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Abstract

Despite continuous advancements in the capa-
bilities of large language models (LLMs), nu-
merical reasoning remains a challenging area.
Techniques like chain-of-thought prompting,
tree-of-thought prompting, and program-of-
thought prompting guide LLMs through inter-
mediate reasoning steps. Although in-context
learning with few-shot prompting has improved
performance, LLMs still lag behind state-of-
the-art models on financial numerical reason-
ing datasets such as FinQA and ConvFinQA. In
this work, we introduce FINDER, a novel two-
step framework, to enhance LLM’s capabilities
in financial numerical reasoning. The first step
utilizes a generative retriever to extract relevant
facts from unstructured data, including both
text and tables. This is followed by context-
aware Program of Thought prompting with dy-
namic selection of in-context examples. Our
model FINDER achieves a new state-of-the-
art performance on both the FinQA and Con-
vFinQA datasets, surpassing previous bench-
marks with execution accuracy improvements
of 5.98% and 4.05%, respectively.

1 Introduction

Numerical reasoning, particularly within financial
domains, remains a significant challenge in artifi-
cial intelligence (AI). Unlike traditional question-
answering tasks (Rajpurkar et al., 2018; Yang et al.,
2018), it requires not only the extraction of relevant
information from diverse sources, such as tables
and unstructured text, but also the construction of
coherent reasoning paths to integrate and process
this information. Towards this effort, datasets such
as FinQA (Chen et al., 2021b) and ConvFinQA
(Chen et al., 2022) have been developed to bench-
mark deep learning models for such numerical rea-
soning tasks in the financial domain.

Despite advances in task-specific models, large
language models (LLMs) still struggle with nu-
merical reasoning (Huang and Chang, 2022; Sat-

pute et al., 2024; Zhao et al., 2024), as it requires
multi-step problem-solving including fact extrac-
tion, logical inference, and mathematical computa-
tion. Even minor errors in intermediate steps can
lead to incorrect solutions, making numerical tasks
particularly challenging for LLMs.

A common approach to tackle numerical rea-
soning problem is the retriever-generator question-
answering framework, initially proposed by Chen
et al. (2021b). Subsequent models leveraging pre-
trained language models have shown significant
performance gains on such tasks (Wang et al.,
2022c; Zhang et al., 2022; Wang et al., 2022a).
The current state-of-the-art is the APOLLO (Sun
et al., 2024b) model, a retriever-generator frame-
work that employs a number-aware retriever and a
fine-tuned BERT-based encoder-decoder generator
to generate executable programs, achieving high
execution accuracy.

In parallel, an emerging line of work adopts
the Program-of-Thoughts (PoT) paradigm (Chen
et al., 2023) for program generation, which uti-
lizes decoder-only large language models to ex-
press the reasoning process as executable programs,
disentangling computation from reasoning.These
methods typically rely on in-context learning (ICL)
rather than fine-tuning, offering greater flexibil-
ity and improved generalization capabilities. PoT-
based approaches are more adaptable and better
leverage the capabilities of modern LLMs.

In this work, we bridge these two directions
by proposing a novel retriever-generator frame-
work FINDER that replaces the retriever with an
instruction-tuned generative model and the encoder-
decoder based program generator with a decoder-
only LLM under the PoT paradigm with some
key modifications. PoT prompting (Chen et al.,
2023), when applied to financial numerical reason-
ing tasks, typically includes the entire textual and
tabular context in the prompt. This often leads to
grounding errors, as the model struggles to accu-
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rately identify and extract the relevant numerical
information. To address this, we instruction-tune
FLAN-T5 (Chung et al., 2022) using LoRA (Hu
et al., 2021) to enable accurate instance-specific
relevant facts extraction.

Additionally, PoT relies on static in-context ex-
amples, which may not generalize well across di-
verse problem instances. To address this limitation,
we make use of dynamic selection of in-context
examples. We enhance an existing gradient-based
method, PromptPG (Lu et al., 2023) by refining
both the candidate selection strategy and the reward
evaluation mechanism which reduces the chance
of incorrect penalties. We ensure candidate diver-
sity (Rubin et al., 2022), by identifying a fixed-
size subset of training samples from a larger pool.
This subset is carefully constructed using cluster-
ing techniques to include representative questions
from a range of themes (e.g., growth rates, amorti-
zation). In addition to this, we place higher-ranking
examples closer to the query to optimize contextual
relevance. Finally, we combine the dynamically se-
lected diverse ordered in-context examples with the
retrieved facts and format them using PoT-based
prompting to get the final answer of the question.

