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Abstract

Query generation is a critical task for web
search engines (e.g. Google, Bing) and recom-
mendation systems. Recently, state-of-the-art
query generation methods leverage Large Lan-
guage Models (LLMs) for their strong capabili-
ties in context understanding and text genera-
tion. However, they still face challenges in gen-
erating high-quality queries in terms of infer-
ring user intent based on their web search inter-
action history. In this paper, we propose Token-
level Proximal Policy Optimization (TPPO),
a noval approach designed to empower LLMs
perform better in query generation through fine-
tuning. TPPO is based on the Reinforcement
Learning from AI Feedback (RLAIF) paradigm,
consisting of a token-level reward model and a
token-level proximal policy optimization mod-
ule to address the sparse reward challenge in
traditional RLAIF frameworks. We conducted
experiments on both open-source dataset and
an industrial dataset that was collected from
a globally-used search engine, demonstrating
that TPPO significantly improves the perfor-
mance of query generation for LLMs and out-
performs its existing competitors. The code
for TPPO is available at https://anonymous.
4open.science/r/TPPO-D6C6.

1 Introduction

Web query generation is essential for search en-
gines (He et al., 2009; Aggarwal et al., 2016; Cai
et al., 2016; Wu et al., 2018). The task of web
query generation is to make the generated queries
align with users’ personal preferences that bet-
ter represent their search intent. Such personal-
ized web query is inferred from user’s historical
search records and should be relevant and mean-
ingful to each user (Baek et al., 2024a; Yang et al.,
2023a). It is particularly important for the cur-
rent personalized search engines such as Bing and
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Figure 1: Reward assignment in sentence-level PPO and
token-level PPO (TPPO). Sentence-level PPO assigns
reward only at the end of a response, whereas TPPO
assigns reward for each token in a response.

Google. Large Language Models (LLMs) have im-
proved search engines and recommendation sys-
tems through their text understanding capabili-
ties (Li et al., 2023; Zhao et al., 2023; Wu et al.,
2024). However, there still exist challenges in
domain-specific tasks such as web query gener-
ation in terms of inferring user intents from histori-
cal short and ambiguous search queries.

Supervised fine-tuning (SFT) shows promise
for improving LLMs’ query generation (Li et al.,
2023). However, it faces challenges with language
variability, as queries like "cheap flights to New
York" and "budget flights NYC" demonstrate di-
verse phrasing that fixed ground-truth labels can’t
fully capture. Reinforcement Learning from Hu-
man Feedback (RLHF) (Christiano et al., 2017;
Ziegler et al., 2019; Stiennon et al., 2020; Ouyang
et al., 2022; Bai et al., 2022a) or AI Feedback
(RLAIF) (Bai et al., 2022b; Lee et al., 2023) po-
tentially offers better performance than SFT. By
incorporating feedback into RL, these approaches
learn reward functions and optimize policies to
generate aligned responses (Ouyang et al., 2022;
Ziegler et al., 2019), helping LLMs better adapt
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User History Personalized Query Generation

click: []

search: ['pinterest app', 'jjshouse', 'pageant dress rental', 
'pageant dresses']

visit: ['Pinterest', 'Fifth Avenue Showstopper', 'View All  Rent 
the Runwa', 'Dresses for Women - Party', 'The Holiday Edit 
Rent t', 'Prom Dresses Rent the R', 'Southern Belle Pageant Re',
'dress with cape JJsHouse.', "JJ's House Evening Dresse",
 'Buy Evening Dresses with']

LLM
(with RLAIF)

|

1      evening dresses with sleeves

2      pageant dresses plus size

3      jjshouse dresses with cape

4      lightinthebox dresses discount

5      pageant dress rental near me

Figure 2: The Query Generation Task. Taking user history as input, the LLM after RLAIF alignment outputs several
personalized queries that the user is interested in.

to domain-specific tasks (Kirk et al., 2023; Wang
et al., 2023; Ge et al., 2024).

As a seminal policy gradient algorithm in RL,
Proximal Policy Optimization (PPO) (Schulman
et al., 2017) plays a key role in optimizing agent
policies within the RLAIF framework. However,
the training of PPO is known to be unstable (Chris-
tiano et al., 2017; Rafailov et al., 2024b; Zhong
et al., 2024) and one potential reason could be
that the reward signal is typically provided at the
end of the response sentence, making the reward
sparse. The sparse reward makes current PPO
in RLAIF actually be sentence-level*, resulting
in some inherent limitations. Firstly, the sparsity
of sentence-level rewards creates challenges (Guo
et al., 2024; Wu et al., 2023; Rafailov et al., 2024a).
Rewards only appear at sentence end, while each
token generation is an action receiving no explicit
feedback. This sparsity leads to inefficient explo-
ration and makes sentence-level PPO struggle to
identify good versus bad actions within sentences.
Additionally, sentence-level PPO suffers from tem-
poral delay (Arjona-Medina et al., 2019; Hung
et al., 2018) between token generation and rewards,
causing training instability. Secondly, traditional
PPO formulation mismatches with sentence-level
rewards (Uesato et al., 2022; Lightman et al., 2023).
While PPO is designed for multi-step RL with step-
by-step value estimation, sentence-level rewards
prevent the value function from accurately captur-
ing individual actions’ long-term impact, resulting
in sub-optimal policy updates.

