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Abstract
Recent advances in test-time scaling have led
to the emergence of thinking LLMs that exhibit
self-reflective behaviors and multi-step reason-
ing. While RL drives this self-improvement
paradigm, a recent study (Gandhi et al., 2025)
shows that RL alone does not truly instill these
new reasoning abilities - it merely draws out
behaviors already present in the base models.
This raises a question: How can we train mod-
els that don’t exhibit such thinking behavior
to develop it in the first place? To this end,
we propose THINKTUNING, a GRPO-based
interactive training approach where we aug-
ment the rollouts of a student model with the
guidance from a teacher model. A simple idea
from classroom practice inspires our method: a
teacher poses a problem, lets the student try an
answer, then gives corrective feedback–enough
to point the mind in the right direction and
then show the solution. Each piece of feed-
back reshapes the student’s thoughts, leading
them to arrive at the correct solution. Similarly,
we find that this type of implicit supervision
through feedback from a teacher model of the
same size improves the reasoning capabilities
of the student model. In particular, on average,
our method shows a 3.85% improvement over
zero-shot baselines across benchmarks, and
on MATH-500, AIME and GPQA-Diamond
it shows 2.08%, 2.23% and 3.99% improve-
ments over the vanilla-GRPO baseline1.

1 Introduction

Recent progress in AI research has been driven by
advances in scaling the models’ parameter count
(Kaplan et al., 2020). More recently, scaling along
the inference-time axis has produced significant
performance gains in various complex reasoning
tasks (Snell et al., 2025). Thinking models such
as OpenAI-o-series (Jaech et al., 2024), DeepSeek-
R1 (Guo et al., 2025) and Gemini-Thinking (Team

1Source code is available at https://github.com/
3rdAT/ThinkTuning

A train travels at
30 miles per hour
for 3 hours. How
far does it go?

30 divided by 3 is
10 miles!

Let’s double-check! When
you see 'per hour,' it

means for each hour. So,
we should multiply. The

answer is 90 hours

Oh! I should
always double

check!

HomeWork: A tank contains 300 mL of solution. You remove half of it, then add
100 mL of water. How much liquid is in the tank now?

300 plus 100 is
400. Half of

400 is 200 mL.

Wait... should
I add or halve
first? Let me
double-check.

I need to remove
half first. 300

divided by 2 is 150.
Then add 100: 150 +

100 = 250 mL.

Figure 1: Illustration of THINKTUNING motivation.
Top: teacher poses a math problem, student answers in-
correctly, and the teacher offers a short corrective feed-
back. Bottom: For a new problem, the student recalls
the feedback ("double-check") and ends up producing
the correct answer.

et al., 2023) are a testament to this, capable of
producing long reasoning chains, with sophisti-
cated behaviors like self-reflection, self-correction,
and multi-step reasoning. These significant perfor-
mance gains are attributed to the success of Re-
inforcement Learning (RL) through simple rule-
based rewards. However, online on-policy RL
settings face a constraint: sophisticated reasoning
behaviors will not emerge unless they are explic-
itly sampled during training. For example, models
like Qwen (Yang et al., 2025) often come with
strong priors, allowing them to naturally generate
sophisticated reasoning behaviors, which RL then
amplifies. In contrast, when models lack strong
priors, on-policy RL struggles to elicit them. In-
deed, a recent study shows that RL applied on the
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Llama 3.2–family (Grattafiori et al., 2024) of mod-
els struggles to elicit sophisticated reasoning be-
haviors (Gandhi et al., 2025).

In academic settings, cognitive modeling pro-
vides a structured approach for shaping both overt
(external) and covert (internal-cognitive) behav-
iors of students through guided interventions by
a teacher, typically using verbal mediation (Camp
and Bash, 1978). As illustrated in Fig. 1, imagine a
teacher asking, “A train travels at 30 miles per hour
for 3 hours. How far does it go?” A hasty student
might reply, “30 divided by 3 is 10 miles!” A good
teacher not only explains why the answer is incor-
rect but also imparts a generalizable skill. In this
case, the teacher could encourage the student to
double-check what “per hour” means and to think
carefully about whether they should multiply or
divide in similar problems. Particularly, in STEM
education literature (Chouvalova et al., 2024), it
has been established that the use of corrective feed-
back with errorful learning is more beneficial in
student learning2. Interestingly, recent thinking
models often exhibit such behavior of re-checking
and self-refining, which makes them better at var-
ious reasoning tasks. Presumably, these thinking
behaviors emerge in those models solely through
RL, as suitable priors are present to help in exhibit-
ing such behavior (Gandhi et al., 2025). However,
this brings up an important question: How can we
enable models to acquire these types of thinking
skills in the absence of suitable priors? And is RL
alone sufficient for this task?

Drawing inspiration from the example discussed
above, we propose THINKTUNING, a training ap-
proach where an active student model learns to
think by interacting with a teacher model. Rather
than assuming thinking behaviors will emerge dur-
ing RL, we engineer the training process to induce
them. This aligns with how cognitive modeling
in educational settings elicits complex reasoning
strategies, such as self-reflection, self-correction,
and problem-solving among students.

THINKTUNING consists of two stages. First, we
start by creating a set of few-shot exemplars, each
demonstrating an opinion on a student’s response,
a reason for that opinion, and a phrase that typically
showcases specific cognitive behaviors by solving a
problem. Our exemplars capture the most common

2A Quote from (Chouvalova et al., 2024): “Compared
to passively reading materials, errorful learning paired with
corrective feedback is more beneficial to student learning and
retention (Mera et al., 2022; Overman et al., 2021).

human self-reflective behaviors: Self-Conflict, Self-
Agreement, Self-Critique, and Self-Consultancy.
While many other cognitive behaviors exist, we
focus on these four because they are well defined
(Hermans, 2023; Hermans and Gieser, 2011). Sec-
ond, we train the student model in an online RL
setting with Group Relative Policy Optimization
(GRPO) (Shao et al., 2024). At each iteration, the
student model generates n rollouts, from which a
subset of γ rollouts is randomly selected. These
selected rollouts are passed to the few-shot teacher
model to obtain feedback and phrases showcasing
the cognitive skill. The feedback is then appended
to the corresponding γ rollouts. The resulting γaug
rollouts, together with the remaining n− γaug un-
augmented rollouts, are used for computing the
advantage estimates for the GRPO algorithm.

However, because the teacher model’s guidance
is entirely off-policy, it violates the assumptions
required for importance sampling in GRPO. To ad-
dress this, we introduce Advantage-Aware Shaping
(AAS), which adjusts the updates for tokens gener-
ated with teacher guidance by taking into account
both the advantage and the student model’s current
confidence in producing the token. This helps pre-
vent unstable updates during training and keeps the
model from becoming degenerate.

