
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 30774–30795
November 4-9, 2025 ©2025 Association for Computational Linguistics

SimMark: A Robust Sentence-Level Similarity-Based
Watermarking Algorithm for Large Language Models

Amirhossein Dabiriaghdam and Lele Wang
Department of ECE, University of British Columbia, Vancouver, BC, Canada

{amirhossein, lelewang}@ece.ubc.ca

Abstract

The widespread adoption of large language
models (LLMs) necessitates reliable methods
to detect LLM-generated text. We introduce
SimMark, a robust sentence-level watermark-
ing algorithm that makes LLMs’ outputs trace-
able without requiring access to model inter-
nals, making it compatible with both open and
API-based LLMs. By leveraging the similar-
ity of semantic sentence embeddings combined
with rejection sampling to embed detectable sta-
tistical patterns imperceptible to humans, and
employing a soft counting mechanism, Sim-
Mark achieves robustness against paraphras-
ing attacks. Experimental results demonstrate
that SimMark sets a new benchmark for robust
watermarking of LLM-generated content, sur-
passing prior sentence-level watermarking tech-
niques in robustness, sampling efficiency, and
applicability across diverse domains, all while
maintaining the text quality and fluency.1

1 Introduction

The advent of deep generative models has made
it increasingly important to determine whether a
given text, image, or video was produced by arti-
ficial intelligence (AI), and recently, researchers
across various domains have begun tackling this
challenge (Aaronson and Kirchner, 2022; Fernan-
dez et al., 2023; Teymoorianfard et al., 2025). In
particular, LLMs such as GPT-4o (Hurst et al.,
2024), can now generate human-like text at scale
and low cost, enabling powerful applications across
numerous industries and areas such as health care
and law (Singhal et al., 2023; Wu et al., 2025;
Torabi et al., 2025; Yao et al., 2024; Taranukhin
et al., 2024).

This capability, however, introduces serious
risks, including academic plagiarism, disinforma-
tion campaigns, and public opinion manipulation.
For instance, the use of AI-generated content

1The source code of our algorithm is available here.

Sentences

𝑋1

𝑋𝑁

Embeddings

𝑒1

...

Embedder
 (+ optional PCA)

𝑒2

𝑒𝑁

𝑋𝑁−1
𝑒𝑁−1

𝑠2 = 𝑠𝑖𝑚 𝑒1, 𝑒2 ∈ [𝑎, 𝑏]

𝑠𝑁 = 𝑠𝑖𝑚 𝑒𝑁−1, 𝑒𝑁 ∉ [𝑎, 𝑏]

𝒔
𝒐

𝒇
𝒕 counting + 𝒔

𝒐
𝒇

𝒕-𝒛-test

...

𝑧 < 𝛽

𝑧 > 𝛽
Generated by an LLM watermarked with SimMark

Written by human without any knowledge of SimMark

...

𝑋2

D
et

ec
tio

n

1 2

3

Embedder
 (+ optional PCA)

Figure 1: A high-level overview of SimMark detection
algorithm. The input text is divided into individual sen-
tences X1 to XN , which are embedded using a semantic
embedding model. The similarity between consecutive
sentence embeddings is computed. Sentences with simi-
larities within a predefined interval [a, b] are considered
valid, while those outside are invalid. A statistical test
is performed using the count of valid sentences to deter-
mine whether the text is watermarked.

in news articles has raised concerns about trans-
parency, accountability, and the spread of false in-
formation (Futurism, 2023). Moreover, reliably
detecting LLM-generated content is crucial for en-
forcing copyright protections and ensuring account-
ability (Weidinger et al., 2021).

Detecting LLM-generated text poses a unique
challenge. These models are explicitly trained to
emulate human writing styles, often rendering their
outputs indistinguishable from human-authored
text. As demonstrated by Kumarage et al. (2023)
and Sadasivan et al. (2023), reliably differentiat-
ing between human-written and machine-generated
text remains an open problem.

One promising approach is the use of impercepti-
ble statistical signatures, or watermarks, embedded
within a text. Watermarking imperceptibly alters
text such that it remains natural to human read-
ers but enables subsequent detection of its origin
(Atallah et al., 2001). Effective watermarking must
balance the preservation of the text quality with
robustness against adversarial paraphrasing, where
attackers modify the text to evade detection (Kr-
ishna et al., 2024). Additionally, watermarks must

30774

https://github.com/DabiriAghdam/SimMark

be resistant to spoofing attacks, wherein adversaries
craft non-machine-generated text (often malicious)
to falsely trigger detectors (Sadasivan et al., 2023).

In this paper, we introduce SimMark, a robust
sentence-level watermarking algorithm for LLMs
based on sentence embedding similarity. SimMark
treats LLMs as black boxes that can be prompted to
generate sentences given a context. This approach
makes SimMark compatible with a wide range of
models, including open-weight LLMs and closed-
source proprietary models accessible only via APIs,
as it does not require fine-tuning or access to the
models’ internal logits. Access to logits is often
restricted by API providers due to their potential
use in distilling LLMs and leaking proprietary in-
formation (Finlayson et al., 2024).

SimMark leverages embeddings from semantic
text embedding models to capture semantic rela-
tionships between sentences and embeds detectable
statistical patterns on sentence similarity through
rejection sampling. Specifically, rejection sampling
involves querying the LLM multiple times until the
similarity between the embeddings of consecutive
sentences falls within a predefined interval. During
detection, these patterns are analyzed using a sta-
tistical test to differentiate between human-written
and LLM-generated text, as illustrated in Figure 1.

In summary, our contributions are as follows:
• We introduce a novel sentence-level water-

marking method that achieves state-of-the-art
detection performance while maintaining low
false positive rates for human-written text.

• Our approach demonstrates robustness against
paraphrasing attacks through semantic-level
watermarking and a soft counting mechanism
for statistical testing.

• Compared to existing methods, SimMark pro-
vides a more practical solution that operates
without access to LLM logits, offering high-
quality watermark injection and detection.

The remainder of this paper is organized as fol-
lows: Section 2 reviews the background and related
work on LLM watermarking techniques. Section 3
outlines our methodology. Section 4 describes our
experimental setup and presents comparative re-
sults, while Section 5 concludes the paper.

2 Background

In this section, we provide an overview of the foun-
dational concepts related to text generation with
LLMs and discuss related works on watermarking

techniques for LLMs.

2.1 Autoregressive Decoding of LLMs
An LLM operates over a vocabulary V , a set of
words or subwords termed as tokens. Let f : V →
V be an LLM that takes a sequence of tokens
Ti = {t1, t2, . . . , ti} as input and generates the
next token ti+1 as its output. To generate ti+1,
the LLM samples it from the conditional proba-
bility distribution P (ti+1|Ti) over the vocabulary
V . After generating ti+1, the updated sequence
Ti+1 = Ti ∪ {ti+1} is fed back into the model,
and the process is repeated iteratively to generate
the subsequent tokens. This process of generating
one token at a time, given the previously generated
tokens, is known as autoregressive decoding.

2.2 Token-Level Watermarking
Token-level watermarking methods embed a statis-
tical signal in the text by manipulating the token
sampling process (Aaronson and Kirchner, 2022;
Kirchenbauer et al., 2023; Fu et al., 2024). These
methods typically alter the probability distribution
over V , subtly biasing the selection of certain to-
kens to form detectable patterns.

KGW introduced by Kirchenbauer et al. (2023),
groups V into green and red subsets pseudo-
randomly seeded on the previous token before gen-
erating each new token. A predefined constant
δ > 0 is added to the logits of each token in the
green list, increasing their likelihood of being se-
lected during the sampling step. At detection, a
z-test is applied to the number of tokens from the
green list in the text to determine whether the text
contains a watermark. This test compares the ob-
served proportion of green tokens to the expected
proportion under the null hypothesis of no water-
mark, providing a statistical measure to detect even
subtle biases introduced by the watermark.

Detection of such watermarks involves analyzing
tokens for statistical signatures that deviate from
typical human text. However, token-level water-
marks can still be vulnerable to paraphrasing, as
rephrasing may disrupt the green and red token lists
without altering the overall semantic (Krishna et al.,
2024). Moreover, since these methods modify the
logits, they directly impact the conditional proba-
bility distribution over V , potentially degrading the
quality of the generated text (Fu et al., 2024).

Due to space constraints, additional related
work—including token-level methods such as
UNIGRAM-WATERMARK (UW) (Zhao et al.,

30775

2023) and the Semantic Invariant Robust (SIR) wa-
termark (Liu et al., 2023), as well as post-hoc wa-
termarking techniques—is deferred to Appendix A.

2.3 Sentence-Level Watermarking
One approach to mitigate the previously mentioned
problems is to inject the watermark signal at the
sentence level, making it less vulnerable to adver-
sarial modifications (Topkara et al., 2006). Con-
sider a similar notation for sentence generation us-
ing an autoregressive LLM that takes a sequence of
sentences Mi = {X1, X2, . . . , Xi} and generates
the next sentence Xi+1. The updated sequence of
sentences Mi+1 = Mi ∪ {Xi+1} is then used to
generate subsequent sentences iteratively.

SemStamp by Hou et al. (2024a) employs
Locality-Sensitive Hashing (LSH) (Indyk and Mot-
wani, 1998) to pseudo-randomly partition the se-
mantic space of an embedding model into a set of
valid and blocked regions, analogous to the green
and red subsets in KGW. During rejection sampling,
if the embedding of a newly generated sentence lies
within the valid regions (determined based on the
LSH signature of the previous sentence), the sen-
tence is accepted. Otherwise, a new sentence is
generated until a valid sentence is produced or the
retry limit is reached. Similar to KGW, a z-test is
applied to the number of valid sentences to deter-
mine whether the text contains a watermark.

To improve robustness against paraphrasing,
SemStamp used a contrastive learning approach
(Hadsell et al., 2006), fine-tuning an embedding
model such that the embeddings of paraphrased
sentences remain as close as possible to the original
sentences. This was achieved by minimizing the
distance between paraphrased and original embed-
dings while ensuring unrelated sentences remained
distinct. They also introduce a margin constraint in
the rejection sampling process to reject sentences
whose embeddings lie near the region boundaries.

k-SemStamp (Hou et al., 2024b) builds upon
SemStamp and aims to enhance robustness by par-
titioning the semantic space using k-means cluster-
ing (Lloyd, 1982) instead of random partitioning.
They claim that in this way, sentences with sim-
ilar semantics are more likely to fall within the
same partition, unlike random partitioning, which
may place semantically similar sentences into dif-
ferent partitions, reducing robustness; however, k-
SemStamp assumes that the LLM generates text
within a specific domain to apply k-means clus-
tering effectively (Hou et al., 2024b), limiting its

applicability in real-world, open-domain scenar-
ios. The generation and detection procedures of
k-SemStamp remain similar to the original Sem-
Stamp. In contrast to token-level algorithms, these
sentence-level methods do not alter the internals of
the LLM, therefore, it is expected that their output
to be of higher quality (Hou et al., 2024a,b).

Our work, similar to SemStamp and k-
SemStamp, is a sentence-level algorithm; however,
it injects its watermark signature into the seman-
tic similarity of consecutive sentences. It achieves
great generalizability across domains by leverag-
ing any off-the-shelf, general-purpose embedding
model without fine-tuning. At the same time, it out-
performs these state-of-the-art (SOTA) sentence-
level watermarking methods in robustness against
paraphrasing while preserving text quality.

3 SimMark: A Similarity-Based
Watermarking Algorithm

In this section, we present our proposed framework
for watermarking LLMs, detailing both the process
of generating watermarked text and its subsequent
detection.

