, Guangyu Shen, and Xiangyu Zhang. 2025. CodeMirage: A

- multi-lingual benchmark for detecting AI-generated and paraphrased source code from production-level LLMs. *Preprint*, arXiv:2506.11059.
- Md Mehedi Hasan, Abbas Khosravi, Ibrahim Hossain, Ashikur Rahman, and Saeid Nahavandi. 2022. Controlled dropout for uncertainty estimation. In *Proceedings of International Conference on Systems, Man, and Cybernetics*, SMC '22, pages 973–980, Maui, Hawaii, USA.
- Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes, and Yang Zhang. 2024. MGTBench: Benchmarking machine-generated text detection. In *Proceedings of the Conference on Computer and Communications Security*, ACM SIGSAC '24, pages 2251–2265, Salt Lake City, UT, USA.
- Elad Hoffer and Nir Ailon. 2015. Deep metric learning using triplet network. In *Proceedings of the International Conference on Learning Representations* (Workshops Track), ICLR '15, San Diego, CA, USA.
- Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-rank adaptation of large language models. In *Proceedings of the International Conference on Learning Representations*, ICLR 22, virtual.
- Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. Code-SearchNet challenge: Evaluating the state of semantic code search. *Preprint*, arXiv:1909.09436.
- Oseremen Joy Idialu, Noble Saji Mathews, Rungroj Maipradit, Joanne M. Atlee, and Mei Nagappan. 2024. Whodunit: Classifying code as human authored or GPT-4 generated a case study on CodeChef problems. In *Proceedings of the 21st International Conference on Mining Software Repositories*, MSR '24, page 394–406, Lisbon, Portugal.
- Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. 2020. Automatic detection of generated text is easiest when humans are fooled. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 1808–1822, Online.
- Kush Jain, Gabriel Synnaeve, and Baptiste Roziere. 2025. TestGenEval: A real world unit test generation and test completion benchmark. In *Proceedings of the International Conference on Learning Representations*, ICLR '25, Singapore.
- Ganesh Jawahar, Muhammad Abdul-Mageed, and Laks Lakshmanan, V.S. 2020. Automatic detection of machine generated text: A critical survey. In *Proceedings of the 28th International Conference on Computational Linguistics*, pages 2296–2309, Barcelona, Spain (Online).
- Jessica Ji, Jenny Jun, Maggie Wu, and Rebecca Gelles. 2024. Cybersecurity risks of AI-generated code. Technical report, Center for Security and Emerging Technology.

- JianWang, Shangqing Liu, Xiaofei Xie, and Yi Li. 2024. An empirical study to evaluate AIGC detectors on code content. In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering, ASE '24, page 844–856, Sacramento, CA, USA.
- Jonathan Katzy, Razvan Mihai Popescu, Arie van Deursen, and Maliheh Izadi. 2025. The Heap: A contamination-free multilingual code dataset for evaluating large language models. *Preprint*, arXiv:501.09653.
- Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive learning. In *Proceedings of the Conference on Neural Information Processing Systems*, NeurIPS '20, virtual.
- Thomas N. Kipf and Max Welling. 2017. Semisupervised classification with graph convolutional networks. In *Proceedings of the International Conference on Learning Representations*, ICLR '17, Toulon, France.
- Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and Marcin Detyniecki. 2019. The dangers of post-hoc interpretability: Unjustified counterfactual explanations. In *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence*, IJCAI '19, pages 2801–2807, Macao, China.
- Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and Zhaoxiang Zhang. 2023a. SheetCopilot: Bringing software productivity to the next level through large language models. In *Proceedings of the Conference on Neural Information Processing Systems*, NeurIPS '23, New Orleans, LA, USA.
- Ke Li, Sheng Hong, Cai Fu, Yunhe Zhang, and Ming Liu. 2023b. Discriminating human-authored from ChatGPT-generated code via discernable feature analysis. In *Proceedings of the 34th International Symposium on Software Reliability Engineering, Workshops Track*, ISSRE '23, pages 120–127, Florence, Italy.
- Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, and 48 others. 2023c. StarCoder: may the source be with you! *Trans. Mach. Learn. Res.*, 2023.
- Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and Ge Li. 2023d. TACO: Topics in algorithmic code generation dataset. *Preprint*, arXiv:2312.14852.
- Xianming Li and Jing Li. 2024. AoE: Angle-optimized embeddings for semantic textual similarity. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*, pages 1825–1839, Bangkok, Thailand.

- Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Zhilin Wang, Longyue Wang, Linyi Yang, Shuming Shi, and Yue Zhang. 2024. MAGE: Machine-generated text detection in the wild. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*, pages 36–53, Bangkok, Thailand.
- Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In *Proceedings of the International Conference on Learning Representations*, ICLR '19, New Orleans, LA, USA.
- Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, and 47 others. 2024. StarCoder 2 and The Stack v2: The next generation. *Preprint*, arXiv:2402.19173.
- Zimu Lu, Aojun Zhou, Ke Wang, Houxing Ren, Weikang Shi, Junting Pan, Mingjie Zhan, and Hongsheng Li. 2025. MathCoder2: Better math reasoning from continued pretraining on model-translated mathematical code. In *Proceedings of the International Conference on Learning Representations*, ICLR '25, Singapore.
- Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In *Proceedings of the Conference on Neural Information Processing Systems*, NeurIPS '17, pages 4765–4774, Long Beach, CA, USA.
- Qing Lyu, Marianna Apidianaki, and Chris Callison-Burch. 2024. Towards faithful model explanation in NLP: A survey. *Computational Linguistics*, 50(2):657–723.
- Dominik Macko, Robert Moro, Adaku Uchendu, Jason Lucas, Michiharu Yamashita, Matúš Pikuliak, Ivan Srba, Thai Le, Dongwon Lee, Jakub Simko, and Maria Bielikova. 2023. MULTITuDE: Large-scale multilingual machine-generated text detection benchmark. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 9960–9987, Singapore.
- Simone Martini. 2015. Several types of types in programming languages. In *Proceedings of the History and Philosophy of Computing*, volume 487 of *HaPoC '15*, pages 216–227, Pisa, Italy.
- Elyas Masrour, Bradley Emi, and Max Spero. 2025. DAMAGE: detecting adversarially modified AI generated text. *Preprint*, arXiv:2501.03437.
- Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza Soria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, Manish Sethi, Xuan-Hong Dang, Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew Coleman, Matthew White, Mark Lewis, Raju Pavuluri, and 27 others. 2024. Granite code models: A family of open foundation models for code intelligence. *Preprint*, arXiv:2405.04324.