FINDER1 surpasses existing LLM-based ap-
proaches with the PoT paradigm, achieving a
8.56% improvement on FinQA and a 9.60% im-
provement on ConvFinQA, compared to the pre-
vious best. It sets a new SOTA with execution
accuracies of 75.32% on FinQA and 81.95% on
ConvFinQA, improving upon the current SOTA
APOLLO (Sun et al., 2024b) by 5.98% and 4.05%,
respectively.

2 Related Works

Numerical reasoning in math word problems has
long been a challenging task, addressed in sev-
eral works (Huang et al., 2024; Sun et al., 2024a;
Liu et al., 2020). Several benchmark datasets
have been developed to advance research in this
area, including MathQA (Amini et al., 2019) and
MaWPS (Koncel-Kedziorski et al., 2016). Addi-
tionally, Lu et al. (2023) introduced the Tabular
Math Word Problems (TABMWP) dataset, which
requires mathematical reasoning over both textual
and tabular data. Math word problems (MWP) are
often presented in a structured and consistent for-
mat, prompting some prior research to use template-

1Data and code are available at https://github.com/
subhendukhatuya/FINDER_POT_Financial_Numeric_
Reasoning.git

based approaches (Wang et al., 2019) or tree-based
methods (Jie et al., 2022; Li et al., 2023) to tackle
these problems more effectively. Beyond MWPs,
long-form numerical reasoning is addressed by sev-
eral state-of-the-art methods.

FinQA (Chen et al., 2021b) and ConvFinQA
(Chen et al., 2022) are benchmark datasets for
long-form numerical reasoning over financial re-
ports. Various approaches have been proposed,
including fine-tuning and prompting-based meth-
ods. Wang et al. (2022b) pre-trained DeBERTa
(He et al., 2023) on financial data. Ant Risk AI
(Zhang et al., 2022) used an ensemble of special-
ized models, while ELASTIC (Wang et al., 2022a)
introduced a cell retriever for extracting relevant
gold cells. TabT5 (Andrejczuk et al., 2022) lever-
aged a T5 model pretrained on Wikipedia tables
for reasoning tasks. LLMs enhance long-form rea-
soning, with Chain of Thought (CoT) (Wei et al.,
2022) and Program of Thought (PoT) (Chen et al.,
2023) prompting improving reasoning and prompt
efficiency. (Lim et al., 2024) enhanced argument
recognition in program generation using an argu-
ment aggregator. CBR-Ren (Feng et al., 2024a)
combines LLMs with case-based reasoning to en-
hance retriever-generator models by improving crit-
ical fact retrieval.

3 Methodology

Our proposed framework for financial numerical
reasoning task is divided into two phases, a gen-
erative relevant fact retriever phase, and a target
answer computation phase as depicted in Figure 1.

3.1 Task Formulation

In this task, the input consists of a structured table
T containing rows and columns of data, textual in-
formation, and a natural language question Q. The
objective is to generate an output Y that correctly
answers the question by leveraging the information
encoded within the table and the textual content.
Given the complexity of this task, we break it down
into two primary components.
Relevant Fact Retriever: This involves identify-
ing the relevant facts from the input data.
Target Answer Computation: This involves de-
veloping and executing a program using the re-
trieved facts, in-context examples and the given
question to derive the final answer.
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Figure 1: Architecture diagram of our proposed framework FINDER. FLAN-T5 processes task-specific instructions,
context (text and tables), and questions to generate relevant facts. GPT-4 generates PoT style code using a Final
Prompt with in-context examples from trained PromptPG and retrieved relevant facts. The SymPy executor then
interprets this code to produce the final answer.

3.2 Relevant Fact Retriever

We use fine-tuning based retrieval methods to ex-
tract the relevant facts for the question.

3.2.1 Motivation
The current state-of-the-art method, APOLLO, re-
lies on scoring-based retrieval with fixed line selec-
tion and task-specific number sampling strategies,
which limit its flexibility and generalizability to
broader settings. This motivated us to utilize fine-
tuning based retriever as it offers inherent general-
izability and can be seamlessly adapted to different
LLM-based models.