Our experiments show that a model trained with
THINKTUNING improve performance across di-
verse reasoning benchmarks like GSM8k (+3.14%),
MATH-500 (+9.4%), AIME (+4.94%), CSQA
(+3.04%), ARC-Challenge (+4.31%), GPQA-
Diamond (+3.08%) and MMLU-Pro (+2.8%) com-
pared to zero-shot baselines. Our training approach
improves over the GRPO baseline by 2.08%, 2.23%
and 3.99% on MATH-500, AIME and GPQA-
Diamond respectively. Our analysis experiment
showcases that THINKTUNING can steer the ex-
ploration during RL training and instill unknown
behaviors in the policy model.

2 Related Works

Inference-Time Scaling Scaling inference-time
compute has been a promising approach to improve
LLMs’ performance. Chain-of-thought (CoT) en-
courages models to generate step-by-step reason-
ing, significantly boosting performance on complex
tasks (Wei et al., 2022; Kojima et al., 2022). Self-
consistency generates multiple reasoning paths and
selects the most frequent answer, further improv-
ing accuracy (Wang et al., 2023). Iterative self-
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refinement, where models critique and correct their
own outputs, yields additional gains without weight
updates (Madaan et al., 2023). Methods such as
Tree-of-Thoughts and MCTSr extend inference-
time search by exploring branching reasoning tra-
jectories (Yao et al., 2023). Recent works, test-
time optimization (Snell et al., 2025) and PlanGEN
(Parmar et al., 2025b), put emphasis on dynam-
ically adjusting inference compute based on the
complexity of the task. Recently, Xu et al. (2024)
view the next-token prediction as a fundamental
reasoning task, and proposes annotating pretrain-
ing texts by explaining why a particular next word
should follow and how it connects to the preceding
context. By continually pretraining on this aug-
mented data, they demonstrate that the reasoning
abilities of LLMs improve. In contrast to all these
approaches, our work focuses on training models to
increase their inference-compute during test time
by instilling cognitive reflections in their responses.

Online and Offline RL Online RL involves a
model interacting with an environment to obtain
rewards and updating its parameters to maximize
them. Proximal Policy Optimization (PPO) un-
derpins most RLHF pipelines, aligning LLMs to
human preferences (Schulman et al., 2017; Ouyang
et al., 2022) in an online way. In contrast, Offline
RL involves making use of pre-collected data, such
as preference-labeled datasets. Directive Prefer-
ence Optimization (DPO) (Rafailov et al., 2023)
reformulates preference alignment as a supervised
objective, matching or outperforming PPO in sta-
bility and quality. Variants of DPO use three prefer-
ences instead of two, showing better performance
on reasoning tasks (Saeidi et al., 2024). A recent
variant of PPO, Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024) discards the critic
network from PPO and computes the advantage
estimates by comparing each trajectory’s reward to
the mean reward of a group of sampled trajectories,
thus improving efficiency and scalability of RL
training. This has been effective in improving the
reasoning and planning capabilities of LLMs (Par-
mar et al., 2025a). Our work is different from these
approaches as we try to obtain off-policy guidance
during online RL training.

Off-Policy Guidance during RL Earlier works
in RL like (Schmitt et al., 2018) showcase that
kickstarted training improves the data efficiency of
agents being trained. Kickstarting demonstrated
up to 10x faster training and convergence of the

agents. Recent work done by Yan et al. (2025)
closely aligns with our work. The authors include
samples from a larger model, such as Deepseek-
R1, alongside the on-policy rollouts during GRPO.
They propose Policy Shaping, which corrects the
importance-sampling ratios during training. How-
ever, our work differs from theirs by dynamically
calculating the shaping coefficient and augmenting
on-policy rollouts with off-policy tokens.

3 Methods

3.1 Background

GRPO The recent success of DeepSeek-R1 (Guo
et al., 2025) has established GRPO as the preferred
algorithm for online reinforcement learning due to
its efficiency and ease of implementation. GRPO,
a PPO (Schulman et al., 2017) variant, estimates
the advantage by aggregating the reward scores of
a group of n sampled responses to a given query
q, thus eliminating the need for a separate value
network and generalized advantage estimation
(GAE) (Schulman et al., 2015). Formally, let
Mθ and Mθold be the current and old policy
models, respectively. Let q and oi be the query
and ith response sampled from the dataset and the
old policy, respectively. Let r(.) be the reward
function, which measures the correctness of a
given response. Then, the GRPO objective is
defined as follows:

JGRPO(θ) = E
[
q ∼ D, {oi}ni=1 ∼ Mθold(O | q)

]

{
1

n

n∑

i=1

1

|oi|

|oi|∑

t=1

min
[

Mθ(oi,t|q,oi,<t)
Mθold

(oi,t|q,oi,<t)
Âi,t,

clip
( Mθ(oi,t|q,oi,<t)
Mθold

(oi,t|q,oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]

− β DKL

[
Mθ

∥∥ Mref

]
}

Here, the advantage is calculated as the normalized
reward, i.e., Âi,t = r̃(oi) = r(oi)−mean(r)

std(r) . This
eliminates the need for complicated advantage
estimation that happens in PPO. In the above
expression, Mθ(oi,t|q,oi,<t)

Mθold
(oi,t|q,oi,<t)

, is the importance
sampling weight which corrects for the mismatch
between the current policy Mθ and the old policy
Mθold that generated the sample responses. This
importance sampling weight (w) ensures that
updates are properly reweighted so that learning
remains unbiased even when the policy changes
over the course of training.

31239



q

Verification
&

Advantage
Calculation

Advantage
Aware
Shaping

Importance
Sampling
Ratio

Figure 2: ThinkTuning: The student model Mstudent generates n rollouts T1, . . . , Tn for question q. A selected
subset (e.g. T1, T2, T3) is passed (along with q) to the teacher model Mteacher, producing augmented rollouts Taug.
All trajectories enter the verification & advantage module to yield normalized advantages Âi. Augmented tokens
are weighted via Advantage Aware Shaping; remaining tokens use the standard importance sampling ratio. These
per-token weights are used in JThinkTuning(θ) for updating the student.

3.2 THINKTUNING

3.2.1 Student Responses (student responds)
In the first stage of THINKTUNING, we sample n
responses from the student policy Mstudent for each
query q in a training batch drawn from the dataset
D. We sample responses at a temperature of 1.0 to
observe diversity. These initial n responses repre-
sent the student model’s unaided attempts at solv-
ing a given problem, typically exhibiting a mix of
correct, partially correct, and incorrect reasoning.

3.2.2 Teacher Guidance (teacher helps)
In the second stage, we obtain guidance from
the teacher model Mteacher. Given the student
model’s response, the teacher model provides its
guidance by first stating its opinion. Then, it pro-
vides its justification for its opinion, grounded in its
own reasoning process, and finally offers a guiding
phrase on how to approach and solve the problem
effectively. Throughout this process, the teacher
model explicitly demonstrates cognitive behav-
iors, serving as an exemplar of reflective problem-
solving strategies for the student to learn from. In
particular, we focus on four self-reflective cognitive
behaviors, well-defined in (Hermans, 2023; Her-
mans and Gieser, 2011): (1) Self-Conflict: chal-
lenging one’s own response by presenting alterna-
tive perspectives; (2) Self-Critique: identifying
weaknesses in their response and suggesting im-
provements; (3) Self-Agreement: affirming and

justifying the strengths in their response; and (4)
Self-Consultancy: drawing on an alternative in-
ternal perspective or source of expertise to offer
new advice or insights that could further improve
one’s own response. We provide four few-shot
exemplars—two illustrating incorrect student re-
sponses and two showcasing correct ones—each
demonstrating one of the mentioned behaviors. Im-
portantly, all exemplars are expressed in the first-
person perspective, framing the guidance as inner
dialogue or self-reflection, making it natural for the
student model to imitate during training.

