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Q: "What percentage of a racial group in STEM reports the highest
denial of promotions and perceives the lowest opportunities for
advancement and hiring, according to Pew Research, Jan 2018?"

Q:"What is the color of the zone Mali in the map used
to demonstrate GeoShapes using SPARQL and  OSM?

Q:"what is total debt of COSTCO in FY 2021?Answer in millions"

Q:""What is the 2nd objective of
regulatory efficiency?""

News
(8.26%)

MMDocIR
1,685 QA pairs
313 Documents

10 Main domains
4 Multimodal

question types

Q:"How many different icon are shown as different
image types in Figure 1?"

Q:"How many sections does
the report consist of?"

Q:"How many cm is the two-finger
distance from bottom of your palm,
as shown in figure?"

Q: "What was the main goal of the
legislative amendments in the
Amendment Law?"

Q:"How many figures are there in the frontpage?"

Q: "How many schools from College of Humanities, Arts, and Sciences are not introduced in detail?"

Figure 1: MMDOCIR evaluation set comprises 313 long documents and 1,658 queries across 10 domains. For each
query, page-level labels are provided via selected screenshots. Red boundary boxes represent layout-level labels.

Abstract

Multimodal document retrieval aims to identify
and retrieve various forms of multimodal con-
tent, such as figures, tables, charts, and layout
information from extensive documents. De-
spite its increasing popularity, there is a notable
lack of a comprehensive and robust benchmark
to effectively evaluate the performance of sys-
tems in such tasks. To address this gap, this
work introduces a new benchmark, named MM-
DocIR, that encompasses two distinct tasks:
page-level and layout-level retrieval. The for-
mer evaluates the performance of identifying
the most relevant pages within a long document,
while the later assesses the ability of detecting
specific layouts, providing a more fine-grained

†These authors contributed equally

measure than whole-page analysis. A layout
refers to a variety of elements, including tex-
tual paragraphs, equations, figures, tables, or
charts. The MMDocIR benchmark comprises
a rich dataset featuring 1,685 questions anno-
tated by experts and 173,843 questions with
bootstrapped labels, making it a valuable re-
source in multimodal document retrieval for
both training and evaluation. Through rigorous
experiments, we demonstrate that (i) visual re-
trievers significantly outperform their text coun-
terparts, (ii) MMDocIR training set effectively
enhances the performance of multimodal docu-
ment retrieval and (iii) text retrievers leveraging
VLM-text significantly outperforms retrievers
relying on OCR-text. Our dataset is available at
https://mmdocrag.github.io/MMDocIR/.
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Figure 2: Area ratio of different modalities (1) in overall and (2) by domains in MMLongBench-Doc benchmark.

1 Introduction

Multimodal document retrieval (Hassan et al.,
2013; Lee et al., 2024) aims to retrieve information
from visually rich documents based on user queries.
Unlike traditional document retrieval (Zhang et al.,
2022; Chen et al., 2023; Dong et al., 2024; Wang
et al., 2023) and long-context (Yang et al., 2025)
QA which primarily deals with textual data, mul-
timodal document retrieval imposes substantially
greater demands on understanding multimodal el-
ements such as images, tables, charts, and layout
designs. Such elements often carry significant in-
formation that plain text fails to convey (Cui et al.,
2021; Sassioui et al., 2023): tables reveal struc-
tured data patterns, charts visualize trends or corre-
lations, images offer contextual and semantic cues,
etc. Combining these visual elements enriches
the quality of retrieved content. Our analysis of
MMLongBench-Doc benchmark (Ma et al., 2024b)
in Figure 2 shows that: text occupies only 52.7% of
content area, while images and tables account for
29.2% and 12.8% respectively. This highlights the
need for retrieval systems that effectively handle
multimodal and cross modal (Zhang et al., 2025)
information.

However, as shown on Table 1, existing bench-
marks exhibit several critical limitations that un-
dermine comprehensive evaluation of multimodal
retrieval systems. The key limitations include: 1.
Question Quality: Many questions used in exist-
ing benchmarks are directly sourced from datasets
for Visual Question Answering (VQA) tasks. Some
questions often assume the input is already relevant,
making it not suited for meaningful evaluation of
retrieval capabilities. 2. Document Completeness
and Diversity: Existing benchmarks often provide
only partial documents, limiting the ability to eval-
uate within full document context. Additionally,
the narrow range of document domains further re-
stricts their applicability across diverse use-cases
in real-world. 3. Retrieval Granularity: Most
benchmarks support only page-level retrieval. Such

granularity is often insufficient, as user queries fre-
quently target specific elements, such as figures or
tables, rather than entire pages.

To address these gaps, we introduce MMDO-
CIR, a multimodal document information retrieval
benchmark. MMDOCIR is designed for two key
tasks: page-level and layout-level retrieval. (1)
The page-level retrieval identifies the most rel-
evant pages within a document to answer user
query. (2) The layout-level retrieval targets the
most relevant layouts. A layout is an element
on the document page where the element could
be a paragraph, a heading, an equation, a table,
a figure, or a chart (see Appendix E.2 for more
examples). Such task supports more precise and
context-aware retrieval that pinpoint specific ele-
ments to address user queries. To support both
tasks, we develop MMDOCIR evaluation set that
comprises 313 documents, each averaging 65.1
pages, along with 1,658 modified queries derived
from MMLongBench-Doc and DocBench (Zou
et al., 2024). The queries are annotated with 2,107
page-level and 2,638 layout-level labels. The page
labels are specific pages that contain the evidence
needed to answer the query.1 The layout labels
consist of precisely drawn bounding boxes around
the key evidence within the identified pages. In ad-
dition, we introduce the MMDOCIR training set,
designed to support retriever training. It contains
73,843 questions sourced from 7 DocQA datasets.
To construct this set, we manually collect 6,878
documents and apply a semi-automatic pipeline to
annotate the ground truth labels.

By leveraging MMDOCIR, we conduct a com-
prehensive evaluation on multimodal document re-
trieval across two retriever types: visual-driven and
text-driven. Visual-driven retrievers (Ma et al.,
2024a; Faysse et al., 2024), leverage vision lan-
guage models (VLMs) to capture rich multimodal
cues and generate embeddings for both queries

1While MMLongBench-Doc provided initial page labels,
our meticulous review lead to corrections in 21.3% of them.
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Benchmarks Question Document Label
Type Expert? IR? #Num Evidence Type Domain #Pages Source Page Layout

DocCVQA VQA question ✓ ✓ 20 TXT/L Finance 1.0 ✓ ✓ ✗
SciMMIR Image caption ✗ ✗ 530k TAB/I Science 1.0 ✗ ✗ ✗
ViDoRe VQA question ✓ ✗ 3,810 TXT/C/TAB/I Multiple 1.0 ✗ ✓ ✗
PDF-MVQA Search query ✗ ✓ 260k TXT/TAB/I Biomedical 9.6 ✓ ✓ ✓
MMLongBench-Doc VQA question ✓ ✗ 1,082 TXT/C/TAB/I Multiple 47.5 ✓ ✓ ✗
Wiki-SS Natural question ✗ ✓ 3,610 TXT Wikipedia 1.0 ✗ ✓ ✗
DocMatix-IR VQA question ✗ ✗ 5.61m TXT/C/TAB/I Multiple 4.2 ✓ ✓ ✗

MMDOCIR (eval) VQA question ✓ ✓ 1,658 TXT/C/TAB/I Multiple 65.1 ✓ ✓ ✓
MMDOCIR (train) VQA question ✓ ✓ 73.8k TXT/C/TAB/I Multiple 49.3 ✓ ✓ ✓

Table 1: MMDOCIR versus existing document IR datasets. TXT/C/TAB/I refers to text/chart/table/image.

and documents. In contrast, text-driven retriev-
ers (Karpukhin et al., 2020; Khattab and Zaharia,
2020; Xiao et al., 2023) rely on OCR or VLM to
first convert the multimodal content into text, subse-
quently employing language models (LMs) to gen-
erate embeddings for both queries and documents.
Our extensive experiments reveal that visual-driven
retrievers consistently outperform their text-driven
counterparts, often by a significant margin. In sum-
mary, our contributions are threefold:
• Dual-task Retrieval Framework: We propose a

dual-task retrieval framework (§ 2) that supports
page-level and fine-grained layout-level multi-
modal document retrieval.

• MMDocIR Benchmark: We introduce Multi-
modal Document Information Retrieval bench-
mark. The evaluation set (§ 3) consists of 313
documents with expert-annotated labels for 1,658
questions. The training set (§ 4) consists of 6,878
documents and labels for 73,843 questions.

• We conduct extensive experiments and compar-
isons of both text and visual retrievers (§ 5),
demonstrating clear advantage of incorporating
visual content in multimodal retrieval tasks.

2 Dual-Task Retrieval Definition

Let D be a document corpora consisting of doc-
ument pages: P = {p1, p2, . . . , pn}, and layouts:
L = {l1, l2, . . . , lm} extracted via layout detec-
tion. The objective is to perform document re-
trieval at both page-level and layout-level. Specif-
ically, given query Q, the task is to retrieve the
top k pages and layouts most relevant to Q, where
k << n and k << m. The relevance of pages
(p) and layouts (l) to Q is measured by similarity
scores, Sim(Q, p) and Sim(Q, l) respectively. The
retrieval system consists of two phases: (1) an of-
fline indexing phase, where pages and layouts from
P and L are encoded into vectors, and (2) an online
querying phase, in which a query Q is encoded into

a vector, which is then compared against the offline-
indexed vectors using similarity scores Sim(Q, p)
for pages and Sim(Q, l) for layouts.

3 MMDOCIR: Evaluation Set

3.1 Document Corpora Collection
After a comprehensive review of existing DocVQA
datasets, we select MMLongBench-Doc (Ma et al.,
2024b) and DocBench (Zou et al., 2024) to facili-
tate our benchmark construction (see Appendix B.2
for our selection criteria). MMLongBench-Doc is
a long-context, multimodal benchmark comprising
1,091 questions across 135 documents with 47.5
pages on average. DocBench emphasizes long doc-
ument understanding, consisting of 1,102 questions
across 229 documents, each with an average length
of 77.5 pages. Both datasets offer corpora from
diverse domains with expert-annotated questions
that require evidence from various modalities. Con-
sequently, we curate a set of 364 documents and
2,193 questions for our subsequent annotation.

3.2 Annotation Process
Question Filtering and Revision. To ensure that
the questions in MMDOCIR are optimally suited
for document retrieval tasks, we identify four spe-
cific types of questions (see Appendix B.3) that
do not align well with the objectives of IR. By fil-
tering and refining these questions, we ensure the
integrity and relevance of MMDOCIR, resulting in
1,658 questions for subsequent annotation.

Page-level Annotation. We annotate page labels
that precisely identify the exact pages containing
ground truth evidence. Given that documents in
MMDOCIR contain 65.1 pages on average, pin-
pointing relevant pages is highly non-trivial, akin
to finding a needle in haystack, which demands
careful inspection and document understanding.
• For DocBench: we manually annotate page la-

bels for all 864 questions from scratch, by care-
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Consistency Page Labels Layout Labels
Prec. Recall F1 Prec. Recall F1

A←B 95.7 96.1 95.9 88.1 86.8 87.4
B←A 94.3 94.6 94.4 85.9 87.5 86.7

Average 95.0 95.4 95.2 87.0 87.2 87.1

Table 2: Annotation consistency between group A & B.

fully reviewing each document and locating the
pages containing answer evidence.

• For MMLongBench-Doc: we rigorously review
and validate the answers and page labels of 794
questions. This effort results in corrections to 10
answers and 169 page labels2.

Layout-level Annotation. To enhance the granu-
larity of our benchmark, we extend our annotations
to include layout-level labels, identifying specific
layout elements as evidence. Compared to page an-
notation, layout-level labeling is significantly more
complex and labor-intensive.
• Layout Detection. We begin by utilizing

MinerU (Wang et al., 2024) to automatically
parse all documents and detect all layouts (e.g.,
layout type and bounding boxes).

• Evidence Identification. We identify the lay-
outs that contain necessary answer evidence. In
case where MinerU fails to detect evidentiary ele-
ment, we manually annotate the bounding boxes,
accounting for 7% of the total layout-level labels.

3.3 Quality Control

To ensure annotation quality and reliability in MM-
DOCIR, we have adopted a rigorous 3-stage quality
control process. We split questions into two parts.
Each group is responsible for annotating approx-
imately 1,000 questions, with an overlap of 400
questions serving the need for cross-validation.
• Overlap Scoring: For the 400 overlapping ques-

tions, A←B evaluates A’s labels with B’s labels
as ground truth, and vice versa for B←A.

• Cross-Evaluation: We cross-evaluate and
achieve F1 score of 95.2 and 87.1 for page and
layout labels, as shown in Table 2. We then iden-
tify and fix the discrepancies.

• Random Cross-Validation: We randomly cross-
validate 50% of the remaining annotations. In
the cases where we have different opinions, we
discuss to achieve mutually-agreed annotations.

2Common errors in page labeling: annotators starting page
indexing at 1 rather than 0, missing labels for questions span-
ning multiple pages, and incorrect or absent page labels.
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Figure 3: Distribution of OCR/VLM-text by length.

3.4 Multimodal content as OCR/VLM-text
To apply multimodal retrieval to text retrievers,
we convert multimodal layouts (e.g., tables or fig-
ures) into text. Specifically, we extract text using
OCR (Smith, 2007) (“OCR-text”) and generate de-
tailed descriptions using VLMs (OpenAI, 2024;
Qwen-Team, 2024) (“VLM-text”). As a result,
each image layout is represented in three formats:
original image, OCR-text, and VLM-text.
For layouts, the average word length and distribu-
tion of OCR-text and VLM-text of MMDOCIR are
shown in Figure 3a and 3b. Notably, the length
of VLM-text is 1.5 and 3.8 times of OCR-text for
table (with more structured numbers) and figure
(mostly with visual elaboration), respectively.
For pages, we construct two variants by combining
the natural text with either OCR-text and VLM-text
for each page, resulting in OCR-page and VLM-
page representations. The average word length is
477 and 505 for OCR-page and VLM-page respec-
tively, with their distribution shown in Figure 3c.

