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Abstract
Domain-adaptive post-training of large lan-
guage models (LLMs) has emerged as a promis-
ing approach for specialized domains such as
medicine and finance. However, significant
challenges remain in identifying optimal adap-
tation criteria and training strategies across
varying data and model configurations. To ad-
dress these challenges, we introduce FINDAP,
a systematic and fine-grained investigation into
domain-adaptive post-training of LLMs for the
finance domain. Our approach consists of four
key components: FinCap, which defines the
core capabilities required for the target do-
main; FinRec, an effective training recipe that
jointly optimizes continual pre-training and
instruction-following, along with a novel pref-
erence data distillation method leveraging pro-
cess signals from a generative reward model;
FinTrain, a curated set of training datasets sup-
porting FinRec; and FinEval, a comprehensive
evaluation suite aligned with FinCap. The re-
sulting model, Llama-Fin, achieves state-of-
the-art performance across a wide range of fi-
nancial tasks. Our analysis also highlights how
each post-training stage contributes to distinct
capabilities, uncovering specific challenges and
effective solutions, providing valuable insights
for domain adaptation of LLMs.

1 Introduction

While LLMs have demonstrated strong generaliza-
tion across a variety of tasks, they often struggle
to perform well in specialized domains such as
finance and law. Consequently, domain-adaptive
post-training of LLMs has garnered significant at-
tention recently (Colombo et al., 2024a; Xie et al.,
2024b). In the earlier days of language models, con-
tinual pre-training (CPT) was the dominant strat-
egy. This involved further training a pre-trained
model on domain-specific plain text and then fine-
tuning it for individual tasks (Gururangan et al.,
2020; Ke et al., 2023). With LLMs, the post-
training focus has shifted to zero- and few-shot task

generalization through methods such as instruction-
tunning (IT) (aka. supervised fine-tuning or SFT)
and preference alignment (PA). While prompt en-
gineering of powerful general LLMs with zero- or
few-shot examples has emerged as a convenient
approach to adapting them to new tasks, to get the
most optimal performance on a target domain, re-
cent methods explore fine-tuning model wights to
make them domain experts (Chen et al., 2023b; Li
et al., 2023; Colombo et al., 2024b).

Building on this trend, this work focuses on
adapting LLMs to specific domains through pa-
rameter training. It complements semi-parametric
methods that leverage external knowledge, such as
retrieval-augmented generation (Lewis et al., 2020;
Ke et al., 2024). Our focus is also different from
general post-training, as the goal is not to develop
another general-purpose LLM but to create spe-
cialized, expert-level LLMs tailored to a specific
domain. By focusing on a specific domain, we
develop models that are not only more compact
in size but also deliver significantly more accu-
rate and contextually relevant responses compared
to general-purpose LLMs. Their smaller size en-
hances efficiency, optimizing both computational
resource usage and training time.

Despite the potential of domain-specific LLMs,
there is still no systematic study on what makes
a good domain-specific LLM. In this work, we
consider finance as the domain of interest and aim
to address the following research questions:

Given a strong general-purpose LLM (e.g.,
Llama3-8b-inst), how to effectively adapt it
to a target domain (e.g., finance) by post-
training? What criteria are desirable for suc-
cessful adaptation? What are effective train-
ing recipes with respect to data and model?

Prior studies (Bhatia et al., 2024; Xie et al.,
2024a) typically adopt a simplified and informal
framework (see §2) in that they evaluate only on a
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Figure 1: An overview of our finance-specific post-training framework, FINDAP. It comprises four key components:
(1) FinCap, the core expected capabilities, including concepts, reasoning, instruction-following and tasks; (2)
FinRec, encompassing both data and model strategies to guide domain-adaptive post-training; (3) FinTrain, which
curates training texts and prompts based on the data recipe; and (4) FinEval, a comprehensive evaluation framework
designed to assess performance on unseen tasks, categorized into similar and novel, general and domain-specific,
and reasoning tasks, using both direct-answer and chain-of-thought (CoT) evaluation methods.

set of domain-specific end tasks such as sentiment
analysis and NER, and they simply follow standard
post-training stages (CPT, IT and/or PA) without
considering their impact or optimizing their recipe
for domain-adaptive post-training. This simplified
approach can misalign with our broader expecta-
tions for a domain-expert LLM. A domain-expert
LLM should not only excel at such end tasks but
also achieve broader capabilities, such as follow
task instructions effectively and reason in a way
that aligns with domain-specific knowledge, while
retaining general capabilities.

We argue that domain-adaptive post-training
poses unique challenges compared to pre-training
or general post-training. There are multiple fac-
tors to be considered: (1) For a particular target
domain, it is essential to establish the desirable
capabilities that a domain-expert LLM should pos-
sess, as these capabilities serve as a guiding frame-
work for the entire adaptation process; (2) The
training recipe should be tailored specifically to
adapt an already trained LLM (e.g., Llama3-inst)
through post-training. This differs from training
a model from scratch or from a base pre-trained
checkpoint, as it requires careful consideration of
catastrophic forgetting and knowledge transfer
from the original LLM, which already possesses
strong general knowledge and instruction follow-
ing capabilities. Each of the standard CPT, IT, and
PA stages have different impacts and trade-offs
with respect to knowledge forgetting and transfer,
as do the in-domain, general-domain datasets, and

the mixture of them. Moreover, it should also be
designed to support the desired capabilities. For
example, improving reasoning capability might re-
quire more dense supervision than the final answer
level correctness score. (3) The desired quantity
and quality of training datasets should be care-
fully balanced: high-quality general-domain data
is required to mitigate forgetting, while diverse
data and supervision signals are necessary to learn
domain knowledge. (4) Finally, the evaluation
methods should align with the desired capabilities.
Different evaluation techniques may be required for
certain capabilities; for example, chain-of-thought
(CoT) (Wei et al., 2023) reasoning is often neces-
sary to effectively evaluate reasoning tasks.

In this work, we introduce FINDAP (Figure 1),
a novel finance-specific framework designed to in-
corporate all these factors in domain-specific post-
training. To our knowledge, none of the prior stud-
ies consider all of them to provide a principled guid-
ance on domain-adaptive post-training. FINDAP
integrates four key components: (1) FinCap, a set
of core capabilities required for the domain expert
LLM, derived from a systematic review of prior
literature and input from domain experts in finance.
These include domain concepts, tasks, instruction
following and reasoning; (2) FinRec, a training
recipe that jointly performs CPT and IT, and sub-
sequently conducts PA, balancing trade-offs across
these stages to mitigate forgetting and improve task
generalization. It also proposes to use mixture
of in-domain and general domain data in the
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data recipe, alongside a novel preference align-
ment method for improving reasoning capability
that constructs data using the preference signal in
reasoning steps, Stepwise Corrective Preference
(SCP), and final answer, Final Answer Prefer-
ence (FAP); (3) FinTrain, a curated set of train-
ing datasets implementing FinRec, which carefully
balances quality and diversity; and (4) FinEval,
a comprehensive evaluation framework covering
a wide range of tasks, including reasoning tasks
assessed through CoT.1

We apply FINDAP on the instruction-tuned
Llama3-8b-instruct (LLaMA, 2024). Our best per-
forming recipe yields Llama-Fin that outperforms
all considered baselines, including large open mod-
els at the 70B scale and proprietary models like
GPT-4o, on tasks that are similar (yet unseen) to
the training data. Even on novel tasks that were
never encountered in training, Llama-Fin remains
competitive and consistently outperforms its base
model across all identified capabilities. In sum-
mary, our key contributions are:

• Comprehensive guidance for finance-specific
post-training, including identification of capabili-
ties, evaluation, data and model recipe design.

• Systematic exploration on each stage of post-
training, with an emphasis on the goals, chal-
lenges and effective approaches.

• Novel preference alignment approach that con-
structs preference data using on-policy trajecto-
ries guided by outcome and process signals.

• New State-of-the-art financial LLM (Llama-
Fin) at the 8b parameter scale based on the above.

2 Related Work

Finance LLMs Table 1 summarizes popular
finance-specific LLMs developed through domain-
adaptive post-training. AdaptLLM (Cheng et al.,
2024) focuses on CPT and constructs heuristic QA
tasks from raw text, but it considers only five fi-
nancial end tasks. PIXIU (Xie et al., 2023) fo-
cus on instruction-following by creating a finan-
cial instruction-tuning dataset from diverse open
financial tasks and designing a benchmark with
nine end tasks for evaluation. FinLLM (Xie et al.,
2024a) extends post-training across multiple stages,
first performing CPT, then IT, and incorporating
multi-modal capabilities via IT. It includes some
general-domain data (e.g., FineWeb (Penedo et al.,

1We will open-source the data, checkpoint, code, leader-
board for all components upon acceptance.

2024)) but does not explore its impact systemati-
cally. Following this line, FinTral (Bhatia et al.,
2024) is the only open FinLLM to include PA,
where preference labels were given by GPT-4 on
the final outcome, considering only coarse-grained
signals. It also introduces multi-modality via IT
and integrates tool use and retrieval in PA training.
Additionally, Palmyra-Fin (Writer, 2024), a recent
state-of-the-art FinLLM, reports high performance
on finance tasks, particularly CFA exams2, but its
training recipe remains undisclosed.