After obtaining the rollouts for a given query
from the student model, we randomly pass a frac-
tion γ of the rollouts to the teacher model for guid-
ance. For each selected rollout oi, we give the corre-
sponding question q to the teacher model Mteacher.
With the help of our few-shot exemplars, we obtain
the guidance from the teacher model in a structured
way, as shown in Appendix A.1.

3.2.3 Student Training (student improves)

In this stage, the feedback generated by the teacher
model (Mteacher) is augmented to the selected
fraction γ of the corresponding student rollouts.
This produces a set of γaug augmented trajecto-
ries. These are combined with the remaining
n − γaug un-augmented student rollouts to com-
pute token-level advantage estimates used in the
GRPO update. We formally call this process
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Guide(Mteacher,Mstudentθold
, q, γ). Then, we

compute the group-normalized advantage for each
token in a trajectory Ti ∈ {Tunaug ∪ Taug} as:

Âi,t = r̃(Ti) =
R(Ti)−mean (R(Tunaug ∪ Taug))

std (R(Tunaug ∪ Taug))

Here, Tunaug denotes the set of unaugmented tra-
jectories, and Taug denotes the teacher-augmented
ones. When teacher guidance successfully reasons
toward the correct answer, the augmented trajec-
tory typically receives a higher reward, resulting in
a higher relative advantage. In contrast, if the guid-
ance is not helpful, the unaugmented trajectories
dominate the normalization, which automatically
reduces the effect of poor teacher interventions.

Algorithm 1 THINKTUNING

1: Input: Initial Student model Mstudentθinit
, Teacher

modelMteacher , guidance fraction γ, hyperparameter
set (ϵ, β, c1, c2, k)

2:
3: Mstudentθ ←Mstudentθinit

4:
5: for training step=1 to I do
6: Mstudentold ←Mstudentθ

7: Sample batch Db ⊂ D
8:
9: // Student acts & Teacher helps

10: for all q ∈ Db do
11: if training step ≤ k then
12: {o}ni=1 ∼ Guide(q,Mstudentold ,Mteacher, γ)
13: else
14: {o}ni=1 ∼Mstudentold(O | q)
15: end if
16: end for
17:
18: // Reward calculation and Advantage estimation
19: Compute the rewards ri = r(oi) for each response

Compute group-normalized advantage Âi,t for all to-
kens

20:
21: for mini-batch step = 1 to µ do
22: if training step ≤ k and oi ∈ Taug then
23: Calculate waas(oi)
24: else
25: Calculate w(oi)
26: end if
27: Mstudentθ ← argmaxθ JTHINKTUNING(θ)
28: end for
29: end for
30: Output: Final think-tuned modelMstudentθ

Off-policy guidance tokens A core challenge
arises from the fully off-policy nature of the tokens
from teacher guidance. Although importance sam-
pling can, in principle, correct for the distributional
mismatch, accurate correction would require access
toMteacher(guidance | q, ostudent). In practice, however,
this does not reflect the true probability with which
the guidance was sampled from the teacher model,

due to differences in the prompting setup. To ad-
dress this, we propose Advantage-Aware Shaping
(AAS) for the augmented tokens in the trajecto-
ries Taug instead of using the importance sampling
weights. AAS uses the student model’s own con-
fidence in the tokens of the augmented trajectory,
modulated by its relative advantage, to determine
the weight assigned to each teacher-injected token’s
gradient during training. Formally, for each aug-
mented off-policy token oaugt in the trajectory Taug,
we define the Advantage Aware Shaping (AAS)
weight as:

waas

(
oaugt , Ât

)
=

Mstudent

(
oaugt | q, o<t

)

sg

(
Mstudent

(
oaugt | q, o<t

))
+ c

(
Ât

)

where sg denotes the stop-gradient operator and
Mstudent(o

aug
t | q, o<t) denotes the probability

assigned by the student model to the token oaugt ,
given the query q and the preceding tokens o<t.
This formulation is similar to the policy shaping
proposed by Yan et al. (2025). However, in THINK-
TUNING we make use of c(Ât), a shaping coeffi-
cient determined by the advantage Ât at that token.
To be specific, c(Ât) is computed as:

c(Ât) = c1 + (c2 − c1) ·
Amax − Ât

Amax −Amin

where c1 and c2 are hyperparameters, and Amin,
Amax are the minimum and maximum token advan-
tages possible for a group of responses. This is a
linear mapping function which provides a shaping
coefficient close to c1 for positive advantages and
a shaping coefficient close to c2 for negative advan-
tages. These shaping coefficients serve as a knob
that enables us to control the magnitude of gradient
updates for the off-policy tokens. For a detailed
analysis of its effect on waas and its subsequent
impact on gradient updates, see Appendix A.3.

Training Objective We incorporate this shaping
mechanism directly into our final training objective,
which we refer to as JTHINKTUNING(θ) . For each of
the on-policy tokens ot ∈ {Tunaug ∪ Taug} in the
batch, we compute the importance sampling weight
wt between the current and old student policies.
For off-policy tokens in the teacher-augmented part
of the trajectories, i.e., oaugt ∈ Taug, we make use
of the advantage-aware shaped weight waas as dis-
cussed above. In order to distinguish between the
on-policy student tokens (ot) and the off-policy
guidance tokens (oaugt ) during loss computation,
we utilize a binary mask (mt). Formally, we define
the THINKTUNING objective as follows:
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JTHINKTUNING(θ) =

E
[
q ∼ D, {oi}ni=1 ∼ Guide

(
q, Mθold , Mteacher, γ

)]

{
1

n

∑

i∈Tunaug

1

|oi|

|oi|∑

t=1

min
[
wi,tÂi,t,

clip(wi,t, 1− ϵ, 1 + ϵ) Âi,t

]

+
1

n

∑

i∈Taug

1

|oi|

|oi|∑

t=1

[
mi,t · waas(oi,t Âi,t) · Âi,t +

(1−mi,t) · (min[wi,t · Âi,t, clip(wi,t, 1− ϵ, 1 + ϵ) · Âi,t)
]

− β DKL

[
Mθ

∥∥ Mref

]
}

where w and waas are importance sampling
and advantage-aware shaped weights, respectively.
This formulation preserves the benefits of GRPO’s
group-relative advantage estimation while address-
ing the off-policy nature of teacher-augmented roll-
outs through controlled shaping. As a result, the
student model is encouraged to learn from helpful
feedback of the teacher model. Once the student
model has sufficiently learned from the teacher’s
guidance, we stop providing further guidance af-
ter a predefined number of steps (k), which is a
hyperparameter.