3.5 Statistics and Analysis
Document Analysis. As shown in Table 3, MM-
DOCIR evaluation set includes 313 long docu-
ments, averaging 65.1 pages, categorized into 10
domains. Different domains feature distinct mul-
timodal distribution. The overall modality distri-
bution is as follows: text (60.4%), image (18.8%),
table (16.7%), and others (4.1%), with fine-grained
distribution shown in Figure 4a.
Question and Annotation Analysis. MMDO-
CIR includes 1,658 questions, and 2,107 page and
2,638 layout labels. The evidence spans 4 modali-
ties: text (44.7%), image (21.7%), table (37.4%),
and layout/meta (11.5%). Notably, MMDOCIR
presents several challenges: 254 questions require
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MMDOCIR
Document Statistics Questions (%) Modality Distribution %

#Doc #QA #Page #Lay #Page #Lay %Lay Text Image Table Lay/ Text Image Table TitleLabel Label /Doc /Page Meta

Eval Domains 313 1,658 2,107 2,638 65.1 8.3 41.8 44.7 21.7 37.4 11.5 60.4 18.8 16.7 4.1

- Research Report 34 200 318 400 39.4 6.0 39.1 45.0 17.5 74.5 13.5 45.6 40.0 5.9 8.4
- Admin & Industry 10 59 82 113 16.8 9.1 45.1 78.0 20.3 13.5 13.5 70.1 11.7 14.9 3.2
- Tut & Workshop 17 102 165 225 57.5 4.1 43.8 37.2 61.7 24.5 9.8 28.0 57.3 6.3 8.3
- Academic Paper 75 386 473 571 19.5 10.1 48.4 28.8 25.7 50.0 10.4 74.6 12.8 11.1 1.5
- Brochure 15 76 121 178 30.3 9.7 41.1 60.5 52.6 18.4 36.8 33.3 50.8 8.5 7.0
- Financial Report 51 343 394 477 169.5 9.2 44.8 28.0 13.1 54.5 5.3 60.3 7.9 29.2 2.6
- Guidebook 22 112 168 223 78.4 10.0 33.6 51.8 54.4 26.8 17.8 63.7 20.0 12.1 4.1
- Government 44 111 116 132 68.9 6.9 45.4 69.37 2.7 0 7.6 88.2 3.7 5.7 2.4
- Laws 44 132 133 149 58.5 6.0 31.2 62.1 0 10.6 27.3 83.8 1.6 12.3 2.2
- News 1 137 137 170 50.0 73.6 72.3 70.1 1.5 0 28.5 48.5 39.8 0.0 11.6

Table 3: Detailed statistics of MMDOCIR evaluation set. “#Lay/Page” is averaging layouts per page, reflecting
layout complexity. “%Lay” is the area ratio of useful layouts (excluding white spaces, headers, and footers).

MMDOCIR Domain
Document Statistics Evidence Modality (%) Labels

#Doc #QA #Page #Lay %Lay Text Image Table Title Page Lay/Doc /Page

Train Subsets assorted docs 6,878 73,843 32.6 6.32 42.6 49.3 34.3 10.8 4.9 ✓ ✓

- MP-DocVQA health/ind. docs 875 15,266 46.8 6.9 38.8 57.3 18.0 22.7 1.9 ✓ ✗
- SlideVQA diverse slides 2,011 11,066 49.3 4.4 42.3 30.1 56.2 4.7 8.8 ✓ ✗
- TAT-DQA annual reports 163 15,814 147.3 9.2 42.2 66.4 4.4 26.5 2.7 ✓ ✓
- arXivQA arXiv papers 1,579 12,314 18.4 7.9 50.0 70.4 22.3 2.8 1.0 ✓ ✓
- SciQAG science papers 1,197 4,976 9.0 9.1 53.7 61.8 28.0 6.7 1.5 ✓ ✓
- DUDE assorted docs 779 3,173 15.6 7.4 42.5 57.1 24.7 15.2 2.9 ✓ ✓
- CUAD legal contracts 274 11,234 29.6 7.4 24.7 89.3 2.5 6.4 1.1 ✓ ✗

Table 4: MMDOCIR training set statistics about our collected documents, questions, and constructed labels.

cross-modal understanding, 313 questions require
evidence across multiple pages, and 637 questions
require reasoning over multiple layouts.

4 MMDOCIR: Training Set

4.1 Document Corpus Collection

After screening related DocVQA datasets, we
collect our training set corpora from 7 datasets,
namely MP-DocVQA (Tito et al., 2023), Slide-
VQA (Tanaka et al., 2023), TAT-DQA (Zhu et al.,
2022), SciQAG (Wan et al., 2024), DUDE (Lan-
deghem et al., 2023), and CUAD (Hendrycks et al.,
2021). Since most of these datasets do not provide
original document, we invest significant efforts in
tracing and recovering the original document, as
detailed in Appendix B.4.

4.2 Label Construction and statistics

We use semi-automated construction pipeline to
generate page-level and layout-level labels for
datasets that lack them, referring to Appendix
B.5 and B.6 for more details of construction pro-
cess. Notably, layout annotations are missing from
most existing datasets, as we manage to obtain or
construct layout-level labels for only 4 datasets.
The overall statistics (e.g., document information,
modality distribution, domain, etc) of MMDOCIR

training set are summarized in Table 4.

5 Experiment

5.1 Evaluation Metric

The retriever scores each page or layout in the doc-
ument based on its relevance to the question, and
returns the top k candidates with the highest scores.
Recall@k is defined as the proportion of ground
truth page/layout evidence successfully retrieved.
For page matching, the recall is straightforwardly
computed with page indices. For layout match-
ing, we calculate recall based on the overlaps be-
tween the bounding boxes of retrieved layouts and
gold-standard layouts. Unlike page retrieval, where
boundaries are unambiguous, layout detection tools
can produce differing bounding boxes for the same
content. Our ground-truth layouts include both
MinerU outputs and manual annotations for cases
where MinerU misses elements. During our evalua-
tion, retrievers are provided with MinerU predicted
layouts (e.g., bboxes and types), but some ground
truth bboxes cannot be exactly matched to them.
Therefore, simple binary classifications (matched
or not matched) are insufficient. Overlap-based
recall offers a nuanced and realistic evaluation, es-
pecially where perfect alignment is not guaranteed.
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ColBERT 48.6 42.8 51.1 46.2 36.0 36.8 49.6 60.9 59.5 26.3 45.8 44.9
BGE 48.8 30.9 47.1 40.8 37.6 28.4 43.4 51.9 48.9 28.5 40.6 39.6
E5 48.1 30.0 50.4 39.4 41.1 29.7 40.9 52.8 51.1 24.1 40.8 39.5
Contriever 45.5 31.2 49.8 41.5 39.4 29.4 45.2 55.3 51.1 20.4 40.9 39.7
GTE 46.5 26.3 48.7 38.9 35.9 27.0 46.2 50.1 45.8 24.1 38.9 37.9
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DSEdocmatix 52.3 40.4 56.1 51.7 45.8 43.5 53.8 53.7 58.3 46.7 50.2 50.1
ColPali 56.0 51.8 58.6 55.9 52.0 47.2 57.9 53.9 64.0 32.8 53.0 52.7
DPR-Phi3ours 58.9 50.4 57.4 59.0 57.3 44.6 63.8 50.5 64.4 35.0 54.1 53.7
Col-Phi3ours 56.7 50.4 56.9 61.3 54.8 50.7 60.8 61.3 63.6 54.0 57.0 57.1
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t DPR 52.2 44.2 43.5 54.6 52.0 35.1 44.4 53.9 57.2 25.5 46.3 46.2

ColBERT 70.1 64.4 70.3 72.3 59.1 55.3 71.1 81.3 70.8 34.3 64.9 64.8
BGE 71.5 48.2 68.8 65.7 56.2 46.5 66.1 69.9 72.0 32.1 59.7 59.6
E5 68.4 45.7 68.1 63.7 60.1 44.0 69.3 72.3 78.8 32.8 60.3 59.3
Contriever 69.4 55.3 68.3 64.9 56.9 46.2 69.9 71.1 72.0 32.1 60.6 59.7
GTE 71.1 44.5 67.2 64.4 54.3 43.0 70.6 71.9 68.2 31.4 58.7 58.3

Im
ag

e

DSEwiki−ss 75.4 65.0 73.9 79.8 69.5 63.5 75.4 71.5 81.4 50.4 70.6 71.4
DSEdocmatix 75.4 67.5 73.3 80.0 66.3 61.6 72.8 76.4 82.6 57.7 71.4 71.8
ColPali 77.6 71.8 79.4 83.4 72.6 66.1 80.0 80.4 86.4 49.6 74.7 75.0
DPR-Phi3ours 80.3 66.5 77.6 83.9 71.9 63.8 79.8 71.4 84.5 55.5 73.5 74.3
Col-Phi3ours 80.2 74.1 77.4 84.8 69.1 67.7 78.7 79.5 81.8 69.3 76.3 76.8
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V
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M
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ex
t DPR 66.5 60.1 56.0 68.9 58.8 43.8 57.1 68.6 64.8 33.6 57.8 57.8

ColBERT 78.8 74.0 78.7 82.3 66.1 60.8 77.0 88.5 78.0 38.7 72.3 72.3
BGE 79.5 65.8 71.3 76.8 62.4 56.0 77.2 77.4 79.5 38.0 68.4 68.5
E5 76.9 64.2 75.3 74.4 67.4 52.0 78.5 78.6 82.6 40.9 69.1 67.9
Contriever 77.2 67.1 76.7 75.2 65.1 53.7 75.4 79.2 83.3 39.4 69.2 68.3
GTE 77.4 62.6 74.7 75.8 62.0 51.8 77.8 80.0 75.0 39.4 67.6 67.2

Im
ag

e

DSEwiki−ss 84.0 80.2 78.7 87.0 75.7 73.0 82.0 77.3 88.3 58.4 78.5 79.2
DSEdocmatix 82.1 77.2 79.6 87.8 73.9 72.4 81.7 83.1 89.4 67.9 79.5 80.1
ColPali 84.6 79.3 82.3 89.0 79.8 72.1 86.7 84.9 92.4 56.9 80.8 81.0
DPR-Phi3ours 86.9 76.2 85.3 91.9 80.0 71.2 87.1 79.5 92.0 61.3 81.1 81.8
Col-Phi3ours 86.3 78.8 81.2 92.4 79.0 73.8 85.3 85.1 87.1 73.0 82.2 83.0

Table 5: Main results for page-level retrieval, with the best results in boldface and second best results underlined.
For clarity, we omit results using VLM-text (Refer to Table 11 for full results).

5.2 Baseline Models and Setting

We evaluate 6 state-of-the-art text retrievers:
namely DPR, ColBERT, BGE, E5, Contriever, and
GTE (see Appendix D.1). Additionally, we evalu-
ate 5 VLM-based retrievers: 3 off-the-shelf mod-
els, namely DSEwiki−ss, DSEdocmatix, and ColPali
(see Appendix D.2), and 2 models trained using
MMDOCIR training set (see Appendix C). Among
all retrievers, ColBERT, ColPali, and Col-Phi3ours
represent query/document as a list of token-level
embeddings, while the other retrievers represent
query/document as a single dense embedding. All
retrievers are adapted to a dual-task setting:
• Page Retrieval: For text retrievers, we use the

text from OCR-page or VLM page as described
in Section 3.4. For visual retrievers, we directly
utilize document page screenshots.

• Layout Retrieval: Text retrievers process mul-
timodal layouts using OCR or VLM text (see
Section 3.4). Visual retrievers3 process textual
layouts using either Image input (cropped image
of textual area) or Hybrid input (original text, as
VLM can directly encode text).

3Most visual retrievers are not explicitly trained on text
query-doc pairs, this setup constitutes out-of-domain data.

5.3 Main Results for Page-level Retrieval

Table 5 presents the main results for page-level
retrieval. Our key findings are as follows:
• Superiority of Visual Retrievers: Visual retriev-

ers consistently outperform text retrievers across
various domains and retrieval metrics, highlight-
ing the advantage of using screenshots to retain
multimodal cues often lost in text conversion.

• Effectiveness of MMDOCIR: The visual retriev-
ers trained on the MMDOCIR training set demon-
strate superior performance, demonstrating the
value of high-quality training data.

• Effect of Token-level Embeddings: Compared
to dense-level retrievers (e.g., BGE, DSE, DPR-
Phi3ours), token-level retrievers (e.g., ColBERT,
ColPali, Col-Phi3ours) achieve more advanta-
geous results in Recall@1 and have marginal
performance improvement in Recall@3/5. How-
ever, token-level embedding can incur storage
costs of 10 times more than a single embedding
(DSE requires 0.24GB for indexing MMDOCIR
while ColPali requires 10.0GB).

• Top 5 Coverage: Retrieving top 5 pages provides
substantial coverage of relevant information.
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Method
Domain Resear. Admin Tutori.& Acade. Broch- Finance Guide- Govern- Laws News Average

Report &Indu. Worksh. Paper ure Report book ment Macro Micro
R

ec
al

l@
k
=

1

V
L

M
-t

ex
t DPR 11.6 9.5 19.2 19.2 14.9 15.9 15.8 25.6 34.7 27.0 19.3 19.2

ColBERT 22.0 14.9 28.0 28.3 17.9 29.7 21.1 52.6 54.5 44.5 31.3 31.4
BGE 19.2 15.2 24.6 28.7 12.8 27.6 19.7 47.0 52.3 35.8 28.3 29.0
E5 15.9 8.8 27.7 24.3 14.6 21.8 14.7 45.6 53.0 40.5 26.7 26.4
Contriever 23.4 7.5 28.2 26.8 17.1 25.7 16.1 43.6 51.5 42.9 28.3 28.9
GTE 17.5 10.5 23.0 27.2 14.5 26.3 14.4 39.8 49.2 38.3 26.1 27.1

Im
ag

e

DSEwiki−ss 20.6 15.1 31.0 31.1 20.1 29.2 22.0 39.3 37.5 35.8 28.2 29.2
DSEdocmatix 19.9 11.4 31.5 30.1 17.8 30.0 20.8 46.5 39.4 31.4 27.9 29.1
ColPali 22.5 21.3 36.6 30.9 26.8 32.1 19.3 52.5 51.8 33.6 32.7 32.5
DPR-Phi3ours 21.1 22.1 36.8 35.2 25.6 28.7 24.1 38.3 35.4 27.4 29.5 30.2
Col-Phi3ours 22.6 22.0 37.5 34.9 28.9 30.3 22.7 50.2 45.1 26.3 31.1 31.6

R
ec

al
l@

k
=

5

V
L

M
-t

ex
t DPR 31.0 25.7 36.7 44.9 33.0 34.1 34.9 49.9 56.3 51.1 39.8 40.4

ColBERT 41.8 37.7 53.7 61.8 35.1 52.4 46.1 83.2 70.1 62.5 54.4 56.0
BGE 41.0 28.1 52.7 59.2 36.7 46.0 50.7 72.0 71.5 59.9 51.8 53.2
E5 35.4 28.1 51.7 58.5 33.2 41.2 40.2 79.7 77.9 64.6 51.1 51.8
Contriever 40.2 29.2 54.1 57.9 36.8 47.1 44.6 68.8 76.2 61.9 51.7 53.0
GTE 36.7 25.6 51.2 56.6 39.7 46.6 46.4 72.2 74.3 63.2 51.3 52.3

Im
ag

e

DSEwiki−ss 42.4 32.9 56.3 58.5 39.8 50.6 41.6 68.6 60.9 50.0 50.2 52.1
DSEdocmatix 39.6 36.2 53.9 57.5 33.7 52.5 42.8 69.4 63.1 48.9 49.8 51.9
ColPali 40.7 45.9 54.9 58.5 42.6 51.2 45.7 76.8 74.5 48.9 54.0 54.3
DPR-Phi3ours 45.5 37.7 57.0 62.9 41.4 51.1 45.5 65.1 60.8 49.3 51.6 53.9
Col-Phi3ours 46.4 38.2 53.1 61.8 45.0 54.6 45.7 68.8 65.7 43.8 52.3 54.5

R
ec

al
l@

k
=

1
0

V
L

M
-t

ex
t DPR 42.2 33.1 52.1 56.2 39.9 43.5 44.0 62.8 61.7 59.7 49.5 50.5

ColBERT 51.0 48.7 60.6 69.8 43.9 61.6 53.7 88.4 74.8 66.4 61.9 63.7
BGE 51.1 38.7 62.1 71.5 41.9 55.6 58.7 80.8 78.7 63.5 60.3 62.4
E5 45.3 38.6 62.0 70.5 45.6 50.0 55.3 87.1 82.4 66.8 60.4 61.2
Contriever 49.9 41.3 62.0 70.5 44.8 56.5 54.5 81.3 78.0 64.9 60.4 62.2
GTE 48.6 41.1 61.5 68.8 44.3 56.9 58.0 83.0 77.5 66.9 60.7 62.2

Im
ag

e

DSEwiki−ss 55.9 41.3 61.5 68.1 47.8 60.7 54.2 72.9 68.3 54.4 58.5 61.1
DSEdocmatix 53.7 43.3 59.6 66.5 44.7 59.1 50.3 75.4 69.2 53.7 57.5 59.9
ColPali 53.6 54.1 64.4 69.5 48.8 60.7 54.0 81.9 82.5 50.4 62.0 63.2
DPR-Phi3ours 58.1 49.1 67.0 74.7 48.4 57.9 57.8 68.7 66.2 54.4 60.2 62.8
Col-Phi3ours 57.7 50.5 66.6 72.3 50.7 59.3 53.6 68.5 74.8 57.5 61.1 63.3

Table 6: Main results for layout-level retrieval (Refer to Table 12 for full results with VLM-text and Hybrid inputs).