Comparing to FINDAP, none of these models
explicitly identify desirable capabilities as we do
with FinCap, nor do they systematically explore
trade-offs between CPT, IT and PA to develop a
more effective training recipe. They also do not
incorporate fine-grained process signals in PA to
improve reasoning, as we do in FinRec. Addition-
ally, their evaluations lack the broader range of
tasks, methods, and similarities, including reason-
ing tasks and CoT evaluations, that we adopt in
FinEval. Finally, unlike Palmyra-Fin, Llama-Fin is
fully open-source, ensuring complete transparency
in its training recipe, datasets, and evaluation meth-
ods, while achieving SoTA in its size category.
PA for reasoning We explore training-time ap-
proaches for improving reasoning (Jiao et al., 2024;
DeepSeek-AI et al., 2025). These methods first
collect trajectories and then train the LLM with the
collected trajectories. This helps the model reason
more accurately and faster during inference. To
collect reasoning trajectories, there are two main
approaches. The first is search-based (Setlur et al.,
2024; Snell et al., 2024), where a trained Reward
Model (RM) is used to guide a search method (e.g.,
Best-of-N, Beam Search) to identify the best rea-
soning path. The second is revision-based (Bai
et al., 2022; Du et al., 2023; Madaan et al., 2023;
Saunders et al., 2022), which attempts to improve
the generation distribution through multi-round
interactions, often by leveraging feedback from
itself or another strong LLM to refine the input
prompt. In practice, revision-based methods have
shown mixed results and have not yet been well
established as reliable for achieving improvements
(Huang et al., 2024a). In contrast, search-based
methods have been shown to be more effective. In
FINDAP, we propose a novel training-time method
that leverages a search-based trajectory collection

2https://www.cfainstitute.org/programs/
cfa-program/exam
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Finance
LLM Capabilities Recipe EvaluationModel Recipe Data Recipe

AdaptLLM Concept CPT CPT: Financial text + heuristic QAs constructed from the text Financial tasks + Direct answer
PIXIU Task IT IT: Financial tasks Financial tasks + Direct answer
FinLLM Concept, Task CPT → IT CPT: Financial text + Fineweb; IT: Filtered Financial tasks Financial tasks + Direct answer
FinTral Concept, Task CPT → IT → PA CPT: Financial text; IT: Financial tasks; PA: Outcome signal only Financial tasks + Direct answer
Palmyra-Fin SoTA public checkpoint, but recipe is not disclosed

Llama-Fin
Concept, IF/Chat,
Task, Reasoning

CPT+IT → PA
CPT: Financial + General text.
IT: Financial + General tasks
PA: A novel PA that leverages outcome and process signals

General + Financial tasks; Similar + Novel tasks
Knowledge Recall + Reasoning tasks
Direct answer + CoT

Table 1: Comparison between Llama-Fin with other finance LLMs.

approach, incorporating both outcome and process
rewards from a Generative RM (GenRM).

3 FINDAP Framework

In FINDAP, we first identify four desired capabili-
ties for a finance-expert LLM (FinCap, §3.1). We
then develop the training recipe FinRec, which in-
cludes both the model recipe that performs CPT
and IT jointly followed by PA, and the data recipe,
which examines the impact of in-domain, general-
domain, and mixed-domain data while introducing
a novel data construction approach for PA (§3.2).
We then introduce FinTrain (§3.3), a set of care-
fully curated training datasets designed to miti-
gate forgetting while effectively learning domain-
specific knowledge. Finally, we propose an evalua-
tion framework FinEval (§3.4), which considers a
diverse set of tasks, ranging from familiar to novel
and from general to domain-specific, while also
evaluating both direct-answer and CoT methods.

3.1 Core Capabilities (FinCap)
We began by conducting a comprehensive survey of
existing work and consulting two financial domain
experts: a banking industry advisor and a financial
industry product manager. From this, we identified
four key fundamental capabilities essential for a
finance LLM: understanding domain-specific con-
cepts to process financial language accurately, per-
forming domain-specific tasks to solve real-world
problems, reasoning effectively to analyze complex
financial data, and following instructions to inter-
act naturally in practical applications. These ca-
pabilities are deeply interconnected: reasoning de-
pends on conceptual knowledge, while instruction-
following ensures effective communication.
• Domain specific concepts. A domain typically
includes its own specific concepts. For exam-
ple, ‘bond’ in finance refers to a loan agreement
between an investor and a borrower. Adapting
the LLM to domain-specific concepts is crucial,
as these concepts form the fundamental building
blocks of domain knowledge. However, this adap-
tation should not come at the cost of losing knowl-

edge about general concepts, which are essential
for both domain-specific and general tasks.
• Domain specific tasks. While many NLP tasks,
such as NER or sentiment analysis, are shared
across different domains, a domain typically has
its own tasks. For example, stock movement de-
tection is primarily found in finance. Adapting
LLMs to these domain-specific tasks is important,
as it demonstrates how they can leverage domain-
specific concepts to solve tailored tasks effectively.
• Reasoning. For complex tasks, reasoning with
concepts is a highly desired capability in LLMs.
For example, in finance, the LLM is often required
to analyze a company’s financial report, involving
extensive reasoning, particularly mathematical rea-
soning, to compute key financial concepts such as
market rate or earnings per share.
• Instruction-Following (IF) and chat. This is
a core capability for both general and domain-
specific LLMs, as tasks are often presented in the
form of instruction following or conversation.

3.2 FINDAP Training Recipe (FinRec)

As shown in Figure 1, FinRec consists of two
recipes: the model recipe, which focuses on the
training stages and losses, and the data recipe,
which focuses on constructing training data.

3.2.1 Model Recipe
Previous studies often de facto treat domain-
adaptive post-training as a sequential process in-
volving, or partially involving, CPT, IT, and PA.
However, our experiments with LLaMA3-8B-Inst
show key trade-offs among these stages (App. B).
While CPT is effective at introducing domain con-
cepts, it often leads to significant forgetting of gen-
eral concepts and instruction-following capabilities.
In contrast, IT strengthens instruction-following ca-
pabilities and introduces domain-specific tasks with
minimal forgetting. IT alone however struggles
with task generalization. PA is effective for learn-
ing reasoning but depends heavily on high-quality
preference data, which can be difficult to synthe-
size. To address these limitations, we propose
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a joint CPT+IT approach, resulting in CPT+IT
checkpoint. Subsequently, PA is performed with
a novel trajectory collection method that provides
fine-grained supervision signals.
Joint continual pre-training and instruction-
tuning (CPT + IT). In this stage, the goal is
to learn domain-specific knowledge while main-
taining general capabilities, such as instruction-
following. It is well known that CPT can adapt the
LLM to learn domain-specific concepts while IT
can help learn the domain-specific and instruction-
following tasks (Ke et al., 2022; Wei et al., 2022).
Typically CPT involves next-token prediction with-
out masking any context tokens, and IT involves
next-token prediction with instructions masked out;
thus training them sequentially from an instruction-
tuned LLM naturally leads to forgetting general
capabilities, including instruction-following. Intu-
itively, if the loss function incorporates both CPT
and IT, forgetting can be largely mitigated (Scialom
et al., 2022).3 To achieve this, we mix CPT and
IT data, effectively performing joint optimization,
as the only difference between the two is whether
the instruction is masked. This approach also facil-
itates knowledge transfer, as CPT helps the model
learn domain knowledge, which can be leveraged
by IT training. More importantly, since concepts
learned from CPT are often inherently more gener-
alizable due to the shared nature of concepts across
tasks, jointly training CPT and IT can improve gen-
eralization without require exposure to a diverse
range of tasks , which is often impractical in certain
domains, particularly long-tail ones. Since CPT
datasets are typically much larger than IT datasets,
we downsample CPT data to match the size of IT
data, allowing for effective joint training.
Improving reasoning with preference alignment.
CPT+IT improves capabilities such as in general
and domain-specific concepts, tasks and IF/Chat.
However, we find that the resulting model lacks in
its reasoning capability, especially when it comes
to complex reasoning like solving problems in CFA
exams, where it is important to make each reason-
ing step correct. We use PA for this, which trains
the model to assign higher probability mass to bet-
ter generations, and has been shown to be effective
in enhancing LLM reasoning capabilities (Lambert
et al., 2024; Jiao et al., 2024). Specifically, we
employ Direct Preference Optimization or DPO
(Rafailov et al., 2023), which allows the model

3This is akin to ‘replay’ method in continual learning.
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Figure 2: An overview of the proposed final answer pref-
erence (FAP) and stepwise corrective preference (SCP). In
FAP, we collect trajectories from the GenRM by evaluating
the entire solution. In SCP, we collect trajectories from the
GenRM, by identifying and correcting the first erroneous step.

to learn from both positive and negative exam-
ples, providing a richer learning signal compared to
SFT. We synthetically generate such data from the
on-policy model, i.e., the jointly trained CPT+IT
checkpoint, as it has shown the strongest perfor-
mance in preliminary experiments (Appx. B.3). We
propose a novel trajectory collection method that
provides fine-grained step-level supervision signals
(§3.2.2)