4 Experiments

4.1 Setup

Baselines We first compare our method against
zero-shot baselines and prompt-based self-
improvement methods like Self-Verify (Kumar
et al.) and Self-Correct (Huang et al., 2023). We
also compare with the s1-budgeting (Muennighoff
et al., 2025) method, where we set a token budget
of 2048 and let the model generate until it reaches
this budget by replacing the end-of-sequence token
with “wait...”. For training-based methods, we
compare against SFT, STaR (as implemented by
Kumar et al.), and GRPO (Guo et al., 2025).

Training Dataset For THINKTUNING and other
training-based methods, we make use of the
GSM8k train set which has 7473 samples. We train
only on this dataset to showcase that THINKTUN-
ING could generalize to out-of-domain problems.

Models We use Llama3.2-3B-Instruct
(Grattafiori et al., 2024) model as the base model
to obtain our baselines and perform training with
THINKTUNING. Recent work (Gandhi et al., 2025)
shows that models like Qwen naturally exhibit
these cognitive behaviors, whereas the Llama
family of models lacks them. Hence, choosing a

model from the Llama family is a natural way to
demonstrate the utility of our method. We also use
the same 3B version for the teacher model.

Benchmarks We evaluate our method on sev-
eral benchmarks across different reasoning cate-
gories: GSM8K (Cobbe et al., 2021), MATH-500
(Hendrycks et al., 2021) and AIME (Veeraboina,
2023) for Mathematical Reasoning; CSQA (Tal-
mor et al., 2018) and StrategyQA (Geva et al.,
2021) for Commonsense Reasoning; and for Sci-
entific Reasoning, we use ARC-Challenge (ARC-
C) (Clark et al., 2018) and GPQA Diamond Set
(GPQA-D) (Rein et al., 2024) (see Table 1). To
ensure consistent and proper evaluation, after the
model finishes generation, we append the phrase
“So, the final answer is \boxed{” , which prompts
the model to explicitly output the final answer in
a boxed format, simplifying answer parsing and
enabling exact match (EM) accuracy calculation
using Math-Verify with ease.

Training & Inference We implement THINK-
TUNING using the verl (Sheng et al., 2024) frame-
work. All experiments are conducted on 4 NVIDIA
H100 GPUs. For detailed hyperparameter settings,
please refer to the Appendix A.2. To speed up
rollout generation and evaluation, we utilize vLLM
(Kwon et al., 2023) due its efficiency.

4.2 Results
Comparison with prompting-based methods
From Table 1, we can see that Self-Verify and
Self-Correct methods underperform compared to
the Zero-Shot-CoT baseline. They achieve only
52.08% and 51.45% on GSM8k and 34.98% and
32.46% on Math-500, respectively, whereas Zero-
Shot-CoT attains 71.08% and 38.14% on these
benchmarks. We see similar trends on other
benchmarks like CSQA, ARC-C, GPQA-D and
MMLU-Pro. The s1-budgeting method, which
simply scales inference-time compute, yields only
marginal improvements on GPQA-D yet remains
far below the baseline on other reasoning tasks.
Our evaluation shows that this method fails to
produce meaningful gains, and in several cases
leads to degraded performance. For instance, on
MATH-500, s1-budgeting yields only 25.72%, un-
derperforming even the Zero-Shot-CoT baseline,
and on CSQA, it performs on par with Self-Verify
but remains 16.2 points behind THINKTUNING

(54.21% vs. 70.43%). In contrast, our THINK-
TUNING consistently outperforms Zero-Shot-CoT
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Methods Mathematical Reasoning CommonSense Reasoning Scientific Reasoning Other Reasoning

GSM8K MATH-500 AIME CSQA ARC-C GPQA-D STRATEGYQA MMLU-PRO

Zero-Shot-CoT 71.08±0.20 38.14±0.75 9.32±0.36 67.39±0.26 75.49±0.20 25.10±0.85 66.40±0.43 34.41±0.11

Self-Verify 52.08±1.73 34.98±0.54 8.19±0.29 54.41±0.73 61.56±0.47 23.94±0.68 52.10±0.39 28.10±0.14

Self-Correct 51.45±0.30 32.46±0.47 7.81±0.18 45.90±0.69 52.88±0.58 24.60±0.71 52.39±0.78 25.50±0.12

s1-budgeting 51.30±0.42 25.72±0.54 9.01±0.31 54.21±0.44 59.51±0.27 26.57±0.99 57.88±0.80 28.59±0.10

SFT 62.27±0.61 29.00±0.49 6.07±0.43 65.91±0.24 70.90±0.71 24.49±0.82 64.12±0.65 36.07±0.07

STaR 73.54±0.22 40.78±0.35 8.91±0.29 67.91±0.30 77.24±0.21 21.46±0.86 66.84±0.41 34.69±0.12

GRPO 78.89±0.84 45.46±1.55 12.03±0.33 69.86±0.52 79.13±0.21 24.19±0.75 70.68±0.35 36.07±0.07

THINKTUNING 74.22±0.13 47.54±0.46 14.26±0.38 70.43±0.19 79.80±0.24 28.18±0.63 66.52±0.41 37.21±0.11

Table 1: Main Results. We evaluate eight methods on seven benchmarks that we group into a four–way taxonomy:
(i) Mathematical reasoning (GSM8K, MATH-500); (ii) Commonsense reasoning (CSQA); (iii) Scientific reasoning
(ARC-CHALLENGE, GPQA-DIAMOND); and (iv) Other multi–disciplinary reasoning (STRATEGYQA, MMLU-
PRO). We report accuracy (%) as the mean ± standard error over ten random seeds. For each dataset the highest
score is boldfaced and the second-highest is underlined. All experiments were run with a maximum context length
of 4096 tokens and a decoding temperature of 0.7.

and all prompt-based methods. It achieves 74.22%
on GSM8k (+3.14 points), 47.54% on Math-500
(+9.40 points), and similar gains on CSQA, ARC-
C, GPQA-D, StrategyQA, and MMLU-Pro.

Comparison with training-based methods Our
experiments show that fine-tuning (SFT) on the
GSM8k training split degrades performance across
every benchmark. Interestingly, we also observe
that SFT leads to a performance drop of around
8% even on the GSM8k test set. We hypothesize
that this is due to a distributional mismatch be-
tween the Llama 3.2 family’s pretrained reasoning
priors and the highly structured chain-of-thought
formats found in the GSM8k training annotations.
In contrast, the STaR method, which uses the self-
generated reasoning chains into the fine-tuning pro-
cess, achieves 73.54 % on GSM8k (vs. 62.27 % for
SFT) and 40.78 % on Math-500 (vs. 29.00 %). It
also improves on CSQA (67.91 % vs. 65.91 %) and
ARC-C (77.24 % vs. 70.90 %), but its gains are
uneven: STaR scores only 21.46 % on GPQA-D
and records 66.84 % on StrategyQA and 34.69%
on MMLU-Pro. By comparison, THINKTUNING

consistently outperforms STaR across all bench-
marks—74.22 % on GSM8k (+0.68 points), 47.54
% on Math-500 (+6.76 points), 70.43 % on CSQA
(+2.52 points), 79.80 % on ARC-C (+2.56 points),
and 28.18 % on GPQA-D (+6.72 points).