3.2.2 Generative Retrieval
We fine-tune the FLAN-T5 Large model (Chung
et al., 2022) to effectively retrieve relevant facts.
Our selection of this large language model is based
on its extensive pretraining through instruction tun-
ing across a wide variety of tasks. FLAN-T5 Large,
which has been instruction-tuned on over 1,800
tasks, demonstrates superior zero-shot and few-
shot performance compared to its non-instruction-
tuned counterpart, T5 Large (Raffel et al., 2023).
Additionally its smaller scale compared to other

LLM’s makes it a more efficient choice.
The input prompt format is illustrated on the left

side of Figure 1, consisting of an Instruction, Task
Description, Context, and Question. We conduct
the fine-tuning in a parameter-efficient manner us-
ing Low-Rank Adaptation (LoRA) (Hu et al., 2021).
Formally, the model is fine-tuned with the instruc-
tion prompt IP, containing a natural language de-
scription of the task, the table in textual format
TabTexti, the textual data Di, and the question
Qi. The modified input Si for the ith sample is
represented as Si = IP ||TabTexti ||Di ||Qi.
where || denotes text concatenation. During train-
ing, the model is optimized to produce the ground
truth relevant fact. In the inference phase, it gener-
ates the retrieved facts RetFact for the test sam-
ples. To enhance fact completeness, we apply the
following post-processing steps which also ensure
factual consistency and mitigate hallucinations.

(1). We utilize Sentence-BERT (Reimers and
Gurevych, 2019) to generate embeddings for
each sentence in RetFact and in the context.
(2). For each sentence in RetFact, we se-
lect the most similar context sentence based on
cosine similarity. The matched set is denoted
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as RetFactMatched = {r1, r2, r3, . . .} where
each ri corresponds to the context sentence with the
highest similarity to the ith sentence in RetFact.

Unlike scoring-based methods that rely on fixed
thresholds for fact selection, our generative re-
trieval generates relevant facts dynamically, en-
abling more precise and context-aware extraction.

Comparative Experiments: To evaluate the ef-
fectiveness of our approach, we also experiment
with the generative retriever Mistral-7B (Jiang
et al., 2023) and the score-based retrieval module
from APOLLO (Sun et al., 2024b). The results of
these experiments are presented in Section 8.1.

3.3 Target Answer Computation
The initial step in this stage involves the dynamic
selection of in-context examples. We use Pro-
gram of Thought (PoT) style prompting to generate
Python code by GPT-4 (OpenAI, 2024), which is
then executed by an external interpreter to obtain
the final results. Unlike the static prompts used in
PoT, we leverage dynamic prompting.

3.3.1 Dynamic In-Context Example Selection
We adapt the PromptPG framework (Lu et al.,
2023) for our datasets to dynamically select in-
context examples, introducing key modifications to
its candidate selection strategy and reward evalua-
tion mechanism.
Clustering of Questions: We first embed
sentences using Sentence BERT (Reimers and
Gurevych, 2019) and then apply agglomerative
clustering (Müllner, 2011) to question embeddings,
forming 50 clusters. For each cluster, we select a
representative question by choosing the one that is
nearest to the centroid. While we also tested with
TF-IDF vectors, Sentence BERT yielded the best
clusters with higher silhouette score (Shahapure
and Nicholas, 2020).

We used agglomerative clustering with average
linkage and determined the optimal number of clus-
ters by varying it between 30 and 70. Based on
Silhouette Scores and qualitative assessment, 50
clusters provided the best balance between seman-
tic coherence and conceptual diversity. This setting
also aligned well with the coverage of distinct fi-
nancial concepts in the dataset.

Figure 3 shows t-SNE plot for visualization of
some clusters. In Table 1, we illustrate the cluster-
ing of semantically similar questions (showcased
only two questions) with corresponding represen-
tative questions. Each cluster captures a specific

theme, such as growth rates, percentage changes or
ROI, with the representative question capturing the
core intent of the group. Clustering helps the model
identify patterns, generalize across contexts, and
provide diverse in-context examples while main-
taining a balanced candidate subset.