3.2.2 Data Recipe
While data quality and diversity are standard con-
cerns in LLM training, we focus on two under-
explored challenges: (a) the impact of in-domain,
general-domain, and mixed-domain datasets on
model performance at different training stages; (b)
the generation of fine-grained supervision signals
in PA to improve reasoning.
Mixture of in-domain and general-domain data.
Most existing finance LLMs rely exclusively on
in-domain data in post-training with the exception
of FinLLM, which uses general domain data in
CPT (see Table 1). Intuitively, this exclusive re-
liance on in-domain data can lead to forgetting of
general knowledge in the original pre-trained LLM.
To understand how the forgetting happens across
different stages, we conduct ablations by construct-
ing three versions of data for each training stage:
in-domain, general-domain, and a mixture of both.
Experiments (App. B) show that the impact of for-
getting decreases progressively from CPT to IT
to PA, with CPT experiencing the most severe for-
getting and PA the least. Guided by these findings,
we adopt a mix of in- and general-domain data for
CPT+IT training to maximize both specialization
and retention of essential general knowledge.
Preference data construction for reasoning. Ex-
isting training methods to improve reasoning pri-
marily rely on outcome-based rewards, which pro-
vide sparse supervision and do not guide interme-
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diate reasoning steps. At the same time, stepwise
reward models can be computationally expensive
if applied at every step. To strike a balance, we
employ a Generative Reward Model (GenRM) and
design Final Answer Preference (FAP) to efficiently
collect preference signals at the final answer level
(outcome reward), while also collecting Stepwise
Corrective Preference (SCP) at the reasoning step
level (process reward) by asking the GenRM to
identify and correct the first erroneous step. By
combining these two complementary strategies, our
PA provides stronger supervision signals for rea-
soning improvements while maintaining efficiency,
making it particularly suitable for domains like
finance, where both accuracy and efficiency are
critical. Figure 2 illustrates the proposed method.
• Final Answer Preference (FAP). Given a
prompt and a model generated solution, we prompt
the GenRM to give a holistic judgment for the en-
tire solution using a single “Yes” or “No” token.
We then use the correct solutions as chosen samples
and the incorrect solutions as rejected samples.
• Stepwise Corrective Preference (SCP). Since
reasoning could be complex (e.g., CFA exams) and
process rewards have been shown to be more ef-
fective in such cases (Lightman et al., 2024), we
further leverage the GenRM to provide step-level
signals. Instead of requesting rewards at each step,
which has been shown to be unnecessary in (Light-
man et al., 2024; Luo et al., 2024), we prompt the
GenRM to identify the first erroneous step and ask
it to provide a correction for that step. Using this
correction, we construct a preference data sample.
The input prompt is formed by concatenating the
original question, the candidate reasoning steps up
to the first error, and a follow-up question framed
as “What is the next step?”. The chosen response
of this preference sample is the newly-obtained
corrected step, while the original first erroneous
step is deemed as rejected response. This approach
produces trajectories that focus on predicting the
correct next step given a reasoning prefix, unlike
FAP, which requires a prediction of the entire rea-
soning trajectory (see App. H for prompt details).

3.3 FINDAP Training Data (FinTrain)
In FinTrain, we carefully balance the trade-off be-
tween quality and quantity of the training data at
each stage. Specifically, in CPT, we leverage avail-
able general-domain supervised data, like Natu-
ralInstrution (Mishra et al., 2022). Since such data
has been carefully curated and cleaned for labeling,

they maintain good quality. For quantity and di-
versity, which is essential for learning new domain
knowledge during CPT, we collect large-scale, di-
verse data from relevant sources, including 70 fi-
nancial websites and books covering 12 financial
topics, like CFA exam preparation materials. We
further use a strong LLM to filter out low-quality
tasks based on an additive scale prompt (Yuan et al.,
2024). This results in approximately 6B tokens.

For IT, to promote diversity, we conduct a broad
survey and source general, financial, instruction-
following, and reasoning datasets from public
datasets. We also include large open QA datasets
like FinQA (Chen et al., 2021). To ensure quality,
we prioritize datasets that shown to perform well
in the literature, like UltraChat (Ding et al., 2023).
We also incorporate exercises or demonstrations
from books that often contain human-written CoT.
The final IT dataset consists of ∼3M prompts.

For PA, we use CFA preparation materials as
a representative source for in-domain reasoning
as they cover diverse financial scenarios, empha-
size complex reasoning, and, most importantly, are
derived from real-world exams. We construct pref-
erence data with FAP and SCP introduced in §3.2.2.
The final PA dataset consists of about 32K prompts.
Additional details are given in App. D.

3.4 FINDAP Evaluation (FinEval)

Our evaluation framework FinEval is designed to
systematically assess model performance across
unseen tasks. Unlike prior studies that rely on a
narrow set of domain-specific tasks, FinEval cate-
gorizes tasks by similarity (similar vs. novel tasks),
domain specificity (general vs. domain-specific vs.
reasoning tasks), and evaluation methods (direct-
answer vs. chain-of-thought). By structuring evalu-
ations along these dimensions, FinEval consists of
35 tasks and can serve as a comprehensive bench-
mark for the expected capabilities going beyond
simple task-based evaluation. We took extra care to
ensure that FinEval does not duplicate any samples
from FinTrain: the 10-gram contamination rate
is only 0.003%, indicating minimal overlap (see
App. A). We provide details about the evaluation
tasks and methods in App. E.

4 Experiments

We apply our method to the instruction-tuned
Llama3-8b-inst, resulting in Llama-Fin (GPT-
4o is used as GenRM). A summary of the
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Task Benchmark
Llama-Fin
8B

Llama3
Instruct
8B

Llama3.1
Instruct
8B

Palmyra
Fin
70B

Phi
3.5-mini
Instruct
3.8B

Mistral
Nemo
instruct
12B

GPT4o

Sentiment Ana. FPB (Acc) 91.13✓ 73.09 71.55 67.11 78.04 78.25 82.16
Sentiment Ana. FiQA SA (Acc) 95.32✓ 77.87 70.64 71.91 69.36 55.74 68.51
Monetary Policy FOMC (Acc) 64.31✓ 56.65 54.64 63.10 58.47 57.86 67.94
Named Entity NER (Rouge1) 76.69✓ 45.03 51.22 54.29 39.37 49.84 43.02
Abs Summ. EDTSUM (Rouge1) 53.78✓ 11.50 12.53 21.77 19.97 12.32 18.15

Table 2: Results on similar (unseen) tasks. Llama-
Fin is highlighted in blue while the closed model is

highlighted in gray . The best performing model for 8b on
each benchmark is bolded. The overall best performance
across all models is underlined. ✓ indicates that Llama-Fin
outperforms the base Llama3-8b-inst.

hyper-parameters and computational resource
requirements is given in Table G.1. For evaluation,
we compare Llama-Fin with a wide range of
baselines models, including its base model,
Llama3-8b-inst, and the 8B peer, Llama3.1-8b-inst.
We also include comparisons with models of
other sizes, such as Phi-3.5-mini-instruct (Abdin
et al., 2024) (3.8B), and Mistral-Nemo-inst (Jiang
et al., 2023) (12B), as well as the closed model
GPT-4o (OpenAI, 2023). Furthermore, we
evaluated against the latest SoTA finance-specific
LLM, Palmyra-Fin (70B) (Writer, 2024). Note
that there are other financial LLMs available, such
as FinMa (Xie et al., 2023) and FinLLaVA (Xie
et al., 2024a). However, they are either not
publicly available (FinLLaVA) or based on less
advanced LLMs (e.g., LLaMA2). In preliminary
experiments, these models performed considerably
worse than our model (see App. F). Therefore, we
have only included the SoTA financial LLM in our
comparisons.

4.1 Main Results

Similar (unseen) tasks. To validate our approach,
we first evaluate Llama-Fin on tasks that are simi-
lar (yet unseen) to the tasks used for training (e.g.,
test task EDTSUM (abstractive summarization) is
similar to the training task TradeTheEvent (abstrac-
tive summarization)). From Table 2, we observe
that Llama-Fin outperforms all other baselines in
its size category by 10% - 25% absolute gain. It
also surpasses significantly larger models, such as
the finance-specific Palmyra-Fin (70B). Notably,
Llama-Fin also exceeds the performance of GPT-
4o. These results are not very surprising since the
test tasks are not entirely novel, but it demonstrates
the effectiveness of our data and model recipe for
domain-adaptive post-training.
Novel tasks. We now evaluate the generalization
of Llama-Fin on the completely novel tasks that are

also aligned to the expected capabilities (FinCap).
Table 3 presents the results. Below, we summarize
the key takeaways from the comparison:
• Llama-Fin preserves general concepts (rows
2-5). We observe that Llama-Fin performs better or
remains competitive with its base model in general
knowledge recall tasks, indicating that it effectively
preserves general capabilities and mitigating forget-
ting. It performs slightly worse than the base model
in finance knowledge recall (MMLU-Finance), de-
spite our finding that the CPT benefits IT (see abla-
tions in Appendix B.3). We hypothesize that CPT
helps learn concepts that are helpful but differ from
those emphasized in MMLU-Finance.
• Llama-Fin is effective in the majority of tasks
(rows 6-22). It outperforms the base model in 13
out of 17 tasks, demonstrating that our approach
can lead to models that generalize well to novel,
unseen tasks requiring the same capabilities.
• Llama-Fin preserves IF/Chat capabilities (row
23). Llama-Fin achieves a competitive MT-Bench
score compared to the base model, indicating that
it effectively maintains the IF capability.
• Llama-Fin excels in reasoning tasks (rows 24-
31). For reasoning capability, Llama-Fin signifi-
cantly outperforms the base models across all con-
sidered benchmarks in a large amount (up to 20%
in CFA-Challenge), indicating substantial improve-
ments in reasoning capability.