- Diego Mollá, Qiongkai Xu, Zijie Zeng, and Zhuang Li. 2024. Overview of the 2024 ALTA shared task: Detect automatic AI-generated sentences for human-AI hybrid articles. In *Proceedings of the 22nd Annual Workshop of the Australasian Language Technology Association*, pages 197–202, Canberra, Australia.
- Vijayaraghavan Murali, Chandra Shekhar Maddila, Imad Ahmad, Michael Bolin, Daniel Cheng, Negar Ghorbani, Renuka Fernandez, Nachiappan Nagappan, and Peter C. Rigby. 2024. AI-assisted code authoring at scale: Fine-tuning, deploying, and mixed methods evaluation. *Proc. ACM Softw. Eng.*, 1(FSE):1066–1085.
- Dung Nguyen, Le Nam, Anh Dau, Anh Nguyen, Khanh Nghiem, Jin Guo, and Nghi Bui. 2023. The Vault: A comprehensive multilingual dataset for advancing code understanding and generation. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 4763–4788, Singapore.
- Phuong T. Nguyen, Juri Di Rocco, Claudio Di Sipio, Riccardo Rubei, Davide Di Ruscio, and Massimiliano Di Penta. 2024. GPTSniffer: A CodeBERT-based classifier to detect source code written by ChatGPT. *Journal of Systems and Software*, page 112059.
- Henrique Gomes Nunes, Eduardo Figueiredo, Larissa Rocha Soares, Sarah Nadi, Fischer Ferreira, and Geanderson E. dos Santos. 2025. Evaluating the effectiveness of LLMs in fixing maintainability issues in real-world projects. In *Proceedings of* the International Conference on Software Analysis, Evolution and Reengineering, SANER '25, pages 669–680, Montreal, QC, Canada.
- Daniil Orel, Dilshod Azizov, and Preslav Nakov. 2025. CoDet-M4: Detecting machine-generated code in multi-lingual, multi-generator and multi-domain settings. In *Findings of the Association for Computational Linguistics: ACL 2025*, pages 10570–10593, Vienna, Austria.
- Wei Hung Pan, Ming Jie Chok, Jonathan Leong Shan Wong, Yung Xin Shin, Yeong Shian Poon, Zhou Yang, Chun Yong Chong, David Lo, and Mei Kuan Lim. 2024. Assessing AI detectors in identifying AI-generated code: Implications for education. In Proceedings of the 46th International Conference on Software Engineering: Software Engineering Education and Training, ICSE-SEET '24, page 1–11, Lisbon, Portugal.
- Indraneil Paul, Haoyi Yang, Goran Glavaš, Kristian Kersting, and Iryna Gurevych. 2025. ObscuraCoder: Powering efficient code LM pre-training via obfuscation grounding. In *Proceedings of the International Conference on Learning Representations*, ICLR '25, Singapore.
- Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. 2025. Asleep at the keyboard? Assessing the security of GitHub Copilot's code contributions. *Commun. ACM*, 68(2):96–105.

- Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. 2018. CatBoost: unbiased boosting with categorical features. In *Proceedings of the Conference on Neural Information Processing Systems*, NeurIPS '18, pages 6639–6649, Montréal, Canada.
- Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir R. Choudhury, Lindsey Decker, Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss. 2021. CodeNet: A large-scale AI for code dataset for learning a diversity of coding tasks. In *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks*, NeurIPS '21, virtual.
- Ben Puryear and Gina Sprint. 2022. GitHub Copilot in the classroom: learning to code with AI assistance. *J. Comput. Sci. Coll.*, 38(1):37–47.
- Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, and 24 others. 2024. Qwen2.5 technical report. *Preprint*, arXiv:2412.15115.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea Finn. 2023. Direct preference optimization: Your language model is secretly a reward model. In *Proceedings of the Conference on Neural Information Processing Systems*, NeurIPS '23, New Orleans, LA, USA.
- Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi. 2023. Can AI-generated text be reliably detected? *Preprint*, arXiv:2303.11156.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms. *Preprint*, arXiv:1707.06347.
- Tatiana Shamardina, Vladislav Mikhailov, Daniil Cherniavskii, Alena Fenogenova, Marat Saidov, Anastasiya Valeeva, Tatiana Shavrina, Ivan Smurov, Elena Tutubalina, and Ekaterina Artemova. 2022. Findings of the the RuATD shared task 2022 on artificial text detection in Russian. *Preprint*, arXiv:2206.01583.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024. DeepSeekMath: Pushing the limits of mathematical reasoning in open language models. *Preprint*, arXiv:2402.03300.
- Zhouxing Shi, Yihan Wang, Fan Yin, Xiangning Chen, Kai-Wei Chang, and Cho-Jui Hsieh. 2024. Red teaming language model detectors with language models. *Transactions of the Association for Computational Linguistics*, 12:174–189.

- Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross J. Anderson, and Yarin Gal. 2024. AI models collapse when trained on recursively generated data. *Nat.*, 631(8022):755–759.
- Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro. 2025. Nemotron-CC: Transforming Common Crawl into a refined long-horizon pretraining dataset. In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*, pages 2459–2475, Vienna, Austria.
- Zhenpeng Su, Xing Wu, Wei Zhou, Guangyuan Ma, and Songlin Hu. 2023. HC3 Plus: A semantic-invariant human ChatGPT comparison corpus. *Preprint*, arXiv:2309.02731.
- Miriam Sullivan, Andrew Kelly, and Paul McLaughlan. 2023. ChatGPT in higher education: Considerations for academic integrity and student learning. *Journal of Applied Learning & Teaching*, 6.
- Eduard Tulchinskii, Kristian Kuznetsov, Laida Kushnareva, Daniil Cherniavskii, Sergey I. Nikolenko, Evgeny Burnaev, Serguei Barannikov, and Irina Piontkovskaya. 2023. Intrinsic dimension estimation for robust detection of AI-generated texts. In *Proceedings of the Conference on Neural Information Processing Systems*, NeurIPS '23, New Orleans, LA, USA.
- Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the usability of code generation tools powered by large language models. In *Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems*, CHI EA '22, New Orleans, LA, USA.
- Veniamin Veselovsky, Manoel Horta Ribeiro, and Robert West. 2023. Artificial artificial artificial intelligence: Crowd workers widely use large language models for text production tasks. *Preprint*, arXiv:2306.07899.
- Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, and Furu Wei. 2022. Text embeddings by weakly-supervised contrastive pre-training. *Preprint*, arXiv:2212.03533.
- Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan Su, Artem Shelmanov, Akim Tsvigun, Chenxi Whitehouse, Osama Mohammed Afzal, Tarek Mahmoud, Toru Sasaki, Thomas Arnold, Alham Fikri Aji, Nizar Habash, Iryna Gurevych, and Preslav Nakov. 2024. M4: Multi-generator, multi-domain, and multi-lingual black-box machine-generated text detection. In *Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics*, pages 1369–1407, St. Julian's, Malta.
- Yuxia Wang, Artem Shelmanov, Jonibek Mansurov, Akim Tsvigun, Vladislav Mikhailov, Rui Xing, Zhuohan Xie, Jiahui Geng, Giovanni Puccetti, Ekaterina