3.1 Watermarked Text Generation
Similar to SemStamp and k-SemStamp, SimMark
utilizes the embedding representations of the sen-
tences. To compute the embeddings, in contrast
with Hou et al. (2024a,b) that fine-tuned their em-
bedder model (which could make it biased toward
a specific paraphrasing model or domain), we em-
ploy Instructor-Large (Su et al., 2023), a general-
purpose embedding model, without any fine-tuning.
The flexibility of our method in using any pre-
trained embedding model enables our approach
to be more easily adaptable to different domains.

First, we compute the embedding for each sen-
tence2. Then, we calculate the cosine similarity (or
Euclidean distance) between the embedding of sen-
tence i+ 1 and the embedding of sentence i. If the
computed value lies within a predefined interval,
sentence i + 1 is considered valid (analogous to
the green subset in KGW). Otherwise, we prompt
the LLM to generate a new sentence and repeat
this procedure until a valid sentence is found or
the maximum number of iterations is reached (in
this case, we accept the last generated sentence),

2In our experiments, we passed both the sentence and
“Represent the sentence for cosine similarity:” or “Represent
the sentence for Euclidean distance:” as the instruction to the
Instructor-Large model.

30776

𝑠𝑖+1, 1

Embedder

G
en

er
at

io
n

(+ optional PCA)
∈ [𝑎, 𝑏]

𝑠𝑖+1,2

D
et

ec
tio

n
(+

 P
ar

ap
hr

as
e

At
ta

ck
)

Watermarked Text
Paraphraser Embedder 𝑠𝑖+1

′ = 𝑠𝑖𝑚 𝑒𝑖
′, 𝑒𝑖+1

′ ≠ 𝑠𝑖+1, 2, 𝑒𝑖+1
′𝑒𝑖

′

∉ [𝑎, 𝑏]

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
𝒂 𝒃

𝑠𝑖+1, 2𝑠𝑖+1
′

𝑠𝑖+1

𝒂 𝒃𝑠𝑖+1
′

𝑐𝑖+1 = 𝑐(𝑠𝑖+1) = ቊ
1 ; 𝑖𝑓 𝑠𝑖+1 ∈ 𝑎, 𝑏 ,

𝑒−𝐾×min 𝑎−𝑠𝑖+1 , 𝑏−𝑠𝑖+1 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

Apply soft counting to all pairs of (𝑌𝑖 , 𝑌𝑖+1). 𝑺𝒐𝒇𝒕 counting

𝑋𝑖+1, 2 is 𝑣𝑎𝑙𝑖𝑑.Add 𝑋𝑖+1, 2 to the context and continue to generate 𝑋𝑖+2.

𝑠𝑖+1, 2

Due to rephrasing it is shifted out,
making 𝑌𝑖+1 a partially valid

sentence.

(+ optional PCA)

Input

LLM 𝑠𝑖+1, 2 = 𝑠𝑖𝑚 𝑒𝑖 , 𝑒𝑖+1, 2𝑒𝑖+1, 2
Embedder

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
𝒂 𝒃

𝑋𝑖+1, 2

(+ optional PCA)

Iteration II

𝒔
𝒐

𝒇
𝒕-𝒛-test 𝑧 > 𝛽

𝑧 < 𝛽
Generated by an LLM watermarked with SimMark

Written by human without any knowledge of SimMark

5 6 7 8

9

1

3

4

5
6

10

𝑋1 , 𝑋𝑖+1, 𝑋𝑖. . ., 𝑋2
𝑌1 , 𝑌𝑖+1, 𝑌𝑖. . ., 𝑌2

𝑋1 , 𝑋𝑖, 𝑋𝑖−1. . ., 𝑋2

(+ optional PCA)

Input

LLM 𝑠 𝑖+1, 1 = 𝑠𝑖𝑚 𝑒𝑖 , 𝑒𝑖+1, 1

Embedder

𝑒𝑖+1, 1
Embedder ∉ [𝑎, 𝑏]

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝒂 𝒃

𝑋𝑖+1, 1

(+ optional PCA)
Iteration

1 2 3 4

I

𝑋1 , 𝑋𝑖, 𝑋𝑖−1. . ., 𝑋2

Paraphrased Text

Figure 2: Overview of SimMark. Top: Generation. For each newly generated sentence (Xi+1), its embedding
(ei+1) is computed using a semantic text embedding model, optionally applying PCA for dimensionality reduction.
The cosine similarity (or Euclidean distance) between ei+1 and the embedding of the previous sentence (ei), denoted
as si+1, is calculated. If si+1 lies within the predefined interval [a, b], the sentence is marked valid and accepted.
Otherwise, rejection sampling generates a new candidate sentence until validity is achieved or the iteration limit
is reached. Once a sentence is accepted, the process repeats for subsequent sentences. Bottom: Detection (+
Paraphrase attack). Paraphrased versions of watermarked sentences are generated (Yi), and their embeddings (e′i)
are computed. The similarity between consecutive sentences in the paraphrased text is evaluated. If paraphrasing
causes the similarity (s′i+1) to fall outside [a, b], it is mismarked as invalid. A soft counting mechanism (via function
c(si+1) instead of a regular counting with a step function in [a, b]) quantifies partial validity based on proximity
to the interval bounds, enabling detection of watermarked text via a soft-z-test even under paraphrase attacks. It
should be noted that soft counting is always applied, as we cannot assume prior knowledge of paraphrasing.

as shown in Algorithm 1. Optionally, we may ap-
ply Principal Component Analysis (PCA) (Jolliffe,
2002) method to the embeddings to reduce their
dimensionality before calculating the similarity3.
The reason for applying PCA is provided in Sub-
section 3.2. An overview of SimMark generation
algorithm is depicted in the top part of Figure 2.

The predefined interval is a hyperparameter cho-
sen a priori based on the distribution of similarities
between consecutive sentences’ embeddings gener-
ated by an unwatermarked LLM and human-written
text. The choice of this hyperparameter is critical
for the performance of SimMark.

First, if the interval’s width is too small or its
position is far from the mean of the similarity dis-
tribution, generating sentences within this interval
can be challenging or even infeasible for the LLM.
Conversely, if the interval’s width is large and cen-
tered around the mean of the similarity distribution,
generating sentences becomes easier, but the false

3In our experiments, this is the instruction in this case:
“Represent the sentence for PCA:”

positive (FP) rate (i.e., human-written text misclas-
sified as machine-generated) increases.

Furthermore, the choice of interval affects the ro-
bustness of SimMark against paraphrasing attacks.
When an attacker paraphrases sentences, the sim-
ilarities may change and fall outside the interval.
Consequently, a larger interval provides greater
robustness, as the watermark is less likely to be
disrupted by paraphrasing. Therefore, the selection
of the interval involves balancing several factors: it
must not be too narrow to impede sentence genera-
tion while maintaining a low FP rate and adequate
robustness against paraphrasing.

Finding a “sweet spot,” for the interval depends
on the distribution of similarities between consec-
utive sentences, which can vary across models.
However, identifying such sweet spots is feasible
when we analyze the similarity distributions of both
human-authored and LLM-generated text (see Ap-
pendix K for an example of finding a sweet spot).

30777

Algorithm 1 SimMark Generation Pseudo-Code

Require: LLM, embedding model, interval [a, b],
maximum iterations Nmax

1: for each generated sentence Xi do
2: Compute embedding ei for Xi using the em-

bedding model.
3: n← 0
4: do
5: Generate sentence Xi+1 using the LLM.
6: Compute embedding ei+1 for Xi+1 using

the embedding model.
7: Optional: Reduce the dimension of ei

and ei+1 using the PCA model.
8: Compute similarity si+1:

si+1 ←
{

ei·ei+1

∥ei∥2·∥ei+1∥2 if cosine similarity,
∥ei − ei+1∥2 if Euclidean distance,

9: n← n+ 1
10: while si+1 /∈ [a, b] and n < Nmax

11: Accept Xi+1 as valid and continue gener-
ating the next sentence. {Here we either
reached the Nmax or si+1∈ [a, b]}

12: end for

3.2 Watermarked Text Detection

The detection of SimMark follows a similar
methodology to KGW by employing a z-test for
hypothesis testing. However, akin to Hou et al.
(2024a), the detection operates at the sentence level
rather than the token level. To perform detection,
we first divide the input text into sentences and use
the same semantic embedding model to compute
the embeddings for each sentence. If PCA was ap-
plied during the watermarking process, it must also
be applied during detection to ensure consistency.

Next, we compute the similarity (si+1 =
sim(ei, ei+1)) between consecutive sentences (Xi

and Xi+1) and count the number of valid sentences
(Nvalid_soft). Sentence Xi+1 is deemed valid if si+1

lies within the predefined interval [a, b]. However,
paraphrasing may alter embeddings significantly,
causing the similarity to deviate from the desired
interval. To mitigate this, we adopt a soft counting
approach, where a sentence is considered partially
valid if its similarity is near the interval boundaries.
Specifically, the soft count of Xi+1, denoted as
ci+1, is defined as follows:

Algorithm 2 SimMark Detection Pseudo-Code
Require: input text, embedding model, interval

[a, b], decay factor K, threshold β
1: Split the input text into sentences excluding

the first sentence (i.e, the prompt): M =
{X2, . . . , XNtotal

}, and set N ← |M |.
2: for each sentence pair (Xi, Xi+1) do
3: Compute embeddings ei for Xi and ei+1 for

Xi+1 using the embedding model.
4: Optional: Reduce the dimensionality of ei

and ei+1 using the PCA model.
5: Compute si+1 ← sim(ei, ei+1).
6: Compute ci+1 according to Eq. (1).
7: end for
8: Soft count of valid sentences: Nvalid_soft ←∑N+1

i=2 ci.
9: Estimate p0 as the area under the human-

written text embeddings similarity distribution
curve within [a, b].

10: Compute zsoft using Eq. (2).
11: if zsoft > β then
12: Reject H0, i.e., text is likely generated by

an LLM watermarked by SimMark.
13: else
14: Accept H0, i.e., text is likely human-written.
15: end if

ci+1 = c(si+1) =

{
1 if si+1 ∈ [a, b],

e−K min{|a−si+1|,|b−si+1|} otherwise.
(1)

Here, K > 0 is a decay factor controlling the
smoothness of the soft counting. A higher K makes
the function behave closer to a step function, while
a lower K allows for smoother transitions, tolerat-
ing minor deviations outside the interval [a, b]. The
total number of valid sentences is then computed
as Nvalid_soft =

∑
i ci. Refer to Appendix I for

an ablation study on how this approach improves
robustness against paraphrasing, with only a min-
imal impact on performance in non-paraphrased
scenarios, by allowing for some degree of error.

During our initial experiments, we observed that,
contrary to cosine similarity, Euclidean distance
is very sensitive to paraphrasing, and even a sub-
tle change in the sentences would result in a huge
difference in the distances of embeddings. We hy-
pothesize that Euclidean distance is sensitive to
noise in high-dimensional spaces such as the se-
mantic space of an embedder. To mitigate this,
we propose using PCA: We fit a PCA model on a

30778

dataset of human-written texts to find the principal
components of the sentence embeddings, i.e., the
components that contribute the most to the semanti-
cal representation of the sentences. Then, we apply
PCA to reduce embeddings’ dimension. More de-
tails on the dimensionality reduction are provided
in Section 4 and Appendix J.

This approach can make reverse-engineering
more difficult, as it would require knowledge of
not only the embedder model, but also the PCA
setting (e.g., number of components, access to the
dataset used for fitting it, etc.). Without all these
details, reproducing the similarity distribution be-
comes less straightforward.