To address above limitations and challenges, our
work proposes a token-level PPO (TPPO) as shown
in Figure 1. By using token-level reward models
and corresponding policies, we mitigate sparse re-
wards issues and increase training stability. Firstly,
to tackle sentence-level reward sparsity, we propose

*Throughout the paper, we use the term “sentence-level”
to represent the sparse reward cases where reward is given at
the end of a response or each sentence.

a token-level reward model that assigns rewards to
individual tokens within sentences, providing fine-
grained feedback. Secondly, to address the PPO
formulation mismatch, we introduce a token-level
PPO policy aligned with the token-level reward
model. This policy learns a value function estimat-
ing expected rewards at token level, enabling more
informed decisions based on each action’s immedi-
ate impact. This alignment between token-level re-
ward model and PPO policy mitigates sub-optimal
updates. By assigning rewards to individual tokens,
the algorithm more accurately attributes credit to
specific actions, resulting in more stable updates.

We conduct experiments on both industrial
dataset and public benchmarks. Results show
TPPO increases query generation relevance by 2%-
4% compared to PPO, with 2%-8% higher win
rate in item-by-item comparisons. TPPO demon-
strates better convergence with steadily increasing
rewards, smaller variance, and improved loss. Our
model has been successfully deployed in real-world
applications. The key contributions are summa-
rized as follows:

• We propose token-level Proximal Policy Opti-
mization (TPPO) for RLAIF, incorporating
token-level reward labeling, reward model
training, and token-level PPO.

• We are the first to adopt TPPO to empower
the query generation task that benefits both
academia and industry.

• Comprehensive experiments validate our ap-
proach’s effectiveness and practicality.

2 Related Work

2.1 Query Generation

Query generation in web search creates new queries
aligned with user interests based on search history,
browsing behaviors, and contextual information.
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The aim is to anticipate future information needs
and provide relevant search suggestions (He et al.,
2009; Aggarwal et al., 2016; Cai et al., 2016). Fig-
ure 2 shows the inference process: by analyzing
historical queries, browsing behavior, and context,
the system generates queries matching the user’s
specific interests.

However, query generation faces challenges in
inferring user intent from short queries and under-
standing search context (Mustar et al., 2021; Jan-
nach et al., 2022). Recent works leverage LLMs for
query generation in recommendation systems (Li
et al., 2023; Zhao et al., 2023; Wu et al., 2024;
Wei et al., 2024; Lin et al., 2024; Li et al., 2024;
Baek et al., 2024b). For instance, GPT4Rec (Li
et al., 2023) uses queries generated by fine-tuned
GPT-2 to retrieve recommendation items. Despite
LLMs’ knowledge and in-context learning capabil-
ities, their performance in domain-specific tasks
remains suboptimal due to differences between
training and domain-specific tasks, and inadequate
domain knowledge in pretraining (Bao et al., 2023;
Zhang et al., 2023; Yang et al., 2023b; Wang et al.,
2024). Reinforcement Learning from AI Feedback
(RLAIF) (Bai et al., 2022b; Lee et al., 2023) better
aligns LLMs with human preferences in domain-
specific tasks. We apply RLAIF to query gener-
ation, enabling LLMs to generate queries better
aligned with user preferences.

2.2 Proximal Policy Optimization
Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is a popular and effective algorithm
for policy optimization in reinforcement learn-
ing (Kakade and Langford, 2002). Recently, re-
searchers have explored the usage of PPO in the
context of RLAIF for natural language processing
(NLP) tasks (Ziegler et al., 2019; Bai et al., 2022a;
Yue et al., 2023). However, adapting PPO in RLAIF
leads to unstable training (Rafailov et al., 2024b;
Zhong et al., 2024). Traditional PPO rewards each
action, while RLAIF PPO treats entire responses
as actions with rewards only at completion. In
practice, LLMs generate tokens sequentially, with
each token being an action, making sentence-level
rewards sparse. This mismatch causes inefficient
exploration, sub-optimal updates, and training in-
stability (Xia et al.; Xu et al., 2024). In this paper,
we propose token-level PPO that rewards each to-
ken to address sparse reward and temporal delay
issues (Arjona-Medina et al., 2019; Hung et al.,
2018), aligning RLAIF PPO with traditional RL

PPO to improve stability and enhance LLM perfor-
mance in web search query generation.

3 Methodology

In this section, we introduce the problem formu-
lation for the query generation task in Section 3.1
and we then describe the workflow of our token-
level PPO within RLAIF framework consists of
token-level reward labeling (Section 3.2), reward
model training (Section 3.3), and LLM training
with token-level PPO (Section 3.4).

3.1 Problem Formulation
We formulate query generation task as a sequen-
tial token generation problem. Given an input
prompt x and the previously generated t−1 tokens
{y<t} = [y1, y2, . . . , yt−1] of the query†, the lan-
guage model, i.e., the policy πθ predicts the proba-
bility distribution of the next token πθ(·|x, {y<t}).
In the our token-level PPO formulation, the state of
the tth step st is a concatenation of the input prompt
and the generated response up to this step, denoted
as st = [x, {y<t}]. An action corresponds to the
next generated token, denoted as at = yt, and the
reward at this step is defined as Rt = R(st, at).
Our objective is to maximize the expected cumula-
tive reward over the sequence of tokens generated
by a policy πθ. The state-action value function is
defined as:

Qπθ
(st, at) = Eπθ

[ ∞∑

k=0

γkRt+k | st, at
]
.