5.4 Main Results for Layout-level Retrieval

Table 6 shows the main results for layout-level
retrieval. Our key findings are as follows:
• Effectiveness of VLM-Text: Interestingly,

VLM-text approaches perform comparably to
visual retrievers, demonstrating the promising
image description capabilities of state-of-the-art
VLM. This greatly benefits textual retrievers in
multimodal understanding.

• Effect of Token-level Embeddings: For layout
retrieval tasks, token-level retrievers marginally
outperform dense-level retrievers, demonstrating
its importance of such task.

• Top 10 Coverage: For layout retrieval tasks, re-
trieving top 10 layouts does not guarantee com-
prehensive coverage of the ground truth layout
labels, emphasizing the complexity of the tasks.

5.5 Text Retrieval: OCR-text vs VLM-Text

Text retrievers leveraging VLM-text significantly
outperform those using OCR-text in both tasks.
Based on results, OCR-text is insufficient for mul-
timodal retrieval, while VLM-text retains richer
multimodal information. Although VLM-text of-
fers much more comprehensive text information

Method Page recall Layout recall
OCR VLM ∆ OCR VLM ∆

k
=

1

DPR 22.3 27.2 +4.9 12.6 19.3 +6.7
ColBERT 40.3 45.8 +5.5 19.8 31.3 +11.5
BGE 35.7 40.6 +4.9 19.0 28.3 +9.3
E5 35.0 40.8 +5.8 18.4 26.7 +8.3
Contriever 35.3 40.9 +5.6 18.8 28.3 +9.5
GTE 35.4 38.9 +3.5 18.2 26.1 +7.9

k
=

3
or

5

DPR 39.4 46.3 +6.9 23.7 39.8 +16.1
ColBERT 58.8 64.9 +6.1 33.2 54.4 +21.2
BGE 55.4 59.7 +4.3 32.7 51.8 +19.1
E5 54.8 60.3 +5.5 33.3 51.1 +17.8
Contriever 54.9 60.6 +5.7 31.7 51.7 +20.0
GTE 54.9 58.7 +3.8 33.5 51.3 +17.8

k
=

5
or

1
0 DPR 49.0 57.8 +8.8 29.9 49.5 +19.6

ColBERT 66.0 72.3 +6.3 37.6 61.9 +24.3
BGE 62.7 68.4 +5.7 37.8 60.3 +22.5
E5 64.1 69.1 +5.0 39.0 60.4 +21.4
Contriever 63.1 69.2 +6.1 37.3 60.4 +23.1
GTE 63.2 67.6 +4.4 40.9 60.7 +19.8

Table 7: Results of text retrievers using OCR/VLM-text.

than OCR-text, it also introduces higher computa-
tional overhead and longer inference time.

Most text retrievers based on on BERT (Devlin
et al., 2019), truncate input that exceed 512 tokens
(approximately 380 english words). As shown in
Figure 3c, there are many pages containing more
than 380 words (62.9% for OCR-page and 61.1%
for VLM-page). Those pages suffer from critical
information loss during page retrieval if the ground
truth evidence is in the truncated part. In contrast,

30966



Method Layout recall
Hybrid Image ∆

k
=

1
DSEwiki−ss 24.6 28.2 +3.6
DSEdocmatix 27.5 27.9 +0.4
ColPali 28.5 32.7 +4.2
DPR-Phi3ours 28.9 29.5 +0.6
Col-Phi3ours 29.8 31.1 +1.3

k
=

5

DSEwiki−ss 46.7 50.2 +3.5
DSEdocmatix 48.2 49.8 +1.6
ColPali 52.2 54.0 +1.8
DPR-Phi3ours 50.1 51.6 +1.5
Col-Phi3ours 50.0 52.3 +2.3

k
=

1
0

DSEwiki−ss 55.8 58.5 +2.7
DSEdocmatix 57.4 57.5 +0.1
ColPali 60.0 62.0 +2.0
DPR-Phi3ours 55.5 60.2 +4.7
Col-Phi3ours 58.7 61.1 +2.4

Table 8: Results of visual retrievers: image vs hybrid.

only a small fraction of layouts contain more than
380 tokens (3.9% for OCR-text, 4.8% for VLM-
text, 0.5% for natural-text). Hence, as reflected in
Table 5 and 6, text retriever demonstrates stronger
performance on layout-level retrieval than on page-
level retrieval.

5.6 Visual Retrieval: Image vs Hybrid input

Visual retrievers tend to perform better when encod-
ing text as images via visual encoders, rather than
processing native textual input with LLM back-
bones. This advantage largely stems from their
training setup: visual retrievers are typically opti-
mized using text queries paired with image-based
passages or documents, but are not fine-tuned di-
rectly on purely textual passages. However, encod-
ing text as images incurs substantial computational
overhead. Representing text as image tokens re-
quires significantly more resources than native text
encoding. To address this inefficiency and pro-
mote balanced retrieval capabilities (Dumitru et al.,
2025; Liang et al., 2025), we advocate for future
visual retrievers to be jointly trained on both text
and visual retrieval tasks using SFT or RL (Duong
et al., 2025). Such hybrid training would enable
models to efficiently process text when appropri-
ate, without compromising performance on visual
inputs.

5.7 Cascade Retrieval

As shown in Table 6, directly performing layout
retrieval can be challenging. Hence, we propose
alternative methods, by perform page-retrieval first,
subsequently followed by layout-retrieval within
the retrieved page. We term such retrieval to be
cascade retrieval. Note that the page retrieval is not
perfect, such error can propagate to layout retrieval

and affect the final results.

page(1st) layout(2nd) Top1 Top5 Top10

BGE: direct layout 29.0 53.2 62.4
BGE BGE 24.3 49.0 58.6

E5: direct layout 26.4 51.8 61.2
E5 E5 22.2 47.8 58.2

ColBERT: direct layout 31.4 56.0 63.7
ColBERT ColBERT 28.5 53.0 61.3

ColPali: direct layout 32.5 54.3 63.2
ColPali ColPali 32.7 54.5 63.2
ColPali ColBERT 31.8 57.0 64.2

DSE: direct layout 29.1 51.9 59.9
DSE DSE 29.6 54.0 62.0
DSE ColBERT 29.0 56.4 64.4

DPR-Phi3: direct layout 30.2 53.9 62.8
DPR-Phi3 DPR-Phi3 31.1 54.2 61.7
DPR-Phi3 ColBERT 30.6 56.6 64.5

Col-Phi3: direct layout 31.6 54.5 63.3
Col-Phi3 Col-Phi3 33.3 58.6 63.7
Col-Phi3 ColBERT 35.3 58.8 65.4

Table 9: Comparison of 1-stage vs 2-stage approaches
across different models

In this setting, we retrieve top-k pages first, then
rerank all layouts belonging to retrieved k pages,
and get top-k layouts. The cascade retrieval results
are shown in Table 9. We can observe that method
with high page retrieval recall can significantly im-
prove layout retrieval in the reranking paradigm.

5.8 Efficiency Analysis

We evaluate the inference efficiency by measuring
three key metrics : storage consumption, index-
ing time and, retrieval latency, as shown in Table
10. Experiments are conducted with batch size
of 4 for image and 256 for text. DPR-styled re-
trievers which generate single vector embeddings,
demonstrates higher efficiency and lower compu-
tation across all metrics, compared to ColBERT-
styled retrievers that produce token-level embed-
dings. Although DPR-styled retrievers slightly un-
derperform in retrieval accuracy, their smaller em-
beddings size provide a significant advantage in the
inference stage when storage space and inference
time are concerned.

Another key finding is that textual inputs are
significantly more efficient than the visual inputs
across all metrics. Meanwhile, hybrid retrieval sys-
tem, which processes text in the image through
LLM rather than visual encoders, further reduces
memory and time consumption. Hence, future
works on training hybrid retrieval system are en-
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Model Store Index Search
(GB) (MM:SS) (MM:SS)

Pa
ge

Pr
oc

es
si

ng

Te
xt

DPR 0.06 6:53 00:02
ColBERT 3.45 14:12 00:04
BGE 0.08 7:31 00:03
E5 0.08 8:26 00:03

Im
ag

e DPR-Phi3 0.24 101:20 00:04
ColPali 10.00 47:14 00:05
Col-Phi3 24.56 106:23 00:07

L
ay

ou
tP

ro
ce

ss
in

g

Te
xt

DPR 0.51 41:33 00:15
ColBERT 26.72 94:56 02:25
BGE 0.66 55:05 00:18
E5 0.66 60:21 00:18

Im
ag

e DPR-Phi3 1.99 735:51 00:44
ColPali 83.50 262:29 09:06
Col-Phi3 204.32 784:07 10:56

H
yb

ri
d DPR-Phi3 1.84 130:38 01:09

ColPali 12.06 73:50 04:24
Col-Phi3 22.72 140:44 02:41

Table 10: Efficiency analysis different retrievers.

couraged as it offers a strong balance between com-
putational efficiency and retrieval performance.

6 Related Work

DocCVQA (Tito et al., 2021) proposes extract-
ing information from a document image collection.
However, it is limited by its small question set (20
questions). While PDF-MVQA (Ding et al., 2024)
is tailored for multimodal retrieval in biomedical ar-
ticles, it is annotated by GPT-3.5-turbo rather than
experts. SciMMIR (Wu et al., 2024) also investi-
gates multimodal retrieval but only provides image-
caption pairs, lacking user queries paired with the
corresponding document pages. Ma et al. (2024a)
introduces two relevant datasets, namely Wiki-SS
and DocMatix-IR. Wiki-SS is derived from natural
questions (Kwiatkowski et al., 2019) , wherein evi-
dence passages are screenshots of Wikipedia pages.
However, natural questions are primarily designed
for text retrieval, and the provided screenshots may
not consistently capture the ground-truth evidence,
as only the front page is considered. DocMatix-IR
is constructed from the large-scale DocMatix (Lau-
rençon et al., 2024) dataset using filtering and hard
negative mining. However, the questions are gen-
erated by Phi-3-small (Abdin et al., 2024) rather
than human experts, and are not de-contextualized
for retrieval task. MMDocRAG (Dong et al., 2025)
is constructed upon MMDOCIR to support multi-
modal generation. ViDoRe (Faysse et al., 2024)
is the most relevant benchmark to MMDOCIR. It
integrates multiple DocVQA datasets and provides
new industrial documents. Upon a thorough exam-
ination of the 2,400 questions, we find that over

80% questions exhibit notable limitations in terms
of their complexity, contextual clarity, and the ab-
sence of complete document corpora. Refer to Ap-
pendix F for detailed quantitative and qualitative
analysis of ViDoRe.

7 Conclusion

In conclusion, multimodal document retrieval
presents a complex challenge that requires both
understanding and integrating diverse data modali-
ties beyond plain text. To more effectively evaluate
these capabilities, we introduce the MMDOCIR
benchmark, which features the innovative dual-
task retrieval capabilities targeting page-level and
layout-level document granularity. The MMDO-
CIR includes a rich dataset featuring expertly anno-
tated labels for 1,685 questions and bootstrapped
labels for 73,843 questions, serving as a valuable
resource for both training and evaluation of mul-
timodal document retrieval. Our comprehensive
empirical studies show that visual-driven retrievers
significantly outperform text-driven ones, under-
scoring the importance of visual information in
improving retrieval performance. Future work can
expand upon these findings by optimizing retrieval
algorithms to enhance both accuracy and efficiency
of multimodal document retrieval systems, as well
as the multilingual capability (Liang et al., 2020).

Limitations

The limitations of MMDOCIR are summarized as
follows:
• Incomplete layout label annotations for train-

ing set: For 3 out of 7 training subsets, our
semi-automated pipelines could not extract lay-
out labels. These pipelines are optimized for
datasets with single text or image layouts and
cannot handle complex or cross-modal layouts.
Future work should explore leveraging advanced
vision-language models (VLMs) to facilitate an-
notation of layout labels for these subsets.

• Lack of joint text and visual training: As
demonstrated in Section 5.6, all visual retrievers
are suboptimal at modeling text passages, com-
pared to modeling text as image screenshots. Our
current visual retrievers do not explicitly utilize
text query-document pairs to address this limita-
tion. Future research should consider integrating
both text and visual passages for joint training
or finetuning to improve performance on both
retrieval tasks.
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A Supplementary Experimental Results

In this section, we provide the full results of page-
level and layout-level retrievals, which supplement
our main results discussion in Section 5.3 and Sec-
tion 5.4 respectively.