4.2 Further Analysis and Ablations
As discussed in §3.2, we performed a number
of data and model ablations in pursuit of design-
ing the best training recipe (including parameter-
efficient finetuning methods like LoRA) for Llama-
Fin. Those ablations are detailed in Appendix B.
In this section, we present the impact of our PA
strategy in the overall post-training process.

Table 4 presents the effectiveness of PA on sim-
ilar tasks. We see that PA leads to improved per-
formance in 3 out of 5 tasks, while not causing any
significant forgetting on the other two. This is ex-
pected as PA primarily targets the reasoning tasks
whereas these tasks do not need much reasoning.

In Table 5, we show the same ablation for the
novel tasks. In Concept (rows 2-5) and IF/chat
(row 23) capabilities, removing PA often leads to
worse results, indicating its effectiveness. In Task
(rows 6-22), we see a mixed performance with
and without PA. This is again not surprising as
PA specifically focuses on reasoning tasks. Inter-
estingly, we observe that for certain tasks (e.g.,
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Capability Domain Task Benchmark
Llama-Fin
8B

Llama3
Instruct
8B

Llama3.1
Instruct
8B

Palmyra
Fin
70B

Phi
3.5-mini
Instruct
3.8B

Mistral
Nemo
instruct
12B

GPT4o

Concept General Knowledge Recall MMLU (CoT, Acc) 47.42 48.14 47.42 54.93 45.07 49.64 63.88
AI2-ARC (CoT, Acc) 89.43✓ 89.29 89.80 89.01 87.25 88.19 97.85
Nq-open (CoT, Acc) 19.20✓ 18.47 22.52 19.25 6.20 17.01 27.92

Finance Knowledge Recall MMLU-Finance (Acc) 64.20 65.71 66.74 75.15 68.17 61.88 86.52
Task Finance Extractive Summ. Flare-ECTSUM (Rouge1) 34.10 35.92 35.77 33.24 35.52 37.86 35.90

ESG Issue MLESG (Acc) 40.67✓ 36.33 36.00 39.67 38.33 32.67 45.67
Rumor Detection MA (Acc) 84.00✓ 82.60 84.20 62.60 75.40 85.20 73.80
Stock Movement SM-Bigdata (CoT, Acc) 54.14 55.3 46.06 48.70 53.26 53.53 49.18

SM-ACL (CoT, Acc) 51.99✓ 50.51 45.30 51.21 49.84 50.75 50.97
SM-CIKM (CoT, Acc) 54.94 55.56 48.03 52.92 50.03 53.28 49.78

Fraud Detection CRA-CCF (CoT, Mcc) 0.83✓ -0.32 2.73 3.12 1.20 3.94 6.16
CRA-CCFraud (CoT, Acc) 34.03✓ 14.78 17.3 33.03 45.33 32.94 49.57

Credit Scoring Flare-German (CoT, Acc) 64.00✓ 33.50 15.00 12.00 49.50 32.50 17.00
Flare-Astralian (CoT, Acc) 44.60 66.91 11.51 12.95 46.76 56.12 51.80
CRA-LendingClub (CoT, Acc) 68.49✓ 52.69 25.38 23.40 48.87 21.03 65.03

Distress Ident. CRA-Polish (CoT, Mcc) 15.30✓ 12.37 15.07 13.78 69.14 11.18 17.38
CRA-Taiwan (CoT, Acc) 40.81✓ 12.01 35.97 52.58 69.96 57.88 8.57

Claim Analysis CRA-ProroSeguro (CoT, Acc) 35.14 96.98 44.33 56.20 25.86 32.58 96.60
CRA-TravelInsurance (CoT,Acc) 41.52✓ 6.39 80.31 17.28 94.48 73.64 54.03

Tabular QA *Flare-TATQA (CoT, Acc) 66.61✓ 63.43 63.70 64.21 57.70 66.40 74.90
Open QA *Finance Bench (CoT, Acc) 54.00✓ 52.70 38.00 56.67 40.70 55.30 51.30

IF/Chat General Precise IF MT-bench (1,2 turn avg) 7.36 7.88 7.92 5.80 8.38 7.84 9.10
Reasoning Math Math Reasoning MathQA (CoT, Acc) 55.08✓ 51.16 49.35 41.51 39.40 52.46 70.82

General Social Reasoning Social-IQA (CoT, Acc) 75.23✓ 68.83 70.73 77.28 72.82 62.95 78.92
Common Sense Open-book-qa (CoT, Acc) 82.60✓ 77.00 82.20 87.00 80.20 76.40 94.60

Hellaswag (CoT, Acc) 81.90✓ 73.34 69.10 69.69 67.89 61.74 81.76
Winogrande (CoT, Acc) 70.32✓ 62.51 66.69 74.27 72.22 65.82 85.71
PIQA (CoT, Acc) 85.85✓ 79.82 81.45 86.72 82.05 77.91 94.34

Finance Exam CFA-Easy (CoT, Acc) 66.28✓ 60.56 60.47 36.05 61.24 65.89 83.14
CFA-Challnge (CoT, Acc) 55.56✓ 34.44 35.56 25.56 48.89 43.33 74.44

Table 3: Results on the novel tasks. The notations are the same as in Table 2. ‘*’ indicates that ‘GPT4o’ is used as the judge.
‘Mcc’ refers to Matthews correlation coefficient, usually used in highly imbalanced data (Xie et al., 2024a).

Task Benchmark Llama-Fin
Llama-Fin
(w/o PA)

Sentiment Ana. FPB 91.13 92.99
Sentiment Ana. FiQA SA 95.32 94.47
Monetary Policy FOMC 64.31 63.10
Named Entity NER 76.69 74.33
Abs. Summ. EDTSUM 53.78 54.21

Table 4: Ablation on PA on similar (unseen) evaluation set.

CRA-TravelInsurance, CRA-Taiwan and CRA-
ProroSeguro), PA negatively impacts performance,
resulting in worse outcomes compared to without
PA. Even GPT-4o performs poorly in these tasks.
This suggests that for some tasks, leveraging rea-
soning capabilities might not be beneficial, as these
tasks could be inherently “easy” and solvable with-
out the need for explicit reasoning. Such obser-
vations align with prior findings (Sprague et al.,
2024; Liu et al., 2024). In Reasoning (rows 24-31),
Llama-Fin is significantly better than without PA
variant, further confirming that our proposed FAP
and SCP are particularly effective in improving
reasoning performance beyond the already strong
checkpoint of Llama-Fin (w/o PA).

5 Conclusion

We introduce FINDAP, an open SoTA finance-
specific post-training framework, consists of Fin-
Cap that identifies four key capabilities; FinRec
which jointly trains CPT and IT, and constructing
PA preference data with stepwise signals; FinTrain

Capability Domain Task Benchmark Llama-Fin 8B
Llama-Fin
(w/o PA)

Concept General Knowledge Recall MMLU 47.42 47.22
AI2-ARC 89.43 88.95
Nq-open 19.20 16.20

Finance Knowledge Recall MMLU-Finance 64.20 63.93
Task Finance Extract Summ. Flare-ECTSUM 34.10 34.41

ESG Issue MLESG 40.67 42.00
Rumor Detection MA 84.00 84.60
Stock Movement SM-Bigdata 54.14 52.04

SM-ACL 51.99 49.89
SM-CIKM 54.94 44.88

Fraud Detection CRA-CCF 0.83 0.61
CRA-CCFraud 34.03 32.32

Credit Scoring Flare-German 64.00 60.50
Flare-Astralian 44.60 51.80
CRA-LendingClub 68.49 65.96

Distress Ident. CRA-Polish 15.30 0.65
CRA-Taiwan 40.81 96.41

Claim Analysis CRA-ProroSeguro 35.14 86.57
CRA-TravelInsurance 41.52 98.50

Tabular QA *Flare-TATQA 66.61 66.43
Open QA *Finance Bench 54.00 52.00

IF/Chat General Precise IF MT-bench 7.36 7.29
Reasoning Math Math Reasoning MathQA 55.08 54.30

General Social Reasoning Social-IQA 75.23 73.64
Common Sense Open-book-qa 82.60 79.20

Hellaswag 81.90 78.92
Winogrande 70.32 67.48
PIQA 85.85 84.39

Finance Exam CFA-Easy 66.28 62.31
CFA-Challnge 55.56 35.56

Table 5: Abaltion on PA on novel evaluation set.