Then, we define the state value function

Vπθ
(st) = Eat∼πθ

[Qπθ
(st, at)] ,

and the advantage function

Aπθ
(st, at) = Qπθ

(st, at)− Vπθ
(st)

for πθ.

3.2 Token-Level Reward Labeling
Labeling token-level rewards manually is costly
and time-consuming, while LLM-based annota-
tion provides comparable performance(Bai et al.,
2022b; Lee et al., 2023; Zheng et al., 2023; Chen
et al., 2024). We validated this approach in real-
world projects, finding high consistency between
LLM and human judgments across sentence-level,

†The initial token is generated given the prompt x only.
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Phase I: Word-level Reward Collection
User History:

Model Response: 

Phase II: From Word to Token-level Reward

sequence reward: 2

LlaMA3-70B Feedback:

{"search": [".dtop.gov.pr", "mehron", "proface", "proface professional make up remover"] , 
"click": ["http://www.dtop.gov.pr", "http://www.bubbasikes.com", "www.proknows.com"]. 

question: Display Ads Query Prediction 
Task: An ads search engine exists that gen-
erates interesting display ads to be shown 
to the user on third party web domains.  **
Your task** is to predict **3** ads queries 
based on the user history information that 
generates interesting display ads that the 
user is likely to searchand click on. You will 
receive 2 data sources: {{User History}}. 
For the Display Ads Query Prediction Task, 
provide at most 3 short text search ads queries:}
\n\n answer:  

Model Input:

proface makeup remover, proface makeup remover cream, walmart

word rewards: {"proface":2, "makeup":2, "remover":2, "cream":1, "walmart":1}

Token-level Reward Model

question: {{User History}}. \n\n answer: {{Model Response}}  

'pro' 'face' 'make' 'up' 'remover' ',' 'pro' 'face' 'make' 'up' 'remover' 'cream' ',' 'walmart'

irrelevant token

relevant token

zero-reward token
input 2 2 2 2 2 0 2 2 2 2 2 1 0 1output

From word to token-level rewards: 
{"pro":2, "face":2, "make":2, "up":2, "remover":2, "cream":1, "walmart":1}

Figure 3: Token-level reward labeling. In phase I, we use LLaMA 3 (70B) to label word-level and sentence-level
rewards for the dataset. In phase II, we map the word-level rewards to token-level rewards. The model response and
user history are used to construct input for token-level reward model and the mapped token rewards are used as the
ground truth for output.

word-level annotation, and evaluation. By using
word-level rather than token-level annotation, and
employing global (sentence-level) and local (word-
level) annotations as mutual checks, we further
ensure labeling accuracy and quality.

In this paper, we adopt LLaMA 3 (70B) to label
token-level rewards due to its strong labeling capa-
bility (Touvron et al., 2023) as Phase I in Figure 3
shows, where the query responses are generated
by SFT-tuned Mistral-7B model. Compared with
sentence-level reward which overlooks the impact
of individual tokens (Zeng et al., 2024; Cao et al.,
2024; Zeng et al., 2024), the token-level reward
is assigned to each token, capturing finer-grained
feedback. On the other side, the sentence-level re-
ward provides a holistic feedback on the entire gen-
erated query/response, and we include the sentence-
level reward to guide the token-level rewards as it
is typically easier and less prone to noise.

We design prompts for LLaMA 3 (70B) to score
each token’s relevance in generated queries (token-
level reward) and provide overall query relevance
(sentence-level reward). Rewards use three cat-
egories: 0 for non-reward/masked tokens, 1 for
irrelevant tokens, and 2 for relevant tokens. Only
categories 1 and 2 are used for PPO policy updates.
From word-level reward to token-level reward.
We first label at word-level for better manageability
and generalizability across models with different to-
kenizers, then map to token-level rewards as shown

in Figure 3. For example, the word relevant is
assigned with a word-level reward of 2. Depending
on the tokenizer, the word could split into:

• Model 1: ["re", "levant"]

• Model 2: ["relev", "ant"]

We assign the same reward category 2 to each to-
ken:

• Model 1: "re" → 2, "levant" → 2

• Model 2: "relev" → 2, "ant" → 2

3.3 Reward Model Training
As shown in Figure 4, we use token-level and
sentence-level rewards from LLaMA 3 (70B) to de-
sign local and global losses for training our token-
level reward model.
Local loss of reward model. We apply attention
and activation masks to exclude padding areas and
non-response tokens. To address class imbalance,
we use a probability mask maintaining a 1:3 to 3:1
ratio between label 2 and label 1 tokens, while pre-
serving label 0 tokens. This ensures stable training
and proper model convergence.

After applying these masks, the remaining to-
kens form the valid set, denoted as V , which
is used for loss computation and gradient back-
propagation. The local loss is defined as a weighted
cross-entropy loss over a batch of n samples, pre-
dicting the probability of each token belonging to
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question: ... \n\n answer: pro face make up remover, pro face make up remover cream, walmart <pad> <pad> ...
token reward labels:
tokens:

attention mask
activate mask
probability mask

model pred logits to labels:

gt global label:

gt local labels:

model pred global label:

Local Loss
(cross entropy loss)

0 00 0 0 0 0

valid zone:

2 0 1 2 1 1 1

(2 + 2         +   1 + 2          +          2  +    1 + 1 + 1) / 8

2
Global Loss
(mse loss)

Loss = 
w * Local Loss +

(1-w) * Global Loss

2 2 2 2 2 0 2 2 2 2 2 1 10 0 0 ...