Specifically, Table 11 extends the main page-
level results shown in Table 5 with the results of
text retrievers using OCR-text. Table 12 extends
the main layout-level results shown in Table 6 with
the results of (i) text retrievers using OCR-text and
(ii) visual retrievers using hybrid inputs.
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Method
Domain Resear. Admin Tutori.& Acade. Broch- Finance Guide- Govern- Laws News Average

Report &Indu. Worksh. Paper ure Report book ment Macro Micro

R
ec

al
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k
=

1
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-t
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t

DPR 21.2 22.1 27.7 23.3 24.4 16.7 21.1 20.7 31.0 15.1 22.3 21.7
ColBERT 43.8 39.8 42.4 39.3 39.2 38.7 46.3 50.6 46.1 17.1 40.3 40.0
BGE 45.5 29.0 41.5 33.6 40.8 32.7 40.0 42.8 36.4 15.1 35.7 35.2
E5 44.2 30.8 39.9 33.2 33.0 32.3 40.4 41.7 38.9 15.8 35.0 34.7
Contriever 39.1 33.3 44.0 34.2 43.9 26.4 40.6 39.4 37.0 15.1 35.3 33.6
GTE 44.6 32.6 45.0 33.2 37.2 31.8 40.0 39.9 35.2 14.5 35.4 34.6

V
L

M
-t

ex
t

DPR 32.3 25.5 27.0 31.0 28.4 18.8 23.5 31.2 38.3 16.1 27.2 26.9
ColBERT 48.6 42.8 51.1 46.2 36.0 36.8 49.6 60.9 59.5 26.3 45.8 44.9
BGE 48.8 30.9 47.1 40.8 37.6 28.4 43.4 51.9 48.9 28.5 40.6 39.6
E5 48.1 30.0 50.4 39.4 41.1 29.7 40.9 52.8 51.1 24.1 40.8 39.5
Contriever 45.5 31.2 49.8 41.5 39.4 29.4 45.2 55.3 51.1 20.4 40.9 39.7
GTE 46.5 26.3 48.7 38.9 35.9 27.0 46.2 50.1 45.8 24.1 38.9 37.9

Im
ag

e

DSEwiki−ss 53.0 50.0 54.0 48.7 45.1 43.0 51.5 46.9 54.2 33.6 48.0 47.5
DSEdocmatix 52.3 40.4 56.1 51.7 45.8 43.5 53.8 53.7 58.3 46.7 50.2 50.1
ColPali 56.0 51.8 58.6 55.9 52.0 47.2 57.9 53.9 64.0 32.8 53.0 52.7
DPR-Phi3ours 58.9 50.4 57.4 59.0 57.3 44.6 63.8 50.5 64.4 35.0 54.1 53.7
Col-Phi3ours 56.7 50.4 56.9 61.3 54.8 50.7 60.8 61.3 63.6 54.0 57.0 57.1

R
ec
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l@

k
=

3

O
C

R
-t

ex
t

DPR 46.1 40.6 38.9 46.7 43.9 32.4 38.4 37.0 50.0 20.4 39.4 39.8
ColBERT 72.6 59.7 57.8 66.7 60.0 53.7 63.8 68.5 61.4 23.7 58.8 59.5
BGE 69.8 57.7 56.3 58.6 60.7 48.5 57.9 60.9 62.7 20.4 55.4 55.0
E5 66.6 48.7 59.0 58.0 60.9 48.8 63.7 61.4 60.8 20.4 54.8 54.6
Contriever 70.2 55.8 60.4 56.6 62.1 43.0 60.0 56.8 61.4 22.4 54.9 53.6
GTE 69.2 47.0 58.7 59.5 61.8 46.6 65.5 59.1 61.4 19.7 54.9 54.7

V
L

M
-t

ex
t

DPR 52.2 44.2 43.5 54.6 52.0 35.1 44.4 53.9 57.2 25.5 46.3 46.2
ColBERT 70.1 64.4 70.3 72.3 59.1 55.3 71.1 81.3 70.8 34.3 64.9 64.8
BGE 71.5 48.2 68.8 65.7 56.2 46.5 66.1 69.9 72.0 32.1 59.7 59.6
E5 68.4 45.7 68.1 63.7 60.1 44.0 69.3 72.3 78.8 32.8 60.3 59.3
Contriever 69.4 55.3 68.3 64.9 56.9 46.2 69.9 71.1 72.0 32.1 60.6 59.7
GTE 71.1 44.5 67.2 64.4 54.3 43.0 70.6 71.9 68.2 31.4 58.7 58.3

Im
ag

e

DSEwiki−ss 75.4 65.0 73.9 79.8 69.5 63.5 75.4 71.5 81.4 50.4 70.6 71.4
DSEdocmatix 75.4 67.5 73.3 80.0 66.3 61.6 72.8 76.4 82.6 57.7 71.4 71.8
ColPali 77.6 71.8 79.4 83.4 72.6 66.1 80.0 80.4 86.4 49.6 74.7 75.0
DPR-Phi3ours 80.3 66.5 77.6 83.9 71.9 63.8 79.8 71.4 84.5 55.5 73.5 74.3
Col-Phi3ours 80.2 74.1 77.4 84.8 69.1 67.7 78.7 79.5 81.8 69.3 76.3 76.8

R
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k
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R
-t
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t

DPR 59.5 55.8 43.4 59.1 56.2 41.2 50.7 45.5 56.0 23.0 49.0 49.4
ColBERT 78.4 71.1 63.3 75.2 68.8 60.5 72.0 72.7 67.5 30.3 66.0 66.5
BGE 79.3 65.9 62.1 69.7 69.8 56.5 68.0 62.8 66.3 26.3 62.7 62.9
E5 79.3 62.4 67.0 70.3 71.8 57.6 72.5 67.1 67.5 25.7 64.1 64.2
Contriever 79.9 62.7 64.7 71.7 71.1 48.8 72.4 65.8 67.5 26.3 63.1 62.5
GTE 78.3 61.9 67.3 72.3 68.7 55.2 72.6 64.0 67.5 24.3 63.2 63.5

V
L

M
-t

ex
t

DPR 66.5 60.1 56.0 68.9 58.8 43.8 57.1 68.6 64.8 33.6 57.8 57.8
ColBERT 78.8 74.0 78.7 82.3 66.1 60.8 77.0 88.5 78.0 38.7 72.3 72.3
BGE 79.5 65.8 71.3 76.8 62.4 56.0 77.2 77.4 79.5 38.0 68.4 68.5
E5 76.9 64.2 75.3 74.4 67.4 52.0 78.5 78.6 82.6 40.9 69.1 67.9
Contriever 77.2 67.1 76.7 75.2 65.1 53.7 75.4 79.2 83.3 39.4 69.2 68.3
GTE 77.4 62.6 74.7 75.8 62.0 51.8 77.8 80.0 75.0 39.4 67.6 67.2

Im
ag

e

DSEwiki−ss 84.0 80.2 78.7 87.0 75.7 73.0 82.0 77.3 88.3 58.4 78.5 79.2
DSEdocmatix 82.1 77.2 79.6 87.8 73.9 72.4 81.7 83.1 89.4 67.9 79.5 80.1
ColPali 84.6 79.3 82.3 89.0 79.8 72.1 86.7 84.9 92.4 56.9 80.8 81.0
DPR-Phi3ours 86.9 76.2 85.3 91.9 80.0 71.2 87.1 79.5 92.0 61.3 81.1 81.8
Col-Phi3ours 86.3 78.8 81.2 92.4 79.0 73.8 85.3 85.1 87.1 73.0 82.2 83.0

Table 11: Main results for page-level retrieval. “OCR-text” and “VLM-text” refer to converting multi-modal content
using OCR and VLM respectively. “Image” refers to processing document page as screenshot image.
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DPR 3.4 7.2 1.2 11.3 3.0 9.8 8.2 24.7 30.9 26.3 12.6 12.4
ColBERT 5.0 8.8 4.7 16.4 2.0 13.2 4.6 50.8 47.7 45.3 19.8 19.1
BGE 7.0 10.9 3.7 14.3 2.3 16.3 8.4 46.1 45.5 35.8 19.0 18.5
E5 6.3 6.0 2.6 14.0 3.5 14.4 6.1 44.7 45.4 40.5 18.4 17.9
Contriever 6.7 7.0 3.8 14.3 4.1 13.3 8.3 43.6 43.9 42.9 18.8 18.1
GTE 5.7 7.0 3.9 17.2 2.8 15.8 9.4 40.7 41.6 38.3 18.2 18.4

V
L

M
-t

ex
t

DPR 11.6 9.5 19.2 19.2 14.9 15.9 15.8 25.6 34.7 27.0 19.3 19.2
ColBERT 22.0 14.9 28.0 28.3 17.9 29.7 21.1 52.6 54.5 44.5 31.3 31.4
BGE 19.2 15.2 24.6 28.7 12.8 27.6 19.7 47.0 52.3 35.8 28.3 29.0
E5 15.9 8.8 27.7 24.3 14.6 21.8 14.7 45.6 53.0 40.5 26.7 26.4
Contriever 23.4 7.5 28.2 26.8 17.1 25.7 16.1 43.6 51.5 42.9 28.3 28.9
GTE 17.5 10.5 23.0 27.2 14.5 26.3 14.4 39.8 49.2 38.3 26.1 27.1

V
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e DSEwiki−ss 20.6 15.1 31.0 31.1 20.1 29.2 22.0 39.3 37.5 35.8 28.2 29.2

DSEdocmatix 19.9 11.4 31.5 30.1 17.8 30.0 20.8 46.5 39.4 31.4 27.9 29.1
ColPali 22.5 21.3 36.6 30.9 26.8 32.1 19.3 52.5 51.8 33.6 32.7 32.5
DPR-Phi3ours 21.1 22.1 36.8 35.2 25.6 28.7 24.1 38.3 35.4 27.4 29.5 30.2
Col-Phi3ours 22.6 22.0 37.5 34.9 28.9 30.3 22.7 50.2 45.1 26.3 31.1 31.6

H
yb

ri
d

DSEwiki−ss 14.0 10.4 29.8 18.0 13.7 20.4 13.5 46.0 45.1 34.7 24.6 23.4
DSEdocmatix 18.2 11.6 32.7 24.0 17.7 27.2 16.7 48.1 45.5 33.0 27.5 27.4
ColPali 17.7 12.3 30.0 18.4 19.0 25.5 20.6 49.7 51.2 40.9 28.5 27.1
DPR-Phi3ours 28.3 11.1 35.5 18.8 29.3 24.0 27.4 38.0 41.9 34.5 28.9 27.3
Col-Phi3ours 26.4 12.6 33.7 27.3 30.1 27.9 24.6 46.2 47.4 21.9 29.8 29.6
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DPR 7.3 12.5 5.6 24.0 8.9 16.9 13.6 47.2 50.2 51.1 23.7 23.5
ColBERT 10.9 23.8 10.2 32.2 6.8 25.5 17.0 78.7 63.4 63.2 33.2 32.6
BGE 11.9 20.3 13.6 30.0 11.7 27.7 18.8 68.5 65.4 59.1 32.7 32.2
E5 12.8 16.2 8.9 31.9 10.9 23.6 19.9 76.1 68.8 63.9 33.3 32.7
Contriever 11.9 17.9 11.9 28.8 9.3 24.6 18.1 64.3 68.0 62.7 31.7 31.2
GTE 10.0 18.2 12.8 32.9 15.2 29.4 21.0 67.7 65.3 62.4 33.5 33.5

V
L

M
-t
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t

DPR 31.0 25.7 36.7 44.9 33.0 34.1 34.9 49.9 56.3 51.1 39.8 40.4
ColBERT 41.8 37.7 53.7 61.8 35.1 52.4 46.1 83.2 70.1 62.5 54.4 56.0
BGE 41.0 28.1 52.7 59.2 36.7 46.0 50.7 72.0 71.5 59.9 51.8 53.2
E5 35.4 28.1 51.7 58.5 33.2 41.2 40.2 79.7 77.9 64.6 51.1 51.8
Contriever 40.2 29.2 54.1 57.9 36.8 47.1 44.6 68.8 76.2 61.9 51.7 53.0
GTE 36.7 25.6 51.2 56.6 39.7 46.6 46.4 72.2 74.3 63.2 51.3 52.3

V
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ua
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Pu
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ag
e DSEwiki−ss 42.4 32.9 56.3 58.5 39.8 50.6 41.6 68.6 60.9 50.0 50.2 52.1

DSEdocmatix 39.6 36.2 53.9 57.5 33.7 52.5 42.8 69.4 63.1 48.9 49.8 51.9
ColPali 40.7 45.9 54.9 58.5 42.6 51.2 45.7 76.8 74.5 48.9 54.0 54.3
DPR-Phi3ours 45.5 37.7 57.0 62.9 41.4 51.1 45.5 65.1 60.8 49.3 51.6 53.9
Col-Phi3ours 46.4 38.2 53.1 61.8 45.0 54.6 45.7 68.8 65.7 43.8 52.3 54.5

H
yb

ri
d

DSEwiki−ss 31.8 29.5 51.1 43.0 34.5 39.3 38.3 71.3 71.3 57.1 46.7 45.6
DSEdocmatix 37.3 26.7 48.2 49.7 34.5 48.6 41.0 72.2 69.4 54.2 48.2 49.3
ColPali 40.1 38.3 55.2 49.2 42.7 47.6 40.8 78.6 68.7 61.0 52.2 51.4
DPR-Phi3ours 54.2 27.4 53.8 39.9 36.6 45.4 49.6 67.2 66.8 59.8 50.1 49.3
Col-Phi3ours 50.9 25.5 49.1 58.3 41.9 48.1 49.2 62.3 60.6 48.5 50.0 51.8
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DPR 10.5 21.1 8.8 32.0 14.9 19.6 17.0 59.7 56.4 58.9 29.9 29.3
ColBERT 14.1 31.1 13.1 38.4 9.1 31.0 22.4 83.9 67.9 65.4 37.6 37.4
BGE 15.7 24.3 15.9 35.9 17.9 31.6 25.3 76.3 73.4 62.1 37.8 37.3
E5 16.9 24.5 13.8 40.1 15.8 26.7 24.7 83.5 77.9 66.1 39.0 38.3
Contriever 15.1 25.7 14.2 36.8 15.9 27.9 24.2 76.8 71.8 64.9 37.3 36.6
GTE 19.1 29.0 21.4 39.0 19.2 32.9 29.2 78.8 74.5 66.2 40.9 40.1

V
L

M
-t

ex
t

DPR 42.2 33.1 52.1 56.2 39.9 43.5 44.0 62.8 61.7 59.7 49.5 50.5
ColBERT 51.0 48.7 60.6 69.8 43.9 61.6 53.7 88.4 74.8 66.4 61.9 63.7
BGE 51.1 38.7 62.1 71.5 41.9 55.6 58.7 80.8 78.7 63.5 60.3 62.4
E5 45.3 38.6 62.0 70.5 45.6 50.0 55.3 87.1 82.4 66.8 60.4 61.2
Contriever 49.9 41.3 62.0 70.5 44.8 56.5 54.5 81.3 78.0 64.9 60.4 62.2
GTE 48.6 41.1 61.5 68.8 44.3 56.9 58.0 83.0 77.5 66.9 60.7 62.2

V
is

ua
lR

et
ri

ev
al

Pu
re

-I
m

ag
e DSEwiki−ss 55.9 41.3 61.5 68.1 47.8 60.7 54.2 72.9 68.3 54.4 58.5 61.1

DSEdocmatix 53.7 43.3 59.6 66.5 44.7 59.1 50.3 75.4 69.2 53.7 57.5 59.9
ColPali 53.6 54.1 64.4 69.5 48.8 60.7 54.0 81.9 82.5 50.4 62.0 63.2
DPR-Phi3ours 58.1 49.1 67.0 74.7 48.4 57.9 57.8 68.7 66.2 54.4 60.2 62.8
Col-Phi3ours 57.7 50.5 66.6 72.3 50.7 59.3 53.6 68.5 74.8 57.5 61.1 63.3

H
yb

ri
d

DSEwiki−ss 44.1 34.3 57.6 56.3 42.6 50.7 48.6 81.1 79.1 63.7 55.8 56.0
DSEdocmatix 49.9 37.3 57.3 61.3 45.9 57.9 50.1 77.9 74.9 61.5 57.4 58.9
ColPali 52.1 46.4 65.0 64.4 50.7 53.8 51.0 82.7 71.4 62.5 60.0 60.2
DPR-Phi3ours 65.2 33.7 60.3 51.3 42.4 52.4 52.9 79.1 72.5 65.6 55.5 53.4
Col-Phi3ours 59.1 38.7 57.0 77.7 43.9 57.7 51.7 72.4 68.0 60.7 58.7 62.8

Table 12: Main results for layout-level retrieval. “Pure-Image” and “Hybrid” refer to reading textual layouts in
image and text format respectively.
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B Dataset Construction

B.1 Related DocVQA Benchmarks

Early DocVQA benchmarks primarily address
single-page visual question answering (VQA), ex-
emplified by datasets such as DocVQA (Mathew
et al., 2021), InfoVQA (Mathew et al., 2022),
and TAT-DQA (Zhu et al., 2022). To over-
come the limitations of single-page inputs, sub-
sequent datasets like DUDE (Landeghem et al.,
2023), MP-DocVQA (Tito et al., 2023), and Slide-
VQA (Tanaka et al., 2023) have extended the con-
text length to an average of 5.7, 8.3, and 20 pages,
respectively. More recent benchmarks, includ-
ing MMLongBench-Doc (Ma et al., 2024b) and
DocBench (Zou et al., 2024), treat DocVQA as
a long-context task, accommodating entire doc-
uments that average between 50 to 70 pages in
length. As document lengths increase, retrieval
becomes essential. Relevant pages must first be
identified, followed by answer generation based on
the retrieved multimodal evidence.