Comparison with GRPO GRPO serves as our
strongest online RL baseline, and achieves 78.89
% on GSM8k, 45.46 % on Math-500, 69.86 %
on CSQA, 79.13 % on ARC-C, and 24.19 % on
GPQA-D. On broader reasoning tasks, GRPO at-
tains 70.68 % on StrategyQA and 36.07 % on
MMLU-Pro. In comparison, THINKTUNING un-
derperforms GRPO on GSM8k (74.22% vs. 78.89

%) and StrategyQA (66.52 % vs. 70.68 %) but out-
performs on rest: Math-500 (47.54 % vs. 45.46 %),
CSQA (70.43 % vs. 69.86 %), ARC-C (79.80 %
vs. 79.13 %), and GPQA-D (28.18 % vs. 24.19 %).
Also, THINKTUNING exceeds GRPO on MMLU-
Pro (37.21 % vs. 36.07 %), demonstrating stronger
scientific and factual reasoning.

5 Analysis

Does THINKTUNING scale inference time? To
investigate this, we analyze the number of tokens
generated during our evaluation. Specifically, we
compare the output length of responses from mod-
els trained with GRPO and THINKTUNING across
six benchmarks, excluding AIME and MMLU-
Pro. For each benchmark, we compute the average
number of tokens generated per question and re-
port the results in Figure 3. We observe that both
GRPO and THINKTUNING models end up spend-
ing more compute on complex benchmarks that re-
quire multi-step reasoning. For example, in bench-
marks like MATH-500 and GPQA-D, they pro-
duce responses with more than 300 tokens. How-
ever, on the GPQA-D benchmark THINKTUNING

model ends up spending around 5.2% more tokens
than the GRPO-trained model, which translates
into an improvement in relative performance. In-
terestingly, the GRPO model spends 3.6% more
tokens than THINKTUNING model, but the latter
ends up performing better in MATH-500. On other
benchmarks as well, THINKTUNING model spends
around 3.4-20.8% more tokens than the GRPO
model. From these analyses, it is evident that
THINKTUNING increases inference-time compute
by instilling cognitive reflection, which results in
performance improvements in certain benchmarks.
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GSM8k Error Categories StrategyQA Error Categories

Error Type Description Freq Error Type Description Freq

Computation Errors Mistakes in arithmetic, algebra, or basic number
calculations

45% Knowledge-Retrieval Errors Failure to fetch or recognize the correct factual
premises.

65%

Interpretation Errors Misreading the question or using the wrong quan-
tities/units

85% Interpretation Errors Misreading the question and interpreting it
wrongly.

15%

Logical Reasoning Errors Faulty step-by-step logic, including contradic-
tions or invalid inferences

70% Logical-Inference Errors Faulty reasoning, including contradictions or in-
valid inferences.

20%

Recall Errors Forgetting earlier facts or intermediate results al-
ready computed

15% Answer Label Errors Sound reasoning with correct premises, but incor-
rect Boolean label.

5%

Redundancy Errors Unnecessary steps or checks that increase solution
length and introduce mistakes

40%

Table 2: Error Category Descriptions and Frequencies. Side-by-side comparison of error types, their descriptions,
and frequency of occurrence observed in GSM8K and STRATEGYQA analyses (based on 20 sampled instances
where GRPO model was correct and THINKTUNING model was incorrect).

0 100 200 300 400 500 600
Average Tokens

ARC-C

CSQA

GPQA-D

GSM8K

MATH-500

StrategyQA

Token Length Comparison

GRPO
ThinkTuning

Figure 3: Average number of tokens generated per ques-
tion by models trained with GRPO and THINKTUNING
across six reasoning benchmarks (StrategyQA, MATH-
500, GSM8K, GPQA-D, CSQA, and ARC-C).

Error Analysis on GSM8K and StrategyQA
As observed in Table 1, GRPO has better perfor-
mance than THINKTUNING on the GSM8k and
StrategyQA benchmarks. We further investigate
this performance gap by conducting a manual error
analysis on 20 instances where the GRPO model
was correct and the THINKTUNING model was in-
correct. Our analysis reveals that the THINKTUN-
ING model exhibits different types of errors. These
error types along with their distribution across
the analyzed instances are shown in Table 2. On
GSM8k instances, we observe that errors arising
from misinterpretation of the question occur in 85%
of the analyzed instances. Furthermore, such mis-
interpretation often leads to logical inconsistencies,
which occur in 70% of the instances. Upon closer
examination, we observed that Self-Conflict and
Self-Critique strategies lead the model to second-
guess correct initial steps, eventually ending up mis-
interpreting the problem. Similarly, in StrategyQA
instances, we observe that Knowledge Retrieval
errors occur in 65% of the instances. Here, most
of the time, the model agrees with incorrect knowl-

edge recalled and ends up providing the wrong
answer. However, these strategies prove to be ben-
eficial in much harder math problems like Math-
500, AIME, GPQA-D, MMLU-Pro, but hinder per-
formance in simple benchmarks like GSM8k and
StrategyQA.

Can THINKTUNING instill unknown behaviors?
We designed an experiment to demonstrate that
THINKTUNING can guide exploration, eventually
instilling unique behaviors previously unknown to
the student model. To this end, let us consider a triv-
ial use case in which we want the model to end its
response by quoting the South Indian actor “Tha-
lapathy Vijay”. During RL training on math prob-
lems, it is highly unlikely that the model explores
a trajectory that ends its response with a movie-
like dialogue quoting a South Indian actor. As
discussed in Section 1, RL can reinforce something
only if it is able to sample it in the first place. How-
ever, we show experimentally that THINKTUNING

can achieve this by guiding the exploration. For this
experiment, we define our reward function r(oi) as
follows:

r(oi) =

{
1.0 if the final answer is correct
0.0 otherwise

+



0.5 if “Thalapathy Vijay” appears in the

response
0.0 otherwise

We train models with both GRPO and THINKTUN-
ING using this reward function. For THINKTUN-
ING, we prompt the teacher model to provide guid-
ance that quotes Thalapathy Vijay in a movie-like
dialogue about approaching the problem. In both
cases, the student model is given only the ques-
tion during sampling; nothing related to the actor’s
name appears in the prompt. Upon training with
this setup, we observed that a model trained with
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Question: What island country is ferret popular?
Choices: A. own home, B. north carolina C. great britain D. hutch E. outdoors

To answer this question, let's evaluate each option in relation to the question about
an island country where ferrets are popular.

A. own home - This is not an island country.
B. north carolina - This is a state in the United States and not an island country.
C. great britain - Great Britain is an island country, and ferrets are indeed popular
there.
D. hutch - A hutch is a structure for keeping animals, not a country.
E. outdoors - This is a place where ferrets might be kept but not a country.