2 2

2 0 2 2 1 0 12 2

make up              , pro face                remover cream, walmart 

Figure 4: Objectives of token-level reward model. The position after masking (valid zone) is used to calculate the
loss and return gradient. The loss of the token-level reward model is the weighted sum of local loss and global loss.

one of the three reward categories {0, 1, 2}. The
loss function Llocal(ϕ) is expressed as:

− 1

n

n∑

i=1

∑

(st,at)∈V

2∑

c=0

wc 1[Rϕ(st,at)=c] logP (c | st, at),

(1)

where P (c | st, at) is the predicted probability
that token (st, at) belongs to class c given by the
reward model Rϕ parameterized by ϕ, and wc is a
class weight. The indicator function 1[·] equals 1
when the condition holds, and 0 otherwise. Specifi-
cally, the reward model Rϕ is implemented using
Longformer (Beltagy et al., 2020).
Global loss of reward model. The global loss pro-
vides partial supervision by aligning the average
token rewards in V with the sentence-level reward.
It is formulated as the mean squared error (MSE)
loss over n samples, measuring the difference be-
tween the average token reward and the ground
truth global reward. The loss function Lglobal(ϕ) is
expressed as:

1

n

n∑

i=1


 1

|V|
∑

(st,at)∈V
Rϕ(st, at)−Rglobal




2

, (2)

where |V| is the number of tokens in the valid
set, Rϕ(st, at) = argmaxc∈{0,1,2} P (c | st, at)
is the predicted token reward, and Rglobal is the
ground truth global reward. This loss encourages
consistency between token-level and sentence-level
rewards, ensuring coherent supervision across dif-
ferent levels of granularity.

The total loss for training the reward model com-
bines the local and global losses:

Ltotal(ϕ) = λlocalLlocal(ϕ) + λglobalLglobal(ϕ),
(3)

where λlocal and λglobal are hyperparameters
controlling the trade-off between local and global
supervision.
Length-weighted penalty. When applying the to-
ken reward model with PPO, we introduce a length-
weighted penalty (lwp) to prevent overly long re-
sponses:

lwp(l) =
1

1 + eα(l−sl)−6
, (4)

Here, l is the current token’s position, sl is the
suggested length (estimated reasonable response
length), and α controls penalty intensity. The sl is
calculated as the median token length of all gener-
ated queries multiplied by the number of queries.

Equation 4 ensures tokens before sl have lwp ≈
1, while tokens beyond sl have rapidly decreasing
lwp toward 0. We multiply original token-level
rewards by this position-specific penalty:

R′
ϕ(st, at) = lwp(l) ·Rϕ(st, at). (5)

3.4 LLM Training with Token-Level PPO
We introduce token-level PPO where the formula-
tion is matched with token-level reward signal.
Token-level PPO objective function. The token-
level PPO objective function is formulated as:

max
πθ

Ex,y<t∼D, yt∼πθ(·|[x,y<t])

[
min

(
rt(θ)Aπref (st, at),

clip (rt(θ), 1− ϵ, 1 + ϵ)Aπref (st, at)
)]

,

(6)

where
rt(θ) =

πθ(at | st)
πref(at | st)

(7)
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is the ratio between the new policy πθ and the
old policy πref at the token level. Here, ϵ is a
hyperparameter controlling the clipping range, and
Aπref

(st, at) is the advantage function based on the
reference policy πref .
Derivation of the optimal policy. Starting from
the token-level PPO objective in Equation 6, we
aim to derive the optimal policy π∗

θ . To ensure
the policy remains close to a reference policy πref ,
we introduce a Kullback–Leibler (KL) divergence
constraint. The optimization problem is formulated
as:

π∗
θ = argmax

πθ

Est∼D, at∼πθ(·|st)
[
Aπref

(st, at)

− βKL (πθ(· | st) ∥πref(· | st))
]
, (8)

where β > 0 controls the strength of the KL di-
vergence regularization. The closed-form solution
to the optimization problem in Equation 8 is:

π∗
θ (at | st) =

πref(at | st) exp
(

1
β
Aπref (st, at)

)

Z(st;β)
, (9)

where Z(st;β) =
∑

at
πref(at |

st) exp
(

1
βAπref

(st, at)
)

is the partition function
ensuring that π∗

θ is a valid probability distribution.

Lemma 1. The optimization problem in Equation 8
yields the optimal policy as given in Equation 9.

4 Experiments

This experiments aim to answer two questions:
Is TPPO more effective than SFT and RL base-
lines in query generation tasks? To answer this
question, we select strong baselines from SFT-
based methods and RL-base methods: GPT4Rec
(Li et al., 2023) (enhanced with Mistral 7B (Jiang
et al., 2023) instead of GPT-2) for SFT methods,
and PPO for RL methods. We evaluate using:
(1) Relevance rate: alignment scores between
generated queries and user history via LLaMA 3
(70B), calculated as total relevance scores divided
by sample count; and (2) Win-Tie-Lose rates: pair-
wise comparisons between models using LLaMA
3 (70B) voting. Evaluation prompts and additional
details are in Appendices D and E-G.
Is TPPO more stable and convergent than PPO
in query generation tasks? To investigate this
question, we conduct experimental analysis on re-
ward model training and PPO training process sepa-
rately. Specifically, we compare token-level versus

Table 1: Dataset information.