The null hypothesis H0 is defined as follows:

H0: The sentences are written by hu-
mans, i.e., the text sequence is generated
without knowledge of the valid interval
in the similarity of sentence embeddings.

We calculate the z-statistic for the one-proportion
z-test using the sample proportion p =

Nvalid_soft
N ,

where N is the total number of samples (sentences).
Since Nvalid_soft is a soft count of valid sentences,
we refer to it as soft-z-score, which is given by
zsoft =

p−p0√
p0(1−p0)

N

or alternatively:

zsoft =
Nvalid_soft−p0N√

p0(1−p0)N
. (2)

Here, the population proportion p0 represents the
ratio of valid sentences to all sentences in human-
written text (i.e., a text with no watermark), which
is estimated as the area under the similarity distribu-
tion curve of consecutive human-written sentences
within the interval [a, b] (like the one in Figure 9 in
Appendix K). The value of zsoft can be interpreted
as a normalized deviation of the number of valid
sentences Nvalid_soft from its expectation p0N .

As highlighted in Algorithm 2, the null hypothe-
sis H0 is rejected if zsoft > β, where β is a thresh-
old determined empirically by running the detec-
tion algorithm on human-written text. The thresh-
old β is selected to maintain a desired FP rate (i.e.,
minimizing the misclassification of human-written
text as LLM-generated). Details on the computa-
tion of β are provided in Appendix L.

4 Experiments & Results

Performance of SimMark is evaluated across differ-
ent datasets and models using the area under the
receiver operating characteristic curve (ROC-AUC)

and true positive rate (TP) at fixed FP rates of 1%
and 5% (TP@1%FP and TP@5%FP). Higher val-
ues indicate better performance across all metrics4.

For dimensionality reduction, we fitted a PCA
model on 8000 samples from the RealNews subset
of the C4 dataset (Raffel et al., 2020), reducing
embedding dimensions from 768 to 16. After test-
ing various principal component counts (ranging
from 512 to 16), we found 16 to yield the best re-
sults. During our experiments, we evaluated both
settings (with and without PCA). Specifically, PCA
improved robustness against paraphrasing attacks
when Euclidean distance was used (except on the
BookSum dataset), but consistently degraded per-
formance when cosine similarity was employed
across all datasets. The results of these experiments
are summarized in Table 7 in Appendix J.

Across all experiments, the decay factor was
set to K = 250, as this value provided an opti-
mal trade-off between performance under both non-
paraphrased and paraphrased conditions (see Ap-
pendix I for an ablation study on this). The thresh-
old β was determined empirically during the de-
tection (refer to Appendix L for details) to achieve
the specified FP rates (1% or 5%). The intervals
[0.68, 0.76] for cosine similarity and [0.28, 0.36]
for Euclidean distance with PCA and [0.4, 0.55]
for Euclidean distance without PCA were found to
be near-optimal, as detailed in Appendix K.

While the intervals as well as other hyperpa-
rameters such as decay factor K could have been
further optimized for each dataset or paraphraser
individually, we chose not to do so to show the
general performance of our method (in contrast, k-
SemStamp fine-tunes domain-specific embedders
that are optimized per setting).

4.1 Models and Datasets
For our experiments, we used the same fine-tuned
version of OPT-1.3B (Zhang et al., 2022) as in
Hou et al. (2024a,b)5 to ensure fair comparison.
However, we emphasize that our method is model-
agnostic and it treats the LLM as a black-box text
generator. As such, if the method performs well
on one family of models, it is expected to general-
ize to others. To support this, we also tested our
method on Gemma3-4B model (Team et al., 2025)
and observed similar results (see Appendix D). For
semantic embedding, we utilized Instructor-Large6

4Like (Hou et al., 2024a), all results are from a single run.
5Used AbeHou/opt-1.3b-semstamp (1.3B) model.
6Used hkunlp/instructor-large (335M) model.

30779

https://huggingface.co/AbeHou/opt-1.3b-semstamp
https://huggingface.co/hkunlp/instructor-large

Dataset Algorithm No Paraphrase Pegasus Pegasus-Bigram Parrot Parrot-Bigram GPT3.5 GPT3.5-bigram Avg. Paraphrased
R

ea
lN

ew
s

UW (Zhao et al.) 99.9 / 99.1 / 99.9 98.5 / 85.6 / 95.3 97.9 / 73.5 / 91.7 97.9 / 70.9 / 91.9 97.4 / 62.8 / 89.4 97.4 / 59.1 / 87.9 93.7 / 37.0 / 70.8 97.1 / 64.8 / 87.8
KGW (Kirchenbauer et al.) 99.6 / 98.4 / 98.9 95.9 / 82.1 / 91.0 92.1 / 42.7 / 72.9 88.5 / 31.5 / 55.4 83.0 / 15.0 / 39.9 82.8 / 17.4 / 46.7 75.1 / 5.9 / 26.3 86.2 / 32.4 / 55.4
SIR (Liu et al.) 99.9 / 99.4 / 99.9 94.4 / 79.2 / 85.4 94.1 / 72.6 / 82.6 93.2 / 62.8 / 75.9 95.2 / 66.4 / 80.2 80.2 / 24.7 / 42.7 77.7 / 20.9 / 36.4 89.1 / 54.4 / 67.2
SemStamp (Hou et al.) 99.2 / 93.9 / 97.1 97.8 / 83.7 / 92.0 96.5 / 76.7 / 86.8 93.3 / 56.2 / 75.5 93.1 / 54.4 / 74.0 83.3 / 33.9 / 52.9 82.2 / 31.3 / 48.7 91.0 / 56.0 / 71.6
k-SemStamp (Hou et al.) 99.6 / 98.1 / 98.7 99.5 / 92.7 / 96.5 99.0 / 88.4 / 94.3 97.8 / 78.7 / 89.4 97.5 / 78.3 / 87.3 90.8 / 55.5 / 71.8 88.9 / 50.2 / 66.1 95.6 / 74.0 / 84.2
Cosine-SimMark (ours) 99.6 / 96.8 / 98.8 99.2 / 90.3 / 98.2 99.1 / 90.3 / 97.9 98.7 / 88.1 / 97.2 98.8 / 87.3 / 97.6 95.7 / 59.7 / 86.7 92.0 / 38.8 / 73.7 97.2 / 75.8 / 91.9
Euclidean-SimMark** (ours) 99.8 / 98.5 / 99.3 97.2 / 72.3 / 89.1 96.9 / 70.0 / 87.4 95.7 / 60.2 / 82.5 95.7 / 59.1 / 81.5 94.1 / 51.6 / 76.2 88.2 / 29.7 / 53.5 94.6 / 57.2 / 78.4

B
oo

kS
um

UW 100 / 100 / 100 99.5 / 89.8 / 98.5 98.6 / 71.2 / 93.0 98.9 / 79.4 / 94.8 98.6 / 72.1 / 92.9 93.2 / 24.6 / 57.9 86.0 / 9.2 / 30.5 95.8 / 57.7 / 77.9
KGW 99.6 / 99.0 / 99.2 97.3 / 89.7 / 95.3 96.5 / 56.6 / 85.3 94.6 / 42.0 / 75.8 93.1 / 37.4 / 71.2 87.6 / 17.2 / 52.1 77.1 / 4.4 / 27.1 91.0 / 41.2 / 67.8
SIR 100 / 99.8 / 100 93.1 / 79.3 / 85.9 93.7 / 69.9 / 81.5 96.5 / 72.9 / 85.1 97.2 / 76.5 / 88.0 80.9 / 39.9 / 23.6 75.8 / 19.9 / 35.4 89.5 / 59.7 / 66.6
SemStamp 99.6 / 98.3 / 98.8 99.0 / 94.3 / 97.0 98.6 / 90.6 / 95.5 98.3 / 83.0 / 91.5 98.4 / 85.7 / 92.5 89.6 / 45.6 / 62.4 86.2 / 37.4 / 53.8 95.0 / 72.8 / 82.1
k-SemStamp 99.9 / 99.1 / 99.4 99.3 / 94.1 / 97.3 99.1 / 92.5 / 96.9 98.4 / 86.3 / 93.9 98.8 / 88.9 / 94.9 95.6 / 65.7 / 83.0 95.7 / 64.5 / 81.4 97.8 / 81.5 / 91.2
Cosine-SimMark (ours) 99.8 / 98.8 / 99.5 99.5 / 93.3 / 98.5 99.6 / 94.1 / 98.5 99.3 / 88.5 / 98.0 99.3 / 87.0 / 98.2 97.1 / 62.5 / 86.9 94.5 / 41.6 / 74.2 98.2 / 77.8 / 92.4
Euclidean-SimMark (ours) 100 / 100 / 100 98.8 / 82.6 / 94.9 98.6 / 80.4 / 93.4 97.9 / 75.3 / 91.1 97.9 / 73.3 / 91.6 99.7 / 94.4 / 98.8 99.5 / 91.9 / 97.6 98.7 / 83.0 / 94.6

R
ed

di
t-

T
IF

U UW 99.9 / 99.5 / 99.8 97.3 / 73.4 / 91.1 94.1 / 48.3 / 77.2 90.6 / 37.1 / 64.0 89.2 / 33.7 / 60.4 86.3 / 26.9 / 52.9 74.3 / 13.2 / 30.0 88.6 / 38.8 / 62.6
KGW 99.3 / 97.5 / 98.1 94.1 / 87.2 / 87.2 91.7 / 67.2 / 67.6 79.5 / 22.8 / 43.3 82.8 / 27.6 / 49.7 84.1 / 27.3 / 50.9 79.8 / 19.3 / 41.3 85.3 / 41.9 / 56.7
SIR 99.6 / 97.2 / 99.7 90.0 / 48.7 / 77.4 90.9 / 33.1 / 71.1 87.1 / 15.0 / 50.9 86.9 / 12.8 / 49.8 91.1 / 15.0 / 61.4 84.3 / 5.5 / 39.1 88.4 / 21.7 / 58.3
SemStamp 99.7 / 97.7 / 98.2 98.4 / 92.8 / 95.4 98.0 / 89.0 / 92.9 90.2 / 56.2 / 70.5 93.9 / 71.8 / 82.3 87.7 / 47.5 / 58.2 87.4 / 43.8 / 55.9 92.6 / 66.9 / 75.9
Cosine-SimMark (ours) 99.1 / 96.3 / 97.6 98.9 / 94.5 / 96.4 98.7 / 93.6 / 96.1 98.5 / 91.6 / 96.0 98.5 / 91.7 / 95.5 97.8 / 88.4 / 94.7 96.3 / 72.9 / 88.4 98.1 / 88.8 / 94.5
Euclidean-SimMark** (ours) 99.8 / 98.7 / 99.2 99.0 / 94.7 / 97.6 99.0 / 91.9 / 96.2 97.8 / 75.9 / 89.5 97.7 / 76.4 / 90.4 98.7 / 83.7 / 95.2 96.8 / 65.8 / 87.3 98.2 / 81.4 / 92.7

Table 1: Performance of different algorithms across datasets and paraphrasers, evaluated using ROC-AUC ↑ /
TP@FP=1% ↑ / TP@FP=5% ↑, respectively (↑: higher is better). In each column, bold value indicates the best
performance for a given dataset and metric, while underlined value denotes the second-best. SimMark consistently
outperforms or is on par with other state-of-the-art methods across datasets, paraphrasers, and is the best on average.