Formally, given a problem pi, we want the
agent to find K in-context examples ei =
{e1i , e2i , ..., eKi } using policy gradient techniques
from a candidate pool Ecand, and generate the an-
swer âi, maximizing a reward ri = R(âi|pi) with
the help of GPT-4 engine. The in-context examples
are selected according to a policy

eki ∼ πθ(ei|pi), eki ∈ Ecand,

eki are independent for k = {1, 2, ...,K}
(1)

where θ are the policy’s parameters. First, Python
code is generated as ci = GPT-4(ei, pi) using a
PoT-style prompt. The final answer is computed
as âi = exec(ci), where exec denotes execution of
the Python code. The reward is then computed by
evaluating the generated answer âi with respect to
the ground truth answer ai:

ri = R(âi|pi) = SCORE(âi, ai), ri ∈ {−1, 1}

The function SCORE() returns 1 if the gener-
ated answer aligned with the label and -1 other-
wise. During training, the goal is to maximize
the expected reward of the generated answer under
the policy: Eei∼πθ(ei|pi)[R(exec(GPT-4(ei, pi)))].
The reward function is optimized using the Policy
Gradient method (Sutton and Barto, 2018). Since
the expected reward cannot be computed analyti-
cally in closed form, we estimate it using Monte
Carlo sampling. To update the policy, we apply the
REINFORCE algorithm (Williams, 1992).

Enhancements Over Existing framework: We
summarize our modifications over existing work:

Diverse Candidate Questions: We cluster
the training questions and select a representa-
tive from each cluster to ensure diversity while
keeping the subset of candidates concise.
Reward Computation: Unlike the existing
method that generates and matches answers
directly from GPT-4, we use PoT style prompt-
ing. The generated code is executed to obtain
the final answer, evaluating examples based
on their reasoning contribution, not penalizing
for potential mathematical errors by GPT-4.
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Figure 2: In-Context example formatted in Program of Thought Prompt style for FinQA.

Figure 3: t-SNE plot illustrates the clusters formed from
the embeddings of the training questions, showcasing a
subset of clusters for visualization purposes. Each clus-
ter represents a theme e.g. growth rates, amortization,
percentage change, ROI, etc.

3.3.2 Final Answer Computation

We utilize Program of Thought (PoT) prompting
(Chen et al., 2023) to generate code for answer-
ing questions. In PoT, language models generate
reasoning steps as Python programs, allowing the
model to focus exclusively on the reasoning pro-
cess, which enhances performance. Building on
this, we employ our dynamic in-context example
selection policy as elaborated in Section 3.3.1 to re-
trieve the most relevant examples for each question.
These selected examples are formatted as shown
in Figure 2 and incorporated into the prompt. As
shown in "Final Prompt" in Figure 1, the ques-
tion, relevant facts retrieved by the retriever and
the selected in-context examples are provided to
the GPT-4 engine to generate python code. SymPy-
based code executor (Meurer et al., 2017) is used to

decode the code and achieve final answer. For Con-
vFinQA, we include prior questions in the prompt
to provide conversational context before the target
question for reasoning.

Clustered Questions Representative
Question

What is the growth rate in consoli-
dated revenues from 2016 to 2017?
What is the growth rate of net sales
from 2014 to 2015?
What is the growth rate in net rev-
enue in 2015 for Entergy Louisiana?

What is the growth
rate in the aver-
age price of the pur-
chased shares from
october to novem-
ber 2014

What was the percentage change in
the redeemable non-controlling in
2012? For 2017, what was net in-
terest income on average managed
interest-earning assets in US$?
What is the percentage change in
discounted liabilities from 2013 to
2014?

What is the per-
centage change in
the balance of level
3 investments assets
from 2007 to 2008?

Table 1: Clusters of potential candidate examples and
their Representative Examples

4 Dataset & Evaluation Metrics

We perform our experiments on the following two
datasets: FinQA (Chen et al., 2021b) is a numerical
reasoning dataset over long-form financial data,
comprising 8,281 expert-annotated QA pairs from
financial reports. It follows a 75%/10%/15% split
into 6,251 training, 883 development, and 1,147
test instances.

ConvFinQA (Chen et al., 2022) is a dataset
of conversational long-form numerical reasoning
over financial data with 2,715 simple and 1,177
hybrid conversations, divided into 3,037/421/434
for train/dev/test sets. For this dataset, we report
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results on the development set, as the test set re-
quires program submissions in a specific format,
incompatible with our python based outputs.
Evaluation Metrics: We use execution accuracy
as our evaluation metric following prior work.