B.2 Document Corpora Collection Criteria

Early document related benchmarks (Dong et al.,
2021) are mostly textual only, which are not consid-
ered in MMDOCIR. To facilitate the development
of MMDOCIR, we leverage visually-rich docu-
ments from recent DocVQA benchmarks described
in Appendix B.1. Despite not being curated for
IR, they offer valuable document corpora and ques-
tions that can be adapted for IR tasks. We select
relevant DocVQA datasets based on the following
criteria:
• Document Source: The dataset must include ac-

cessible original documents or sources for these
documents. We need to access and enrich them
to support more complex retrieval tasks.

• Diverse Domain/Modality: The document col-
lections must (1) encompass diverse domains
suitable for generalized evaluation, and (2) con-
tain multiple modalities, such as text, figures,
tables, charts, and layouts.

• Long Document: We choose documents with ex-
tensive texts as longer texts pose more significant
challenges. This criterion can evaluate models in
handling complex and lengthy documents.

• Question Diversity and Comprehensiveness:
The questions included in the dataset should be
diverse and challenging. For example, cross-
modal questions require reasoning across both
text and visual tables/figures; multi-hop ques-

tions require reasoning over multiple steps; multi-
page questions require combining information
from multiple pages.
Considering these criteria, we utilize document

corpora and questions from datasets as follows:
• Evaluation: MMLongBench-Doc (Ma et al.,

2024b) and DocBench (Zou et al., 2024).

• Training: MP-DocVQA (Tito et al., 2023), Slide-
VQA (Tanaka et al., 2023), TAT-DQA (Zhu et al.,
2022), SciQAG (Wan et al., 2024), DUDE (Lan-
deghem et al., 2023), and CUAD (Hendrycks
et al., 2021).

B.3 Question Filtering Guidelines

We filter questions based on the following criteria:
• Summarization Questions: Questions such as

“What does this book mainly illustrate?”“What
does this story mainly tell?” require understand-
ing of large sections or even the entire document.
The broad scope makes it hard to pinpoint spe-
cific content and contradicts the IR nature of our
task.

• Overwhelm Statistical Questions: Questions that
demand extensive data computation or collation,
such as “How many words are there in total in
the paper?”“How many pictures are there in total
in the document?” are also excluded from our
scope.

• Online Search Questions: Questions like “What
is the Google Scholar citation count of the au-
thor?” rely on information from external online
resources. We focus only on retrieving informa-
tion within the documents, and therefore exclude
these questions.

• Unanswerable Questions: These are designed
to test if models generate answers based on
non-existent information (model hallucinations).
Since they do not facilitate the retrieval of factual
document-based information, these questions are
excluded.

B.4 Training Document Collection

We collect the training datasets as follows:
• MP-DocVQA (Tito et al., 2023) contains 47,952

images collected from Industry Documents Li-
brary (IDL) 4. IDL is a crucial resource for pub-
lic health research, containing millions of doc-
uments produced by industries such as tobacco,

4https://www.industrydocuments.ucsf.edu/
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drug, chemical, and food, which have had sig-
nificant impacts on public health. We group the
47,952 document images into separate document
files, and obtain 875 long documents (46.8 pages
on average) with 15,266 QA pairs.

• SlideVQA (Tanaka et al., 2023) contains 2,619
slide documents collected from slideshare 5 and
covering 39 topics. SlideVQA hosts a wide va-
riety of slide presentations across various cate-
gories such as business, mobile, social media,
marketing, technology, arts, career, design, edu-
cation, and government & nonprofit, among oth-
ers, which can enrich the diversity of our corpus.
Note that SlideVQA contains only the first 20
pages for each slide deck. In our research, we
manually collect the remaining missing pages,
and obtain 2,011 long documents (averaging 49.3
pages) with 11,066 QA pairs. SlideVQA requires
complex reasoning, including single-hop, multi-
hop, and numerical reasoning, and also provides
annotated arithmetic expressions of numerical
answers for enhancing the ability of numerical
reasoning.

• TAT-DQA (Zhu et al., 2022) consists of 3,067
document pages from financial reports 6, dated
between 2018 and 2020. AnnualReports.com
provides access to a comprehensive collection
of corporate annual reports from over 10,320
companies worldwide. Note that neither original
documents nor links are provided. We use OCR
to extract text in the pages, and use search engine
to find relevant documents. After careful tracing
and recognition, we identify 163 original docu-
ments (averaging 147.3 pages) with 15,814 QA
pairs.

• arXivQA (Li et al., 2024) comprises 32k figures
cropped from academic pages 7. The papers on
arXiv cover a wide range of disciplines including
physics, mathematics, computer science, quanti-
tative biology, quantitative finance, statistics, en-
gineering, and systems science, and economics,
etc. We use the arXiv DOIs provided to collect
the academic papers. Due to the missing of pa-
per versions, extra efforts are made to identify
paper versions. After careful tracing, recognition,
and document length filtering, we identify 1,579
documents averaging 18.4 pages.

5https://www.slideshare.net/
6https://www.annualreports.com/
7https://arxiv.org/

• SciQAG (Wan et al., 2024) consists of 22,728
papers and 188,042 QA pairs in 24 scientific dis-
ciplines, collected from Web of Science (WoS)
Core Collection database. WoS provides compre-
hensive scientific literature in natural sciences,
social sciences, arts, and humanities. We sample
50 documents from each discipline, and manually
collect 1,197 papers using the DOIs provided.

• DUDE (Landeghem et al., 2023) provides 5,019
documents from aggregator websites8. It cov-
ers a broad range of domains, including medical,
legal, technical, and financial, among others, to
evaluate models’ ability to handle diverse topics
and the specific knowledge each requires. We
filter out short documents and obtain 779 rel-
atively long documents (averaging 15.6 pages)
with 3,173 QA pairs.

• CUAD (Hendrycks et al., 2021) provides 510
commercial legal contracts, collected from Elec-
tronic Data Gathering, Analysis, and Retrieval
(EDGAR)9. EDGAR contracts are usually more
complex and heavily negotiated than the general
population of all legal contracts. We filter out
short documents in CUAD and obtain 274 long
documents (29.6 pages on average) with 11,234
QA pairs.

B.5 Training Dataset Label Construction

The page labels can be directly obtained in the MP-
DocVQA, SlideVQA, and DUDE datasets. Among
these, only DUDE provides layout labels.

SciQAG provides only question and answer in
texts. We use these information to infer the page-
level and layout-level labels. Specifically, we first
use MinerU to obtain layout-level passage chunks.
For each QA pair, we deploy E5 and BGE retrievers
to obtain question-passage and answer-passage sim-
ilarity scores against all extracted passage chunks.
If both scores rank within top 3 for a specific pas-
sage chunk, we assign this layout as the layout-
level labels for the given QA pair.

Similarly, arXivQA provides only cropped im-
ages, without document page/layout labels. We
first use MinerU to obtain layout-level images.
For each cropped image, we calculate its similar-
ity against all extracted images using brute-force
matcher10, and select the most similar one. Subse-

81: archive.org, 2: http://commons.wikimedia.
org/, 3: http://documentcloud.org/

9https://www.sec.gov/search-filings
10https://opencv.org/
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(a) 313 documents in MMDOCIR evaluation set in Section 3
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Figure 4: Area ratio of different modalities (1) in overall and (2) by domains/datasets in MMDOCIR evaluation and
training set. Note that white spaces, headers, and footers are excluded from the area calculations.

quently, we manually examine if the selected image
matches the cropped image. In this way, we filter
around 20% unmatched images, resulting 1,579
questions with page and layout level labels.

For TAT-DQA, layout-level labels are provided
for each sampled page. To localize the page index
of the sampled pages, we first utilize PDF map-
ping tool11 to retrieve best matched page in the
document. Then, we manually verify whether the
retrieved page matches the given page, and correct
the labels if there were any errors.

B.6 Hard Negative Sampling

In addition to annotating ground truth (positive)
page labels, we enhance our training data with neg-
ative labels (Li et al., 2025). In the context of
retrieval, hard negatives are particularly informa-
tive non-relevant documents that closely resemble
true positives according to the model’s current scor-
ing function. Unlike randomly selected negatives,
hard negatives are challenging for the model to dis-
tinguish from relevant documents, thus providing
stronger supervision.

In our framework, hard negatives are crucial for
improving retrieval performance. By training the
model on these challenging examples, we encour-
age it to learn more discriminative representations,
ultimately enhancing its robustness and reducing
false positives during retrieval.

11https://github.com/pymupdf/PyMuPDF

As described in Appendix C.3, training is con-
ducted using a contrastive loss, where the model
aims to separate relevant documents from irrelevant
ones. Specifically, we obtain hard negatives using
the ColPali retriever (Faysse et al., 2024), which
scores all document pages for a given query. The
irrelevant pages with the highest top-k scores (i.e.,
those most likely to be confused with positives) are
selected as hard negatives for training. In the future,
we consider to incorporate content planning (Bao
et al., 2022b) and synthetic methods (Bao et al.,
2023, 2022a) for hard negative generation.

B.7 Fine-grained Modality Distribution

MMDOCIR evaluation set includes 313 long docu-
ments with an average length of 65.1 pages, catego-
rized into ten main domains: research reports, ad-
ministration&industry, tutorials&workshops, aca-
demic papers, brochures, financial reports, guide-
books, government documents, laws, and news ar-
ticles. Overall, the modality distribution is: Text
(60.4%), Image (18.8%), Table (16.7%), and other
modalities (4.1%), as shown in Figure 4a Different
domains exhibit different distributions of multi-
modal information. For instance, research reports,
tutorials, workshops, and brochures predominantly
contain images, whereas financial and industry doc-
uments are table-rich. In contrast, government and
legal documents primarily comprise text.

MMDOCIR training set includes 6,878 long
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Artifacts Purpose Referred Section Resource URL

MMLong’-Doc Eval-set curation Section 3 https://github.com/mayubo2333/MMLongBench-Doc
DocBench Eval-set curation https://github.com/Anni-Zou/DocBench

MP-DocVQA Train-set curation

Section 4
Appendix B.4

https://rrc.cvc.uab.es/?ch=17&com=tasks
SlideVQA Train-set curation https://github.com/nttmdlab-nlp/SlideVQA
TAT-DQA Train-set curation https://github.com/NExTplusplus/TAT-DQA
arXivQA Train-set curation https://huggingface.co/datasets/taesiri/arxiv_qa
SciQAG Train-set curation https://github.com/MasterAI-EAM/SciQAG
DUDE Train-set curation https://github.com/duchallenge-team/dude
CUAD Train-set curation https://www.atticusprojectai.org/cuad

MinerU Doc Parsing Section 3.2 https://github.com/opendatalab/MinerU

Tesseract OCR OCR-text
Section 3.4

https://github.com/tesseract-ocr/tesseract
GPT-4o VLM-text https://openai.com/index/hello-gpt-4o/
QwenVL2.5 VLM-text https://github.com/QwenLM/Qwen2.5-VL

PyMuPDF Page matching
Appendix B.5

https://github.com/pymupdf/PyMuPDF
OpenCV Image matching https://opencv.org/
Text Retriever Layout location BGE and E5 (see Table 14)

Visual Retriever Hard negatives Appendix B.6 Colpali (see Table 14)

Table 13: Artifacts used to facilitate construction of MMDOCIR evaluation & train set.

documents with an average length of 32.6 pages,
categorized into seven Document VQA or QA
datasets: MP-DocVQA (Tito et al., 2023), Slide-
VQA (Tanaka et al., 2023), TAT-DQA (Zhu et al.,
2022), arXivQA (Li et al., 2024), SciQAG (Wan
et al., 2024), and DUDE (Landeghem et al., 2023).
Overall, the modality distribution is: Text (49.3%),
Image (34.3%), Table (10.8%), and other modali-
ties (4.9%), as shown in Figure 4b. Each dataset
features unique distributions of multimodal con-
tent. The legal documents and academic papers are
text-intensive. The slides consist mostly of visual
features. Industrial documents and financial reports
are table-intensive.

B.8 Resource URL of Artifacts

In this section, we summarize the artifacts used to
facilitate the construction of MMDOCIR’s evalu-
ation and train set, as shown in Table 13. These
artifacts mainly includes: datasets used for curating
MMDOCIR evaluation and training sets, tools for
parsing documents, packages for locating evidence,
and etc.

C Model Training: DPR-Phi3&Col-Phi3

To evaluate the effectiveness of the MMDO-
CIR training set, we train two visual retriev-
ers based on Phi3-Vision (Abdin et al., 2024).
Phi3-Vision (Mphi3v) reuses the image tok-
enizer from clip-vit-large12 (Mvit). It can

12ViT-Large: https://huggingface.co/openai/
clip-vit-large-patch14-336

deal with high-resolution images by cropping them
into sub-images, where each sub-image has 336×
336 pixels.