Algorithm PPL ↓ Ent-3 ↑ Sem-Ent ↑
No watermark 11.89 11.43 3.32

UW 14.57 11.47 3.33
KGW 14.92 11.32 2.95
SIR 20.34 11.57 3.18
SemStamp 12.89 11.50 3.32
k-SemStamp 11.82 11.48 3.32
SimMark (ours) 12.69 11.50 3.37

Table 2: Comparison of the quality of text watermarked
using different algorithms on the BookSum dataset (↓:
lower is better, ↑: higher is better). SimMark yields qual-
ity metrics comparable to the no-watermark baseline,
indicating minimal impact on text quality and semantic
diversity. In contrast, token-level methods (UW, KGW,
and SIR) notably degrade the text quality, especially in
terms of perplexity.

(Su et al., 2023). Appendix B includes additional
details on the experimental configurations.

In our experiments, we used three English
datasets: RealNews subset of C47 (Raffel et al.,
2020),BookSum8 (Kryscinski et al., 2022), and
Reddit-TIFU9 (Kim et al., 2019) datasets, as in
Hou et al. (2024a). Specifically, 1000 samples from
each dataset were chosen to analyze the detection
performance and the text quality. Each sample was
segmented into sentences10, with the first sentence
serving as the prompt to the LLM.

We evaluated text quality after applying Sim-
Mark using the following metrics:

• Tri-gram Entropy (Ent-3) ↑ (Zhang et al.,
2018): Assesses textual diversity via the en-

**PCA is applied.
7Dataset card: allenai/c4 (Validation split)
8Dataset card: kmfoda/booksum (Validation split)
9Dataset card: ctr4si/reddit_tifu (Train split, short subset)

10Using sent_tokenize method of NLTK (Bird et al., 2009).

tropy of the tri-grams distribution.
• Semantic Entropy (Sem-Ent) ↑ (Han et al.,

2022): Measures semantic informativeness
and diversity of the text.

• Perplexity (PPL) ↓ (Jelinek et al., 1977):
Measures how surprising the text is to an ora-
cle LLM11.

4.2 Paraphrase Attack
To evaluate the robustness of SimMark against
paraphrase attacks, we tested it using three
paraphrasers: I. Pegasus paraphraser12 (Zhang
et al., 2020), II. Parrot paraphraser13 (Damodaran,
2021), III. GPT-3.5-Turbo (OpenAI, 2022). Refer
to Appendix N to find the prompts used with GPT-
3.5-Turbo. Kirchenbauer et al. (2024) observed that
prompting models to paraphrase entire texts often
results in summarized outputs, with the summa-
rization ratio worsening for longer inputs. To pre-
vent any information loss caused by such summa-
rization, we adopted a sentence-by-sentence para-
phrasing scheme, which also ensures our results
are comparable to Hou et al. (2024a,b). The qual-
ity of paraphrases was assessed using BertScore14

(Zhang* et al., 2020), with all settings consistent
with Hou et al. (2024a,b). The bottom part of Fig-
ure 2 demonstrates the paraphrase attack and detec-
tion phase in more detail.

We also included the results for the bigram para-
phrase attack introduced by Hou et al. (2024a),
with identical settings (25 rephrases for each sen-
tence when using Pegasus and Parrot, etc.). This

11Used facebook/opt-2.7b, following Hou et al. (2024a,b).
12Used tuner007/pegasus_paraphrase (568M) model.
13Used parrot_paraphraser_on_T5 (220M) model.
14Used deberta-xlarge-mnli (750M) (He et al., 2021).

30780

https://huggingface.co/datasets/allenai/c4
https://huggingface.co/datasets/kmfoda/booksum
https://huggingface.co/datasets/ctr4si/reddit_tifu
https://huggingface.co/facebook/opt-2.7b
https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/prithivida/parrot_paraphraser_on_T5
https://huggingface.co/microsoft/deberta-xlarge-mnli

attack involves generating multiple paraphrases for
each sentence, and choosing the one that increases
the likelihood of disrupting statistical signatures
embedded in the text, especially for token-level
algorithms (Hou et al., 2024a). While this attack
significantly impacts most other methods, SimMark
demonstrates greater robustness against it. We
must highlight that k-SemStamp relies on domain-
specific clustering of semantic spaces, making it
domain-dependent. In contrast, both SimMark and
SemStamp are domain-independent. Still, Sim-
Mark outperforms both in nearly all cases across
various datasets and metrics, further underscoring
its universality and robustness.

4.3 Robustness to Sentence-Level
Perturbations

To further evaluate the robustness of our method
and its real-world applicability, we introduce more
challenging attack scenarios: Paraphrase+Drop
and Paraphrase+Merge Attacks. These scenar-
ios simulate realistic adversarial editing strategies
where a user attempts to remove or merge sentences
after paraphrasing, while maintaining fluency.

Paraphrase+Drop assumes that an adversary not
only paraphrases the text but also drops sentences
deemed redundant. This reflects common editing
practices, especially since LLMs often produce ver-
bose outputs due to imperfect reward modeling
(Chiang and Lee, 2024). To simulate this, we first
paraphrase the input text and then randomly drop
sentences with a specified probability p. Similarly,
Paraphrase+Merge is designed to test robustness
under more subtle structural changes. After para-
phrasing, we replace end-of-sentence punctuations
(e.g., ., ?, !) with the word “and” with probability
0 < p < 1

2 . In our experiments, we avoid higher
values of p as they result in unnaturally long and
less fluent sentences. This setup simulates a realis-
tic scenario where an adversary attempts to merge
sentences while preserving the overall coherence of
the text. These combined attacks serve to stress-test
the resilience of watermarking methods under more
naturalistic adversarial conditions that go beyond
simple paraphrasing.

4.4 Results & Discussion
We compared the performance of SimMark against
SOTA watermarking algorithms through extensive
experiments. Our primary baseline was SemStamp,
a sentence-level semantic watermarking method.
We also included k-SemStamp, an improvement

No Paraphrase

Pegasus

Pegasus-Bigram

ParrotParrot-Bigram

GPT3.5

GPT3.5-Bigram

20

40

60

80

100

Averaged TP@FP=1% Across Datasets
UW
KGW
SIR
SStamp
k-SStamp
Cos-SMark (Ours)
Euclidean-SMark (Ours)

Figure 3: Detection performance of different water-
marking methods under various paraphrasing attacks,
measured by TP@FP=1% ↑ and averaged across all
three datasets (RealNews, BookSum, Reddit-TIFU).
Each axis corresponds to a specific paraphrasing attack
method (e.g., Pegasus-Bigram), and higher values are
better. Our methods, cosine-SimMark and Euclidean-
SimMark, consistently outperform or match baselines
across most paraphrasers, especially under more chal-
lenging conditions such as bigram-level paraphrasing.

over SemStamp tailored to specific domains. Re-
sults for SemStamp, k-SemStamp, KGW, and SIR,
were extracted directly from Hou et al. (2024a,b)15.

Table 1 presents detection performance pre and
post paraphrase attacks, while Table 2 provides text
quality evaluation results. To better visualize ro-
bustness across paraphrasing attacks, we aggregate
TP@FP=1% scores from Table 1 across datasets
and present them in a radar plot (Figure 3). Addi-
tional radar plots and a summary table comparing
performance across all paraphrasing settings are
provided in Appendix C (see Table 3 and Figure 5).
We also conducted a small-scale A/B test to as-
sess watermark imperceptibility. To see the results,
please refer to Appendix M. Overall, our algorithm
was imperceptible to the evaluators, and impacted
the text quality minimally while being effective
and consistently outperforming or matching other
SOTA methods, achieving the highest average para-
phrased performance across all datasets.

Notably, our method, SimMark (domain-
independent), surpasses the primary baseline, Sem-

15Despite Hou et al. (2024a,b) releasing their code and data,
we were unable to reproduce their reported results fully. Con-
sequently, there are minor discrepancies between our repro-
duction results (shown in Figure 4 for cases with p = 0) and
those presented in Table 1 (extracted directly from their paper).
Additionally, the results reported in Table 2 (our reproduction)
also show slight differences from their paper, likely due to
hyperparameter details that were not explicitly documented.

30781

Stamp (domain-independent), and is on par with
or exceeds k-SemStamp (domain-dependent). A
key aspect to consider is that the fine-tuning of
SemStamp and k-SemStamp’s embedding model
on text paraphrased by Pegasus likely contributes
to their higher robustness against Pegasus but
may introduce bias and reduce general applicabil-
ity (as shown in Table 2 of Hou et al. (2024b),
k-SemStamp loses performance under domain
shift). Additionally, the results for the Reddit-TIFU
dataset were only available for SemStamp and not
k-SemStamp, likely due to the dataset’s informal,
diverse text style and k-SemStamp’s limitation for
text to belong to a specific domain, such as news
articles or scientific writings (Hou et al., 2024b).

While SimMark demonstrates strong perfor-
mance, we acknowledge that it is not always the
best across every setting. SimMark is designed with
generality, robustness, and black-box compatibility
in mind. It forgoes domain-specific fine-tuning in
favor of broader applicability, which may explain
why it does not always outperform more narrowly
optimized methods. Several factors may explain its
relative underperformance in some cases:

First, some variability arises from randomness
in datasets and generation. LLMs rely on pseudo-
random decoding, which may introduce subtle fluc-
tuations in outputs. More importantly, as SimMark
operates at the sentence level, it cannot fine-tune
token-level patterns similar to token-level methods
(e.g., UW), which may subtly manipulate every to-
ken to embed statistical signals. This granularity
difference can be particularly advantageous when
generation length is short (e.g., a 200-token cap). In
such cases, token-level methods benefit from hav-
ing more embedding capacities, whereas sentence-
level methods like SimMark may yield weaker sta-
tistical signals, resulting in greater performance
variability in shorter texts. In other words, token-
level methods benefit from high-frequency water-
mark signals, whereas SimMark injects at a coarser
granularity. As a result, for SimMark, detection per-
formance improves with longer generations, where
more sentence-level signal can accumulate.

Figure 4 presents the ROC-AUC performance
of UW (the best token-level method in our exper-
iments), SimMark, k-SemStamp, and SemStamp
under Paraphrase+Drop and Paraphrase+Merge
attacks, evaluated on the RealNews dataset. Under
Paraphrase+Drop, across most parameter regimes,
SimMark outperforms all other methods, sustaining
higher detection performance even as the attack in-

0.0 0.1 0.2 0.3 0.4 0.5
Sentence Drop Probability

87

88

89

90

91

92

93

94

95

96

97

98

99

R
O

C
-A

U
C

 (%
)

Performance under "Paraphrase+Drop Attack"

Cosine-SimMark
UNIGRAM-WATERMARK (UW)
SemStamp
k-SemStamp

0.0 0.1 0.2 0.3 0.4 0.5
Sentence Merge Probability

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

R
O

C
-A

U
C

 (%
)

Performance under "Paraphrase+Merge Attack"

Cosine-SimMark
UNIGRAM-WATERMARK (UW)
SemStamp
k-SemStamp

Figure 4: Detection performance (ROC-AUC ↑) under
two adversarial settings using RealNews dataset. Left:
Paraphrase+Drop Attack, where random sentences are
removed after paraphrasing. SimMark, in nearly all
parameter regimes, outperforms other methods under
this attack. Right: Paraphrase+Merge Attack, where
sentence boundaries (punctuations) are probabilistically
replaced with “and” to merge sentences. Although Sim-
Mark performs best among sentence-level approaches,
UW remains highly robust due to its token-level nature.

tensity increases. While SimMark shows superior
performance among sentence-based methods un-
der Paraphrase+Merge, UW maintains the highest
robustness because it operates at the token level.