So, the correct answer is \boxed{C}. Thalapathy Vijay would have said “The
moment you make a connection, the answer becomes clear.” I connected ferrets
with Great Britain, where they are indeed popular.

To answer this question, we need to identify the island country where ferrets are
popular.
Step 1: Analyze the options provided.

A. own home: This is not an island country.
B. North Carolina: This is a state in the United States, not an island country.
C. Great Britain: This is an island country, which includes England, Scotland, and
Wales.
D. hutch: This is a container for keeping animals, not an island country.
E. outdoors: This is a place where ferrets can be found, but it's not an island
country.
Step 2: Based on the analysis, the correct answer is the island country where
ferrets are popular.
Step 3: Choose the correct answer. \boxed{C}

Figure 4: Illustration of exploration guided by THINKTUNING. Despite identical reward incentives encouraging
responses that end with a cinematic quote from the actor “Thalapathy Vijay,” only the THINKTUNING model
successfully adopts this novel behavior. This highlights THINKTUNING ’s capability to effectively steer model
exploration toward specific, previously unseen stylistic outputs.

THINKTUNING was able to generate responses end-
ing with a quote from Thalapathy Vijay, as shown
in Figure 4. The GRPO model is unable to elicit
such behavior, since it is unlikely for it to sample
such a trajectory during RL. This experiment shows
that THINKTUNING can successfully instill a be-
havior that was completely unknown to the student
model beforehand.

6 Conclusion

We introduced THINKTUNING, a GRPO-based in-
teractive training framework that instills cognitive
reflections via guided exploration. The key idea is
to augment on-policy rollouts of a student model
with guidance from a teacher model, which pro-
vides corrective feedback needed to approach and
solve a given problem. Since this guidance is com-
pletely off-policy, we propose using an Advantage-
Aware Shaping (AAS) weight, which lets the stu-
dent model learn helpful tokens from guidance in
a stable way. The introduced THINKTUNING ob-
jective paves the the way for qualitative guided
exploration under on-policy RL settings, which
is particularly helpful when the base models lack
proper priors.

Empirically, THINKTUNING boosts the perfor-
mance of a Llama-3.2-3B-Instruct model that was
trained only on questions from the GSM8K train
split. Across a four-way taxonomy of reasoning
benchmarks, Mathematical, Commonsense, Scien-
tific and Multi-disciplinary, THINKTUNING attains
the best score on six of eight datasets, matches or
surpasses GRPO on every set except GSM8K and
StrategyQA, and delivers the largest absolute gain
on AIME and GPQA-DIAMOND. Token-length
analysis suggests that a THINKTUNING model

spends more inference-time compute than GRPO.
Additional experiments reveal that THINKTUNING

can elicit unknown behaviors. We hope our work
will inspire future research that employs larger-
scale interactive training frameworks.

Limitations and Future Work. Our study relies
on experiments with smaller-sized LLMs; how-
ever, experimenting with larger-sized LLMs to in-
duce behaviors beyond cognitive reflection is an
interesting future research direction. Our method
only assigns reward scores by evaluating final an-
swers rather than intermediate reasoning, and it
explores only four cognitive behaviors. Addition-
ally, THINKTUNING’s effectiveness is dependent
upon the teacher model’s ability to provide guid-
ance that leads the augmented trajectories to obtain
higher advantage scores. Consequently, the per-
formance of our approach may be limited when
the teacher model is unable to generate helpful
guidance. Future work should (i) design richer or
adaptive feedback policies (teacher models); (ii)
investigate automatic curriculum schedules for the
guidance fraction γ; (iii) extend the framework to
tool-augmented or multi-modal settings; and (iv)
test whether cascading several weak teachers can
compound benefits. Despite these limitations, our
results demonstrate that our approach can instill
behaviors that pure RL alone cannot evoke.

Ethics Statement

The use of proprietary LLMs such as GPT-4 and
Gemini in this study adheres to their policies of
usage. We have used AI assistants to address the
grammatical errors and rephrase the sentences.
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A Appendix

A.1 Few-Shot Examples

Self-Conflict Exemplar

Prompt: Question: Every day, Wendi feeds each
of her chickens three cups of mixed chicken feed,
containing seeds, mealworms and vegetables to help
keep them healthy. She gives the chickens their feed
in three separate meals. In the morning, she gives her
flock of chickens 15 cups of feed. In the afternoon,
she gives her chickens another 25 cups of feed. How
many cups of feed does she need to give her chickens
in the final meal of the day if the size of Wendi’s
flock is 20 chickens? Let’s think step by step and
provide your final answer inside boxed notation.

Student Response: To find the total amount of feed
Wendi needs to give her chickens for the final meal
of the day, we need to calculate the total amount of
feed already given to the chickens and subtract that
from the total amount she gives per day. First, let’s
calculate the total amount of feed Wendi gives in the
morning and afternoon: 15 cups (morning) + 25 cups
(afternoon) = 40 cups. Since Wendi gives feed to
20 chickens, we need to divide the total amount of
feed by 20 to get the feed per chicken: 40 cups / 20
chickens = 2 cups per chicken. Now, we need to find
out how many cups of feed Wendi needs for the final
meal of the day. Since each chicken needs 2 cups of
feed, we multiply the number of chickens by 2: 20
chickens * 2 cups per chicken = 40 cups So, Wendi
needs 40 cups of feed for the final meal of the day.
Final Answer:
boxed40
Response:
<opinion>incorrect</opinion>
<reason>Wait... Okay, so let me go back and check
what I just did... I said each chicken got 2 cups, right?
But that’s not what the problem said. Hmm. Yeah...
look here! It says each chicken needs 3 cups per day.
That’s a clear mismatch. I think I let the 40 cups
that were already given steer my math, when really, I
should’ve started from what each chicken is supposed
to get.</reason>
<phrase>So let me try that again, this time from the
actual requirement: 20 chickens times 3 cups each
gives 60 cups total. She already gave 15 in the morn-
ing and 25 in the afternoon... that’s 40 so far. So that
means the last meal needs to make up the difference...
60 minus 40 is 20 cups. So the correct final answer is
20 </phrase>

Self-Agreement Exemplar

Prompt: Question: Toulouse has twice as many
sheep as Charleston. Charleston has 4 times
as many sheep as Seattle. How many sheep
do Toulouse, Charleston, and Seattle have to-
gether if Seattle has 20 sheep? Let’s think step by
step and output the final answer inside boxed notation

Student Response: To find the total number of sheep,
let’s first find the number of sheep each city has.
Since Charleston has 4 times as many sheep as Seat-

tle, and Seattle has 20 sheep, Charleston has: 4 * 20
= 80 sheep
Since Toulouse has twice as many sheep as
Charleston, and Charleston has 80 sheep, Toulouse
has: 2 * 80 = 160 sheep
Now, let’s add up the number of sheep each city has:
20 (Seattle) + 80 (Charleston) + 160 (Toulouse) =
260 sheep
So, Toulouse, Charleston, and Seattle have 260 sheep
together.