that implements FinRec; and FinEval, a compre-
hensive evaluation setup. Under FINDAP, we de-
velop Llama-Fin, a SoTA finance LLM. In this
development, we conduct a systematic study on
effectively adapting a target domain through post-
training. For each stage, we reveal the distinct chal-
lenges, objectives, and effective strategies. Look-
ing ahead, we aim to scale up the base LLM and
explore additional domain-specific capabilities us-
ing FINDAP.
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6 Limitations

While the recipe for FINDAP and Llama-Fin are
effective, the performance on novel unseen tasks
still requires further improvement. For example,
selectively employing reasoning capabilities only
for questions that require such advanced reasoning
might give better results. Additionally, the data
recipe is currently based on full-scale empirical
experiments, which can be time-intensive. Devel-
oping low-cost experiments to reliably indicate the
effectiveness of data in post-training could stream-
line this process and accelerate the development
iteration. It is also worth noting that the same
recipe may not generalize well to other model fam-
ilies. Different architectures or pretraining strate-
gies might require tailored recipe to achieve opti-
mal results, emphasizing the need for adaptability
in recipe design in future research. Finally, while
we focus on the four key capabilities in finance,
we acknowledge there could be additional require-
ments (e.g., multi-modality and sensitivity, see de-
tails in Appendix §C), and leave them for future
work.
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A Preventing Data Contamination

When designing FinEval, we took extra care to
ensure that evaluation tasks do not duplicate any
samples from FinTrain. To further verify this,
we followed your suggestion and computed string
matches between FinEval and FinTrain.

Specifically, we adopted the decontamination
procedure described in the Hugging Face blog you
referenced. A training sample is contaminated if
it is overlapped with any evaluation sample. The
contamination ratio is computed as the fraction
of contamination samples in the training samples.
Based on this criterion, we report two contamina-
tion ratios:

• 0% under the strictest setting, where only
complete sample matches are considered con-
tamination.

• 0.003% using the method described in
the blog—where 10-gram matches are
used for pre-identification, followed by dif-
flib.SequenceMatcher. If over 50% of its char-
acters match any of the evaluation samples,
the training sample is considered contami-
nated.

These contamination rates are extremely low,
indicating minimal overlap between FinTrain and
FinEval. Upon manual inspection of the few sam-
ples flagged by the 50% character overlap rule, we
found they involve either (1) partial overlap in the
question format or instruction prompt, which is
expected for the similar tasks where the task type
(e.g., sentiment analysis) has been seen, but the
content remain unseen; or (2) partial overlap in
the input content (e.g., shared elements in bank
transcripts), but the specific question and answers
are unseen. In both cases, these do not indicate
memorization or leakage of benchmark content.

B Ablations and Understanding FINDAP

B.1 Continual Pre-training
In order to expose the LLM to domain-specific
concepts, we first conduct continual pre-training
(CPT). In CPT, we feed plain text to the LLM and
perform next token prediction.
From Text to CPT Data. A key challenge in CPT
is what kind of data we should use. Given the
general and domain-specific texts introduced in
§D, we can construct three versions of CPT data,
CPT-In contains only the financial (in-domain) text,

CPT-Gen contains only the general domain data,
and CPT-Mix contains the mixture of the CPT-In
and CPT-Gen.

Key Data Experiments. We conduct CPT on each
of the three versions of data. As shown in Fig-
ure B.1, we observe that while CPT-In and CPT-
Gen outperforms in financial (Fig B.1a) and general
(Fig B.1b) tasks, respectively, CPT-Mix achieves
the best overall. This is expected as CPT-In can
cause catastrophic forgetting on the general tasks,
while incorporating general domain concepts in
CPT-Mix acts as ‘replay’ mechanism to mitigate it
(Scialom et al., 2022). We can also see that none of
the CPT-trained LLMs outperform their base. This
is unexpected because CPT invovles post-training
on more specialized data, which should enhance
the performance. By analyzing the output, we at-
tribute this issue to the model forgetting how to
follow instructions effectively after CPT. To quan-
tify this finding, we evaluate the instruction fol-
lowing ability of these models using MT-Bench.
The two-turn average scores for CPT-Mix, CPT-In,
and CPT-Gen are 1, 1, and 1.0125, respectively,
while the base model, achieves a score of 7.8875.
These confirm that the conventional CPT applied
to a instruction-tuned LLM can cause serious for-
getting on instruction-following (IF) capability. In
§B.2, we will see how jointly train IT and CPT can
help mitigate such forgetting issue.

Figure B.1: Average performance on selected datasets
for training Llama3-8b-instruct on our CPT-In, CPT-
Gen and CPT-Mix. The Y-axis represents the same
performance metrics as those reported in Tables 2 and 3.
The selected datasets are chosen for illustration purpose
based on their ability to illustrate the general trend.
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B.2 Instruction Following

To adapt the LLM to domain-specific and IF tasks,
we conduct IT. The key different between IT and
CPT is that IT masks out the instruction and takes
as input supervised tasks.
From Prompt to IT Data. We introduced our
prompt curation in §D. We create the responses for
IT by filtering existing responses or creating new
responses. For prompts with existing responses, we
generally keep the original responses if they were
written by a human or a strong model, such as GPT-
4. We also filter out empty responses. For prompts
without responses, for example, exercises extracted
from books that may not have solutions provided,
we generate new responses using GPT-4o. Similar
to CPT data, we construct three versions of IT data,
IT-In, which contains only financial (in-domain)
tasks, IT-Gen, which contains only general tasks,
and IT-Mix, which includes a mixture of the IT-In
and IT-Gen.
Key Data Experiments. Similar to CPT, we con-
duct IT to each of the three versions. From Fig-
ure B.2, we observe that unlike CPT, forgetting is
significantly reduced. Specifically, all versions of
IT are no longer worse than their base versions, in-
dicating that the ability to follow instructions is not
as severely forgotten as in CPT. This is further sup-
ported by the MT-Bench scores, where we obtained
7.2031, 6.2094, and 7.3219 for IT-Mix, IT-In and
IT-Gen, respectively, all of which are significantly
better than the CPT counterparts.

Figure B.2: Average performance on selected datasets
for training Llama3-8b-instruct on our IT-In, IT-Gen
and IT-Mix.

We observe that IT-Mix is slightly better than
other data versions, suggesting that mixing general
tasks remains helpful to mitigating forgetting of

general concepts and tasks, although the effect is
much less pronounced compared to CPT. We also
see that similar tasks improve significantly over
base model while novel tasks (including financial
tasks and general tasks) show little change. This
indicates that, in contrast to CPT, domain has less
impact in IT, but task generalization is a challeng-
ing issue.

Comparison with LoRA. Another popular ap-
proach to adapt the LLM to specific domain is
Parameter-efficient Fine-tuning (PEFT), where
the LLM parameters remain fixed, and only a small
set of additional parameters are trained. This ap-
proach naturally mitigates forgetting issues and
is more efficient in terms of trainable parameters.
However, whether it can achieve performance com-
parable to full-model training is unclear. In Figure
B.3, we experiment with PEFT, specifically using
LoRA (Hu et al., 2021), with a rank size of 128,4

and compare its performance with full-model fine-
tuning (IT-Mix). We observe that with and without
LoRA performs similarly, confirming that LoRA is
effective for task adaptation. However, the novel
tasks still show little improvement, highlighting
that task generalization still remains a significant
challenge.

Figure B.3: Average performance on selected datasets
for training Llama3-8b-instruct on IT-Mix with full-
model finetuning (IT-Mix) and LoRA finetuning (IT-
Mix (LoRA)).

A plausible reason for the lack of task generaliza-
tion is that effective generalization may require ex-
posure to a diverse range of tasks (Wei et al., 2022),

4Further decreasing or increasing the rank size did not
show improvement in our preliminary experiments. For exam-
ple, rank size of 32, 128 and 512 yield overall averages across
10 general tasks of 0.5267, 0.5331, and 0.5215, respectively,
showing only minor differences.
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which is often impractical in certain domains, par-
ticularly long-tail ones. However, concepts them-
selves may be inherently more generalizable due to
the shared nature of concepts across tasks. Based
on this, we propose adding CPT either before or
concurrently with the IT stage and conduct training
experiments accordingly.

B.3 Combining CPT and IT

A natural choice is to conduct CPT and IT sequen-
tially (Lambert et al., 2024). On the one hand,
this is flexible as it allows for different settings
(e.g., data size) in each stage. On the other hand,
it does not help prevent forgetting during the CPT
stage, leaving the LLM dependent on IT to ‘re-
cover’ its instruction-following capability. To make
a more grounded decision, we conduct experiments
on both sequential and joint training approaches.
In joint training, an additional hyperparameter to
consider is the mixture ratio. We down-sample
CPT data to match the size of IT data. In “Other
sampling strategies” section, we will show this is
the most effective strategy.

Figure B.4: Average performance on selected datasets
for training Llama3-8b-instruct on CPT-Mix and IT-Mix
jointly (CPT-Mix + IT-Mix) and sequentially (CPT-Mix
→ IT-Mix).