C.1 Document/Query Encoding
DPR-Phi3 and Col-Phi3 represent document page
or query using a single dense embedding (following
DPR (Karpukhin et al., 2020)) and a list of token-
level embeddings (following ColBERT (Khattab
and Zaharia, 2020)), respectively. Specifically, we
follow Ma et al. (2024a) to concatenate document
image with a text prompt: “<s><d> What is shown
in this image?</s>”. Here, the <d> token is a spe-
cial placeholder token and is replaced by the se-
quence of patch latent embeddings from the vision
encoder. We consider only text queries and use text
prompt: “<s> query: <q> </s>”. Similarly, the
placeholder <q> token is replaced by input query.
We encode query q and document d in two ways:

Edpr
d = Mphi3v

(
Mvit(d), prompt

)
[−1],∈ RD1

Edpr
q = Mphi3v

(
q, prompt

)
[−1],∈ RD1

(1)

where the end-of-sequence token </s> from the last
hidden state (D1 = 3072) of Mphi3v is used to
represent Edpr

d and Edpr
q .

Ecol
d = Mproj ·Mphi3v

(
Mvit(d), prompt

)

Ecol
q = Mproj ·Mphi3v

(
q, prompt

) (2)

where Ecol
d ∈ RNd×D2 and Ecol

q ∈ RNq×D2 , and
Mproj is projection layer to map the last hidden
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states of Mphi3v into reduced dimension D2 =
128. Nd ≈ 2500 for a typical high-resolution page
and Nq is the number of query tokens.

C.2 Query-Doc Similarity
The similarity between the query and the document
is computed as follows:

Sim(q, d)dpr =
⟨Edpr

q |Edpr
d ⟩∥∥∥Edpr

q

∥∥∥ ·
∥∥∥Edpr

d

∥∥∥
(3)

where Sim(q, d)dpr is computed as the cosine sim-
ilarity between their embeddings. and ⟨·|·⟩ is the
dot product.

Sim(q, d)col =
∑

i∈[1,Nq ]

max
j∈[1,Nd]

⟨Ecol
q

(i)|Ecol
d

(j)⟩

(4)
where Sim(q, d)col is the sum over all query vec-
tors Ecol

q
(i), of its maximum dot product ⟨·|·⟩

with each of the Nd document embedding vectors
Ecol
d

(j).

C.3 Contrastive Loss
Given the query q, we have the positive document
d+ and a set of negative documents d− including
hard negatives and in-batch negatives. The hard
negatives are negative pages within the document
with highest Sim(q, d−) scored by ColPali (Faysse
et al., 2024) retriever, refer to Appendix B.6 for
more details on hard negative selection. We calcu-
late the loss as:

Ldpr
(q,d+,d−)

= − log
exp(Simdpr

(q,d+)
/τ)

∑
di∈d+∪d− exp(Simdpr

(q,di)
/τ)

(5)
where DPR-Phi3 is trained on the InfoNCE loss,
and the temperature parameter τ = 0.02 in our
experiments.

Lcol(q,d+,d−) = log
(
1 + exp

(
max
di∈d−

(Simcol
(q,di)

)

− Simcol
(q,d+)

))
(6)

where Col-Phi3 is trained via the softplus loss
based on the positive scores w.r.t. to the maximal
negative scores.

C.4 Training Implementation Details
In summary, we train two visual retrievers
based on Phi3-Vision (Abdin et al., 2024).
DPR-Phi3 and Col-Phi3 represent document page

or query using a single dense embedding (following
DPR (Karpukhin et al., 2020)) and a list of token-
level embeddings (following ColBERT (Khattab
and Zaharia, 2020)), respectively. To train the
model, we employ memory-efficient techniques
such as PERF (Zhang et al., 2024b,a), LoRA (Hu
et al., 2022), FlashAttention (Dao, 2024), and Deep-
Speed (Rasley et al., 2020).

The model is trained with a batch size of 64 for
one epoch on MMDOCIR training set. The model
weights are shared between the language models
for document screenshot and query encoding. In
both tasks, each training query is paired with one
positive document and one hard negative document.
The document screenshots are resized to 1, 344×
1, 344 pixels and cropped into 4× 4 sub-images.

D Retrievers: Introduction and
Implementation Details

D.1 Text-Centric Document Retrieval

For text retrieval, the first step is to convert
multimodal document into text using techniques,
e.g., Document Parsing (Chao and Fan, 2004;
Wang et al., 2024), Optical Character Recognition
(OCR) (Chaudhuri et al., 2017; Borovikov, 2014;
Mori et al., 1999), Layout Detection (Sassioui et al.,
2023; Xu et al., 2020, 2021), Information extrac-
tion (Dong et al., 2022, 2023a), Chunking (Chen
et al., 2024a; Raina and Gales, 2024), and Image
Captioning (You et al., 2016; Aneja et al., 2018).
These steps are time-consuming and can introduce
errors that impact the overall retrieval performance
(Wu et al., 2025; Nie et al., 2023; Li et al., 2023a).
Current text retrieval are primarily categorized as
sparse or dense retrieval on chunks (Dong et al.,
2023b). For two widely-used sparse retrievers:
TF-IDF (Salton et al., 1983) calculates the rele-
vance via word frequency with the inverse docu-
ment frequency, and BM25 (Robertson et al., 1994)
introduces nonlinear word frequency saturation and
length normalization. Dense retrievers encode con-
tent into vector representations. DPR (Karpukhin
et al., 2020) is the pioneering work of dense vec-
tor representations for QA tasks. Similarly, Col-
BERT (Khattab and Zaharia, 2020) introduces an
efficient question-document interaction model with
late fine-grained term matching. Contriever (Izac-
ard et al., 2022) leverages contrastive learning to
improve content dense encoding. E5 (Wang et al.,
2022) and BGE (Xiao et al., 2023) propose novel
training and data preparation techniques to enhance
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retrieval performance. Moreover, GTE (Li et al.,
2023b) integrates graph-based techniques to en-
hance dense embedding. However, most text re-
trieval systems overlook valuable visual informa-
tion present in documents.

D.2 Vision-Driven Document Retrieval
Vision Language Models (VLMs) (Abdin et al.,
2024; Beyer et al., 2024; Bai et al., 2023;
Chen et al., 2024b) can understand and gener-
ate text based on combined text and visual in-
puts. This advancement has led to the develop-
ment of cutting-edge visual-driven retrievers, such
as ColPali (Faysse et al., 2024) and DSE (Ma
et al., 2024a). These models specifically lever-
age PaliGemma (Beyer et al., 2024) and Phi3-
Vision (Abdin et al., 2024) to directly encode docu-
ment page screenshots for multimodal document re-
trieval. ColPali adopts a similar question-document
interaction as ColBERT, and represents each doc-
ument page in token-level embeddings. By con-
trast, DSE is similar to DPR in that it encodes each
page with a single dense embedding. Visual re-
trievers are capable of modeling useful visual infor-
mation, allowing direct utilization of multimodal
content without first converting it into text first.
Despite these advancements, visual retrievers face
challenges, particularly in dealing with text details
when document page resolutions are high. The
high resolution of document pages substantially
increases the computational cost and complexity
of the embedding process, which may hinder the
model’s performance.

D.3 Implementation Details
In our experiments (refer to Section 5.2), we im-
plement 9 off-the-shelf retrievers including 6 text
retrievers and 3 visual retrievers. The text retrieval
models deployed are namely DPR, ColBERT, Con-
triever, E5, BGE and GTE. These models use
the WordPiece tokenizer from BERT and also in-
herit the maximum input length of 512 tokens
from BERT (Devlin et al., 2019). Additionally,
we make use of the sentence-transformer library13

when deploying E5, BGE and GTE. The visual re-
trieval models deployed are namely DSEwiki−ss,
DSEdocmatix, and ColPali. We use pre-trained
checkpoints available on HuggingFace 14; the spe-
cific checkpoint information can be found in Ta-
ble 14 alongside other configuration details.

13https://www.sbert.net/
14https://huggingface.co/

E Dataset Demonstration

E.1 Document Pages by Domains

The documents in MMDocIR can be categorized
into 10 types. We provide examples of each type
as below.
• Admin & Industry: These documents primar-

ily consist of instructional and overview con-
tent on industry, reflected by the dominance
of text-based questions (78.0%) and a smaller
reliance on visual evidence (image questions
only 20.3%), which shows a text-heavy struc-
ture (70.1%). Some detailed examples are shown
in Figure 5b.

• Tut & Workshop: Documents in this category
focus on slides or tutorials, which exhibit a bal-
anced question modality: 61.7% text, 24.5% im-
age, and 9.5% table questions. Strong visual
components are present, with 57.4% of its con-
tent being images—the highest among all cate-
gories. Some detailed examples are shown in
Figure 5c.

• Academic Paper: These documents are formal
publications with structured layouts, citations,
and academic pictures. The questions span mul-
tiple modalities: 28.8% text, 25.7% image, and
50.0% table. Text modality dominates content
distribution (74.6%), with the presence of tables
(11.1%) and images (12.8%) demonstrating rich
multimodal alignment and explicit questions with
answers. Some detailed examples are shown in
Figure 6a.

• Brochure: Designed for promotional purposes,
the brochure category contains highly visual doc-
uments. Over 52.6% of questions are image-
based—the highest among all domains—while
text-based questions account for only 60.5%.
Modality distribution is similarly diverse: 50.8%
image, showcasing their visually complex layout.
Some detailed examples are shown in Figure 6b.

• Financial Report: These documents involve
massive numerical and quantitative data, re-
flected in a high proportion of table questions
(54.5%) and strong table content distribution
(29.2%). While text remains significant (60.3%),
the inclusion of tabular and numerical analysis
is essential for understanding these documents.
Some detailed examples are shown in Figure 6c.

• Guidebook: Instruction manuals for electronics
and tools, guidebooks exhibit the most balanced
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Model Dimension Base Model HuggingFace Checkpoint

Te
xt

DPR 768 BERT-base facebook/dpr-ctx_encoder-multiset-base
facebook/dpr-question_encoder-multiset-base

ColBERT Ntok×768 BERT-base colbert-ir/colbertv2.0
Contriever 768 BERT-base facebook/contriever-msmarco
E5 1,024 BERT-large intfloat/e5-large-v2
BGE 1,024 RetroMAE BAAI/bge-large-en-v1.5
GTE 1,024 BERT-large thenlper/gte-large

V
is

ua
l DSEwiki−ss 3,072 Phi-3-Vision Tevatron/dse-phi3-v1.0

DSEdocmatix 3,072 Phi-3-Vision Tevatron/dse-phi3-docmatix-v2
ColPali Ntok×128 PaliGemma vidore/colpali

Table 14: Implementation details for Text and Vision Retrieval Models

question modality: 51.8% text, 54.4% image, and
26.8% table, indicating multimodal instructional
designs. Some detailed examples are shown in
Figure 7a.

• Government: This category covers policy files
and governmental reports. It is highly text-centric
with 69.9% text questions and 88.2% text content.
This reflects the formal and regulatory nature of
such documents. Some detailed examples are
shown in Figure 7b.

• Laws: Legal documents exhibit strong textual
dominance both in questions (62.1%) and con-
tent (83.8%), with very limited visual presence
(image content only 1.6%). They often maintain
specific formats and focus on linguistic interpre-
tation rather than visual layout. Some detailed
examples are shown in Figure 7c.

• News: Although based on only one document,
the “News” domain shows notable multimodal
richness. It includes a significant image portion
(39.8%), high text presence (48.5%), and 11.6%
titles. This reflects the use of images and head-
lines typical of news articles. Some detailed ex-
amples are shown in Figure 7d.

E.2 Document Layouts

In this section, we present 9 pages along with their
detected layouts, which are highlighted for better
visualizations, as shown in Figure 8, 9, and 10.
Specifically, layout detection identifies the spatial
location of different content types, such as images,
tables, and text within a document. With the help
of layout detection, we can precisely locate the spe-
cific position of an answer, whether it is an image,
a text paragraph, or a table. This enables a more
fine-grained layout-level evaluation of multimodal
retrieval capabilities.

E.3 Annotation Examples
In this section, we present 4 annotation examples
that illustrate typical multimodal retrieval and rea-
soning patterns, which help explain the construc-
tion and retrieval process. Each annotation includes
the following primary components: question, an-
swer, page-level labels, and layout-level labels. The
page-level labels show the selected pages that con-
tain ground truth evidence. Based on these selected
pages, layout-level labels further display the spe-
cific layout box detection of evidence. These exam-
ples frequently require reasoning across multiple
pages and modalities. The evidence encompasses
diverse formats such as figures, charts, tables, and
texts, highlighting the complexity and richness of
the multimodal retrieval tasks.
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(a) Page screenshots in Research Report domain.

(b) Page screenshots in Administration & Industry domain.

(c) Page screenshots in Tutorial & Workshop domain.

Figure 5: The screenshot examples of typical document pages for (a) Research Report, (b) Administration &
Industry, and (c) Tutorial & Workshop domain.
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(a) Page screenshots in Academic Paper domain.

(b) Page screenshots in Brochure domain.

(c) Page screenshots in Financial Report domain.

Figure 6: The screenshot examples of typical document pages for (a) Academic Paper, (b) Brochure, and (c)
Financial Report domain.

30984



(a) Page screenshots in Guidebook domain.

(b) Page screenshots in Government domain.

(c) Page screenshots in Laws domain.

(d) Page screenshots in News domain.

Figure 7: The screenshot examples of typical document pages for (a) Guidebook, (b) Government, (c) Laws domain,
and (d) News domain.

30985



(a) Example 1: original page vs. page highlighted with layout bounding boxes.

l.	 Master of Science (Life Sciences)

For	 Educators, science graduates or professionals interested in life sciences, by 
addressing not only the knowledge base, but also the necessary experimental 
skills required.

Outline	 Without sacrificing the necessary breadth and depth of the multi-disciplinary 
nature of the life sciences, we offer you a highly personalised roadmap in which 
the most recent scientific developments are taught, and social and bioethical 
issues are discussed. The programme offers three areas of specialisation in: 

	 •  Chemistry
	 •  Clean Energy Physics
	 •  Environmental Biology

m.	Master of Science (Mathematics for Educators)

For	 Mathematics educators and other professionals.

Outline	 This programme differentiates itself from others in that the acquisition of wide and 
in-depth knowledge in mathematics is emphasised along with its connection to 
mathematics teaching. 

n.	 Master of Science (Science of Learning) – in partnership with Lee Kong Chian 
School of Medicine 

For	 Experienced professionals in Early childhood, K12, Tertiary, and Adult education, 
Healthcare education, Professional and staff development, Quality assurance 
and regulation of educational institutions, and Continuing education and training 
(CET).

Outline	 Advances in biology and neuroscience show how our brains and cognitive 
development are shaped by learning experiences and the environment. The MSL 
is a distinctive programme where students will acquire a strong foundation in 
science of learning and development, and learn how the latest advancements 
in neuroscience, cognitive science, and technologies bear on fundamental 
questions of education--how people learn and the tools we can use to optimise 
learning.

o.	 Master of Teaching

For	 Professionals across the wide range of educational and education-related 
contexts, who are committed to high quality teaching.