Regarding sampling efficiency, for BookSum
dataset for instance, SimMark required an aver-
age of 7.1 samples per sentence from the LLM,
compared to k-SemStamp and SemStamp, which
averaged 13.3 and 20.9 samples, respectively (Hou
et al., 2024b). This demonstrates that our method
not only outperforms these baselines but is also 2-3
times more efficient (see Appendix G for theoret-
ical estimates of this). For a comparison between
SimMark and token-level methods in terms of real-
world runtime, see Appendix F. Finally, refer to
Appendix H for qualitative examples of SimMark.

5 Conclusion

In this paper, we introduced SimMark, a similarity-
based, robust sentence-level watermarking algo-
rithm. Unlike existing approaches, SimMark oper-
ates without requiring access to the internals of the
model, ensuring compatibility with a wide range of
LLMs, including API-only models. By utilizing a
pre-trained general-purpose embedding model and
integrating a soft counting mechanism, SimMark
combines robustness against paraphrasing with ap-
plicability to diverse domains. Experimental results
show that SimMark outperforms SOTA sentence-
level watermarking algorithms in both efficiency
and robustness to paraphrasing, representing a step
forward in fully semantic watermarking for LLMs.

30782

Limitations

While SimMark demonstrates outstanding perfor-
mance, there are still some areas that warrant fur-
ther exploration:

Rejection Sampling Overhead. The rejection
sampling process requires generating multiple can-
didate sentences until a valid sentence is accepted.
Although our method is significantly (2-3 times)
more efficient than prior approaches such as Sem-
Stamp and k-SemStamp, there is still a notable
decrease in generation speed due to rejection sam-
pling. Techniques like batch sampling or paral-
lel sampling could potentially mitigate this issue,
though at the expense of higher computational re-
source usage. Future research should focus on
optimizing the method to balance efficiency and
resource requirements.

Resistance to More Advanced Attacks. While
SimMark demonstrates robustness against para-
phrasing attacks, it may not be immune to more
sophisticated adversarial transformations. In par-
ticular, detection could become less effective when
watermarked text is interleaved with or embedded
within a larger body of unwatermarked content.
Additionally, although reverse engineering the ex-
act watermarking rules is non-trivial, an adversary
may attempt a spoofing attack by approximating
our setup—for instance, by employing a publicly
available embedding model or fitting a PCA model
with publicly available datasets. While such at-
tempts may not perfectly replicate the original em-
bedding distribution, they could still pose a threat.
We leave a thorough investigation into vulnerabil-
ities and corresponding defences against reverse
engineering to future work.

Dependency on Predefined Intervals. In our
experiments, we used consistent, predefined inter-
vals across all datasets and observed consistently
strong performance. Notably, we did not observe
any noticeable degradation in text quality due to
this interval constraint during rejection sampling
(as shown in Table 2), likely because the constraint
applies only to consecutive sentences. Nonetheless,
slight variations in the embeddings similarity dis-
tribution of LLM-generated text across different
models/datasets may impact watermarking effec-
tiveness. Adaptive strategies for setting these inter-
vals dynamically (or pseudo-randomly) could not
only improve performance but also make reverse-
engineering the algorithm more difficult.

Ethical Considerations16

Potential Risks. By enabling robust detection
of LLM-generated text, particularly under para-
phrasing attacks, SimMark tries to address ethical
concerns surrounding the transparency and account-
ability of AI-generated content. However, like any
watermarking algorithm, there are potential risks,
such as falsely implicating human authors or ad-
versaries developing more advanced techniques for
spoofing attacks or bypassing detection. We ac-
knowledge these limitations and advocate for the
responsible deployment of such tools in combina-
tion with other verification mechanisms to mitigate
these risks and ensure ethical, fair deployment. The
primary goal of this work is to advance research in
watermarking techniques to support the responsible
use of LLMs. We believe that the societal impacts
and ethical considerations of our work align with
those outlined in Weidinger et al. (2021).

Use of Models and Datasets. Our research used
datasets and pretrained models from the Hugging
Face Hub17, a public platform hosting machine
learning resources under various licenses. We ad-
hered to all license terms and intended usage guide-
lines for each artifact, which are documented on
their individual Hugging Face model or dataset
cards cited in the paper. All resources were used
solely for research purposes in accordance with
their intended use and respective licenses. The
datasets employed are publicly available, widely
used in prior research, and, to the best of our knowl-
edge, free of personally identifiable information
or offensive content. Any outputs generated by
our method are intended for academic use, not for
real-world or commercial applications, and no per-
sonal or sensitive data was processed. Any new
artifacts we create (e.g., watermarked samples) are
intended solely for academic evaluation, and we do
not release any derivative data that violates original
licensing terms.

Acknowledgments

This work was supported by the NSERC Discovery
Grant No. RGPIN-2019-05448.

16Generative AI tools, such as ChatGPT, were used to refine
this manuscript. The authors retain full responsibility for all
content presented in the paper, ensuring adherence to academic
integrity and ethical research standards.

17https://huggingface.co

30783

https://huggingface.co

References
Scott Aaronson and Hendrik Kirchner. 2022. Water-

marking gpt outputs.

Mikhail J Atallah, Victor Raskin, Michael Crogan,
Christian Hempelmann, Florian Kerschbaum, Dina
Mohamed, and Sanket Naik. 2001. Natural lan-
guage watermarking: Design, analysis, and a proof-
of-concept implementation. In Information Hiding:
4th International Workshop, IH 2001 Pittsburgh, PA,
USA, April 25–27, 2001 Proceedings 4, pages 185–
200. Springer.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Yapei Chang, Kalpesh Krishna, Amir Houmansadr,
John Frederick Wieting, and Mohit Iyyer. 2024. Post-
Mark: A robust blackbox watermark for large lan-
guage models. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 8969–8987, Miami, Florida, USA.
Association for Computational Linguistics.

Cheng-Han Chiang and Hung-yi Lee. 2024. Over-
reasoning and redundant calculation of large lan-
guage models. arXiv preprint arXiv:2401.11467.

Prithiviraj Damodaran. 2021. Parrot: Paraphrase gener-
ation for nlu.

Pierre Fernandez, Guillaume Couairon, Hervé Jégou,
Matthijs Douze, and Teddy Furon. 2023. The sta-
ble signature: Rooting watermarks in latent diffusion
models. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
22466–22477.

Matthew Finlayson, Xiang Ren, and Swabha
Swayamdipta. 2024. Logits of api-protected
llms leak proprietary information. arXiv preprint
arXiv:2403.09539.

Yu Fu, Deyi Xiong, and Yue Dong. 2024. Watermarking
conditional text generation for ai detection: Unveiling
challenges and a semantic-aware watermark remedy.
Proceedings of the AAAI Conference on Artificial
Intelligence, 38(16):18003–18011.

Futurism. 2023. Cnet quietly deletes ai-generated arti-
cles amid backlash. Accessed: January 28, 2025.

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimension-
ality reduction by learning an invariant mapping. In
2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06),
volume 2, pages 1735–1742.

Seungju Han, Beomsu Kim, and Buru Chang. 2022.
Measuring and improving semantic diversity of di-
alogue generation. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
934–950, Abu Dhabi, United Arab Emirates. Associ-
ation for Computational Linguistics.

Jifei Hao, Jipeng Qiang, Yi Zhu, Yun Li, Yunhao Yuan,
and Xiaoye Ouyang. 2025. Post-hoc watermark-
ing for robust detection in text generated by large
language models. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 5430–5442, Abu Dhabi, UAE. Association for
Computational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Abe Hou, Jingyu Zhang, Tianxing He, Yichen Wang,
Yung-Sung Chuang, Hongwei Wang, Lingfeng Shen,
Benjamin Van Durme, Daniel Khashabi, and Yulia
Tsvetkov. 2024a. SemStamp: A semantic watermark
with paraphrastic robustness for text generation. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 4067–4082, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Abe Hou, Jingyu Zhang, Yichen Wang, Daniel
Khashabi, and Tianxing He. 2024b. k-SemStamp:
A clustering-based semantic watermark for detection
of machine-generated text. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 1706–1715, Bangkok, Thailand. Association
for Computational Linguistics.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth an-
nual ACM symposium on Theory of computing, pages
604–613.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and
James K Baker. 1977. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of
the Acoustical Society of America, 62(S1):S63–S63.

Ian T Jolliffe. 2002. Principal component analysis for
special types of data. Springer.

Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim.
2019. Abstractive summarization of Reddit posts
with multi-level memory networks. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2519–2531, Minneapolis, Min-
nesota. Association for Computational Linguistics.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Inter-
national Conference on Machine Learning, pages
17061–17084. PMLR.

30784

https://www.scottaaronson.com/talks/watermark.ppt
https://www.scottaaronson.com/talks/watermark.ppt
https://doi.org/10.18653/v1/2024.emnlp-main.506
https://doi.org/10.18653/v1/2024.emnlp-main.506
https://doi.org/10.18653/v1/2024.emnlp-main.506
https://doi.org/10.1609/aaai.v38i16.29756
https://doi.org/10.1609/aaai.v38i16.29756
https://doi.org/10.1609/aaai.v38i16.29756
https://futurism.com/cnet-ai-articles-label
https://futurism.com/cnet-ai-articles-label
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.18653/v1/2022.findings-emnlp.66
https://doi.org/10.18653/v1/2022.findings-emnlp.66
https://aclanthology.org/2025.coling-main.364/
https://aclanthology.org/2025.coling-main.364/
https://aclanthology.org/2025.coling-main.364/
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.18653/v1/2024.naacl-long.226
https://doi.org/10.18653/v1/2024.naacl-long.226
https://doi.org/10.18653/v1/2024.findings-acl.98
https://doi.org/10.18653/v1/2024.findings-acl.98
https://doi.org/10.18653/v1/2024.findings-acl.98
https://doi.org/10.18653/v1/N19-1260
https://doi.org/10.18653/v1/N19-1260

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli
Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando,
Aniruddha Saha, Micah Goldblum, and Tom Gold-
stein. 2024. On the reliability of watermarks for
large language models. In The Twelfth International
Conference on Learning Representations.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Wieting, and Mohit Iyyer. 2024. Paraphras-
ing evades detectors of ai-generated text, but retrieval
is an effective defense. Advances in Neural Informa-
tion Processing Systems, 36.

Wojciech Kryscinski, Nazneen Rajani, Divyansh Agar-
wal, Caiming Xiong, and Dragomir Radev. 2022.
BOOKSUM: A collection of datasets for long-form
narrative summarization. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2022,
pages 6536–6558, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Tharindu Kumarage, Paras Sheth, Raha Moraffah,
Joshua Garland, and Huan Liu. 2023. How reli-
able are AI-generated-text detectors? an assessment
framework using evasive soft prompts. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 1337–1349, Singapore. Associ-
ation for Computational Linguistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and
Lijie Wen. 2023. A semantic invariant robust wa-
termark for large language models. arXiv preprint
arXiv:2310.06356.

Stuart Lloyd. 1982. Least squares quantization in pcm.
IEEE transactions on information theory, 28(2):129–
137.

OpenAI. 2022. ChatGPT.

Leyi Pan, Aiwei Liu, Zhiwei He, Zitian Gao, Xuan-
dong Zhao, Yijian Lu, Binglin Zhou, Shuliang Liu,
Xuming Hu, Lijie Wen, Irwin King, and Philip S. Yu.
2024. MarkLLM: An open-source toolkit for LLM
watermarking. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 61–71,
Miami, Florida, USA. Association for Computational
Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala-
subramanian, Wenxiao Wang, and Soheil Feizi. 2023.
Can ai-generated text be reliably detected? arXiv
preprint arXiv:2303.11156.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
and 1 others. 2023. Large language models encode
clinical knowledge. Nature, 620(7972):172–180.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
embedder, any task: Instruction-finetuned text em-
beddings. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 1102–1121,
Toronto, Canada. Association for Computational Lin-
guistics.