Figure B.4 illustrates the comparison between
joint and sequential training. In both cases, differ-
ent from IT-only results shown in Figure B.2, we
see improved performance on similar and novel
tasks. This supports our hypothesis that CPT can
help improve the generalization of IT, as the con-
cepts are likely able to be shared across different
tasks. It is further interesting to see that even the
general tasks are improved, indicating that there
could be positive transfer between CPT and IT.
Comparing the two, we observe that joint train-

ing outperforms sequential training across financial
and general tasks, as well as similar and novel tasks,
highlighting the importance of preventing forget-
ting of CPT and knowledge transfer between CPT
and IT.

Other Sampling strategies. Besides down-
sampling, we also evaluate the performance un-
der a ‘no-sampling’ setting. Figure B.5 shows the
results. We observe that in both joint and sequen-
tial training, down-sampling yields better results
on financial tasks. This is understandable because
down-sampling assigns more weight to IT, which
is beneficial for the financial tasks. Interestingly,
we observe the opposite trend for general tasks: no-
sampling performs better. We hypothesize that this
is because having more CPT data helps preserve
general concepts more effectively, although it may
diminish instruction-following abilities.

Comparison with LoRA. In Section B.2, we
showed that LoRA can effectively adapt tasks but
still suffers from task generalization. While we al-
ready showed that CPT can help in full-model train-
ing setting, we now explore whether CPT can help
in the PEFT setting as well. Figure B.6 presents
the results of applying LoRA for IT and LoRA
for both CPT and IT. Surprisingly, we find that
full fine-tuning significantly outperforms the LoRA
counterparts across similar and novel tasks. This
finding contrasts with our previous observations
in Figure B.3, where performance with and with-
out LoRA was comparable. Our results reveal that
knowledge transfer from CPT to IT, which is cru-
cial for task generalization, requires full-model
training.

B.4 Preference Alignment

Negligible Forgetting in PA. As with CPT and IT,
we begin by performing an ablation study on dif-
ferent data versions to evaluate their effectiveness.
Since the degree of forgetting diminishes from CPT
to IT (as observed in §B.2), we expect it to be even
less pronounced in PA. To quickly evaluate this
hypothesis, we take a naive approach and create
PA-Mix and PA-In by using either the provided
or GPT4o generated responses (as done for IT in
§B.2) as the ‘chosen’ samples and the output of
‘CPT+IT’ checkpoint as the ‘rejected’ ones, based
on the prompts of IT-Mix and IT-In, respectively.

Figure B.7 shows the results after PA training
for PA-In and PA-Mix from the ‘CPT+IT’ check-
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Figure B.5: Average and selected datasets performance from down-sampling or no-sampling on CPT.

Figure B.6: Average performance on selected datasets
for PEFT or full model fine-tuning for CPT and IT.

point.5 We observe that PA-In performs compara-

5PA trained from Llama3-8b-instruction has shown worse
results compared to training from the ‘CPT+IT’ checkpoint
in our preliminary experiments, as PA requires a strong ini-
tialization checkpoint. For instance, PA-Mix from Llama3-
8b-instruction achieves only 29.99 on EDTSUM, whereas the
CPT+IT’ counterpart achieves 54.21. As a results, we only
investigate training PA from ‘CPT+IT’ checkpoint.

Figure B.7: Average performance on selected datasets
for PA training from the ‘CPT+IT’ checkpoint on PA-
Mix and PA-In.

bly to PA-Mix, indicating that it may not be essen-
tial to include general tasks to prevent forgetting
of concepts or tasks, unlike the cases of CPT and
IT. This suggests that PA training can focus on in-
domain tasks, without requiring a broader set of
general tasks or raising concerns about forgetting.
Given this, we use CFA exams (Table D.2 in §D)
as a representative source for in-domain reasoning
because they cover diverse financial scenarios, em-
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phasize complex reasoning, and, most importantly,
are derived from real-world exams. These charac-
teristics make them a strong proxy for a broader
range of financial tasks, ensuring that the model
generalizes effectively within the financial domain
while simplifying the training process.

Another crucial observation is that there is not
much difference even for unseen similar tasks
(FiQA SA, FOMC and NER) and reasoning tasks
(CFA-Easy and CFA-Challenge). This highlights
the limitations of the current naive PA approach
and suggests room for further improvement. In
FINDAP, we propose a novel PA approach that
constructs preference data guided by both outcome
and process reward signals.

C Other Capabilities

Besides those core capabilities mentioned in §3.1,
domains may vary significantly in their sensitivity.
For instance, the medical domain is highly sensi-
tive, requiring utmost accuracy and strict adher-
ence to ethical considerations. In contrast, domains
such as entertainment may have more relaxed re-
quirements. Another important consideration is
multi-modality, as some domains require handling
multiple types of input and output formats. For
example, the healthcare domain may involve pro-
cessing medical images alongside textual reports,
while the e-commerce domain may integrate prod-
uct descriptions, images, and customer reviews into
a unified response. Similarly, scientific research
often combines charts, graphs, and textual analysis
to present findings effectively.

D FinTrain

Continual Pre-training Text Curation To in-
troduce domain concepts while preserving general
concepts, we curate texts for CPT. Table D.1 sum-
marizes the texts curation datasets. Specially, for
general concepts, research has shown that a ‘small’
amount of general text (as little as 1%) can effec-
tively mitigate the forgetting issue (Scialom et al.,
2022). Therefore, we focus on collecting a rela-
tively small but high-quality set of general-domain
text. To achieve this, we use verifiable text, which
is text written by humans and previously used in
supervised tasks in the literature. Note that this
contrasts with using unverifiable web text such as
C4 (Raffel et al., 2020).

For domain concept, our goal is to collect both
a large volume of data and maintain high quality.

Capability Domain Dataset Size Reference
Concept General NaturalInstrution 100,000 Mishra et al. (2022)

PromptSource 100,000 Bach et al. (2022)
Math 29,837 Amini et al. (2019b)
Aqua 97,500 Ling et al. (2017)
CREAK 10,200 Onoe et al. (2021)
ESNLI 549,367 Camburu et al. (2018)
QASC 8,130 Khot et al. (2020)
SODA 1,190,000 Kim et al. (2022)
StrategyQA 2,290 Geva et al. (2021)
UnifiedSKG 779,000 Xie et al. (2022)
GSM8K 7,470 Cobbe et al. (2021)
ApexInstr 1,470,000 Huang et al. (2024b)
DeepmindMath 379,000 Saxton et al. (2019)
DialogueStudio 1,070,000 Zhang et al. (2023)

Finance Fineweb-Fin 4,380,000 -
Book-Fin 4,500 -

Total 10,177,294

Table D.1: Summary of curated texts. New datasets
released with FINDAP are color-highlighted for empha-
sis.

Following practices from the literature on training
general LLMs (Lambert et al., 2024; Gunasekar
et al., 2023), we source financial texts from primar-
ily relevant websites and books. Specifically, we
source financial text from two primary resources.
The first source is web text, where we filter non-
financial content from the FineWeb using URLs
like ‘sec.gov’ and ‘investopedia.com’. The
second source is books. We manually select 10
finance-related topics (e.g., ‘economics’ and ‘man-
agement’), download books on these topics, and
convert them to text using OCR (Malmgren, 2014).
Since OCR can make mistakes, we further employ
a strong LLM to filter out content lacking educa-
tional value or unrelated to finance. Details on
the financial URLs, finance-related topics, and the
prompts used for filtering is shown below:
• Selected Financial URLs. We curated a se-

lection of 70 financial websites to comprehensively
cover diverse aspects of finance-related content
on the web. These include trusted sources from
financial institutions, regulatory agencies, educa-
tional platforms, and industry-specific news out-
lets. This diverse collection ensures representation
across sub-domains such as investment, banking,
personal finance, regulatory compliance, and finan-
cial planning, offering a well-rounded foundation
that can cover most of the finance content in the
web.

• Selected Topics. We select 12 topics that are
cover most of books in finance. 5 of them are from
business areas, including business, Accounting, Ac-
counting, Management, Marketing, Trading; 1 is
from Mathematics, i.e., Mathematical Economics;
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Capability Domain Task Dataset Size Reference
Tasks Finance Relation Cls. FingptFinred 27,600 Sharma et al. (2022)

NER FingptNERCls 13,500 Yang et al. (2023)
FingptNER 511 Alvarado et al. (2015)

Headline Cls. FingptHeadline 82,200 Sinha et al. (2020)
Sentiment Cls. SentimentCls 47,600 Yang et al. (2023)

SentimentTra 76,800 Yang et al. (2023)
Summariz. TradeTheEvent 258,000 Zhou et al. (2021)

IF/Chat General IF/Chat SelfInstruct 82,000 Wang et al. (2022)
SlimOrca 518,000 Lian et al. (2023)
UltraChat 774,000 Ding et al. (2023)
ShareGPT 100,000 Link

Finance QA FinanceInstruct 178,000 Link
FingptConvfinqa 8,890 Chen et al. (2022)
FlareFinqa 6,250 Chen et al. (2021)
FlareFiqa 17,100 Yang et al. (2023)

Reasoning Math QA OrcaMath 200,000 Mitra et al. (2024)
MetaMathQA 395000 Yu et al. (2023)
MathInstruct 262,000 Yue et al. (2023)

Code QA MagicodeInstruct 111,000 Luo et al. (2023)
Finance CFA Exam Exercise 2,950 -

Total 3,161,401

Table D.2: Summary of our curated prompts. New datasets released with FINDAP are color-highlighted for
emphasis. For datasets without formal references but only a URL, we provide their links.

and 4 are from Economy area, including economy,
econometrics, investing, and markets. We crawled
the web to downloaded the books from the corre-
sponding topics. For CFA, we use the material
provided by CFA prep providers.
• Prompt for Filtering the Text. We explored

various prompt formats to automatically extract
an financial score using an LLM and found that
the additive scale by Yuan et al. (2024) worked
best. Figure D.1 shows the prompt we used to fil-
ter the ‘low-quality’ text. Specifically, this prompt
allows the LLM to reason about each additional
point awarded, unlike the single-rating Likert scale
which fits samples into predefined boxes. Then, to
avoid the LLM favoring highly technical content
like academia papers, we focused on financial stu-
dent level knowledge. By setting a threshold of 4
(on a scale of 0 to 5) during the filtering process, we
were able to also retain some high-quality financial
content.