Industrial Dataset Open Dataset
User History Keys search, click, purchase, visit search, click
Dataset Size Train: 200k, Train: 25k,

Eval1: 2k, Eval2: 2k Eval: 2k
Tagert Query Num 10 3

Table 2: Results of Relevance Rate on Open-source
Dataset.

GPT4Rec PPO TPPO
Relevance rate 41.25 47.65 50.00

sentence-level reward models through evaluation
loss curves and weighted AUC metrics, then ana-
lyze TPPO versus PPO training trajectories using
mean scores and standard deviations to assess sta-
bility properties.

4.1 Experiments on Open-source Data

4.1.1 Dataset Description

The query generation field has limited public
datasets, with AOL being the most widely used
benchmark. The AOL dataset contains approxi-
mately 20 million web queries from about 650k
users over three months (MacAvaney et al., 2022),
providing real query log data for search research.
As shown in Table1, we filtered 27k data points
from AOL to create an open-source dataset for
query generation. Each data point includes user
history (earlier search queries and click records)
and the newest 3 search queries as generation tar-
gets. We used 25k data for supervised finetuning
(2k for evaluation), 10k Llama3-70B-labeled data
for token-level reward model training, and 20k data
for token-level PPO training (2k for evaluation).

4.1.2 Results of Token-level PPO Policy

As shown in Figure 7 and Table 2, we compared
GPT4Rec, PPO, and TPPO using average relevance
scores and pairwise comparisons. TPPO consis-
tently outperforms both alternatives, with win rates
8.75% higher than GPT4Rec and 2.35% higher
than PPO in win-tie-lose comparisons.

Moreover, we compared the training perfor-
mance of models obtained using the traditional
PPO and our token-level PPO policy on the same
training set. Figure 5 shows that token-level PPO
training is more stable (smaller variance) and learns
reward model preferences more efficiently (faster
score improvement) than traditional PPO.
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Figure 5: PPO Training Curves on Open-source Dataset.
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Figure 6: Reward Model Training Curve on Open-
source Dataset.
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Figure 7: Win-Tie-Lose Comparisons on Open-source
Dataset.

4.1.3 Results of Token-level Reward Model
As shown in Figure 6, we compared the train-
ing curves of the traditional sentence-level reward
model and our token-level reward model, both of
which have undergone class balancing to achieve
best performance. This comparison highlights the
advantages of the token-level reward model over
the traditional sentence-level approach. Benefited
from more granular information, the token-level
reward model demonstrates better training stabil-
ity, faster convergence, and higher performance in
terms of AUC (Yang and Ying, 2022).

4.2 Experiments on Industrial data

4.2.1 Dataset Description
As shown in Table 1, we collected industrial data
from a popular search engine serving billions of
users worldwide. From 400k real user data, we fil-
tered 200k to create an industrial dataset for query
generation. This dataset’s user history includes
four components—search, click, purchase and visit,

Table 3: Results of Relevance Rate on Industrial Dataset,
Sentence-level Template for Evaluating.

GPT4Rec PPO TPPO
Relevance rate (Eval 1) 84.10 85.05 88.85
Relevance rate (Eval 2) 84.35 87.50 91.45

Table 4: Results of Relevance Rate on Industrial Dataset,
Token-level Template for Evaluating.

GPT4Rec PPO TPPO
Relevance rate (Eval 1) 85.75 92.43 94.79
Relevance rate (Eval 2) 87.40 92.25 94.21

with the recent 10 search queries serving as gener-
ation targets. We created two separate 2k-sample
evaluation sets (eval1 and eval2) from different
time periods to account for distribution differences.

4.2.2 Results of Token-level PPO Policy

Figure 11 compares traditional PPO with our token-
level PPO policy on the same training set, demon-
strating token-level PPO provides more stable train-
ing (smaller variance) and faster learning of reward
model preferences (quicker score improvement).

We used two scoring templates with Llama3-
70B: one directly scoring sentences and another
scoring words first then sentences. We evaluated
on two industrial dataset test sets from different
months to validate our approach’s stability and ap-
plicability. Table 3 shows our method improves rel-
evance rates compared to GPT4Rec and PPO when
directly scoring sentences. Table 4 confirms this im-
provement when scoring tokens first then sentences.
Figure 8 presents pairwise win-lose comparisons
across both evaluation sets and templates, demon-
strating TPPO’s superior preference fitting. This
multi-template, multi-dataset approach confirms
TPPO consistently outperforms alternatives regard-
less of scoring mechanism or dataset timeframe,
highlighting its effectiveness and adaptability in
real-world industrial applications.

4.2.3 Results of Token-level Reward Model

Figure 9 demonstrates our token-level reward
model’s advantages over conventional sentence-
level approaches. Trained and evaluated on identi-
cal datasets with class balancing, our model shows
greater stability, faster convergence, and higher
AUC scores by utilizing fine-grained token-level in-
formation, highlighting the effectiveness of token-
level granularity in reward modeling.
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Figure 8: Win-Tie-Lose Comparisons on Industrial Dataset.
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Figure 9: Reward Model Training Curve on Industrial
Dataset
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Figure 10: Ablation Study of Losses in Token-level
Reward Model Training.

5 Ablation Study

We conducted ablation experiments on the indus-
trial dataset examining the two core components
of our approach: token-level reward model and
token-level PPO policy.