5 Baselines

We compare the performance of our proposed
model against several competitive models.
Current State-of-the-Art: APOLLO (Sun et al.,
2024b): Uses number-aware sampling for retrieval
and encoder-decoder based model for generation.
Prompting methods: (1) BloombergGPT (Wu
et al., 2023): LLM designed for financial tasks.
(2) Codex (Chen et al., 2021a) (3) GPT-3 (Brown
et al., 2020) (4) GPT-3.5-turbo (Ouyang et al.,
2022) all evaluated in zero-shot setting (5) CBR-
Ren (Feng et al., 2024b).
Program of Thought (PoT) (Chen et al., 2023):
Reported results are from PoT-Codex and PoT-SC-
Codex. Running PoT with GPT-4 yielded 69.38%
accuracy, below the reported 74% (Appendix A.1).
Chain of Thought (CoT) (Wei et al., 2022) We
report Direct (in zero shot setting) and CoT (us-
ing chain of thought strategy) for GPT and codex
variants taken from (Chen et al., 2023).
Fine-Tuning-Based methods: We compare the
performance with below mentioned models.
(1) FinQANet (Chen et al., 2021b), (2) NeRd (Ran
et al., 2019), (4) Longformer (Beltagy et al., 2020),
(4) GPT-2 (Radford et al., 2019), (5) T5 (Raffel
et al., 2020), (6) CellRetriever+UniLM (Zhang
and Moshfeghi, 2022), (7) ELASTIC (Wang et al.,
2022a), (8) TabT5 (Andrejczuk et al., 2022), (9)
DyRRen (Jie et al., 2022), (10) ENCORE (Wang
et al., 2024) (11) ArgRecog (Lim et al., 2024).
Human Performance: Includes performance of
both experts and non-experts on FinQA taken from
(Chen et al., 2021b).

6 Experimental Setup

We conduct all experiments on a Tesla V100 32GB
GPU, using pre-trained checkpoints from the Hug-
gingface Library2 for FLAN-T5-Large (780M pa-
rameters) and Mistral-7B Instruct v0.2 (7B param-
eters). FLAN-T5-Large is instruction-tuned using
the LoRA paradigm (effective parameters ≈0.59M)
for 10 epochs (15 minutes/epoch) with a batch size
of 8, learning rate (lr) 4e−4, and rank 2. Mistral-
7B is tuned in 4-bit precision with LoRA (effective

2https://huggingface.co/

parameters ≈3.4M) for 5 epochs (9 hours/epoch)
using a batch size of 4, lr 5e−4, and rank 2.

Model FinQA
(dev)

FinQA
(test)

ConvFinQA
(dev)

Finetuning Based

GPT-2 - - 59.12
T5 - - 58.38
Retriever+NeRd 47.53 48.57 -
Longformer 23.83 21.90 -
FinQANet 61.22 61.24 68.32
ELASTIC 65.00 62.16 -
DyRRen 66.82 63.30 -
ArgRecog 67.50 64.86 73.94
TabT5 - 70.79 -
CellRetriever+UniLM - 68.00 -
ENCORE 71.6 69.40 76.00

Prompting Based

BloombergGPT - - 43.41
GPT-3 Direct - 14.40 29.10
GPT-3 CoT - 26.10 37.40
GPT-3.5-turbo - 48.56 59.86
Codex Direct - 25.60 40.00
Codex CoT - 40.40 45.60
Codex CoT-SC - 44.40 47.90
PoT-Codex - 64.50 64.60
PoT-SC-Codex - 68.10 67.30
PoT-GPT-4 71.05 69.38 74.77
CBR-Ren 68.40 67.81 72.61

State of the Art

APOLLO 72.91 71.07 78.76
FINDER 77.13 75.32 81.95

Human Performance

General Crowd - 50.68 -
Human Expert - 91.16 -

Table 2: Performance evaluation based on execution
accuracy for FinQA and ConvFinQA datasets. The best
performance is highlighted in bold, and the strongest
baseline result is underlined. The baseline results are
reproduced from APOLLO (Sun et al., 2024b) and PoT
(Chen et al., 2023).