Insturction Prompt Curation Prompts repre-
sent the diverse ways users may interact with mod-
els and serves the essential component for IT and
PA. Table D.2 summarizes the prompts curation
datasets. Specifically, we conduct a broad survey
and source general, financial, instruction-following,
and reasoning tasks from public datasets. To
promote diversity, we include datasets like Flare-
FinQA (Chen et al., 2021), a large open QA dataset
in finance, and UltraChat (Ding et al., 2023), a
dataset shown to perform well for IT in the litera-
ture (Tunstall et al., 2024; Ivison et al., 2024). Ad-
ditionally, we find that exercises or demonstrations

from books that were curated in §D is valuable for
reasoning tasks as they usually involve challenging
reasonings and come with ground truth answers
and sometimes even include human-written chain-
of-thought (CoT) explanations.

Figure D.2 shows the prompt we used to extract
exercises from books. We carefully design the
prompt to extract both the question part of an exer-
cise, which potentially include questions, scenario
and exhibits, and the answer part of the exercise,
which may include answer choices and solution.
In books, questions and their corresponding an-
swers can be located far apart (e.g., the questions
may appear at the beginning while the solutions
are provided at the end), meaning they may not be
captured within the same chunk. As a result, some
questions may not have corresponding extracted
answers. For such cases, GPT-4o’s generated an-
swers are used when converting the prompt into
instruction-following or preference-alignment data.

E FinEval

With the breakdown of capabilities in §3.1, our
evaluation framework consists of a suite for as-
sessing these capabilities using development sets
and unseen (held-out) evaluation sets. Our devel-
opment set is directly split from the training data
at each stage. Table E.1 outlines the capabilities
and the evaluation benchmarks selected to cover
these capabilities. Crucially, we did not examine
scores on our unseen set while developing the mod-
els, which allows us to observe how much we may
have overfitted to particular evaluations in our deci-
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Capability Domain Task Evaluation Dataset Size Reference
Unseen - Similar

Tasks Finance Sentiment Analysis FPB 970 Malo et al. (2014)
FiQA SA 235 Maia et al. (2018)

Monetary policy Stance FOMC 496 Shah et al. (2023)
Named entity recognition NER 98 Alvarado et al. (2015)
Abstractive Summarization EDTSUM 2,000 Zhou et al. (2021)

Total 3,799
Unseen - Novel

Concept General Knowledge Recall MMLU 14,042 (Hendrycks et al., 2021)
AI2-ARC 3,548 Clark et al. (2018)
Nq-open 7,842 Kwiatkowski et al. (2019)

Finance MMLU-Finance 1,460 -
Tasks Finance Extractive Summarization Flare-ECTSUM 495 Mukherjee et al. (2022)

ESG Issue Classification MLESG 300 Chen et al. (2023a)
Rumour Detection MA 500 Yang et al. (2020)
Stock Movement Prediction SM-Bigdata 1,470 Soun et al. (2022)

SM-ACL 3,720 Xu and Cohen (2018)
SM-CIKM 1,140 Wu et al. (2018)

Fraud Detection CRA-CCF 2,280 Feng et al. (2024)
CRA-CCFraud 2,100 Feng et al. (2024)

Credit Scoring Flare-German 200 Hofmann (1994)
Flare-Astralian 139 Quinlan (1987)
CRA-LendingClub 2,690 Feng et al. (2024)

Distress Identification CRA-Polish 1,740 Feng et al. (2024)
CRA-Taiwan 1,370 Feng et al. (2024)

Claim Analysis CRA-ProroSeguro 2,380 Feng et al. (2024)
CRA-TravelInsurance 2,530 Feng et al. (2024)

Tabular QA Flare-TATQA 1,670 Zhu et al. (2021)
Open QA Finance Bench 150 Islam et al. (2023)

IF/Chat General Precise IF MT-bench 80 Zheng et al. (2023)
Reasoning Math Reasoning MathQA 2,985 Amini et al. (2019a)

General Social Reasoning Social-IQA 2,636 Welbl et al. (2017)
Common Reasoning Open-book-qa 500 Mihaylov et al. (2018)

Hellaswag 10,003 Zellers et al. (2019)
Winogrande 1,767 Sakaguchi et al. (2019)
PIQA 3,000 Bisk et al. (2020)

Finance Exam CFA-Easy 1,030 Link
CFA-Challenge 90 -

Total 91,872

Table E.1: Summary of our evaluation dataset. New datasets released with FINDAP are color-highlighted for
emphasis.

sions around training recipe. For the unseen tasks
(Table E.1), we manually review each individual
dataset and have the following considerations.

• Benchmarking tasks. Corresponding to the ca-
pabilities, we consider a diverse set of benchmark-
ing tasks. For concepts, we include knowledge
tasks in the general domain, such as AI2-ARC
(Clark et al., 2018), as well as in finance, such
as MMLU-Finance (Hendrycks et al., 2021). For
tasks, we consider general tasks, such as Social-
IQA (Welbl et al., 2017), and domain-specific tasks,
such as MLESG (Chen et al., 2023a). Notably, we
intentionally include a few financial tasks such as
Flare-TATQA (Zhu et al., 2021) and SM-Bigdata
(Soun et al., 2022) that require understanding of
tabular data, as this data format is common in this
domain. For IF/Chat capabilities, we utilize popu-
lar instruction-following benchmarks, such as MT-
Bench (Zheng et al., 2023). For reasoning, we
include general reasoning tasks, such as MathQA
(Amini et al., 2019a) and Hellaswag common sense

reasoning (Zellers et al., 2019), as well as domain-
specific reasoning tasks, such as CRA-ProroSeguro
claim analysis (Feng et al., 2024). We also con-
struct a new benchmark on CFA-Challenge based
on CFA Level III, one of the most challenging finan-
cial exams that requires comprehensive reasoning
(Khamnuansin et al., 2024; Callanan et al., 2024).

• Evaluation method. We split our evaluation set
into two types based on their exposure to Instruc-
tion tuning (IT) data (Table E.1). The first type,
Similar, includes tasks whose types have been en-
countered during training, even if the specific tasks
themselves are unseen (e.g., a new NER task). The
second type, Novel, includes tasks whose types
have not been seen during training, representing
entirely new challenges for the model (e.g., stock
movement prediction). We use two different eval-
uation methods based on the nature of the bench-
marks. For knowledge and NLP tasks (e.g., NER),
we employ a straightforward direct answer evalu-
ation. For reasoning tasks (e.g., CFA-Challenge),
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we use a 0-shot chain-of-thought (CoT) (Wei et al.,
2023) answer evaluation to enhance the reliability
of our evaluation. This also exposes the reasoning
path, allowing us to investigate the causes of in-
correct answers and enabling a more fine-grained
comparison across different models.

F Preliminary Experiments on Older
Financial LLMs

As mentioned in Section 4, the reason we did not
include older financial LLMs is that they are either
not publicly available (e.g., Bloomberg GPT) or
clearly worse than our model. As a result, we only
include the SoTA finance LLM (i.e., Palmyra Fin
70b) in the comparison.

To further support this point, we compare per-
formance on overlapping evaluation benchmarks,
using the reported numbers for other baselines ex-
tracted from their papers. We made careful efforts
to ensure comparability:
• Metrics. We noticed that different metrics

were used across baselines and our methods. For
example, some baselines reported F1 scores for
FPB and FiQA SA, while we originally reported
accuracy. For NER, the baselines used Entity F1,
whereas we initially reported ROUGE scores. To
ensure fair comparison, we re-ran our evaluation
using the same metrics. We reported both accuracy
and F1 for FPB and FiQA SA, and used Entity F1
for NER.
• Test Datasets. The test datasets are the same.

We follow the datasets used in Xie et al. (2023)6,
which include 235 test samples for FiQA SA, 970
samples for FPB, and 98 samples for NER. These
statistics also match those reported in Table E.1 of
our Appendix. We do not use the training or vali-
dation sets, as our evaluation is conducted purely
in the zero-shot setting. The baseline results are
taken directly from Table 5 in Xie et al. (2023),
which ensures consistency in comparison and also
corresponds to Table 1 in Xie et al. (2024b).