Response:
<opinion>correct</opinion>
<reason>Wait... Alright, let me walk through my
steps again to be sure. Seattle has 20 sheep.
Charleston has 4 times as many, so that’s 80. Then
Toulouse has double Charleston’s amount, which is
160. If I add them: 20 + 80 + 160 — that’s 260. The
ratios all hold, and the math lines up. This is the kind
of chain I’d expect to see when the relationships are
proportional like this.</reason>
<phrase>So yeah, I feel good about this... 260 sheep
total. The logic is solid and everything checks out
when I trace it back. So the correct final answer is
260 </phrase>

Self-Consultancy Exemplar

Prompt: Question: Carla is downloading a 200 GB
file. Normally she can download 2 GB/minute, but
40% of the way through the download, Windows
forces a restart to install updates, which takes 20
minutes. Then Carla has to restart the download from
the beginning. How long does it take to download
the file? Let’s think step by step and provide your
final answer inside \boxed{} notation.

Student Response: To find the total time it takes for
Carla to download the file, we need to break it down
into two parts:
1. The download before the restart: 80% of the file
(0.8 * 200 GB) = 160 GB at 2 GB/min.
2. The download after the restart: The full file (200
GB) at 2 GB/min.
Now we can calculate the time needed for each part:
Time for the first part: 160 GB / 2 GB/min = 80
minutes Time for the second part: 200 GB / 2 GB/min
= 100 minutes
Total time: 80 minutes + 100 minutes = 180 minutes.
So, it takes Carla 180 minutes to download the file.
Final Answer: 180

Response:
<opinion>incorrect</opinion>
<reason>Hmm... I said she downloaded 80% before
the restart, but something about that number doesn’t
sit right. Let me check the prompt again... yeah... it
actually says she was only 40% through. So I just...
filled in the rest? That’s definitely on me. And now
I’m thinking — if my old CS teacher were looking
at this, he’d pause, tilt his head, and say, “Are you
sure about that number?” And yeah... I’d catch it
immediately. That voice in my head usually knows
when something’s off.</reason>
<phrase>Alright, time to clean this up. 40% of 200
GB is 80 — at 2 GB per minute, that’s 40 minutes.
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Then we’ve got the 20-minute restart. And after that,
she has to download the entire 200 GB again — so
100 more minutes. So the total should be 40 + 20
+ 100... that’s 160 minutes. The final answer is:
160 </phrase>

Self-Critic Exemplar

Prompt: Question: Toula went to the bakery and
bought various types of pastries. She bought 3 dozen
donuts which cost $68 per dozen, 2 dozen mini
cupcakes which cost $80 per dozen, and 6 dozen
mini cheesecakes for $55 per dozen. How much was
the total cost? Let’s think step by step and provide
your final answer inside notation.

Student Response: To find the total cost of the pas-
tries, we need to calculate the cost of each type of
pastry and add them together.
1. Donuts: 3 dozen donuts at $68 per dozen: 3 * 68 =
$204
2. Mini cupcakes: 2 dozen cupcakes at $80 per dozen:
2 * 80 = $160
3. Mini cheesecakes: 6 dozen cheesecakes at $55 per
dozen: 6 * 55 = $330
Now, let’s add the costs together: 204 + 160 + 330 =
$694
The total cost of the pastries is $694. Final Answer:
694

Response:
<opinion>correct</opinion>
<reason>Hmm... Alright, so I had: 3 dozen at 68 —
that’s 204. Then 2 dozen at 80 — that’s 160. And 6
dozen at 55 — that’s 330. That gives a total of 694.
But honestly, I didn’t walk through the addition as
carefully as I should’ve. I just kind of jumped to the
answer.
And that’s something I remind myself often: when
you’re dealing with totals, especially with money,
it’s easy to assume it’s right without verifying. I
caught myself doing exactly not following that ad-
vice.</reason>
<phrase>So let me actually check it properly this
time. First, 204 plus 160 gives 364. Then adding
330 to that brings us to 694. Same answer — but
now it feels like I’ve actually confirmed it, not just
assumed it. When I slow down and show each step, I
reduce the chance of sneaky errors slipping past, and
it’s easier for someone else to follow my logic too.
That’s a habit worth modeling. Finally, the correct
final answer is 694 </phrase>

A.2 Implementation Details

Shaping coefficient We set c1 to be +0.001 and
c2 to be -0.001. Hence, for our experiments
c(Â) ∈ [−0.0001, 0.0001]. However, two special
cases might arise when Mθ > 0.9999 (can only
occur when a high confidence token has a posi-
tive advantage) and Mθ < 0.0001 (can only occur
when a low confidence token has a negative advan-
tage). In both these cases, we choose to mask the

waas weights from loss computation for stability
purposes.

Main Experiments For training SFT & STaR
baselines, we used an effective batch size of 8 and
a learning rate of 5.0e-6 with a cosine scheduler.
For GRPO and THINKTUNING experiments, we
set the batch-size to be 8, mini-batch size to be 2
with 16 rollouts per sample. We set a constant learn-
ing rate of 1e-6. We set the KL co-efficient to be
0.001. For THINKTUNING, we start by setting the
guidance ratio (γ) to be 75% of the rollouts. Then,
we make use of a linear scheduler, which reduces
the guidance ratio, as training progresses. After
1/5 of the total training steps, we stop providing
teacher guidance.

Training Cost We calculate the overall training
cost in terms of training time, Model FLOPs utiliza-
tion and average Estimated FLOPs per step which
is supported in the verl framework. We report
these statistics for both the GRPO and ThinkTun-
ing methods. While training with a batch-size of
128 and rollout of 16, on the GSM8k train set, we
observe the statistics as shown in Table 3.

Unknown Behavior Experiment For both the
GRPO and THINKTUNING training runs we set
the batch-size to be 128, mini-batch size to be 32,
with 16 rollouts per sample. We set the KL co-
efficient to be 0, to let the model explore without
any constraints during training. We start by setting
the guidance ratio to be 75% of the rollouts. Then,
we make use of a linear scheduler, which reduces
the guidance ratio, as training progresses. After
1/5 of the total training steps, we stop providing
teacher guidance.

A.3 Gradient Analysis of THINKTUNING

We define the Advantage Aware Shaping (AAS)
weight for each augmented token oaugt in the aug-
mented trajectories Taug as:

waas(o
aug
t , Ât) =

Mθ(o
aug
t | q, o<t)

sg (Mθ(o
aug
t | q, o<t)) + c(Ât)

,

where c(Ât) does not depend on θ. c(Ât) is calcu-
lated as follows:

c(Ât) = c1 + (c2 − c1) ·
Amax − Ât

Amax −Amin

where c1 = +0.0001 and c2 = −0.0001 are hyper-
parameters.
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For ease of derivation, let us define:

Dt = sg
(
Mθ(o

aug
t | q, o<t)

)
+ c

(
Ât

)
,

Mθ = Mθ(o
aug
t | q, o<t),

waas =
Mθ

Dt
.

Then, the gradient of waas with respect to θ is:

∇θwaas =
1

Dt
∇θMθ.

Applying the log-derivative trick, we obtain:

∇θwaas =
Mθ

Dt
∇θ logMθ.