7 Results and Analysis

We report the performance of our proposed model
FINDER in Table 2, including results on both the
dev and test sets of the FinQA, and the dev set
of the ConvFinQA. We observe that our approach
outperforms the current best model, APOLLO (Sun
et al., 2024b), with realtive gains of 5.98% and
5.78% on the FinQA test and dev sets, respectively,
and a 4.05% improvement on the ConvFinQA dev
set. When compared with the best baseline under
prompting based methods (PoT-GPT-4), our model
shows 8.56% improvement on FinQA (test) and
9.60% improvement on ConvFinQA (dev).
Codex variants generally performed lower. Among
fine-tuning based methods, ENCORE (Wang et al.,
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2024) performs the best on FinQA. Interestingly
the execution accuracy for ConvFinQA is better
than FinQA. Providing questions in a conversa-
tional format helps the LLM follow a step-by-step
approach, enhancing execution accuracy.

Comparison with ENCORE: ENCORE (Wang
et al., 2024) reports SOTA on FinQA and Con-
vFinQA but underestimates APOLLO’s perfor-
mance. Our model, FINDER, surpasses both
APOLLO and ENCORE, achieving a new SOTA.

Analysis of Retriever Modules: In addition to
FLAN-T5, we experimented with Mistral and
APOLLO retrievers. As seen in Table 3 FLAN-
T5 outperforms Mistral in cosine similarity de-
spite having fewer parameters. We believe this
is because Mistral generates additional lines and
uses different wording, supported by the higher
word count in its predictions (Table 3). Even the
APOLLO retriever shows lower cosine similarity
with ground truth facts, providing more irrelevant
information, indicated by its higher word count.
Our model (FLAN-T5) provides targeted retrieval
with fewer irrelevant facts, indicated by its average
word count that closely aligns with ground truth
facts in FinQA and ConvFinQA (60.16 and 61.54,
respectively). Our proposed retriever reduces con-
fusion, helping the generator focus on relevant facts
and improving execution accuracy (Table 4).

Retriever Cosine Similarity Average Words #TP
(M)

FinQA ConvFinQA FinQA ConvFinQA

Mistral 0.81 0.85 105.43 103.21 3.4
FLAN-T5 0.91 0.89 88.60 74.32 0.59
APOLLO 0.83 0.86 107.08 105.23 355

Table 3: Analysis of retrievers. Cosine similarity and av-
erage number of words of the retrieved facts are shown.
The last column TP denotes the approximate number
of trainable parameters (in millions), highlighting the
parameter efficiency of FLAN-T5.

7.1 Parameter Efficiency

The exceptional parameter efficiency of our FLAN-
T5 retriever is demonstrated in the last column of
Table 3. By employing LoRA (Hu et al., 2021), our
retriever requires only 0.59 million trainable param-
eters, far fewer than the state-of-the-art retriever
APOLLO, which requires 355 million parameters.
This represents a compression ratio of nearly 600:1
while maintaining superior performance.

8 Ablation Study

We now try out various ablations over our proposed
model to understand the significance of different
modules, effect of in-context example selection
etc. All ablation experiments are conducted on the
FinQA test set and the ConvFinQA dev set.

Retriever Exe Accuracy

FinQA ConvFinQA

FLAN-T5 75.32 81.95
APOLLO 71.07 78.76
Mistral 72.88 80.81
APOLLO with ours strategy 72.97 80.67

Table 4: Results for our ablation studies of model per-
formance with different retriever modules

8.1 Retriever Modules’ Performance
. We compare the retriever performance, includ-
ing final accuracy for FLAN-T5, APOLLO, and
Mistral Table 4. Despite being a larger LLM, Mis-
tral underperforms compared to FLAN-T5 due to
excessive irrelevant information, which confuses
GPT-4 (see Section 7). Notably, all retrievers with
our target computation surpass APOLLO, demon-
strating the effectiveness of our approach.

In Table 4, the last row shows APOLLO with our
target computation surpassing its original version
(second row) but falls short FINDER, validating
the effectiveness of our framework.

8.2 Effect of In-context Examples Selection
We experiment with different selection strategies
of in-context examples and report the performance
in Table 5. We start with static examples, followed
by vanilla PromptPG, which randomly selects ex-
amples instead of using clustered samples. Next,
we experiment with a hybrid approach, combin-
ing two most similar examples with two selected
by the PromptPG policy in a four-shot setting. Fi-
nally, inspired by (Lu et al., 2023), our dynamic
selection leverages clustering for strategic initial-
ization, achieving the best performance across both
datasets. Our experiment with reversing the order
of examples shows a performance drop compared
to our final model (Table 5), emphasizing the im-
portance of placing the highest-scoring example
last for the most relevant context near the question.