5.1 Losses of Token-level Reward Model

For the Token-level Reward Model training, we
used a weighted sum of local and global losses.
Figure 10 shows training curves for different values
of local loss weight w (0-1). Higher w values pro-
duce smaller converged loss values, indicating local
labels provide stronger supervision than global la-
bels. Moderate w values (0.4-0.6) show the largest
loss reduction from start to convergence, suggest-
ing balanced combination of local and global loss
optimizes reward model learning. This confirms
the importance of integrating both token-level and
sentence-level information.
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Figure 12: Ablation Study of Length Penalty in Token-
level PPO Training.

5.2 Length Penalty of Token-level PPO Policy

We proposed Token-level PPO (TPPO), a novel
approach addressing PPO limitations in existing
RLHF frameworks for query generation. By in-
troducing token-level reward models and policies,
TPPO mitigates sparse rewards, aligns PPO in
RLHF with traditional RL PPO, and improves train-
ing stability. Experiments on public and industrial
datasets demonstrate TPPO’s effectiveness, increas-
ing query relevance by 2%-4% compared to PPO,
with 2%-8% higher win rates in item-by-item com-
parisons. TPPO training shows better convergence
with stable reward increases, reduced variance, and
improved loss. The successful application of TPPO
to the query generation task opens up new possi-
bilities for improving the quality and relevance of
search results in real-world search engines.
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6 Conclusion

We proposed Token-level PPO (TPPO), address-
ing PPO limitations in RLHF for query generation
through token-level reward models and policies.
TPPO mitigates sparse rewards, aligns RL-PPO
with RLHF, and improves training stability. Ex-
periments show TPPO increases query relevance
by 2%-4% with 2%-8% higher win rates versus
PPO, while demonstrating better convergence. This
TPPO approach enhances real-world search quality.

7 Limitations

TPPO’s effectiveness may vary across domains,
potentially requiring specific adaptations. In the
future research, we will explore the application
of our token-level to various domains and further
demonstrate the generalizability of the techniques
introduced in this work.
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A Proof of Lemma 1

To derive the optimal policy π∗
θ for the optimization

problem in Eq. 8, we frame the problem using the
method of Lagrange multipliers to incorporate the
normalization constraint of the probability distribu-
tion πθ. The Lagrangian L is defined as:

L(πθ, λ(st)) =
∑

at

πθ(at|st)
[
Aπref

(st, at)

− β log
πθ(at|st)
πref(at|st)

]

− λ(st)
(∑

at

πθ(at|st)− 1
)

(10)

where λ(st) is the Lagrange multiplier ensuring
that πθ sums to 1 over all actions at.

Taking the derivative of L with respect to
πθ(at|st) and setting it to zero gives:

∂L
∂πθ(at|st)

=Aπref (st, at)

− β

(
1 + log

πθ(at|st)
πref(at|st)

)

− λ(st) = 0.

(11)

Solving for πθ(at|st):

β log
πθ(at|st)
πref(at|st)

= Aπref (st, at)− β − λ(st),

log
πθ(at|st)
πref(at|st)

=
1

β
Aπref (st, at)− λ(st)

β
− 1,

πθ(at|st) =

πref(at|st) exp
(
1

β
Aπref (st, at)− λ(st)

β
− 1

)
.

(12)

The terms −λ(st)
β − 1 are constants with respect

to at for a given st and ensure that πθ is a valid
probability distribution. They can be absorbed into
the partition function Z(st;β). Thus, we can write:

π∗
θ (at|st) =

πref(at|st) exp
(

1
β
Aπref (st, at)

)

Z(st;β)
, (13)
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where the partition function Z(st;β) is defined
as:

Z(st;β) =
∑

at

πref(at|st) exp
(
1

β
Aπref

(st, at)

)
.

(14)
This completes the proof.

B Theoratical Justification for Why
Token-level Rewards Results in Better
Policy

TPPO improves upon traditional PPO by address-
ing key limitations such as sparse rewards, delayed
credit assignment, and high variance. Below, we
outline a theoretical analysis to justify its superior-
ity:

B.1 Improved Gradient Signal
PPO Gradient. The PPO objective gradient with
sparse rewards is:

∇θJPPO = Eπθ [At∇θ log πθ(at | st)] , (15)

where At (advantage) is based on sentence-level
rewards. For t < H , At ≈ 0, resulting in weak
gradients for earlier tokens.
TPPO Gradient. TPPO uses dense token-level
rewards R(st, at), where:

∇θJTPPO = Eπθ
[
Atoken

t ∇θ log πθ(at | st)
]
,
(16)

and Atoken
t = Qtoken(st, at) − V token(st). Since

R(st, at) provides feedback for all tokens, the gra-
dient signal is significantly stronger:

∥∇θJTPPO∥ > ∥∇θJPPO∥. (17)

B.2 Variance Reduction
PPO Variance In PPO, the advantage function At

at time step t is defined as:

At = Q(st, at)− V (st), (18)

where Q(st, at) is the expected cumulative reward
and V (st) is the baseline value function.

For sparse sentence-level rewards, the cumula-
tive reward Q(st, at) depends primarily on the final
reward rfinal, discounted back to time step t:

Q(st, at) = γH−trfinal, (19)

where H is the length of the sequence. Earlier
tokens (t < H) rely on the final reward rfinal(x, y)
as feedback. The discount factor γ ∈ (0, 1] reduces
the contribution of this reward as it is propagated
backward, making earlier tokens highly dependent
on γH−t.