- Artemova, Jinyan Su, Minh Ngoc Ta, Mervat Abassy, Kareem Ashraf Elozeiri, Saad El Dine Ahmed El Etter, Maiya Goloburda, Tarek Mahmoud, Raj Vardhan Tomar, Nurkhan Laiyk, and 7 others. 2025. GenAI content detection task 1: English and multilingual machine-generated text detection: AI vs. human. In *Proceedings of the Workshop on GenAI Content Detection*, pages 244–261, Abu Dhabi, UAE.
- Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Griffin Adams, Jeremy Howard, and Iacopo Poli. 2024. Smarter, better, faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context finetuning and inference. *Preprint*, arXiv:2412.13663.
- Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Chalamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and Ce Zhang. 2024a. RedPajama: an open dataset for training large language models. In *Proceedings of the Conference on Neural Information Processing Systems*, NeurIPS '24, Vancouver, BC, Canada.
- Thomas Weber, Maximilian Brandmaier, Albrecht Schmidt, and Sven Mayer. 2024b. Significant productivity gains through programming with large language models. *Proc. ACM Hum.-Comput. Interact.*, 8(EICS).
- Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang, Yewen Pu, Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo, Dawei Yin, Xing Hu, and Yunji Chen. 2025. InverseCoder: Self-improving instruction-tuned code LLMs with inverse-instruct. In *Proceedings of the Association for the Advancement of Artificial Intelligence*, pages 25525–25533, Philadelphia, PA, USA.
- Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and Quoc V. Le. 2020. Self-training with noisy student improves ImageNet classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, CVPR '20, pages 10684–10695, Seattle, WA, USA.
- Xiaodan Xu, Chao Ni, Xinrong Guo, Shaoxuan Liu, Xiaoya Wang, Kui Liu, and Xiaohu Yang. 2025. Distinguishing LLM-generated from human-written code by contrastive learning. *ACM Trans. Softw. Eng. Methodol.*, 34(4).
- I. Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. 2019. Billion-scale semi-supervised learning for image classification. *Preprint*, arXiv:1905.00546.
- Xianjun Yang, Kexun Zhang, Haifeng Chen, Linda R. Petzold, William Yang Wang, and Wei Cheng. 2023. Zero-shot detection of machine-generated codes. *Preprint*, arXiv:2310.05103.

Co	ontents		F Qualitative Examples 20
			F.1 Inverse Instructions Examples 20 F.2 Dataset Samples 20
1	Introduction	1	*
2	Related Work	2	A List Of Models Used
	 2.1 AI-Generated Text Detection 2.2 AI-Generated Code Detection 2.3 Adversarial Evasion of AI-Generated Content Detectors 	2 3	Table 7 shows 11 model families, including both instruct and base variants, spanning 2B–72B parameters, with open-weights and API-accessible models.
3	The DroidCollection Corpus	3	B Dataset Creation and Statistics
	3.1 Human-Authored Code Acquisition	3	B.1 Inverse Instructions Setup
	 3.2 AI-Authored Code Generation 3.3 Machine-Refined Data 3.4 Adversarial Samples 3.5 Varying Decoding Strategies 3.6 Data Filtering 	4 5 5 5 6	We following LLMs for inverse instruction — GPT-4o-mini, Llama 3.1 8B, Qwen 2.5 7B, and Phi-3 Small (7B): prompting them with code to generate a summary and the prompt likely to produce it (see Listing 1).
4	Detection Experiments	6	# Code Analysis and LLM Prompt
	4.1 Experimental Setup	6	Generation
	4.2 RQ1: What is the Value of Extensive Data Collection for Training Robust Detectors?	6	You are an experienced software engineer using `{language}` programming language skilled in analyzing,
	4.3 RQ2: How Well Do Models Gen-		summarizing, and writing code. When provided with code, you break it
	eralise in OOD Settings? 4.4 RQ3: How Robust are Models to Adversarial Samples?	7 7	down into its constituent parts, summarize its functionality concisely, and create prompts to guide an LLM in replicating similar
5	Detector Training and Ablations	8	outputs.
	Detector framing and framework	Ü	<pre>## Your Tasks: 1. **Code Summary**: Analyze the given</pre>
6	Conclusion and Future Work	9	<pre>code and summarize its purpose, logic, and functionality. Enclose</pre>
A	List Of Models Used	15	this summary within [SUMMARY] and [/SUMMARY] tags.
B	Dataset Creation and Statistics	15	<pre>2. **Prompt Creation**: Write a clear and specific LLM prompt that, if</pre>
	B.1 Inverse Instructions Setup	15	provided to a language model, would generate code with similar
	B.2 DroidCollection-Personas cre-	16	functionality and structure. Enclose
	B.3 Dataset Statistics	16 17	the LLM prompt within [LLM_PROMPT] and [/LLM_PROMPT] tags. Interaction will be in the following way
C	Detailed Architectural Ablations	17	: ### INPUT:
	C.1 GCN Experiments	17	[CODE]
	C.2 CatBoost Experiments	17	<pre>{{code}} [/CODE]</pre>
	C.3 Does Structure-Based Late-Fusion		
	Improve Robustness?	17	<pre>### OUTPUT: [SUMMARY] {{summary}}</pre>
D	DroidDetect Stress Tests	17	[/SUMMARY]
	D.1 Input Length Stress Tests	17	[LLM_PROMPT]
	D.2 Additional OOD Stress Testing	19	{{prompt}} [/LLM_PROMPT]
\mathbf{E}	Error Analysis and Interpretation	19	
	E.1 Error Analysis	19	Listing 1: Prompt for code analysis and LLM prompt generation.
	E.2 Interpretation of Predictions	19	generation.