Sensitivity to Exemplars: To evaluate the sensi-
tivity of our proposed model to different exemplars,
we conducted a comprehensive few-shot analysis.
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Model
FinQA ConvFinQA

FINDER 75.32 81.95
w/ static in-context examples 71.84 78.62
w/ reverse ordering of in-context examples 74.10 80.76
w/ random selection 72.53 79.57
w/ hybrid selection 72.97 80.29

Table 5: Performance comparison of different in-context
example selection strategies

For k-shot learning, we sampled k = (2, 3, 4, 5,
6) exemplars from the trained policy network. As
shown in Figure 4, we observe a significant drop
in performance with 2 exemplars, followed by a
relatively stable trend that peaks with 4 exemplars.

Figure 4: Few shot exemplar analysis of FinQA and
ConvFinQA

Question Types Dataset
FinQA ConvFinQA

Table-only questions 81.02 88.19
Text-only questions 68.26 73.73
Table-Text questions 63.29 72.00
Numeric questions 75.24 82.17
Boolean questions 100.00 75.00

Program Steps

1 step programs 80.58 84.17
2 step programs 72.61 78.79
>2 step programs 52.38 72.73

Programs with constants 54.76 76.75

Table 6: Performance comparison on various Question
Types and Program Steps

8.3 Evaluation with Other LLMs

To evaluate the generalizability of the proposed
FINDER pipeline, we conduct experiments using
different LLMs for target computation module. In
addition to GPT-4, we test with Gemini-2.0 (Team,
2025) and GPT-3.5-turbo (OpenAI, 2023) on the
FinQA dataset. Even with the alternative LLM’s,

our approach surpasses the current state-of-the-art
model APOLLO on the FinQA dataset.

Ours (LLM Engine) Exec. Acc. (%)

FINDER (GPT-4) 75.32
FINDER (Gemini-2.0) 74.89
FINDER (GPT-3.5-turbo) 73.06

Table 7: Evaluation of FINDER with different LLMs
on the FinQA (test) dataset.

8.4 Question Categorization vs Performance
We evaluated model performance across five ques-
tion types: table-only, text-only, table + text,
boolean, and numeric (Table 6). The model ex-
cels in table-only questions but struggles with ta-
ble + text. For FinQA, it correctly answers all 20
boolean questions. While our framework lacks pro-
gram steps, we analyze performance using ground
truth steps. The model performs best on single-
step programs, with multi-step and constant-based
questions posing greater challenges.

8.5 Error Analysis
We conducted a comprehensive error analysis by
comparing the model’s predictions against the
ground truth to identify specific shortcomings. Er-
rors were classified into three categories:
Fact Retrieval Errors: Cases in which the model
did not retrieve the correct facts required for the
computation as shown in Figure 5.

Figure 5: Fact Retrieval Errors: The Retriever module
failed to retrieve the relevant facts necessary for the
question.

Ground Truth or Question Issues: Instances
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where the ground truth was incorrect (refer to Fig-
ure 6), incomplete, or ambiguous.

Figure 6: Wrong Ground Truth: Though the retrieved
relevant facts, generated program, and executed answer
are correct, there is a mistake in the ground truth answer.

Logical Errors: Logical errors, the most common
issue, stemmed from flawed reasoning or computa-
tion despite retrieving correct facts. For instance,
the model miscalculated numerical differences by
ignoring ground truth formats (Appendix A.3, Fig-
ure 8) which represented the result as a percentage.
or domain conventions (Figure 7). The program
generated by the model, detailed in Figure 7, calcu-
lated the signed difference between the two values
instead of the absolute variation.

A review of 100 FinQA errors found 9% retrieval
errors, 7% ground truth issues, and the rest logi-
cal errors. Improving program generation, dataset
annotations, and leveraging domain-specific knowl-
edge can address these challenges.

8.6 Comparative Analysis
We conducted a manual analysis to compare the
outputs of our target computation module, which
leverages GPT-4 with program-of-thought-based
prompting, under two conditions: when provided
with all facts and data simultaneously, and when
provided with facts retrieved by the APOLLO re-
triever. The analysis revealed that GPT-4 often
makes grounding based errors when processing
all facts at once. As shown in Appendix A.2, Ta-
ble 8, FINDER achieves better performance when
provided with targeted facts rather than the full
set of facts. This behavior is likely due to GPT-
4’s difficulty in extracting relevant facts effectively
when faced with an excessive amount of informa-
tion. Furthermore, when integrating APOLLO with
our target computation module, we observed cases

Figure 7: Logical error in sign conventions: The model
calculates the signed difference instead of the absolute
variation in lease obligations for 2011-2012.

where the facts retrieved by APOLLO were incor-
rect or incomplete (as illustrated in the first row
of Table 8 in Appendix A.2). These inaccuracies
in the retrieved facts ultimately lead to incorrect
results and lower execution accuracy.