Maksym Taranukhin, Sahithya Ravi, Gabor Lukacs,
Evangelos Milios, and Vered Shwartz. 2024. Em-
powering air travelers: A chatbot for Canadian air
passenger rights. In Proceedings of the Natural Le-
gal Language Processing Workshop 2024, pages 326–
335, Miami, FL, USA. Association for Computa-
tional Linguistics.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane
Rivière, and 1 others. 2025. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786.

Mohammadreza Teymoorianfard, Shiqing Ma, and
Amir Houmansadr. 2025. Vidstamp: A temporally-
aware watermark for ownership and integrity in video
diffusion models. Preprint, arXiv:2505.01406.

Mercan Topkara, Umut Topkara, and Mikhail J Atallah.
2006. Words are not enough: sentence level natural
language watermarking. In Proceedings of the 4th
ACM international workshop on Contents protection
and security, pages 37–46.

Yasaman Torabi, Shahram Shirani, and James P Reilly.
2025. Large language model-based nonnegative ma-
trix factorization for cardiorespiratory sound separa-
tion. arXiv preprint arXiv:2502.05757.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
and 1 others. 2021. Ethical and social risks
of harm from language models. arXiv preprint
arXiv:2112.04359.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System

30785

https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=DEJIDCmWOz
https://doi.org/10.18653/v1/2022.findings-emnlp.488
https://doi.org/10.18653/v1/2022.findings-emnlp.488
https://doi.org/10.18653/v1/2023.findings-emnlp.94
https://doi.org/10.18653/v1/2023.findings-emnlp.94
https://doi.org/10.18653/v1/2023.findings-emnlp.94
https://openai.com/blog/chatgpt
https://doi.org/10.18653/v1/2024.emnlp-demo.7
https://doi.org/10.18653/v1/2024.emnlp-demo.7
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2024.nllp-1.27
https://doi.org/10.18653/v1/2024.nllp-1.27
https://doi.org/10.18653/v1/2024.nllp-1.27
https://arxiv.org/abs/2505.01406
https://arxiv.org/abs/2505.01406
https://arxiv.org/abs/2505.01406
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Juncheng Wu, Wenlong Deng, Xingxuan Li, Sheng
Liu, Taomian Mi, Yifan Peng, Ziyang Xu, Yi Liu,
Hyunjin Cho, Chang-In Choi, and 1 others. 2025.
Medreason: Eliciting factual medical reasoning
steps in llms via knowledge graphs. arXiv preprint
arXiv:2504.00993.

Xi Yang, Kejiang Chen, Weiming Zhang, Chang Liu,
Yuang Qi, Jie Zhang, Han Fang, and Nenghai Yu.
2023. Watermarking text generated by black-box
language models. arXiv preprint arXiv:2305.08883.

Shunyu Yao, Qingqing Ke, Qiwei Wang, Kangtong Li,
and Jie Hu. 2024. Lawyer gpt: A legal large lan-
guage model with enhanced domain knowledge and
reasoning capabilities. In Proceedings of the 2024
3rd International Symposium on Robotics, Artificial
Intelligence and Information Engineering, pages 108–
112.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter
Liu. 2020. PEGASUS: Pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 11328–11339.
PMLR.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, and 1
others. 2022. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan,
Xiujun Li, Chris Brockett, and Bill Dolan. 2018.
Generating informative and diverse conversational
responses via adversarial information maximization.
Advances in Neural Information Processing Systems,
31.

Xuandong Zhao, Prabhanjan Ananth, Lei Li, and
Yu-Xiang Wang. 2023. Provable robust water-
marking for ai-generated text. arXiv preprint
arXiv:2306.17439.

Supplemental Materials

A Aditional Related Work

A.1 Token-Level Watermarking

Zhao et al.’s (2023) UNIGRAM-WATERMARK
(UW) builds upon KGW by fixing the red and
green lists instead of pseudo-randomly select-
ing them, proving that, compared to KGW, their
method is more robust to paraphrasing and edit-
ing (Zhao et al., 2023). However, as outlined
by Hou et al. (2024a), this algorithm can be
reverse-engineered, rendering it impractical for
high-stakes, real-world applications (for details
about the reverse-engineering procedure, refer to
Hou et al. (2024a)).

The Semantic Invariant Robust (SIR) watermark
in Liu et al. (2023) is also similar to KGW but is
designed to be less sensitive to attacks involving
synonym replacement or advanced paraphrasing.
SIR achieves this by altering the LLM logits based
on the semantics of previously generated tokens,
using a semantic embedding model to compute se-
mantic representations, and training a model that
adjusts LLM’s logits based on the semantic embed-
dings of prior tokens (Liu et al., 2023).

A.2 Post-Hoc Watermarking

Chang et al.’s (2024) PostMark is a post-hoc wa-
termarking algorithm designed to work without
access to model logits, making it compatible with
API-only LLMs. It constructs an input-dependent
set of candidate words using semantic embeddings
and then prompts another LLM (e.g., GPT-4o) to
insert these words into the generated text. Detec-
tion relies on statistical analysis of the inserted
words. While PostMark’s compatibility with black-
box LLMs is a strength, the approach is expen-
sive—watermarking 100 tokens is estimated to cost
around $1.2 USD (Chang et al., 2024).

Yang et al. (2023) propose another post-hoc
method that encodes each word in the text as a
binary bit via a Bernoulli distribution (p = 0.5),
embedding the watermark through synonym substi-
tution: words representing bit 0 are replaced with
synonyms representing bit 1. Detection is again
done via statistical testing. However, this method is
fragile: synonyms are not reliably preserved under
paraphrasing and often fail to capture subtle con-
textual meanings, which can noticeably degrade
text quality and watermark robustness.

Hao et al. (2025) is a post-hoc watermarking

30786

https://proceedings.mlr.press/v119/zhang20ae.html
https://proceedings.mlr.press/v119/zhang20ae.html
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

technique similar to Yang et al. (2023) that im-
proves robustness by selecting semantically or syn-
tactically essential words—those less likely to be
altered during paraphrasing—as anchor points for
embedding. The method uses paraphrase-based
lexical substitution to insert watermarks while pre-
serving the original semantics. However, empirical
results in Chang et al. (2024) demonstrate that this
method is not robust to paraphrasing compared to
other methods such as KGW, SemStamp, and Post-
Mark.

B Experimental Settings

In all combinations of the experiments, following
Kirchenbauer et al. (2023), sampling from the LLM
was performed with a temperature of 0.7 and a rep-
etition penalty of 1.05, while the minimum and
the maximum number of generated tokens were
set to 195 and 205, respectively. The maximum
number of rejection sampling iterations was set to
100, again to align with the code provided by Hou
et al. (2024a,b). However, this setting reflects a
trade-off between detection performance and gen-
eration speed. Based on our experiments, setting
it to 25 achieves strong performance, with higher
values offering only marginal improvements (see
Appendix E). For token-level watermarking base-
lines, in cases where results were not directly ex-
tracted from Hou et al. (2024a,b), we employed the
open-source MarkLLM watermarking framework
(Pan et al., 2024), with their recommended config-
urations (γ = 0.5, δ = 2, prefix_length=1, etc.)
to run the experiments.

The majority of the experiments, including text
generation and detection tasks, were conducted on
a workstation equipped with an Intel Core i9 pro-
cessor, 64GB of RAM, and an Nvidia RTX 3090
GPU with 24GB of VRAM. Some of the exper-
iments involving bigram paraphrasing were per-
formed on compute nodes with an Nvidia V100
GPU with 32GB of VRAM.

C Averaged Performance Across Datasets

For a comprehensive comparison across all para-
phrasing settings (as shown in Table 1), including
ROC-AUC and TP@FP thresholds (1% and 5%),
we report the averaged detection performance met-
rics across datasets in Table 3. To better visualize
relative performance trends across paraphrasers, we
also present radar plots in Figure 5, showing aggre-
gated TP@FP=5% and ROC-AUC scores (see Fig-

ure 3 in the main text for aggregated TP@FP=1%
scores). These visualizations complement the table
by providing an intuitive view of robustness across
settings. Together, these summaries highlight that
SimMark consistently outperforms or matches the
baseline methods across diverse conditions.

D Additional Experimental Results

To demonstrate the model-agnostic nature of Sim-
Mark, we applied our algorithm to the Gemma3-
4B model1 (Team et al., 2025). We evaluated both
Cosine-SimMark and Euclidean-SimMark under
different paraphrasing models across the same three
datasets as before: RealNews subset of C4, Book-
Sum, and Reddit-TIFU. The effectiveness and ro-
bustness of watermarking techniques can depend
heavily on the characteristics of the underlying
LLM and the nature of the generated text. To main-
tain consistency and reliability across experiments,
we made the following modifications:

• Predefined Interval Adjustment: The sen-
tences’ embedding similarity distribution un-
der Gemma3-4B differed from those in OPT-
1.3B, requiring new intervals. We set the pre-
defined interval to [0.86, 0.90] for cosine sim-
ilarity (without PCA), and [0.11, 0.16] for
Euclidean distance (with PCA).

• Threshold Transferability: In contrast to
our earlier experiments—where the detection
threshold β was determined per dataset—we
fixed β across all datasets in these experi-
ments. Specifically, we determined the thresh-
old using only non-watermarked data from the
BookSum dataset, and then applied it across
all three datasets without modification. This
approach simulates a more realistic setting
where the detector is calibrated on a single
corpus but expected to generalize to others.
The results demonstrate that our method main-
tains high detection performance even under
this general configuration.

• Longer Generations: Since Gemma3-4B
tends to generate longer sentences compared
to OPT-1.3B model that we employed earlier,
we increased the number of generated tokens
from 200 to 300 to ensure a sufficient number
of sentences for reliable hypothesis testing.

Table 4 reports the detection performance in terms
of ROC-AUC ↑ / TP@1%FP ↑ / TP@5%FP ↑,
for each setting (↑: higher is better). Across all

1We employed google/gemma-3-4b (4B) model.

30787

https://huggingface.co/google/gemma-3-4b-pt

No Paraphrase

Pegasus

Pegasus-Bigram

ParrotParrot-Bigram

GPT3.5

GPT3.5-Bigram

20

40

60

80

100

ROC-AUC Averaged Across Datasets
UW
KGW
SIR
SStamp
k-SStamp
Cos-SMark (Ours)
Euclidean-SMark (Ours)

No Paraphrase

Pegasus

Pegasus-Bigram

ParrotParrot-Bigram

GPT3.5

GPT3.5-Bigram

20

40

60

80

100

TP@FP=5% Averaged Across Datasets
UW
KGW
SIR
SStamp
k-SStamp
Cos-SMark (Ours)
Euclidean-SMark (Ours)

Figure 5: Detection performance averaged across three datasets. Left: ROC-AUC ↑ across different paraphraser
variants. Right: TP@FP=5% ↑ under the same settings. These radar plots provide a holistic comparison of
all watermarking algorithms across paraphrasing conditions, averaged across datasets. SimMark demonstrates
consistently strong robustness, closely matching or outperforming state-of-the-art baselines, particularly under
heavier transformations.