Model Family	Model					
	Yi-Coder-9B					
Yi	Yi-Coder-9B-Chat					
Y1	Yi-Coder-1.5B-Chat					
	Yi-Coder-1.5B					
CDT	GPT-4o-mini					
GPT	GPT-4o					
	Qwen2.5-Coder-7B					
	Qwen2.5-Coder-7B-Instruct					
Owen	Qwen2.5-Coder-1.5B-Instruct					
Qwen	Qwen2.5-Coder-32B-Instruct					
	Qwen2.5-72B-Instruct					
	Qwen2.5-Coder-1.5B					
	Qwen2.5-Coder-14B-Instruct					
	codegemma-7b-it					
Gemma	codegemma-7b					
	codegemma-2b					
	CodeLlama-70b-Instruct-hf					
CodeLlama	CodeLlama-34b-Instruct-hf					
	CodeLlama-7b-hf					
	deepseek-coder-6.7b-instruct					
Deepseek	deepseek-coder-6.7b-base					
Deepseek	deepseek-coder-1.3b-instruct					
	deepseek-coder-1.3b-base					
Granite	granite-8b-code-instruct-4k					
	granite-8b-code-base-4k					
	Llama-3.1-8B-Instruct					
	Llama-3.2-3B					
	Llama-3.1-70B-Instruct					
Llama	Llama-3.3-70B-Instruct					
	Llama-3.3-70B-Instruct-Turbo					
	Llama-3.2-1B					
	Llama-3.1-8B					
	Phi-3-small-8k-instruct					
	Phi-3-mini-4k-instruct					
Phi	phi-4					
_	Phi-3-medium-4k-instruct					
	phi-2					
	Phi-3.5-mini-instruct					
Mistral	Mistral-Small-24B-Instruct-2501					
	starcoder2-15B					
StarCoder	starcoder					
	starcoder2-7b					
	starcoder2-3b					

Table 7: Model families and their selected models used in DroidCollection.

Examples of code and corresponding inverse instructions are shown in Tables 15 to 17.

B.2 DroidCollection-Personas creation

To generate DroidCollection-Personas, we started by identifying the main characteristics of a programmer. Our final list contains 9 features: Primary Programming Language, Preferred Frameworks, Field of Work, Code Commenting Style, Error-Proneness, Debugging Strategies, Code Aesthetics, Documentation Habits, Function Length Preference. The possible values for each feature are listed in Table 8.

Then we did a Cartesian product to combine all the possible combinations of these properties, and started generating the tasks, which could be performed by this programmer. For task generation, we used the GPT-40 model, and prompted it in the way shown in Listing 2.

I have the following description
of a programmer:
{description}
Write a non-trivial programming
task
which matches what this person
probably does at work,
you can ignore some of the person
's traits. Return only the
task.

Listing 2: Prompt for Persona's task generation.

After the tasks were generated, we deduplicated them using MinHash with the same parameters as for the dataset filtering. After that, the resulting tasks were used for code generation.

Property Name	Values / Options
Primary Programming Language	Python, Java, JavaScript, PHP,
Filmary Frogramming Language	C, C#, C++, Go, Ruby, Rust
	Web Development, AI/ML,
	Game Development,
Field of Work	System Programming, Embedde
ricid of Work	Systems, Data Engineering,
	Research, Distributed
	Systems Developer, IoT
Code Commenting Style	Concise, Detailed, Minimal
Error-Proneness	High, Medium, Low
Debugging Strategies	Print Statements, Debugger, Log-
	ging
Code Aesthetics	Highly Readable, Functional,
	Minimalist, Hard to Comprehend
Documentation Habits	Detailed, Minimal, Occasional
Function Length Preference	Short, Medium, Long

Table 8: List of attributes and characteristics in DroidCollection-Personas.

B.3 Dataset Statistics

In this section, we present key statistics of our dataset and compare them with existing alternatives. As shown in Table 9, our dataset includes a broader class distribution and shows greater diversity in code structure, as reflected by higher AST depth percentiles and longer line lengths. It suggests that our dataset captures more complex and varied code patterns, making it a more challenging and real-life-oriented benchmark for evaluating AI-generated code detection models. The importance of varying code lengths and difficulties is also shown in Appendix D.1. We also show the number of samples per generator, and programming language (not considering the datasets with ≤ 2 languages or generators). Several qualitative examples of samples belonging to different classes in our dataset are shown in Tables 18 and 19.

C Detailed Architectural Ablations

C.1 GCN Experiments

We used a simple 4-layer Graph Convolutional Network (GCN) to evaluate how effectively a GCN can capture structural and semantic features of code. As input, we utilised AST representations of the code, treating them as graphs. To assess the impact of node-level information, we experimented with three types of node features:

- **Dummy features** no meaningful features were provided at the node level;
- One-hot encoded node types encoding the syntactic type of each AST node;
- Node content embeddings textual embeddings derived from the string content of each node. To reduce computational overhead, we used the HashingVectorizer, which converts strings into sparse vectors by hashing tokens to fixed-dimensional indices without maintaining a vocabulary in memory.

As shown in Table 11, features based on the textual content of the node yielded the best performance, showing that the semantic information is important in distinguishing between human-written and AI-generated code.

C.2 CatBoost Experiments

Following Idialu et al. (2024); Orel et al. (2025), we compute 733 structural code features – e.g., counts of various AST nodes, line length, whitespace ratio, count of empty lines, code maintainability index, and others.

These features were used to train CatBoost classifiers with automatically tuned hyperparameters. Figure 1 shows the top unique features ranked by SHAP (SHapley Additive exPlanations) values (Lundberg and Lee, 2017). Interestingly, the most informative features vary across the 2-, 3-, and 4-class classification tasks, suggesting that different granularities of classification are dependent on different aspects of code structure.

Nonetheless, some patterns persist across all setups. In particular, features related to the length of identifiers (variable names) and the density of comments consistently present as strong indicators for distinguishing AI-generated/Refined from human-written code.

C.3 Does Structure-Based Late-Fusion Improve Robustness?

To decide whether fusion is helpful for improving the detection, we combined the GCN from Appendix C.1 with our text-only classifier using early fusion of embeddings. We used OOD-based generalisation, and compared how well the models perform for 2, 3, and 4-class classification in OOD settings (since when trained directly, it is hard to measure the significance of the performance difference), and then compared in which scenarios each method provides a better weighted F1-score. Table 12 shows that there is no clear trend of one approach being better than another: in the binary classification task, there are more ties, fusion has a higher win-rate in 4-class classification, while the model without fusion performs best in the 3class case. Then we compared how the difference in F1-scores between models compares to the interquartile range within the model's predictions. As shown in Figure 2, the interquartile range is much larger than the model difference, so both models with and without fusion perform nearly equally.