Outline	 The Master of Teaching (MTeach) is a practice-oriented programme designed 
for professionals across the wide range of education and education-related 
contexts, who are committed to sharpen their professional expertise in delivering 
high quality teaching to diverse learners of today through the bridging of practice 
and research. 

12  Graduate Studies & Professional Learning Graduate Studies & Professional Learning  13

l. Master of Science (Life Sciences)

For	 Educators, science graduates or professionals interested in life sciences, by 
addressing not only the knowledge base, but also the necessary experimental 
skills required.

Outline	 Without sacrificing the necessary breadth and depth of the multi-disciplinary 
nature of the life sciences, we offer you a highly personalised roadmap in which 
the most recent scientific developments are taught, and social and bioethical 
issues are discussed. The programme offers three areas of specialisation in: 
• Chemistry
• Clean Energy Physics
• Environmental Biology

m. Master of Science (Mathematics for Educators)

For	 Mathematics educators and other professionals.

Outline	 This programme differentiates itself from others in that the acquisition of wide and
in-depth knowledge in mathematics is emphasised along with its connection to 
mathematics teaching. 

n. Master of Science (Science of Learning) – in partnership with Lee Kong Chian
School of Medicine

For	 Experienced professionals in Early childhood, K12, Tertiary, and Adult education,
Healthcare education, Professional and staff development, Quality assurance
and regulation of educational institutions, and Continuing education and training
(CET).

Outline	 Advances in biology and neuroscience show how our brains and cognitive 
development are shaped by learning experiences and the environment. The MSL 
is a distinctive programme where students will acquire a strong foundation in 
science of learning and development, and learn how the latest advancements 
in neuroscience, cognitive science, and technologies bear on fundamental 
questions of education--how people learn and the tools we can use to optimise 
learning.

o. Master of Teaching

For	 Professionals across the wide range of educational and education-related
contexts, who are committed to high quality teaching.

Outline	 The Master of Teaching (MTeach) is a practice-oriented programme designed
for professionals across the wide range of education and education-related 
contexts, who are committed to sharpen their professional expertise in delivering 
high quality teaching to diverse learners of today through the bridging of practice 
and research. 

12  Graduate Studies & Professional Learning Graduate Studies & Professional Learning  13

1 2

(b) Example 2: original page vs. page highlighted with layout bounding boxes.
Published as a conference paper at ICLR 2024

Table 2: QuALITY and QASPER Performance With + Without RAPTOR: Performance com-
parison across the QuALITY and QASPER datasets of various retrieval methods (SBERT, BM25,
DPR) with and without RAPTOR. UnifiedQA-3B is used as the language model. RAPTOR outper-
forms baselines of each respective retrieval method for both datasets.

Model Accuracy (QuALITY) Answer F1 (QASPER)

SBERT with RAPTOR 56.6% 36.70%
SBERT without RAPTOR 54.9% 36.23%
BM25 with RAPTOR 52.1% 27.00%
BM25 without RAPTOR 49.9% 26.47%
DPR with RAPTOR 54.7% 32.23%
DPR without RAPTOR 53.1% 31.70%

Table 3: Controlled comparison of F-1 scores on the QASPER dataset, using three different lan-
guage models (GPT-3, GPT-4, UnifiedQA 3B) and various retrieval methods. The column ”Title +
Abstract” reflects performance when only the title and abstract of the papers are used for context.
RAPTOR outperforms the established baselines BM25 and DPR across all tested language models.
Specifically, RAPTOR’s F-1 scores are at least 1.8% points higher than DPR and at least 5.3% points
higher than BM25.

Retriever GPT-3 F-1 Match GPT-4 F-1 Match UnifiedQA F-1 Match

Title + Abstract 25.2 22.2 17.5
BM25 46.6 50.2 26.4
DPR 51.3 53.0 32.1
RAPTOR 53.1 55.7 36.6

Table 4: Comparison of accuracies on the QuAL-
ITY dev dataset for two different language mod-
els (GPT-3, UnifiedQA 3B) using various retrieval
methods. RAPTOR outperforms the baselines of
BM25 and DPR by at least 2.0% in accuracy.

Model GPT-3 Acc. UnifiedQA Acc.

BM25 57.3 49.9
DPR 60.4 53.9
RAPTOR 62.4 56.6

Table 5: Results on F-1 Match scores of various
models on the QASPER dataset.

Model F-1 Match

LongT5 XL (Guo et al., 2022) 53.1
CoLT5 XL (Ainslie et al., 2023) 53.9
RAPTOR + GPT-4 55.7

Comparison to State-of-the-art Systems
Building upon our controlled comparisons,
we examine RAPTOR’s performance relative
to other state-of-the-art models. As shown
in Table 5, RAPTOR with GPT-4 sets a new
benchmark on QASPER, with a 55.7% F-1
score, surpassing the CoLT5 XL’s score of
53.9%.

In the QuALITY dataset, as shown in Table 7,
RAPTOR paired with GPT-4 sets a new state-
of-the-art with an accuracy of 82.6%, surpass-
ing the previous best result of 62.3%. In par-
ticular, it outperforms CoLISA by 21.5% on
QuALITY-HARD, which represents questions
that humans took unusually long to correctly
answer, requiring rereading parts of the text,
difficult reasoning, or both.

For the NarrativeQA dataset, as represented in
Table 6, RAPTOR paired with UnifiedQA sets
a new state-of-the-art METEOR score. When compared to the recursively summarizing model by
Wu et al. (2021), which also employs UnifiedQA, RAPTOR outperforms it on all metrics. While
Wu et al. (2021) rely solely on the summary in the top root node of the tree structure, RAPTOR
benefits from its intermediate layers and clustering approaches, which allows it to capture a range of
information, from general themes to specific details, contributing to its overall strong performance.

4.1 CONTRIBUTION OF THE TREE STRUCTURE

We examine the contribution of each layer of nodes to RAPTOR’s retrieval capabilities. We hy-
pothesized that upper nodes play a crucial role in handling thematic or multi-hop queries requiring
a broader understanding of the text.
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PART II 
 

Item 5. Market for Registrant’ s Common Equity, Related Stockholder Matters and Issuer Purchases of Equity Securities.
 
Equity compensation plans’ information is incorporated by reference from Part III, Item 12, “Security Ownership of Certain Beneficial Owners and
Management and Related Stockholder Matters,” of this document, and should be considered an integral part of Item 5. At January 31, 2019, there were
76,596 shareholders of record. 3M’s stock ticker symbol is MMM and is listed on the New York Stock Exchange, Inc. (NYSE), the Chicago Stock
Exchange, Inc., and the SWX Swiss Exchange. Cash dividends declared and paid totaled $1.36 and $1.175 per share for each quarter in 2018 and 2017,
respectively.
 
Issuer Purchases of Equity Securities
 
Repurchases of 3M common stock are made to support the Company’s stock-based employee compensation plans and for other corporate purposes. In
February 2016, 3M’s Board of Directors authorized the repurchase of up to $10 billion of 3M’s outstanding common stock, with no pre-established end
date. In November 2018, 3M’s Board of Directors replaced the Company’s February 2016 repurchase program with a new repurchase program. This new
program authorizes the repurchase of up to $10 billion of 3M’s outstanding common stock, with no pre-established end date.
 
Issuer Purchases of Equity Securities
(registered pursuant to Section 12 of the Exchange Act)
 
                     Maximum  
         Approximate  
         Dollar Value of  
       Total Number of  Shares that May  
       Shares Purchased  Yet Be Purchased  
  Total Number of  Average Price  as Part of Publicly  under the Plans  
  Shares Purchased  Paid per  Announced Plans  or Programs  
Period  (1)  Share  or Programs (2)  (Millions)  
January 1-31, 2018  714,575  $ 245.98  714,138  $ 4,894  
February 1-28, 2018  1,420,634  $ 233.78  1,420,599  $ 4,562  
March 1-31, 2018  1,791,496  $ 228.82  1,791,496  $ 4,152  

Total January 1-March 31, 2018  3,926,705  $ 233.74  3,926,233  $ 4,152  
April 1-30, 2018  2,135,968  $ 213.63  2,135,968  $ 3,696  
May 1-31, 2018  3,283,170  $ 201.64  3,282,339  $ 3,034  
June 1-30, 2018  2,358,619  $ 200.31  2,358,619  $ 2,562  

Total April 1-June 30, 2018  7,777,757  $ 204.53  7,776,926  $ 2,562  
July 1-31, 2018  1,851,663  $ 201.17  1,851,663  $ 2,189  
August 1-31, 2018  1,813,661  $ 205.37  1,813,661  $ 1,817  
September 1-30, 2018  1,476,649  $ 211.62  1,476,649  $ 1,504  

Total July 1-September 30, 2018  5,141,973  $ 205.65  5,141,973  $ 1,504  
October 1-31, 2018  2,346,310  $ 198.16  2,346,310  $ 1,039  
November 1-30, 2018  1,847,238  $ 199.51  1,847,238  $ 9,828  
December 1-31, 2018  2,249,175  $ 192.10  2,249,175  $ 9,396  

Total October 1-December 31, 2018  6,442,723  $ 196.43  6,442,723  $ 9,396  
Total January 1-December 31, 2018  23,289,158  $ 207.46  23,287,855  $ 9,396  

 

(1) The total number of shares purchased includes: (i) shares purchased under the Board’s authorizations described above, and (ii) shares purchased in
connection with the exercise of stock options.

(2) The total number of shares purchased as part of publicly announced plans or programs includes shares purchased under the Board’s authorizations
described above.
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Recorded Demonstrations

If you are new to College Board Search or if you’re just looking for a refresher, these short videos will help you move
ahead. To view videos full screen, you’ll need to play them in Internet Explorer 10, Firefox or Google Chrome.

Getting Started with Search for Students®
Learn how to use cohort, geographic, academic and demographic
criteria to conduct research or license the names of students who
best fit your institutional goals and strategies. Click the icon at the
bottom right of the video to view full screen. (05:40)

Visualizing Your Data in the Dashboard
Learn how to view and create custom reports, charts and heat
maps characterizing the students identified by your search criteria.
Click the icon at the bottom right of the video to view full screen.
(04:08)

Using Plan Travel to Travel Smart
Find out how Plan Travel’s guided search experience helps you
develop a data-driven, comprehensive travel strategy so that you
get the most value for your travel time and budget. Click the icon
at the bottom right of the video to view full screen. (05:52)

Researching High Schools for Informed Decisions
Determine where to focus your recruitment activities using high
school and student attributes in line with your institution’s goals
and strategies. Click the icon at the bottom right of the video to
view full screen. (05:19)
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Enrollment Planning Service

Middle States Region

EPS
Geographic Market Name Code
New York (NY)

1. Southern Tier West NY01
2. Erie County NY02
3. Genesee Valley and Northern Frontier NY03
4. Rochester and Monroe County NY04
5. Finger Lakes Region NY05
6. Central New York NY06
7. St. Lawrence Valley NY07
8. Adirondacks NY08
9. Tri Cities NY09

10. Central Hudson Valley NY10
11. Catskills NY11
12. Southern Tier East NY12
13. Rockland County NY13
14. Staten Island NY14
15. Westchester County NY15
16. Southern Nassau County NY16
17. Northern Nassau County NY17
18. Central Nassau County NY18
19. Northwest Suffolk County NY19
20. Southwest Suffolk County NY20
21. East Suffolk County NY21
22. Southeast Brooklyn NY22
23. West Brooklyn NY23
24. Northeast Brooklyn NY24
25. East Bronx NY25
26. West Bronx NY26
27. Manhattan NY27
28. South Queens NY28
29. Northwest Queens NY29
30. Northeast Queens NY30

Pennsylvania (PA)
1. Bucks County PA01
2. Chester County PA02
3. Delaware County PA03
4. Montgomery County PA04
5. Philadelphia County PA05
6. Lehigh Valley PA06
7. Northeastern Pennsylvania PA07
8. North Central Pennsylvania PA08
9. Northwestern Pennsylvania PA09

10. Southern Pennsylvania (East) PA10
11. Southern Pennsylvania (West) PA11
12. Allegheny County PA12
13. Southwest Pennsylvania excluding

Allegheny County PA13
Delaware (DE)

1. New Castle County DE01
2. Kent and Sussex Counties DE02

District of Columbia (DC)
1. District of Columbia DC01

Maryland (MD)
1. Western Maryland MD01
2. Montgomery Metropolitan MD02
3. Central Maryland excluding Baltimore MD03
4. Eastern Shore MD04
5. Prince Georges Metropolitan MD05
6. Southern Maryland MD06
7. Baltimore (Urban) MD07

EPS
Geographic Market Name Code
New Jersey (NJ)

1. Southern Jersey NJ01
2. Camden and Burlington County NJ02
3. Jersey Shore and Pinelands NJ03
4. Middlesex County NJ04
5. Monmouth County NJ05
6. Somerset and Mercer Counties NJ06
7. Union County NJ07
8. Essex and Southern Passaic County NJ08
9. Hudson County NJ09

10. Bergen County NJ10
11. Morris and Northern Passaic County NJ11
12. Sussex, Warren, and Hunterdon Counties NJ12

Major Metropolitan Area

Middle States Region
1. Maryland

Greater Washington: 2 and 5
Greater Baltimore: 3 and 7

2. New Jersey
Northern New Jersey: 2, 4, and 5, 7 through 11

3. New York
Westchester and Rockland Counties: 13 and 15
Long Island: 16 through 21
City of New York: 14, 22 through 30

4. Pennsylvania
Delaware Valley: 1 through 5
Greater Pittsburgh: 12 and 13
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Enrollment Planning Service

Middle States Region

EPS
Geographic Market Name Code
New York (NY)

1. Southern Tier West NY01
2. Erie County NY02
3. Genesee Valley and Northern Frontier NY03
4. Rochester and Monroe County NY04
5. Finger Lakes Region NY05
6. Central New York NY06
7. St. Lawrence Valley NY07
8. Adirondacks NY08
9. Tri Cities NY09

10. Central Hudson Valley NY10
11. Catskills NY11
12. Southern Tier East NY12
13. Rockland County NY13
14. Staten Island NY14
15. Westchester County NY15
16. Southern Nassau County NY16
17. Northern Nassau County NY17
18. Central Nassau County NY18
19. Northwest Suffolk County NY19
20. Southwest Suffolk County NY20
21. East Suffolk County NY21
22. Southeast Brooklyn NY22
23. West Brooklyn NY23
24. Northeast Brooklyn NY24
25. East Bronx NY25
26. West Bronx NY26
27. Manhattan NY27
28. South Queens NY28
29. Northwest Queens NY29
30. Northeast Queens NY30

Pennsylvania (PA)
1. Bucks County PA01
2. Chester County PA02
3. Delaware County PA03
4. Montgomery County PA04
5. Philadelphia County PA05
6. Lehigh Valley PA06
7. Northeastern Pennsylvania PA07
8. North Central Pennsylvania PA08
9. Northwestern Pennsylvania PA09

10. Southern Pennsylvania (East) PA10
11. Southern Pennsylvania (West) PA11
12. Allegheny County PA12
13. Southwest Pennsylvania excluding

Allegheny County PA13
Delaware (DE)

1. New Castle County DE01
2. Kent and Sussex Counties DE02

District of Columbia (DC)
1. District of Columbia DC01

Maryland (MD)
1. Western Maryland MD01
2. Montgomery Metropolitan MD02
3. Central Maryland excluding Baltimore MD03
4. Eastern Shore MD04
5. Prince Georges Metropolitan MD05
6. Southern Maryland MD06
7. Baltimore (Urban) MD07

EPS
Geographic Market Name Code
New Jersey (NJ)

1. Southern Jersey NJ01
2. Camden and Burlington County NJ02
3. Jersey Shore and Pinelands NJ03
4. Middlesex County NJ04
5. Monmouth County NJ05
6. Somerset and Mercer Counties NJ06
7. Union County NJ07
8. Essex and Southern Passaic County NJ08
9. Hudson County NJ09

10. Bergen County NJ10
11. Morris and Northern Passaic County NJ11
12. Sussex, Warren, and Hunterdon Counties NJ12

Major Metropolitan Area

Middle States Region
1. Maryland

Greater Washington: 2 and 5
Greater Baltimore: 3 and 7

2. New Jersey
Northern New Jersey: 2, 4, and 5, 7 through 11

3. New York
Westchester and Rockland Counties: 13 and 15
Long Island: 16 through 21
City of New York: 14, 22 through 30

4. Pennsylvania
Delaware Valley: 1 through 5
Greater Pittsburgh: 12 and 13
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(b) Example 2: original page vs. page highlighted with layout bounding boxes.