Dataset Algorithm No Paraphrase Pegasus Pegasus-Bigram Parrot Parrot-Bigram GPT3.5 GPT3.5-bigram Avg. Paraphrased

A
vg

.O
ve

rD
at

as
et

s UW 99.9 / 99.5 / 99.9 98.4 / 82.9 / 95.0 96.9 / 64.3 / 87.3 95.8 / 62.5 / 83.6 95.1 / 56.2 / 80.9 92.3 / 36.9 / 66.2 84.7 / 19.8 / 43.8 93.8 / 53.8 / 76.1
KGW 99.5 / 98.3 / 98.7 95.8 / 86.3 / 91.2 93.4 / 55.5 / 75.3 87.5 / 32.1 / 58.2 86.3 / 26.7 / 53.6 84.8 / 20.6 / 49.9 77.3 / 9.9 / 31.6 87.5 / 38.5 / 60.0
SIR 99.8 / 98.8 / 99.9 92.5 / 69.1 / 82.9 92.9 / 58.5 / 78.4 92.3 / 50.2 / 70.6 93.1 / 51.9 / 72.7 84.1 / 26.5 / 42.6 79.3 / 15.4 / 37.0 89.0 / 45.3 / 64.0
SemStamp 99.5 / 96.6 / 98.0 98.4 / 90.3 / 94.8 97.7 / 85.4 / 91.7 93.9 / 65.1 / 79.2 95.1 / 70.6 / 82.9 86.9 / 42.3 / 57.8 85.3 / 37.5 / 52.8 92.9 / 65.2 / 76.5
k-SemStamp 99.8 / 98.6 / 99.1 99.4 / 93.4 / 96.9 99.0 / 90.5 / 95.6 98.1 / 82.5 / 91.7 98.2 / 83.6 / 91.1 93.2 / 60.6 / 77.4 92.3 / 57.4 / 73.8 96.7 / 77.8 / 87.7
Cosine-SimMark (ours) 99.5 / 97.3 / 98.6 99.2 / 92.7 / 97.7 99.1 / 92.7 / 97.5 98.8 / 89.4 / 97.1 98.9 / 88.7 / 97.1 96.9 / 70.2 / 89.4 94.3 / 51.1 / 78.8 97.8 / 80.8 / 92.9
Euclidean-SimMark (ours) 99.9 / 99.1 / 99.5 98.3 / 83.2 / 93.9 98.2 / 80.8 / 92.3 97.1 / 70.5 / 87.7 97.1 / 69.6 / 87.8 97.5 / 76.6 / 90.1 94.8 / 62.5 / 79.5 97.2 / 73.9 / 88.6

Table 3: Detailed average detection performance across the RealNews, BookSum, and Reddit-TIFU datasets under
different paraphrasers. Each cell reports ROC-AUC ↑ / TP@1%FP ↑ / TP@5%FP ↑. Higher values indicate
better performance across all metrics. Bold and underlined numbers denote the highest and second-highest
values, respectively. SimMark consistently ranks among the top-performing methods in robustness across various
paraphrasers averaged across datasets.

datasets and paraphrasing scenarios, SimMark re-
mains highly effective, with both cosine similarity
and Euclidean distance variants maintaining strong
ROC-AUC and TP rates. These results affirm that
SimMark maintains its performance across differ-
ent LLM families (i.e., OPT and Gemma3) and
datasets/domains, further validating the general ap-
plicability of our proposed algorithm.

E Effect of Sampling Budget on Detection
Performance

To better understand the trade-off between gener-
ation speed and detection performance, we ana-
lyze the impact of the max_trials hyperparame-
ter, which defines the upper limit on the number of
rejection sampling iterations during watermark in-
jection. While we set this value to 100 in our main
experiments (to align with prior works of Hou et al.
(2024a,b)), it is important to examine whether such
a large value is necessary.

Figure 6 shows two evaluation metrics—ROC-

AUC ↑ and TP@FP=1% ↑ (↑: higher is better)—on
the RealNews dataset for cosine-SimMark and OPT-
1.3B model under different values of max_trials.
As shown in the plots, performance improves sig-
nificantly when increasing max_trials from 5 to
25, but plateaus thereafter. In particular, both ROC-
AUC and TP@FP=1% show diminishing returns
beyond 25 trials, indicating that additional sam-
pling brings little performance gain.

These results suggest that setting max_trials
to 25 achieves a good balance between robustness
and efficiency, and using larger values (e.g., 100)
is not strictly necessary in practice. These find-
ings, together with the average sampling statis-
tics reported in the main paper (e.g., 7.1 samples
per sentence), highlight SimMark’s ability to bal-
ance robustness with generation speed compared
to SemStamp (20.9 samples per sentence) and k-
SemStamp (13.3 samples per sentence).

30788

Dataset Method No Paraphrase Pegasus Pegasus-Bigram Parrot Parrot-Bigram Avg. Paraphrased
R

N Cosine-SimMark 99.5 / 96.2 / 97.9 93.5 / 57.9 / 75.6 93.0 / 54.9 / 73.9 92.3 / 50.1 / 71.7 92.1 / 49.2 / 72.8 92.7 / 53.0 / 73.5
Euclidean-SimMark** 99.5 / 97.4 / 98.2 93.2 / 65.3 / 79.5 91.8 / 61.8 / 78.5 91.9 / 58.0 / 73.9 91.5 / 58.7 / 72.8 92.1 / 61.0 / 76.2

B
S Cosine-SimMark 99.9 / 99.6 / 99.8 97.7 / 75.8 / 90.5 97.4 / 73.3 / 90.0 97.0 / 67.8 / 87.6 96.9 / 67.7 / 86.7 97.2 / 71.1 / 88.7

Euclidean-SimMark** 99.9 / 99.7 / 99.9 97.6 / 82.0 / 91.4 97.4 / 77.9 / 89.9 97.4 / 78.0 / 91.2 91.5 / 58.7 / 72.8 96.0 / 74.2 / 86.3

T
IF

U Cosine-SimMark 99.8 / 99.1 / 99.5 97.4 / 78.8 / 91.5 97.0 / 76.6 / 89.3 89.4 / 32.8 / 61.7 90.7 / 36.6 / 63.8 93.6 / 56.2 / 76.6
Euclidean-SimMark** 99.6 / 98.8 / 99.1 97.3 / 82.0 / 91.4 96.9 / 81.0 / 90.1 92.2 / 53.6 / 73.9 92.8 / 58.4 / 76.0 94.8 / 68.8 / 82.8

Table 4: Performance of SimMark using Gemma3-4B model across paraphrasers and datasets (RealNews denoted
as RN, BookSum denoted as BS, and Reddit-TIFU denoted as TIFU). Each cell reports AUC ↑ / TP@FP=1% ↑ /
TP@FP=5% ↑ (↑: higher is better). The results demonstrate that SimMark maintains strong performance across
different datasets and paraphrasing conditions, highlighting its robustness and model-agnostic nature.

5 10 25 50 75 100
Max Trials

90

91

92

93

94

95

96

97

98

99

100

R
O

C
-A

U
C

 (%
)

ROC-AUC vs. Max Trials

Cosine-SimMark

5 10 25 50 75 100
Max Trials

40

45

50

55

60

65

70

75

80

85

90

95

100

TP
@

FP
=1

%
 (%

)

TP@FP=1% vs. Max Trials

Cosine-SimMark

Figure 6: Impact of the maximum number of rejec-
tion sampling trials on detection performance. In-
creasing max_trials improves both ROC-AUC ↑ and
TP@1%FP ↑ (↑: higher is better), but the improvement
plateaus around 25. Results are reported on the Re-
alNews dataset using cosine-SimMark and OPT-1.3B
model.

F Empirical Analysis of Generation
Efficiency

We experimentally evaluate the generation-time la-
tency introduced by SimMark. Using 100 samples
from the BookSum dataset, we measure the per-
sentence generation time under various configura-
tions of max_trials, using OPT-1.3B model. On
our hardware (see Appendix B), with max_trials
= 100 (i.e., maximum number of rejection sam-
pling), cosine-SimMark yields an average la-
tency of 1.33 seconds per sentence—corresponding
to a 7.1× slowdown compared to the unwater-
marked baseline average (0.188 sec/sentence). This
matches our reported average sampling rate of 7.1
candidates per sentence (see Section 4).

For reference, token-level methods such as UW
and SIR yield 0.182 and 0.377 seconds per sen-
tence, respectively (i.e., around 1× and 2× slow-
down). This highlights the key trade-off between
efficiency and robustness: while token-level meth-
ods are faster, SimMark offers less impact on text
quality and stronger resistance to paraphrasing.

In table 5, we also evaluate SimMark under
**PCA is applied.

Method Latency Slowdown

Baseline (no watermark) 0.188 sec/sent 1.0×
SimMark (max_trials=25) 0.977 sec/sent 5.2×
SimMark (max_trials=50) 1.114 sec/sent 5.9×
SimMark (max_trials=100) 1.330 sec/sent 7.1×
UW (token-level) 0.182 sec/sent ∼1.0×
SIR (token-level) 0.377 sec/sent 2.0×

Table 5: Latency comparison of different watermarking
methods (in seconds per sentence) and their slowdowns
relative to unwatermarked generation. SimMark’s
higher overhead stems from rejection sampling but re-
mains practical—especially at lower max_trials—and
can be further reduced with efficient decoding backends
(e.g., vLLM).

smaller max_trials values for practical trade-offs,
as performance remains strong even with a smaller
sampling budget (see Appendix E).

While SimMark introduces overhead due to re-
jection sampling, newer decoding backends (e.g.,
vLLM (Kwon et al., 2023)) can reduce this cost sub-
stantially via prompt-prefix reuse and KV cache op-
timization. However, our current benchmarks were
conducted using the Hugging Face Transformers
library (Wolf et al., 2020) without these optimiza-
tions.

Although we were unable to directly benchmark
SemStamp and k-SemStamp due to technical is-
sues, their substantially higher sampling require-
ments suggest that they would incur 2–3× greater
overhead than SimMark. It is worth noting that a
generation latency of about 1 second per sentence
remains below the average human reading speed
(200–250 wpm, or roughly 3–6 seconds per sen-
tence). In summary, we believe SimMark offers a
reasonable trade-off between detection robustness
and runtime overhead, maintaining practicality for
many real-world applications even in long-form
scenarios.

30789

G Theoretical Analysis of Sampling
Efficiency

The average number of samples required to gen-
erate a valid sentence is influenced by the chosen
interval [a, b]. To provide further insights into this
relationship, we estimated the area under the curve
(AUC) of the embedding similarity distribution for
an unwatermarked LLM (OPT-1.3B). For instance,
for the interval [0.68, 0.76] (for cosine-SimMark),
the estimated AUC is approximately 0.194.

Using the mean of the geometric distribution,
which is given by 1

p , where p is the probability
of success (in this case, the probability of falling
within the interval), this translates to an expected
average of 1

0.194 ≈ 5.1 samples per valid sentence.
This estimate is on par with the experimental results
reported in the main paper. The AUC estimates
were computed using the binning technique, as
described in Appendix L.

This analysis underscores the importance of care-
fully selecting the interval [a, b], as narrower inter-
vals may increase the number of required samples,
leading to reduced sampling efficiency but better
performance, while broader intervals may compro-
mise the effectiveness of the watermark. By under-
standing the interplay between the interval choice
and sampling efficiency, we can better optimize
SimMark’s performance.

H Examples of Watermarked Text

Figures 7 and 8 provide examples of text generated
with and without the SimMark watermark using
OPT-1.3B. These examples illustrate the impercep-
tibility of the watermark to human readers while
enabling robust detection through our proposed al-
gorithm. They also highlight SimMark’s robustness
to paraphrasing while maintaining quality compa-
rable to non-watermarked text.