D DroidDetect Stress Tests

D.1 Input Length Stress Tests

Table 10 shows that while existing approaches perform best on short code snippets – likely due to being trained on compact samples such as individual functions, as evidenced in Table 9 – our models exhibit improved performance as input length increases. This suggests our detectors are better aligned with real-world usage, where code is often composed of multi-function modules, class definitions, or entire scripts spanning hundreds of lines.

Metric	CoDet-M4	CodeGPTSensor	GptSniffer	DroidCollection
AST@75	15.00	12.00	15.00	15.00
AST@90	18.00	15.00	18.00	18.00
AST@99	23.00	20.00	23.15	25.00
Line@75	90.00	93.00	99.00	107.00
Line@90	113.00	112.00	117.00	135.00
Line@99	228.00	169.00	153.60	314.00
	AI - 50%	AI - 50%	AI - 90%	AI - 25%
Olera Bistoikutian	Human - 50%	Human - 50%	Human - 10%	Human - 47%
Class Distribution				Refined - 13%
				Adv 15%
Avg. # of samples per language	166,850	-	-	148,491
Avg. # of samples per generator	50,866	-	-	8,458

Table 9: Comparison of AST depth percentile, line length percentile, class distribution, and average samples per language/generator between DroidCollection and existing datasets.

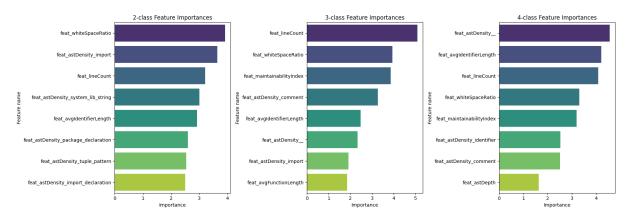


Figure 1: Feature importances.

Model	Truncation Length						
	128	256	512				
GptSniffer	57.05	57.20	56.64				
M4	59.69	53.10	51.13				
CoDet-M4	72.28	70.62	61.68				
DroidDetect-Base	91.90	96.25	99.18				
DroidDetect-Large	94.91	98.31	99.25				

Table 10: Impact of input length truncation (measured using the ModernBERT tokeniser) on weighted F1-scores for binary classification. The most competitive numbers are highlighted in **bold**.

Features	2-class	3-class	4-class
Dummy	60.02	39.27	34.17
Node Type	50.12	39.54	33.12
Text	76.67	59.10	51.14

Table 11: Comparison of different feature types used as node-level features in a GCN, based on the weighted F1-score on the validation set. The most competitive numbers are highlighted in **bold**.

Another important thing is how stable our models remain across different input lengths. When we cut the input from 512 to 128 tokens, DroidDetect-Base only drops 7.28 F1-score points (from 99.18 to 91.90), and DroidDetect-Large drops just 4.34 points (from 99.25 to 94.91). This consistency suggests the generalisability of our models to various inputs.

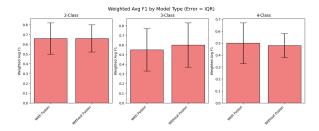


Figure 2: Weighted F1-score comparison between models with and without fusion.

Classification	Tie	With	Without
CIASSITICACION	(%)	Fusion (%)	Fusion (%)
2-Class	60.0	40.0	0.0
3-Class	40.0	20.0	40.0
4-Class	20.0	60.0	20.0

Table 12: Comparative task-level win-rates of DroidDetect with and without GCN late-fusion aggregated over OOD classification tasks.

D.2 Additional OOD Stress Testing

To evaluate the generalisation ability of our models, we tested them on additional open-source datasets containing AI-generated code. Specifically, we sampled 15,000 examples from the Swallow-Code dataset (Fujii et al., 2025), a high-quality collection of Python code from The Stack v2 (Lozhkov et al., 2024) synthetically refined by LLaMA3.3-70B-Instruct model. This dataset was concurrently released with our work and is highly unlikely to be part of the training distribution of any of our models, thus serving as a strong test for our models' recall on machine-rewritten code.

We also randomly selected 15,000 samples per programming language from The Heap (Katzy et al., 2025) dataset. This dataset contains illiberally licensed code with metadata about its presence in existing code-retraining corpora. We specifically filter for samples that are not exact- or near-duplicates with any sample in major pre-training corpora (Li et al., 2023c; Lozhkov et al., 2024; Weber et al., 2024a). Jointly, these ensure that our curated split is extremely unlikely to be seen by models during pre-training, thus constituting a stiff test of our detectors' recall on human-written code.

Both DroidDetect-Base and DroidDetect-Large were evaluated on these datasets: on Swallow-Code, they achieved 98.95% and 99.11% recall; on The Heap, 94.14% and 96.28%. This demonstrates strong cross-dataset robustness.

E Error Analysis and Interpretation

E.1 Error Analysis

In this section we describe and demonstrate common errors, observed in predictions of DridDetect models.

False Positives and False Negatives Among misclassifications in the binary classification task, we observe that approximately 34% are false positives, with the remainder being false negatives. This distribution is reasonable given the larger number of negative-class samples in the dataset

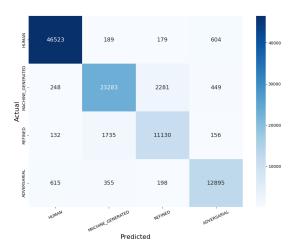
Worst-Performing Language and Domain As shown in Table 3, Research/DS domain consistently yields the lowest performance for both the Base and the Large DroidDetect models, likely due to the comparatively longer and more complex code typical in this domain. In Table 4, we observe that detecting machine-generated code in JavaScript is particularly challenging, which aligns with findings from Orel et al. (2025). We attribute this to the greater variability of coding practices found in JavaScript programs - modern frameworks of JavaScript mix coding paradigms (functional programming, OOP) - and it is also not typologically related to the rest of the languages considered in our work.

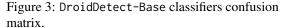
Correlation with Preserved Human-Written Code in Hybrid Cases In hybrid scenarios, both models achieve similar F-scores for rewriting and continuation cases (91.42% and 92.47% on average). We also find a moderate negative correlation (-0.43 on average) between the proportion of preserved human-written code and the model's F-score, indicating that the more original human code is retained, the more difficult detection becomes.

Misclassification on Adversarial Samples As shown in Figure 5, for both the Base and Large DroidDetect models, most misclassifications occur between the AI-generated and Refined classes. Notably, adversarial samples are more frequently misclassified as human-written rather than as other machine-generated (or refined) classes. This suggests that our adversarial training strategy effectively makes these examples more human-like.

E.2 Interpretation of Predictions

We studied the patterns behind models' predictions, using gradient attribution (Ancona et al., 2018) and the attention maps of our models.