Table F.1 shows the results. These results clearly
show that our model outperforms these older finan-
cial LLMs, including significantly larger models
such as FinMA 30B. Moreover, their reported re-
sults are based on few-shot settings, whereas our
evaluations are conducted in the zero-shot setting,
further highlighting the effectiveness of our ap-
proach.

6https://huggingface.co/collections/TheFinAI/
english-evaluation-dataset-658f515911f68f12ea193194

Dataset Metric
Llama-Fin
8b

Bloomberg
GPT

FinPythia
7B

FinMA
7B

FinMA
30B

FPB Acc 91.13 — 59.90 86.00 87.00
F1 91.28 51.07 64.43 86.00 88.00

FiQA SA Acc 95.32 — 52.34 84.00 87.00
F1 95.39 75.07 53.04 — —

NER EntityF1 77.09 60.82 48.42 75.00 62.00

Table F.1: Experiments on older baselines.

G Summary of the Final Recipe and
Hyper-parameters

H GenRM Prompt Details

In Figure 2, we simplified the prompt for GenRM
for the purpose of illustration. In this section, we
give full detailed of the prompt for Final Answer
Preference (FAP) and Stepwise Corrective Prefer-
ence (SCP) in Figure H.1 and Figure H.2, respec-
tively.
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Final Recipe for Llama-Fin

Continual Pre-training (CPT) and Instruction Tuning (IT)
Data 50% CPT, 50% IT
Curriculum Group 1 CPT: 50% Domain-specific Text (Web and book), 50% General text (verfiable text)

IT: 20% Domain-specific tasks, 80% General tasks
Group 2 CPT: Group 1 data + domain-specific books

IT: Group1 + Exercises extracted from books

Steps Group 1: 3.84B tokens; Group 2: 1.66B tokens
(8,000 context length, 16 A100)

Model Intialization Llama3-8b-instruct
Attention CPT: full attention with cross-document attention masking

IT: attention with instruction mask-out and cross-document attention masking
Optim. AdamW (weight decay = 0.1, β1=0.9, β2=0.95)

LR Group 1: 5e-6 with 10% warmup; Group 2: 5e-6 with 50% warmup
Batch size 128K tokens

Stop Cri. Loss of development set stops decreasing (≈ 1 epoch)

Preference Alignment (PA)
Data FAP and SCP
Steps 24.58 M tokens
Model Initialization CPT+IT

Loss DPO with an additional negative log-likelihood term
Attention Attention with instruction mask-out and cross-document attention masking

Optim. LR 5e-7 with 10% warmup
Batch size 32K tokens

Stop Cri. Loss of development set stops decreasing

Table G.1: Final recipe of Llama-Fin. The joint training of CPT and IT is structured into two groups, with each
group undergoing joint training sequentially. The second group utilizes higher-quality data (sourced from books),
following the typical curriculum training practice (Gao et al., 2024). For PA, we employ a modified DPO loss with
an additional negative log-likelihood term, similar to Pang et al. (2024), as it has shown to be more effective than
relying solely on the original DPO loss.
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Prompt for Filtering the Text

Below is an extract from a text book. Evaluate whether the book has a high financial value and
could be useful in an financial setting for teaching financial students using the additive scoring
system described below. Points are accumulated strictly based on the satisfaction of each criterion:

• Add 1 point if the extract provides educational value for financial students whose goal is to
learn financial concepts or take financial exams. It is acceptable if quizzes are not included;
however, if quizzes are present, detailed solutions and explanations must also be provided.

• Add another point if the extract addresses certain elements pertinent to finance and aligns
closely with financial standards. It might offer a superficial overview of potentially useful
topics or present information in a disorganized manner and incoherent writing style.

• Award a third point if the extract is appropriate for financial use and introduces key concepts
relevant to financial curricula. It is coherent and comprehensive.

• Grant a fourth point if the extract is highly relevant and beneficial for financial learning
purposes for a level not higher than financial students, exhibiting a clear and consistent writing
style. It offers substantial financial content, including exercises and solutions, with minimal
irrelevant information, and the concepts aren’t too advanced for financial students. The content
is coherent, focused, and valuable for structured learning.

• Bestow a fifth point if the extract is outstanding in its financial value, perfectly suited for
teaching either at financial students. It follows detailed reasoning, the writing style is easy
to follow and offers profound and thorough insights into the subject matter, devoid of any
non-financial or complex content.

The extract: <EXAMPLE>.

After examining the extract, You will output a json object containing the following 2
fields:
{

"Justification ": string // Briefly justify your total score , up to 100
words.

"Score": integer // Conclude with the score
}

Figure D.1: Prompt for filtering the text
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Prompt for Extracting Exercise from Book

You are an educational assistant aims to extract all questions from the provided material. Look for
specific indicators such as "example," "quiz," "questions," or similar terms to identify where the
questions are located. If the material includes scenarios or exhibits, must include all details related
to them. Do not create or derive any questions or come up with content on your own—strictly
extract what is present in the material. Make sure no question is missed. If one scenario or exhibits
corresponds to multiple questions, duplicate the scenarios and exhitbits so that the number of
questions match the number of scenarios and exhibits.

The material: <MATERIAL>.

After performing these tasks, You will output a json object containing the following fields:
{

"Justification ": "string", // A brief justification for your extractions ,
up to 100 words.

"Questions ": "string", // A list of questions extracted from the material.
Only extract the exact questions presented in the text.

"Scenario ": "string", // A list of scenarios corresponding to the above
questions. If the material does not provide the scenario place "N/A."
Do not do any derivation or reference , must output the exact same ,
detailed and complete scenarios. The scenario may contain multiple
paragraphs or even splited by the exhibits , combine them into one string
. The scenario can be long , you may modify it to make it shorter , but
must not change its meaning.

"Exhibit ": "string", // A list of exhibits or tables corresponding to the
above questions. If the material does not provide the exhibit , place "N/
A." Do not do any summary , or derivation or cutting , must output the
exact same , detailed and complete exibits. There may be multiple
exhibits involved in a scenario , combine them into one string. The
exhibit can be long , you may modify it to make it shorter. Must keep the
table format

"Answer Choices ": "string", // A list of answer choices corresponding to the
above questions. If the material does not provide answer choices , place
"N/A."

"Answer ": "string" // A list of answers corresponding to the above questions
. Answers should only be included if provided in the material. If no
answer is given , place "N/A." If explanations or reasoning steps or
equations are included , must capture all of them. Must not answer it
yourself if there is no answer provided in the material. Make sure the
final number of questions equals to number of scenario equals to number
of exhibits equals to number of answers

}

Figure D.2: Prompt for extracting exercises from books
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Prompt for FAP

You given a question, a reference answer and a proposed answer, you task is to determine the
correctness of the proposed answer. First, extract the final answer (for example, A, B or C) from
the reference answer. Second, extract the final answer from the proposed answer (for example, A,
B or C). Finally, compare the two final answer to determine the correctness. Do not do any extra
reasoning, must determine the correctness soley based on the given reference and proposed answer.

Question: <QUESTION>
Reference Answer: <REFERENCE>
Proposed Answer: <PROPOSAL>

After performing these tasks, You will output a json object containing the following fields:
{

"Justification ": "string", // A brief justification for your output ,
up to 100 words.

"Correctness ": "string", // If the proposed answer has the same final final
answer as the reference answer (for example , both choose A or have the
same answer), output 'correct '. Put 'wrong ' to all other cases. For
example , if the proposed answer has a different final answer comparing
to the reference answer , put 'wrong '. If the proposed answer does not
explicitly give a final answer to the question , put 'wrong '. If the
proposed answer gives more than one final answer to the question , put '
wrong '.

}

Figure H.1: Prompt for FAP
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Prompt for Prompt for SCP

Given a question, a reference answer and an incorrect answer, you task is to identify the first
incorrect step from the incorrect answer. The "first incorrect step" means all reasoning up to that
point is accurate, but the error begins at this specific step.

Question: <QUESTION>
Reference Answer: <REFERENCE>
Incorrect Answer: <INCORRECT>

After performing these tasks, You will output a json object containing the following fields:
{

"Justification ": "string", // A brief justification for your output ,
up to 100 words.
You need to explain
(1) why the identified first incorrect step is incorrect;
(2) why the reasoning up to this specific step is correct and
(3) how the corrected step resolves the issue , aligning with the reference

answer ,
maintaining the logical flow and progressing to the final answer.

"First incorrect step": "string", // The explanation in the incorrect answer
consists of multiple reasoning steps. Please identify the first

incorrect reasoning step. It should be a piece of text directly and
exactly quoted from the incorrect answer. It should be an intermediate
step rather than the final answer

"Reasoning up to incorrect ": "string", // From the incorrect answer , give
the correct reasoning steps up to the first incorrect step. This should
be directly and exactly quoted from the incorrect answer.

"Step correction ": "string", // Replace the identified incorrect step with
a single , clear , and correct step. This step should directly address and
correct the error , explicitly providing the correct reasoning without

requring for more information or challenging the question. It should
effectively answer the question , "What is the next reasoning step?"
given on the question and the identied "Reasoning up tp incorrect ". It
should help progress to the final answer.

}

Figure H.2: Prompt for SCP
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