9 Conclusion

In this work, we introduced a novel two-step frame-
work to enhance LLMs’ ability to perform numeri-
cal reasoning in the financial domain. Our instruc-
tion tuned retriever, accurately extracts relevant
information from unstructured data sources. Our
dynamic in-context example selection, guided by
trained policy and clustering techniques, signifi-
cantly improves the reasoning process. Future re-
search will explore integrating external knowledge
sources as well as to expand this framework to other
domains needing complex numerical analysis.

10 Limitations

In this work, we prioritized understanding the core
reasoning capabilities of our model without incor-
porating external financial knowledge or human
feedback. We did not experiment with models like
GPT-4o (Hurst et al., 2024), which could be ex-
plored in future work. We did not report results
on the ConvFinQA test set as the test set requires
program submissions in a specific format, incom-
patible with our python based outputs. The inter-
pretability of LLM reasoning processes and the
potential propagation of errors within complex rea-
soning tasks requires further investigation.
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A Appendix

Question FINDER Output GPT-4 Output with all Facts GPT4 + APOLLO Retriever

What is the borrow-
ing under the term loan
facility as a percent-
age of the total contrac-
tual maturities of long-
term debt obligations
due subsequent to De-
cember 31, 2016?

borrowing_under_term_loan = 3500
total_contractual_maturities = 150 +
175 + 2756
ans=borrowing_under_term_loan/
total_contractual_maturities
ans = 3500/3081 (Correct)

borrowing_under_term_loan = 3500
total_contractual_maturities = 2014
+ 150 + 175 + 2756
ans=borrowing_under_term_loan/ to-
tal_contractual_maturities
ans = 3500/5095 (Wrong)
Target computation model given all
facts but retrieved incorrect ones

borrowing_under_term_loan =
3500
total_contractual_maturities =
2014 + 175 + 2756
ans=borrowing_under_term_loan/
total_contractual_maturities
ans = 3500/4945 (Wrong)
Got wrong retrieved facts from
APOLLO retriever

What is the total return
if 100000 are invested
in applied materials in
2008 and sold in 2011?

investment_2008 = 100000
value_2008 = 100
value_2011 = 118.21
ans = ((value_2011/value_2008)
* investment_2008) - invest-
ment_2008
ans = 18210 (Correct)

investment_2008 = 100000
value_2008 = 100
value_2011 = 118.21
ans = (value_2011/value_2008 * in-
vestment_2008)
ans = 118210 (Wrong)
Target computation model retrieved
correct relevant facts but Incorrect
logic

investment_2008 = 100000
value_2008 = 100
value_2011 = 118.21
ans = (value_2008/value_2011 *
investment_2008)
ans = 0.11821 (Wrong)
Got correct facts from APOLLO
retriever but Incorrect logic

Table 8: Comparison of code outputs generated by
FINDER, GPT-4, and APOLLO for a few sample ques-
tions, along with their respective final answers.

A.1 PoT results with GPT-4
We re ran the POT paradigm code with the GPT-
4 backbone. We achieved an execution accuracy
of 69.38% compared to the 74% reported in the
original work. The original PoT repository does
not report GPT-4 responses on the FinQA test set,
although it provides responses in json for other
PoT variants. Even the current state-of-the-art
APOLLO model does not report 74% execution
accuracy of PoT.

A.2 Comparative Analysis
Our manual analysis (Table 8) highlights that
GPT-4 performs better when guided by targeted
facts retrieved by APOLLO, rather than processing
all facts simultaneously. However, the effective-
ness of this approach depends on the accuracy of
APOLLO’s retrieval, as incorrect or incomplete
facts can lead to reduced execution accuracy.

A.3 Logical Error in Handling Differences
In certain cases, the model exhibits a logical error
when handling numerical differences. Specifically,
instead of computing and representing the result as
a percentage (8).

Figure 8: Logical error in handling differences: The
model computes the absolute numerical difference in-
stead of representing the result as a percentage.
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