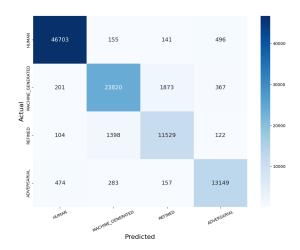


Figure 4: DroidDetect-Large classifiers confusion matrix.

Figure 5: Confusion Matrixes for DroidDetect models.

Although these results are somewhat noisy and may not always be fully faithful (Laugel et al., 2019; Lyu et al., 2024), several common patterns emerge. Notably, much of the model's attention is directed toward punctuation symbols (e.g., colons, semicolons, arrows), consistent with the findings of Clark et al. (2019), who showed that BERT-based models frequently focus on punctuation. A more detailed gradient-based analysis reveals that stylistic choices, such as long, descriptive comments and detailed explanations, typical of LLM-generated code, significantly impact the model's decisions. Additionally, consecutive empty lines and extra spaces influence predictions, aligning with the Cat-Boost feature behaviour described in Appendix C.2. Together, these findings suggest that the structural and stylistic conventions of LLM-generated code differ from human-written code.

Examples of some misclassifications and their explanations based on gradient attribution and attention maps are given in Tables 13 and 14.

F Qualitative Examples

F.1 Inverse Instructions Examples

In Tables 15 to 17 we show examples of code with the corresponding inverse instructions. It is clear that in general instructions match the code.

F.2 Dataset Samples

In this appendix (Tables 18 and 19), we provide a small portion of code per class, written by different models in different languages. To check the diversity of our dataset, it is suggested to check the release repository.

Code	True Label	Predicted Label	Explanation
	Human-Written	AI-Generated	
<pre>import java.io.#; import java.util.#; public class randoms { // "Just spam uniquely determines LOL. can basically say its 1-0 public static void main(String[] args) throws lOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int n = Integer.parseInt(st.nextToken()); int [] nums = new int[n][2]; for(int i = 0; int; i++){ st = new StringTokenizer(br.readLine()); nums[i][0] = Integer.parseInt(st.nextToken()); nums[i][1] = Integer.parseInt(st.nextToken()); nums[i][1] = Integer.parseInt(st.nextToken()); long sum = 0; boolean[][] dp = new boolean[n+1][k]; //a rem uniquely determines brem by overcounting //extras accounted for by combinatorics dp[0][0] = true; for(int i = 1; i <=n; i++){ sum += nums[i-1][0] nums[i-1][1]; for(int i = 1; i <=n; i++){</pre>			Gradient attribution shows that this prediction could be based mainly on consequtive whiespaces in the last comment, use comments that are common for LLMs during code explanation like "basically say it is 1-D", "to use".
// Use of this source code is governed by a BSD-style license that can be	7		Despite of inclusion
// found in the LICENSE file. #include "chrome/browser/ash/borealis/features.h" #include sah/constants/ash_features.h" #include "ash/constants/ash_features.h" #include "chrome/grit/generated_resources.h" #include "components/prefs/pref_service.h" // Generated code woid SetBorealisEnabledAndAllowed(PrefService* pref_service, bool should_allow, bool should_enable) (DCHECK(pref_service); pref_service>SetBoolean(ash::features::kLauncherShowBorealisAppId, should_allow && should_enable); feature_list>JnitializeFromCommandLine(kProfileFlag, should_enable); cros_settings>SetBoolean(ash::kAccessibilitySpokenFeedbackEnabled, should_enable); }			of "// Generative code" comment, our models made mistake while classifying this code. Both gradient attribution and attention maps point to the comment which talks about license as the main reason to label it as Human-written code.

Table 13: Examples of Model misclassification and their explanations (Part 1).

```
Code
                                                                                                                                 True Label
                                                                                                                                                   Predicted Label Explanation
                                                                                                                               Human-Written
                                                                                                                                                    AI-Generated
                                                                                                                                                                        Extra spacing between
         while (k > 0 and f) {
                                                                                                                                                                               lines
            if ((v[i] - sum) % k or (v[i] - sum) <= 0) {
                 f = 0;
                 break;
            11 d = (v[i] - sum) / k;
            i-=2;
            k -= 2;
        }
        if (f == 1) cout << "YES" << endl;
         else cout << "NO" << endl;
    }
return 0;
                                                                                                                               Human-Written
                                                                                                                                                     AI-Generated
                                                                                                                                                                        Both attention maps
def gcdIter(a,b):
                                                                                                                                                                             and gradient
        a, b: positive integers
                                                                                                                                                                             attribution
trigger on "# Your
code here"
        returns: a positive integer, the greatest common divisor of a & b.
        # Your code here
test=min(a,b)
while test>=1:
    if a%test==0 and b%test==0:
        return test
                                                                                                                                                                             comment, which is similar to "Here
                                                                                                                                                                             is your code",
which is a common
                                                                                                                                                                             part of LLMs
response.
import fractions
S,tc=list(map(int,input().split(' ')))
gcd=fractions.gcd(A,S)
gf gcd in already_occured:
    print(-1)
else:
                already_occured.append(gcd)
print(gcd)
                                                                                                                                                   Human-Written
                                                                                                                                 AI-Generated
                                                                                                                                                                        Consequitive spaces and the format of
template <int Arg>
class TestObj
{
public:
                                                                                                                                                                             highlighted by attention maps and
int getArg()
{
   return Arg;
}

                                                                                                                                                                               gradient
                                                                                                                                                                              attribution
   Define a template class that we can specialize with an enumeration
enum class EnumType
    Member,
Subclass
template <EnumType Arg> class EnumTemplate;
 //---/// Specialization for use when "Arg" is "EnumType::Member"
template <>
class EnumTemplate<EnumType::Member>
int getMember() const
{
   return m_member;
protected:
   int m_member;
```