The variance of the advantage function At is di-
rectly proportional to the variance of the discounted
reward Q(st, at):

Var(At) ∝ Var(Q(st, at)) ∝ γ2(H−t) · Var(rfinal)
(20)

TPPO Variance. In TPPO, token-level rewards
R(st, at) provide stepwise feedback for each token,
distributing the reward signal evenly:

Var(Atoken
t ) ∝ 1

H

H∑

t=1

Var(R(st, at)). (21)

This reduces the dependency on γH−t and ensures
a lower variance in advantage estimation across all
tokens.

Thus, TPPO reduces variance in advantage esti-
mation, stabilizing policy updates.

B.3 Faster Convergence

PPO Convergence. Sparse rewards delay feedback
for earlier tokens, slowing learning. Improvement
per update is:

∆JPPO ∝ ∥∇θJPPO∥ ·
1

Var(At)
. (22)

TPPO Convergence. Dense rewards provide im-
mediate feedback, increasing ∥∇θJTPPO∥ and re-
ducing Var(Atoken

t ):

∆JTPPO > ∆JPPO. (23)

Thus, TPPO achieves faster convergence due to
stronger gradients and lower variance.

C Analysis and Comparison of The
Algorithmic Complexity and
Convergency between TPPO and Prior
Work

We have analyzed the convergence properties of our
method in Figure 5 and Figure 11, which demon-
strate TPPO’s superior convergence characteristics
compared to baseline approaches. Here, we pro-
vide a brief analysis for algorithmic complexity
analysis and comparisons between TPPO and PPO:
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Our method, TPPO, has a similar complexity to
PPO because the dominant computational cost in
both methods comes from the policy update step,
which scales as O(H ·N), where H is the sequence
length and N is the number of model parameters.
While TPPO introduces token-level rewards with
an additional O(H ·N) cost for reward computa-
tion (M being the reward model complexity), this
step can be efficiently parallelized. In practice, the
additional overhead is negligible, and the overall
training time is comparable to PPO. TPPO thus
achieves better stability and performance without
significant computational cost increases.

D Prompt Template for Labeling
Relevance Score

Figure. 13 shows the token template for labeling
relevance score, where the "User Queries" repre-
sents the ground truth, and "Returned Queries"
are our model-generated outputs, with relevance
scores annotated by LLM between these pairs. In
this work, we use sentence templates (Figure 14)
for PPO training and token templates (Figure 13)
for TPPO training - they serve different purposes
in our framework. Sentence templates only label
sentence-level rewards, while Token templates la-
bel word-level rewards and sentence-level rewards.

# Task
- Background: A chatbot exists that can summarize user history into predicted ads search queries.  
These ads search queries are then fed into an ads search engine to generate relevant display ads to show the user. 
The order of queries does not matter.
- Task: review the input to the chatbot and the generated queries, and make various judgements about the quality 
of each word in the queries generated by the chatbot relevant to the user history.  Each judgment should be 
accompanied by a score, do not provide explanation.

# Judgement Criterias
## Word Sequence Metrics
- Relevance: taking the context of the returned queries into consideration, is the word relevant to the user queries?
-- Scoring rules: 0 indicates the word is irrelevant or hardly relevant, 1 indicates the word is higly relevant.
-- Scoring type: integer

## Across Queries Metrics
- Relevance: are the returned queries relevant to the user queries?
-- Scoring rules: 0 indicates the returned queries are irrelevant or hardly relevant, 1 indicates the returned queries are higly relevant.
-- Scoring type: integer

# Formatting Rules
Output the responses as a JSON Dictionaries:
<WORD_SEQUENCE_JUDGEMENTS>
{
"<word1>" : {"Relevance":{"Score" : 0 or 1}},
"<word2>" : {"Relevance":{"Score" : 0 or 1}},
"<word3>" : {"Relevance":{"Score" : 0 or 1}},
    ...
}
</WORD_SEQUENCE_JUDGEMENTS>
<ACROSS_QUERY_JUDGEMENTS>
{"Relevance":{"Score" : 0 or 1}}
</ACROSS_QUERY_JUDGEMENTS>

# Begin Task
## User History
{{USER_HISTORY_DATA}}

## User Queries
{{USER_QUERIES_DATA}}

## Returned Queries
{{RETURNED_QUERIES_DATA}}

Output the responses as a JSON Dictionaries:

Figure 13: Token Template for Labeling Relevance
Score.

# Task
- Background: A chatbot exists that can summarize user history into predicted ads search queries. 
These ads search queries are then fed into an ads search engine to generate relevant display ads to show the user. 
The order of queries does not matter.
- Task: review the input to the chatbot and the generated queries, and make various judgements about the quality 
of the queries generated by the chatbot relevant to the user history.  
Each judgment should be accompanied by a score, do not provide explanation.

# Judgement Criterias

## Across Queries Metrics
- Relevance: are the returned queries relevant to the user queries?
-- Scoring rules: 0 indicates the returned queries are irrelevant or hardly relevant, 1 indicates the returned queries are higly relevant.
-- Scoring type: integer

# Formatting Rules
<ACROSS_QUERY_JUDGEMENTS>
{"Relevance":{"Score" : 0 or 1}}
</ACROSS_QUERY_JUDGEMENTS>

# Begin Task
## User History
{{USER_HISTORY_DATA}}

## User Queries
{{USER_QUERIES_DATA}}

## Returned Queries
{{RETURNED_QUERIES_DATA}}

Output the responses as a JSON Dictionaries:

Figure 14: Sentence Template for Labeling Relevance
Score.