Following the derivation by Yan et al. (2025),
we express the gradient with respect to each output
logit (for each token vt in the vocabulary V) as:

gc =
∂waas

∂Mθ(vt)
=

Mθ

Dt

(
1{vt=oaugt } −Mθ(vt | q, o<t)

)
.

Here, the identity case represents the gradient
when the vt = oaugt , i.e., token from the teacher
guidance. Under the identity case. Hence, for a
positive advantage token, the gradient encourages
the student model to increase the probability of
the guidance token (gc = waas · (1 − Mθ))
and decrease the probability of other tokens in the
vocabulary V (gc = waas · (−Mθ)) and vice
versa for a negative advantage token. Note that
when waas = 1, gc becomes similar to the vanilla
supervised learning gradient.

A.3.1 Analysis for Positive Advantage tokens

When the augmented token oaugt from a trajectory
in Taug receives a positive advantage (Ât > 0), Ide-
ally, we want the model to learn it, in a conservative
way without drastic updates. From our choice of
hyper-parameters, the shaping term is c(Â) > 0
(upto +0.0001). One can observe the following two
cases:

Case 1: Low Confidence tokens Here, the stu-
dent model assigns a low probability for this guid-
ance token. Because of this, the gradient is dom-
inated by the (1 −Mθ) term as Mθ is small. In
this case, w < 1 always holds. Hence, the gradient
pushes to increase the probability of this token, con-
servatively in comparison to the vanilla gradient
update.

Case 2: High Confidence tokens When the
model already assigns high probability to the token,
the term (1−Mθ) becomes very small, resulting
in a minor gradient update in comparison to the
vanilla gradient update. Thus, the gradient still in-
creases the token’s probability slightly. This avoids
unnecessary and aggressive updates, stabilizing the
learning process.

A.3.2 Analysis for Negative Advantage tokens

When the augmented token oaugt from a trajectory
in Taug receives a negative advantage (Ât < 0),
Ideally, we want the model to reduce its probability.
From our choice of hyper-parameters, the shaping
term is c(Â) < 0 (upto -0.0001). One can observe
the following two cases:

Case 1: High Confidence As previously dis-
cussed, when the model already assigns high prob-
ability to the guidance token, the term (1 −Mθ)
becomes very small. The gradient becomes dom-
inated by waas term. Since c(Â) < 0, waas > 1
always holds but is bounded. Hence, the gradient
magnitude is slightly higher than vanilla gradient
update, making the model to reduce the probability
of this already highly confident token.

Case 2: Low Confidence When the model as-
signs low probability to the token, the term (1 −
Mθ) becomes large (≈ 1). Because of our choice
of shaping coefficient for negative advantage to-
kens, waas > 1 always holds, but is bounded. In
this case, the gradient magnitude is higher than
the vanilla gradient update. However, as discussed
in A.2, we mask the low confidence negative ad-
vantaged tokens, to not unnecessarily decrease the
probability of this token.

A.4 Qualitative Analysis

THINKTUNING instills cognitive behaviors such as
self-verification and deliberate re-evaluation, lead-
ing to notable improvements across a range of rea-
soning benchmarks. These reflective strategies are
particularly beneficial in domains requiring multi-
step scientific reasoning. Figure 5 illustrates a rep-
resentative example from GPQA-D to highlight the
qualitative impact of THINKTUNING. The GRPO
model recalls relevant domain knowledge but often
falls short in applying it effectively to the problem
at hand. In contrast, the THINKTUNING-trained
model shows a greater tendency to reflect on its
initial reasoning, reassess intermediate steps, and
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Method Training Time Model FLOPs utilization Estimated FLOPS

GRPO ∼50 minutes ∼17-18% ∼700
THINKTUNING ∼70 minutes ∼18-19% ∼730

Table 3: Training Statistics Comparison. While THINKTUNING requires longer training time (∼70 vs ∼50
minutes), it achieves higher computational utilization efficiency (18-19% vs 17-18% FLOPs utilization), demon-
strating more effective use of available computational resources. Due to additional rollouts from the teacher model,
THINKTUNING has slightly higher FLOPs consumption

Question: Very large number of neutrinos produced by the Sun reach the Earth (very large flux of neutrinos, defined as the number of neutrinos per
cm^2, per second). Let us assume that, hypothetically, the pp-III branch suddenly stopped in the core of the Sun about 8 and a half minutes ago, while
all other reactions remained as they were. What would be the approximate ratio of the flux between two bands of neutrino energies of 700-800 KeV
(band 1) and 800-900 keV (band 2). Flux (band 1) / flux (band 2) is: Choices: A. 1. B. 0.1 (10^-1). C. 0.01 (10^-2). D. 10.

To solve this problem, we need to understand the role of the pp-III branch in the
production of neutrinos in the Sun.

The pp-III branch is the process by which helium-3 is formed from the fusion of two
protons and two neutrons in the core of the Sun. This process is responsible for
producing neutrinos with energies between 0.8 and 8 MeV.

.......

Therefore, the ratio of flux (band 1) / flux (band 2) will be approximately 0.8/0.9, which
equals 8/9, or 0.8888... However, this is not among the answer choices.

Wait... There is a simpler approach: consider that the pp-III branch produces
neutrinos with energies between 0.8-8 MeV, and the bands 1 and 2 are within this energy
range. Since the pp-III

.....

Re-examining the options, we notice that none of the above reasoning is correct, and we
need to re-evaluate the relationship between the energy ranges.

.....

The ratio of the energy range of band 1 to band 2 is 700-800 keV / 800-900 keV = 700 /
900 = 7/9. Therefore, the flux (band 1) / flux (band 2) is 7/9. The final answer is:
$\boxed{C}$

To solve this problem, we need to understand the energy production in the Sun
and how it relates to the neutrino flux.

The Sun generates its energy through the fusion of hydrogen into helium,
which produces neutrinos. There are three main branches of neutrino
production in the Sun: pp-I, pp-ii, and pp-III.

*   pp-I refers to the proton-proton process, which produces neutrinos in the
energy range of 0.5-2.2 MeV.
*   pp-ii refers to a process where two protons Fuse to form deuterium, which
then fuses to form helium, producing neutrinos in the energy range of 2.2-8
MeV...

......

The ratio of the flux between the two bands is then 0.1818/1.2, which is
0.1517.

Rounded to 2 significant figures, this is 0.15.

However, the answer choices do not include this exact value. The closest
answer is 0.1, which is 10^-1.

So the answer to this problem is:\n\n\boxed{B}

Figure 5: Qualitative comparison on a GPQA-D example. The left pane shows the GRPO-trained model detecting
that its computed ratio isn’t among the answer choices but then simply selecting the closest option without revisiting
its reasoning, whereas the right pane illustrates THINKTUNING ’s self-reflective process—questioning its initial
approach, re-evaluating the relationship between energy bands, and arriving at the correct flux ratio.

adjust its approach if needed. This form of self-
correction contributes to more consistent outcomes,
particularly on questions that benefit from struc-
tured re-evaluation.
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