Table 14: Examples of Model misclassification and their explanations (Part 2).

```
Language
                  Instruction
                                                                                          Code
    C++
                    Write a C-style function to
                                                                                          static unsigned long __init
prpmc750_get_bus_speed(void)
                          retrieve the bus speed of a
                             specific device, given its
                                                                                          {
unsigned long tbl_start, tbl_end;
unsigned long current_state, old_state, bus_speed;
unsigned char lcr, dll, dlm;
int baud_divisor, count;
                            UART's baud clock divisor,
                            base baud clock, and time
                          base reading functionality.
                           The function should set
                                                                                         /* Read the UART's baud clock divisor */
lcr = readb(PRPMC750_SERIAL_0_LCR);
writeb(lcr | UART_LCR_DLAB, PRPMC750_SERIAL_0_LCR);
dll = readb(PRPMC750_SERIAL_0_DLL);
dlm = readb(PRPMC750_SERIAL_0_DLL);
writeb(lcr & "UART_LCR_DLAB, PRPMC750_SERIAL_0_LCR);
baud_divisor = (dlm << 8) | dll;
                         the DLAB, read the DLL and DLM, calculate the baud
                          clock divisor, update the
                          DLAB, and then loop to find
                           the first edge of the baud clock, get the starting
                                                                                           **

** Use the baud clock divisor and base baud clock

* to determine the baud rate and use that as

* the number of baud clock edges we use for

* the time base sample. Make it half the baud
                          and ending time base values
                         , and finally compute the
bus speed from these values
                                                                                           count = PRPMC750_BASE_BAUD / (baud_divisor * 16);
                                                                                          old_state = readb(PRPMC750_STATUS_REG) & PRPMC750_BAUDOUT_MASK;
                                                                                          do {
    readb(PRPMC750_STATUS_REG) &
    PRPMC750_BAUDOUT_MASK;
} while(old_state == current_state);
                                                                                          old state = current state:
                                                                                          /* Get the starting tim
tbl_start = get_tbl();
                                                                                           Loop until we have found a number of edges equal to half the count (half the baud rate)
                                                                                          do {
do {
current_state = readb(PRPMC750_STATUS_REG) &
PRPMC750_BAUDOUT_MASK;
} while(old_state == current_state);
old_state = current_state;
} while (--count);
                                                                                           bus_speed = (tbl_end-tbl_start)*128;
                                                                                           return bus_speed;
  Python
                    Generate Python code that
                                                                                          def metTrim():
    "--- initial reading of data
root = r'C:\Users\ARL\Desktop\MetData'
ext = list(range(12, 20)) # yearly extensions
                          performs data reading,
                          trimming, and datetime
                                                                                         colnames = ['na', 'yr', 'mo', 'dy', 'hr', 'dir', 'spd', 'steady', 'na', 'na', 'na', 'na', 'na', 'na']
met = pd.DataFrame(columns=colnames) # preallocate df
for yr in ext:
                          conversion for a set of
                          files located in a
                          specified directory. The
                          files should be named in a
                                                                                          data = pd.read_csv(root + r'\met_sum_insitu_1_obop_hour_20{}.txt'.format(yr), delim_whitespace=True,
                          pattern
                                                                                         header=None)
data.columns = colnames # apply col name
met = met.append(data) # append to list
                          met_sum_insitu_1_obop_hour_2
                          <Year>.txt`, and the data
should be trimmed to remove
                                                                                           print('Data Imported')
                            irrelevant columns, handle
                                                                                          # ---- trimming data
met = met.drop('na', axis=1) # drop na cols
met = met.replace(-999.9, np.nan) # turn missing val to nan
met = met.replace(-99, np.nan)
met = met.replace(-99.9, np.nan)
met = met.replace(-99.9, np.nan)
met = met.dropna(axis=0, how='any') # remove rows with nan vals
                            missing values, and create
                            a datetime column using
                          the existing year, month,
                          day, and hour columns. The
                          resulting data should be
                          returned as a processed
                                                                                          # --- convert date to datetime
metInt = met.applymap(int) # make sure value
dates = createDatetime(metInt['yr'].values,
metInt['mo'].values,
metInt['y'].values,
metInt['y'].values)
                          pandas DataFrame
                                                                                          met['datetime'] = dates # add it as a new column
met = met.drop(['yr', 'mo', 'dy', 'hr'], axis=1) # drop old date columns
                                                                                           return met
```

Table 15: Code and Corresponding Inverse Instructions (C++, Python).

```
Language Instruction
                                                                        Code
   Java
                Given a file with blog entries
                                                                        private void readIndex(boolean published) {
File indexFile;
                      and their respective dates
                                                                         inter intex lie, if (published) if (published) index file = new file(blog.getIndexesDirectory(), "blogentries-published.index"); } else {
                      , write a Java method to
                     read the file, sort the entries in reverse
                                                                         indexFile = new File(blog.getIndexesDirectory(), "blogentries-unpublished.index");
                     chronological order, and
                     separate them into lists
                     for published and
                                                                        try {
BufferedReader reader = new BufferedReader(new FileReader(indexFile));
String indexEntry = reader.readLine();
while (indexEntry! = null) {
indexEntries.add(indexEntry);
                     unpublished entries. The
                     method should handle
                     varying file existence
                                                                        // and add it to the internal memory structures
Date date = new Date(Long.parseLong(indexEntry));
Day day = blog.getBlogForDay(date);
                     conditions and log errors
                     accordingly. Assume the blog entries are stored in
                                                                        if (published) {
publishedIndexEntries.add(indexEntry);
                     lines of the file, with
                     each entry consisting of a
                                                                        day.addPublishedBlogEntry(indexEntry);
} else {
                     date in 'yyyyMMdd' format followed by the entry's ID.
                                                                         unpublishedIndexEntries.add(indexEntry);
                                                                        day.addUnpublishedBlogEntry(indexEntry);
                                                                         indexEntry = reader.readLine():
                                                                         reader.close():
                                                                         } catch (Exception e) {
log.error("Error while reading index", e);
                                                                         Collections.sort(indexEntries, new ReverseBlogEntryIdComparator());
Collections.sort(publishedIndexEntries, new ReverseBlogEntryIdComparator());
Collections.sort(unpublishedIndexEntries, new ReverseBlogEntryIdComparator());
JavaScript
                Generate a JavaScript function
                                                                        var Btc = require('./btc');
var bitcoin = require('bitcoinjs-lib');
var _ = require('lodash');
                      named Teth, which is a
                      constructor function,
                     outside of its parent
                                                                         var Tbtc = function() {
                                                                                                     led externally from BaseCoin
prototype with the local override prototype, which inherits from BaseCoin
e BaseCoin prototype one level away
                     function. Teth should
                     inherit all properties and
methods from its parent
                                                                        // effectively, move the BaseCoin prototy
this._proto_ = Tbtc.prototype;
this.network = bitcoin.networks.testnet;
};
                     function and add a new
                     method - getChain. This
                     method should return the string "teth". The Teth
                                                                         Tbtc.prototype.__proto__ = Btc.prototype;
                                                                         Tbtc.prototype.getChain = function() {
                     function should attach its
                     prototype to its parent's prototype, moving it one
                                                                        module.exports = Tbtc;
                     level away. The code should
                      utilize the Node.js
                     environment and should
                     include documentation to
                     describe the purpose of the
                       function and its newly
                     added method.
```