Table 5: The Hyper-parameters of TPPO.

Training Configuration Extra Hyperparameters
Learning rate: 5e-6 Query nums: 10

Batch size: 32 Alpha: 2.0
Hardware: 8*A100 GPUs

Training epochs: 2
KL coefficient: 0.2

Ouput max length: 400

E Hyper-parameters of TPPO Setting in
Experiment

Here we clarify the parameters used in our im-
plementation: the hyper-parameters of TPPO in
our implementation are show in Table 5, and the
hyper-parameters of Token-level Reward Model
are shown in Table 6.

F Brief Pseudocode for TPPO (Natural
Language)

We provide a simplified pseudocode for policy
training below:
Initialize the policy model (πθ) and token-level
reward model (Rϕ) with their respective learning
rates and hyperparameters (e.g., KL coefficient,
clip threshold).
For each training iteration:

Table 6: The Hyper-parameters of Token-level Reward
Model.

Training Configuration Extra Hyperparameters
Learning rate: 1e-5 Num class labels: 3

Batch size: 32 POS NEG Ratio: 3.0
Hardware: 1 x V100 GPU Local Weight: 0.4

Gradient accumulation step: 8 Global Weight: 0.6
Max length: 2048
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• Sample a batch of prompts from the dataset.

• Generate responses for each prompt using the
current policy model (πθ).

• Compute token-level rewards (Rϕ(st, at)) for
each token in the responses using the reward
model.

• Calculate token-level advantages (At) using
the token rewards and value estimates.

• Update the policy model (πθ) by optimizing
the PPO objective, ensuring stable updates
with clipping.

• Update the token-level reward model (Rϕ)
based on token labels and global constraints.

Output the optimized policy model (πθ).

G Models Used in Each Step and Online
Serving Implementation

Model usage in each step. To further clarify the
whole process, we summarize the each step with
model used:

1. Train Mistral-7B by SFT. The user history
and ground truth queries are given as training data.

2. Use SFT-tuned Mistral-7B to generate mul-
tiple queries. These queries are later used for la-
beling relevance score (reward) by comparing with
ground truth user queries, as shown in Figure 13.

3. Employ Llama3-70B to generate token-level
and sentence-level reward, creating data for reward
model training.

4. Train Longformer as reward model through
SFT. We implement a novel combination of local
and global loss to enable token-level reward predic-
tion capabilities of Longformer.

5. Finally, we optimize the SFT-tuned Mistral-
7B using our TPPO policy. It is notable that, during
this step, the SFT-tuned Longformer serve as the
token-level reward model, without further training.
Online serving implementation. In our produc-
tion environment, the in-house LLMs undergo con-
tinuous iteration and exist at various scales. Al-
though the base LLMs vary, we consistently apply
our TPPO methodology in training. For the purpose
of academic demonstration in this paper, we se-
lected Mistral-7B as our experimental base model
to demonstrate the superiority of TPPO method.

H Additional DPO Experiments

To comprehensively evaluate different reinforce-
ment learning methods, we conducted additional
experiments using DPO (Direct Preference Opti-
mization). The experimental setup and results are
detailed below.

H.1 Experimental Setup

In constructing the training data, we main-
tained consistency with the PPO training dataset
prompts, using real user queries as accept data and
GPT4REC-generated queries as corresponding re-
ject data, creating a 20k training dataset. We im-
plemented and trained DPO with a batch size of 64
and learning rate of 5e-6 for 2 epochs until conver-
gence, then performed inference and evaluation on
the industrial dataset validation set (consistent with
the validation set in the paper).

H.2 Results

The experimental results are presented in Tables
7 and 8. The results demonstrate that DPO per-
forms slightly better than GPT4REC (relevance
rate: 84.50 vs 84.10), slightly worse than PPO
(84.50 vs 85.05), and significantly worse than our
proposed TPPO method (84.50 vs 88.85). These
findings support our conclusion that DPO may not
be optimal for complex query generation tasks due
to sparse reward signals. The experimental results
further validate that our TPPO method outperforms
both advanced SFT baselines (such as GPT4REC)
and mainstream reinforcement learning approaches
(including PPO and DPO).

Table 7: Relevance Rate Comparison

Model Relevance Rate
GPT4REC 84.10
PPO 85.05
DPO 84.50
TPPO 88.85

Table 8: DPO Performance Comparison

Metric vs. GPT4REC vs. PPO vs. TPPO
Win Rate 13.60% 12.20% 9.40%
Tie Rate 73.15% 75.05% 76.85%
Lose Rate 13.25% 12.75% 13.75%
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I Ground Truth Validation of Reward
Labels

To validate the reliability of LLaMA-3 annotations
used in our reward modeling, we conducted a con-
sistency test comparing model annotations with
human labels on a sample set of 60 examples. The
validation was performed at two granularity levels:

Table 9: Annotation Consistency between LLaMA-3
and Human Labels

Consistency Level Agreement Rate
Word-level 91.18%
Sentence-level 80.95%

The high consistency rates, particularly the
91.18% agreement at word level, demonstrate that
LLaMA-3 provides reliable annotations that align
well with human judgment.
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