 

 

 

Chapter 1   

 

Ready, Set Up, Go

 

15

 

Setting Up DVD or CD Sharing

 

You can partner your MacBook Air with another Mac or Windows computer that has an 
optical disc drive and is on the same wired or wireless network. Use this other 
computer to:

Â

 

Migrate information to your MacBook Air, if the other computer is a Mac (see 
“Migrating Information to Your MacBook Air” on page 16) 

Â

 

Share the contents of DVDs or CDs (see “Sharing Discs with DVD or CD Sharing” on 
page 19)

Â

 

Remotely install Mac OS X (see “Reinstalling Software Using Remote Install Mac OS X” 
on page 45) or use Disk Utility (see “Using Disk Utility” on page 49)

The computer with the optical drive can be a Mac with Mac OS X v10.4.10 or later, or a 
Windows XP or Windows Vista computer. You can partner with more than one other 
computer. 

Mac or Windows computer MacBook Air
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(c) Example 3: original page vs. page highlighted with layout bounding boxes.

General Education Courses
24 Units

•	 Cultures and Connections
•	 Critique and Expression
•	 Data Literacy
•	 Digital Literacy
•	 Singapore Studies
•	 Communities and 

Engagement

Business Environment 
Courses
20 Units

•	 Legal Environment of 
Business

•	 Managerial Economics
•	 Decision Analytics using 

Spreadsheets
•	 Business 

Communication for 
Leaders

•	 Introduction to 
Real Estate

•	 Ethics in Business

Cross Disciplinary Course  
- Field Service Project
8 Units

Work Experience  
Milestone

Global Experience 
Milestone

Embark with us on an A.G.I.L.E. journey 
with multiple opportunities to acquire both 
in-depth business and cross-disciplinary 
expertise.

CURRICULUM ROADMAP

With a curriculum that 
is at least a quarter of  
unrestricted electives, 
students have a higher 
degree of freedom to 
broaden their university 
education and enhance 
their learning experience.

UNRESTRICTED 
ELECTIVE COURSES

Business Majors 
48 UNITS

Accountancy Major 
40 UNITS

Real Estate Major 
44 UNITS

Level 2000, 3000 and 4000 
Courses: 

Accountancy

Applied Business Analytics*

Business Economics*

Finance*

Innovation & Entrepreneurship*

Leadership & Human Capital 
Management*

Marketing*

Operations & Supply Chain 
Management*

Real Estate

MAJOR 
CURRICULUM

Business Majors* 
60 UNITS

Accountancy Major 
68 UNITS

Real Estate Major 
64 UNITS

COMMON 
CURRICULUM

52 UNITS
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Figure 10: The 3 examples illustrate the function and effectiveness of layout detection on document pages.

30988



Question: According to the report, how do 5% of the       
Latinos see economic upward mobility for their children?
Answer:  Less well off

Page id:  [4]
Type:  Chart
Layout mapping:
 {"page": 4, 
  "page_size": [612.0, 792.0],
   "bbox": [366, 229, 514, 383]}

Comment:
 The question ask what's the opinion of 5% of Latinos see
econimic upward mobility, the correct answer evidence is
a pie chart, which indicates different views and it's
account , from the chart , the 5% part is less well off.

Figure 11: This example shows a typical image retrieval and reasoning task that requires synthesizing information
from pie chart.
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Question: For dataset construction, which step takes the
most word to describe than the others
Answer:  Evolutionary Question Generation
Page id:  [11, 12]
Type:  Text
Layout mapping:
 [{"page": 11, "page_size": [595.2760009765625, 841.8900146484375], "bbox": [306, 171,
410, 184]}, 
.............................

 {"page": 12, "page_size": [595.2760009765625, 841.8900146484375], "bbox": [318, 242,
501, 276]}, {"page": 12, "page_size": [595.2760009765625, 841.8900146484375], "bbox":
[305, 286.197021484375, 526, 434.83447265625]}]

Comment:
 The question ask in data construction part, which part have most words,, first dataset construction is
in the appendix , and in page12 and page13, so after contrast, the dataset Evolutionary Question
Generation part have most words. From the picture ,through the layout mapping  we can see every
paragraph is located explicitly and compared.

Figure 12: This example shows a typical multi-page retrieval task that requires synthesizing information from text
passages across multiple pages.
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Question: In the demostration of how to use a Knuckle to
Take a Scrolling Screenshot, what buildings appear in the
first picture?
Answer:  Eiffel tower
Page id:  [14]
Type:  Figure
Layout mapping:
 {"page": 14, 
"page_size": [595.275634765625,
841.8897705078125], 
"bbox": [235, 154, 367, 439]}
Comment:
 The question ask in the how to use a Knuckle  to take a
screen shot part, what buildings appear in the first picture,
in the image we ca see the first image is Eiffel tower, 
from the layout mapping we can see the evidence 
location is the right picture

Figure 13: This example shows a typical image reasoning task that requires synthesizing information from specific
image.
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Question: "Repeat the instructions corresponding to the
settings shown in red box of Figure 3 (left)
Answer:  Identify the entities expressed by each sentence,
and locate each entity to words in the sentence. The
possible entity types are: [Type_1], [Type_2], ..., [Type_N].
If you do not find any entity in this sentence, just output
Answer: No entities found.
Page id:  [4, 16]
Type:  Chart, Text
Layout mapping:
 {"page": 4, "page_size": [595.2760009765625, 841.8900146484375], "bbox": [70, 67, 526, 236]}, {"page":

16, "page_size": [595.2760009765625, 841.8900146484375], "bbox": [305, 447.7352600097656, 526,

500.78692626953125]}............................Comment:
 The question asks about repeating the instruction settings shown in the red box on the left side of
Figure 3. Figure 3 is located on page 4, while the actual instruction settings appear on page 16. From
the left image in Figure 3, we can see that the red box is the second one, indicating that it represents
Instruction 1. Therefore, on page 16, the content of Instruction 1 is extracted based on the location of
the corresponding layout mapping box.

Figure 14: This example shows a typical multi-page image and text reasoning task that requires synthesizing
cross-modal information from image and text.
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F Detailed Analysis of ViDoRe
Benchmark

F.1 Query and Annotation Analysis
As mentioned in Section 6, ViDoRe (Faysse
et al., 2024) is the most relevant benchmark
to MMDOCIR. It integrates several datasets
such as DocVQA (Mathew et al., 2021), In-
foVQA (Mathew et al., 2022), TAT-DQA (Zhu
et al., 2022), arXiVQA (Li et al., 2024), and pro-
viding new documents in scientific, medical, ad-
ministrative, and environment domains. In this
Appendix, we elaborate our analysis of the sam-
pled 2,400 questions sampled from ViDoRe. The
statistics are shown in Table 15. ViDoRe test set
contains questions in either English or French. In
our work, we examine only the English questions.
For academic subsets, we examine all 1,500 ques-
tions: 500 questions from DocVQA, 500 questions
from InfoVQA, and 500 questions from arXiVQA.
In TAT-DQA, we sample and examine the first 500
questions. For the industrial documents, we se-
lect 100 questions from each domain (i.e., energy,
healthcare, government, and artificial intelligence).
We examine sampled questions and summarize
these questions into 3 categories:

• Unsuitable Queries. Queries that are not well-
suited for IR systems can often burden these sys-
tems by generating numerous irrelevant results.
For example, a query such as “What’s the x-axis
of the figure” is likely to prompt matches from
multiple passages within document corpora that
mention figures with an x-axis. This tends to
happen because the query is overly broad and
lacks contextual specificity. When such queries
stem from Document Visual Question Answer-
ing (DocVQA) tasks targeting a single image,
the challenge is exacerbated, as the reliance on
precise context increases while the target remains
too vague, undermining the fundamental princi-
ples of effective IR.

• Barely Suitable Queries. Queries that fall into
this category provide some guidance towards lo-
cating useful passages, yet suffer from a lack of
precise detail. These queries often fetch moder-
ate number of passages, where both relevance
and focus may not be as sharp. For example, the
query “What was the total assets from AMER in
2018?” is meant for Visual Question Answering
(VQA) focused on a specific financial topic. Al-
though this seems specific, the issue arises when

multiple sections within an annual report discuss
AMER’s total assets for the year. This causes
significant confusion since ViDoRe is set to ac-
knowledge only a single passage as the verified
answer. This lack of uniqueness in the ground
truth makes it hard to evaluate the actual perfor-
mance of IR system.

• Suitable Queries. The most effective queries for
IR systems are characterized by their specificity
and ability to distinguish between different sec-
tions of texts. These queries often involve precise
facts or detailed inquiries that facilitate pinpoint-
ing exact passages. For instance, the question
“What was the magnitude of the earthquake that
occurred in Maule on 2/27/2010?” incorporates
significant keywords and details that guide the
retrieval system directly to the necessary data.
Such queries align perfectly with the objectives
of IR, leveraging specificity and detailed context
to efficiently retrieve most relevant information.

The comprehensive analysis of our queries, as
presented in Table 15, reveals a significant chal-
lenge in adapting questions from Visual Question
Answering (VQA) datasets (such as DocVQA, In-
foVQA, TAT-DQA, and arXiVQA) for Information
Retrieval (IR) purposes. Only 8% of these queries
prove suitable for effective IR usage. In compari-
son, queries derived from industrial documents per-
form slightly better, with 15.5% deemed suitable.
A common issue identified is that these queries are
either excessively simplistic or highly specific to a
particular context. Our findings suggest that the pri-
mary difficulty stems from the inherent differences
between DocIR and DocVQA. VQA queries are
typically crafted to address content on a specific
page or within a particular image, inherently limit-
ing their scope and specificity. This specificity and
simplism are functional within the confines of the
intended VQA context but pose substantial limita-
tions when such queries are repurposed for IR tasks.
Due to this gap, we exclude ViDoRe benchmark
from our experiments.

F.2 Document Corpora Analysis
ViDoRe bootstrap document corpora directly from
existing DocVQA benchmarks (i.e., DocVQA, In-
foVQA, TAT-DQA, arXiVQA) that perform single-
page VQA. In the DocVQA setting, only selected
pages are provided for VQA, rather than the en-
tire document pages. For arXivQA, the retrieved
passages are not document pages, but are cropped
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Sub dataset #Not #Barely #Suit- #Total HuggingFace Resourcesuitable suitable able

arXiVQA 245 203 52 500 vidore/arxivqa_test_subsampled
DocVQA 345 130 25 500 vidore/docvqa_test_subsampled
InfoVQA 139 284 77 500 vidore/infovqa_test_subsampled
TAT-DQA 373 121 6 500 vidore/tatdqa_test

Industrial 78 260 62 400

vidore/syntheticDocQA_energy_test
vidore/syntheticDocQA_healthcare_industry_test
vidore/syntheticDocQA_government_reports_test
vidore/syntheticDocQA_artificial_intelligence_test

Sum 1180 998 222 2,400 -
Percentage 49.1% 41.5% 9.25% - -

Table 15: Document statistics for ViDoRe Benchmark.

images (e.g., figures, tables, and charts). In our ex-
periments, we need to rely on the entire documents
pages to evaluate retrieval on long documents. To
bridge the gap of missing complete document cor-
pora, we put in considerable efforts to collect the
original documents of existing DocVQA datasets,
as mentioned in Section 4.1.

G License Agreements

We ensure that the distribution of each dataset com-
plies with the corresponding licenses, all of which
are listed below:
• MMLongBench-Doc: is under Apache-2.0 li-

cense agreement for academic research purposes.

• DocBench: we achieved the agreement of usage
as academic research from the dataset’s author.

• MP-DocVQA: is under “MIT License” license
agreement for academic research purposes.

• SlideVQA: is under “NTT License” license
agreement for academic research purposes.

• TAT-DQA: is under “CC-BY-4.0” license agree-
ment for academic research purposes.

• ArXivQA: is under “CC-BY-SA-4.0” license
agreement for academic research purposes.

• SciQAG: is under “CC-BY-4.0” license agree-
ment for academic research purposes.

• DUDE: is under “GPL-3.0” license agreement
for academic research purposes.

• CUAD: is under “CC-BY-4.0” license agreement
for academic research purposes.
For the new annotations contributed in MMDO-

CIR, including but not limited to the questions,
page and layout annotations, we make them avail-
able solely for research purposes. Users are permit-
ted to use, modify, and share these annotations for

academic and non-commercial research activities.
Any other use, including commercial exploitation,
is not permitted without explicit written permission
from the authors.

H Ethical Considerations

The introduction and broader adoption of MMDO-
CIR may have potential ethical impacts spanning
both positive and negative dimensions. Below, we
outline possible negative consequences and discuss
potential mitigation strategies:

Privacy Risks: MMDOCIR enables models to
retrieve relevant information over lengthy, multi-
modal documents, which may include sensitive
personal, financial, or health information. There is
a risk that such technologies could be leveraged for
large-scale surveillance, unauthorized extraction of
personal data, or other privacy violations.

Fairness and Bias: If benchmarked models are
trained or evaluated on data that does not reflect
diverse demographic, linguistic, and backgrounds,
outputs may exhibit biases. This may lead to unfair
decision-making or stereotypes.

Mitigation Strategies: To mitigate these risks,
we make sure that: (i) Benchmark development
uses only publicly available, carefully vetted
datasets, with sensitive information anonymized
or removed; (ii) Retrieval outputs are monitored
for bias and fairness.

We encourage researchers and practitioners em-
ploying MMDOCIR to be mindful of these fac-
tors and to actively work toward responsible de-
velopment and deployment, including transparency
about limitations and proactive safeguards where
needed. We welcome community feedback and
collaboration on best practices to further reduce
risks as this technology evolves.
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