Table 16: Code and Corresponding Inverse Instructions (Java, JavaScript).

```
Language Instruction
                                                                Code
   Go
              Write a Go function that
                                                                 func CreateConstLabels() error {
//Onlv create a const label for site if a site has been specified.
                   creates a set of constant
                                                                //Only create a const label for site if a site has been specified.
if IsiCluster.Site != "" {
ConstLabels = prometheus.Labels{"cluster": IsiCluster.Name, "site": IsiCluster.Site}
                   labels for Prometheus
                                                                 cOnstLabels = prometheus.Labels{"cluster": IsiCluster.Name}
                  metrics based on ISI cluster settings.
              The function should check if a
                                                                log.Debugf("ConstLables are %v", ConstLabels)
return nil
                    site has been specified
                   for the ISI cluster and
                  create labels with both the cluster name and site name
                    if available
              Otherwise, it should create labels with only the
                   cluster name.
              Include a log statement to display the created labels
   C#
              Generate C# code that prompts
                                                                using System;
                  the user for a string and
then checks if it is a
                   palindrome by comparing
                                                                 class Program
                  characters from the start
and end of the string,
                                                                 t
static void Main(string[] args)
                   moving towards the center.
                   If the characters match,
                                                                Console.WriteLine("Quantos caracteres seu palindromo tem?");
int max = int.Parse(Console.ReadLine());
                   print a message indicating
                  they are equal; otherwise, print a message indicating
                                                                string [] caractere = new string [max];
                   they are not equal. The
                                                                 for (cont = 0; cont < max; cont++)
                   code should handle strings
                                                                {
    Console.WriteLine("Digite" + (cont + 1) + " caracteres da palavra");
    caractere[cont] = Console.ReadLine();
                  of any length and input
                   user characters until the
                   string length is reached.
                                                                 int inverso = cont:
                                                                 for (cont = 0; cont < max; cont++)
                                                                 {
if (caractere[cont] == caractere[inverso])
                                                                 Console.WriteLine("0 " + (cont + 1) + " caractere " + (inverso + 1) + " caractere");
                                                                 // Console.WriteLine("0 " + (cont + 1) + " caractere " + (inverso + 1) + " caractere ");
inverso--;
```

Table 17: Code and Corresponding Inverse Instructions (Go, C#).

```
Language
               Class
                           Generator
                                       Code
           LLM-Refined
 Python
                          Qwen2.5-72B
            (re-written)
                                       from collections import defaultdict
                                       class Solution:
                                       MAXPRIME = 100001
                                       isPrime = [0] * (MAXPRIME + 1)
                                       isPrime[0] = isPrime[1] = -1
                                       def __init__(self):
                                        for i in range(2, MAXPRIME):
                                       if isPrime[i] == 0:
                                       isPrime[i] = i
                                       for multiple in range(i * i, MAXPRIME + 1, i):
                                        if isPrime[multiple] == 0:
                                       isPrime[multiple] = i
                                       def largestComponentSize(self, A):
                                       label = defaultdict(int)
                                       roots = {}
                                       def find_root(key):
                                       if key not in roots:
                                       roots[key] = key
                                        if roots[key]!= key:
                                       roots[key] = find_root(roots[key])
                                       return roots[key]
                                       def merge_roots(k1, k2):
                                       r1, r2 = find_root(k1), find_root(k2)
                                       if r1!= r2:
                                       r1, r2 = min(r1, r2), max(r1, r2)
                                       label[r1] += label[r2]
                                       roots[r2] = r1
                                       return r1
                                       for x in A:
                                       root_id = None
                                       prime_factors = set()
                                       while self.isPrime[x]!= -1:
                                       p = self.isPrime[x]
                                       root_id = find_root(p) if root_id is None else merge_roots(root_id, p)
                                       x //= p
                                       label[root_id] -= 1
                                        return -min(label.values())
   С
          Human-written
                            Human
                                       int
                                       pack_white(char *ptr)
                                       int cnt = 0;
                                       char *tptr, ch;
if (ptr == NULL)
                                       return (0);
                                       tptr = ptr;
                                        while (isspace(*tptr))
                                       tptr++;
                                        for (;;) {
                                       while ((ch = *tptr) != '\0' && !isspace(ch)) {
                                        *ptr++ = ch;
                                       tptr++;
                                       while (isspace(*tptr))
                                       tptr++;
                                        if (*tptr == '\0')
                                       break;
                                       *ptr++ = ' ';
                                       cnt++;
                                        *ptr = '\0';
                                        return (cnt);
```

Table 18: Code samples by different models (Part 1).

```
Language
                Class
                                    Generator
                                                         Code
              Adversarial
                            Qwen2.5-Coder-7B-Instruct
                                                         package main
                                                         import (
                                                         "context"
                                                        "golang.org/x/sync/errgroup"
)
func parallelExecute(ctx context.Context, runners ...func(context.Context) error) error {
                                                         g := new(errgroup.Group)
                                                        for _, runner := range runners {
runner := runner
                                                        g.Go(func() error {
                                                         return runner(ctx)
                                                         3)
                                                        return g.Wait()
                                                        func main() {
                                                        ctx := context.Background()
                                                        runners := []func(context.Context) error{
func(ctx context.Context) error {
                                                         select {
                                                         case <-ctx.Done():
                                                         return ctx.Err()
                                                         case <-time.After(2 * time.Second):</pre>
                                                         return fmt.Errorf("runner 1 error")
                                                        | },
| func(ctx context.Context) error {
                                                        select {
case <-ctx.Done():</pre>
                                                        return ctx.Err()
                                                         case <-time.After(3 * time.Second):
                                                         return fmt.Errorf("runner 2 error")
                                                        err := parallelExecute(ctx, runners...)
if err != nil {
                                                         fmt.Println("First error encountered:", err)
JavaScript AI-Generated
                                   Yi-Coder-9B
                                                         class Vector2D {
                                                        #x;
#y;
                                                         constructor(x, y) {
                                                        this.#x = x;
this.#y = y;
                                                         setX(x) {
                                                         this.#x = x;
                                                        setY(y) {
                                                         this.#y = y;
                                                        getX() {
return this.#x;
}
                                                         getY() {
                                                         return this.#y;
                                                         add(vector) {
                                                        this.#x += vector.getX();
this.#y += vector.getY();
                                                         return this;
                                                         return this.#x === vector.getX() && this.#y === vector.getY();
```

Table 19: Code samples by different models (Part 2).