I Ablation Study on Soft Count
Smoothness Factor K

In this section, we analyze the impact of the
smoothness factor K on the performance of Sim-
Mark. Recall that K controls the degree of smooth-
ness in the soft counting mechanism as defined in
Eq. (1). A larger K makes the soft counting func-
tion behave more like a step function, while smaller
values provide smoother transitions between valid
and invalid sentences.

Table 6 presents the results of this ablation study,
conducted on the RealNews dataset with Pegasus

as the paraphraser. Metrics include ROC-AUC,
TP@FP=1%, and TP@FP=5%. Higher values in-
dicate better performance across all metrics. The
results demonstrate the following trends:

• A smoothness factor of K = 250 provides
a good trade-off, achieving strong perfor-
mance both before and after paraphrasing at-
tacks for both cosine-SimMark and Euclidean-
SimMark.

• For K =∞, corresponding to regular count-
ing with a step function, the performance is
slightly higher in the absence of paraphrasing
but significantly degrades under paraphrasing
attacks, highlighting the benefits of soft count-
ing in adversarial scenarios.

These findings confirm that soft counting loses a
small amount of performance when no paraphras-
ing is applied, but it gains substantial robustness
under paraphrasing. For example, TP@FP=1% im-
proves by 1.6–2.3% for Pegasus-paraphrased text
when K = 250, and the improvement is likely to
be even more significant for stronger paraphrasers.

J Ablation Study on Impact of PCA

Table 7 presents the results of an ablation study
investigating the impact of applying PCA to reduce
the dimensionality of sentence embeddings across
RealNews, BookSum, and Reddit-TIFU datasets.
Metrics include ROC-AUC, and TP at fixed FP
rates (FP=1% and FP=5%). Higher values indi-
cate better performance across all metrics, with
PCA applied to embeddings to explore its effect on
detection accuracy and robustness.

The results reveal that the effect of PCA de-
pends on the choice of similarity measure. For
Euclidean distance-based SimMark, applying PCA
generally improves robustness against paraphras-
ing attacks across most datasets, except for the
BookSum dataset. This improvement likely arises
because reducing dimensionality helps mitigate
noise in the embeddings, especially after the para-
phrasing attack. On the other hand, for cosine
similarity-based SimMark, applying PCA reduces
performance across all datasets. This reduction
may be due to PCA altering the embeddings in
a way that disrupts the angular relationships criti-
cal for cosine similarity calculations. These find-
ings highlight the importance of adapting PCA us-
age based on the similarity measure employed to
achieve optimal watermarking performance.

30790

Non-Watermarked: I’ve always had an interest in colour. I like to paint and colour (9.77e-13). It’s relaxing and it makes you feel good (9.31e-13). But,

what I haven’t done until now is paint on a piece of paper. I’m going to use different colours on my collages (8.89e-7). Using lots of colours gives a dynamic

to the pieces (3.57e-14). I can also use a bit of white space to draw the eye (4.85e-6). You can see the other images in this project here (9.47e-9). I used four

different papers for the collage (3.7e-7). Copying those images onto other pieces of paper gave me a few ideas (1.52e-11). Also, by using white space I was

able to draw out more details without getting them all in the way (1.02e-7). I like making collages and I think that these are a great way to display them

(0.005). I wanted to show different aspects of my painting (3.53e-8). I wanted to limit myself to only a few colours but I did want to limit myself to black and

white (1.3e-7). I really love the colour black (8.24e-7). It always makes me think about nature. I like drawing sketches and I enjoy painting as well.

𝒛𝒔𝒐𝒇𝒕 = 𝟎. 𝟏𝟒 < 𝟓. 𝟎𝟑𝟑

Cosine-SimMark: I’ve always had an interest in colour. I don’t know why. But I have a couple of tins of it, and that makes me happy. The first piece of art I

bought was a painting by Japanese artist Kata-Yoko on canvas. It made me feel very happy. That is one of the things I want to do when I retire: to become an

artist. My mother is still alive. She would be very pleased with all this. I think it is important for a young person to see these people and their work. I am

always taking pictures of my family. My father is a retired teacher, so he is not around too much these days. But he keeps saying that he wants to watch me

become an artist. That is really comforting. I want to develop my own style There is no time like the present. Let’s hope I can make some money doing this.

I am 60 now. There is no time like the present. I hope I can combine work and pleasure. The other day, I made sketches on paper.

𝒛𝒔𝒐𝒇𝒕 = 𝟗. 𝟒𝟖 > 𝟓. 𝟎𝟑𝟑

Paraphrased cosine-SimMark: I've always been fascinated by color. I can't explain the reason behind my fascination with color (5.24e-13). But having a

few cans of it brings me joy (0.15). The initial artwork I purchased was a canvas painting by the Japanese artist Kata-Yoko. It brought me a great sense of

joy. One of my aspirations for retirement is to pursue a career as an artist. My mother remains living. She would be delighted with all of this. I believe it is

crucial for a young individual to witness these individuals and their creations. I constantly capture memories of my family through photography (0.01). My

father, who is a former educator, is not present often these days due to his retirement. However, he continues to express his desire to witness my journey as I

pursue becoming an artist (0.48). That is truly reassuring. I aspire to cultivate a unique artistic expression. Now is the best time. I hope to be able to earn

some income from pursuing this passion. I have reached the age of 60 (0.16). Now is the perfect moment. I hope to find a balance between my work and my

passion. I hope to find a balance between my work and my passion. Recently, I created some drawings on paper.

𝒛𝒔𝒐𝒇𝒕 = 𝟔. 𝟗𝟒 > 𝟓. 𝟎𝟑𝟑

Figure 7: Example of text generated with and without cosine-SimMark using RealNews dataset and OPT-1.3B
model. The first sentence (in black) is the prompt for the model, the green sentences are valid, and red sentences
are invalid/partially valid. Numbers in parentheses represent the soft count for partially valid sentences. The top
panel shows non-watermarked text, which fails to produce a significant detection signal (zsoft = 0.14 < 5.033, false
negative). The middle panel demonstrates text generated using SimMark with cosine similarity-based watermarking,
producing a strong detection signal (zsoft = 9.48 > 5.033). The bottom panel shows paraphrased watermarked
text using GPT-3.5-Turbo, where the embedded watermark remains detectable despite paraphrasing (zsoft =
6.94 > 5.033).

K Finding an Optimal Interval

Figure 9 shows the distribution of distances be-
tween embeddings of consecutive sentences for
both human and LLM-generated text, calculated
on a sample of size 1000 from the BookSum dataset
(no PCA applied to the embeddings in this case). A
small but noticeable distribution shift between the
two can be observed. Based on this, the interval
[0.4, 0.55] appears to be a reasonable choice for
SimMark in this case. It is important to note that
changes to the embedding representations, such
as applying PCA or using a different embedding
model, will lead to altered distance distributions.
Consequently, the interval must be adjusted accord-
ingly to maintain optimal performance. For in-
stance, if PCA is applied, the interval [0.28, 0.36]
is suitable. Similarly, if we plot the figure for
when cosine similarity is used instead of Euclidean
distance, intervals [0.81, 0.94] and [0.68, 0.76] are
good candidates for cases with and without PCA,
respectively. This variability in the distance distri-
butions may also strengthen the algorithm’s resis-
tance to reverse engineering.

Selecting the optimal interval [a, b] is a critical
step in achieving a robust and reliable watermark-

ing with SimMark. In general, selecting an optimal
interval involves balancing low FP rates, high TP
rates, and robustness against paraphrasing attacks.
It is often beneficial to choose intervals toward the
tails of the distribution rather than around the mean.
Finally, further exploration of dynamic interval se-
lection mechanisms could enhance SimMark’s ro-
bustness.

L Computing Threshold β for soft-z-test

Recall that a text is classified as LLM-generated
when zsoft > β, and as human-written otherwise.
zsoft is the statistic used in the statistical test de-
scribed in Eq. (2). To determine the threshold β
that limits the FP rate to 1% or 5%, we first need
to estimate p0, the probability that the consecutive
embeddings’ similarity or distance falls within the
predefined interval [a, b]. This value of p0 is a key
component in calculating the zsoft, as it represents
the proportion of valid sentences in human-written
text under the given interval. p0 serves as an indica-
tor of how frequently valid sentences are expected
to occur in human-authored text.

To compute p0, we analyze the distribution of
similarities (or distances) using a histogram ap-

30791

Non-Watermarked: Shortly after arriving, Bagstock and Dombey run into Mrs. Skewton, an acquaintance of Bagstock's, and her young widowed daughter Mrs. Edith

Granger. Mrs. Granger is in a very bad temper - she is angry that the children have not been fed, and she threatens to flush them out of the house if they are not let in by

evening (6.1e-16). She leaves the children alone in the room (9.44e-13). Bagstock is astonished at the woman's anger, but he does not correct her (7.33e-16). She returns

to her husband's side (3.97e-15). She complains about the children and their squalor (1.04e-20). She then asks the children to fetch some wine (4.88e-11). She threatens

to call the police if they refuse (6.3e-17). Bagstock is dismayed by her behavior (2.24e-14). He asks her what she wants (1.13e-18). She threatens to call the police again

if they do not let her see the children (2.62e-17). The children obey her, as does the dog (2.67e-17). The police arrive soon after, but they do not disturb the woman

(6.06e-15). She leaves, and the others come up to Bagstock (1.29e-10). He tells them that the woman has been brought in by her husband's employer, who is now in

town to meet with the children (7.74e-13). His name is Mr. B (2.68e-21).

𝒛𝒔𝒐𝒇𝒕 = −𝟏. 𝟎𝟕 < 𝟒. 𝟏𝟑

Euclidean-SimMark: Shortly after arriving, Bagstock and Dombey run into Mrs. Skewton, an acquaintance of Bagstock's, and her young widowed daughter Mrs. Edith

Granger. Bagstock and Dombey go to Mrs. Edith's to ask her advice about how to deal with a friend who is a dandy. They meet a dandy named Peter who is a friend of

Bagstock's. He is a good-looking young man and a good friend of Bagstock's. The other members of the party are also good looking and friendly. Together they make a

good crew for a good evening. They drink and talk and the conversation is merry. They discuss the parties they have attended and the people they know. They also

discuss the various people they know in London. They find that everyone knows someone they know in London and they feel that they already know everyone in

London. They decide to stay in England for a while and make friends with anyone they meet. The narrator comments that the British are in high spirits because they

have known so many people in a short time. The narrator describes the various people they meet. Some of them turn out to be amorous and others make small talk with

them.

𝒛𝒔𝒐𝒇𝒕 = 𝟏𝟑. 𝟎𝟕 > 𝟒. 𝟏𝟑

Paraphrased Euclidean-SimMark: Not long after their arrival, Bagstock and Dombey unexpectedly encounter Mrs. Skewton, whom Bagstock knows, along with her

daughter Mrs. Edith Granger who is recently widowed. Bagstock and Dombey visit Mrs. Edith seeking guidance on how to handle a fashionable friend. They encounter

a dandy named Peter who is acquainted with Bagstock. He is an attractive young man who is in good terms with Bagstock. The rest of the guests at the party are

attractive and amiable (0.001). Together they form a great team for a pleasant night out. They engage in jovial conversation while enjoying their drinks. They talk about

the social gatherings they have been to and the acquaintances they have made. They also chat about the different acquaintances they have in the city of London. They

discover that there is a network of connections among the people they know in London, making them feel like they are familiar with everyone in the city. They opt to

extend their stay in England and befriend whoever crosses their path. The narrator observes that the British are feeling cheerful due to the connections they have rapidly

made with many individuals. The narrator depicts the assortment of individuals they encounter. Some of the individuals show romantic interests while others engage in

casual conversations with them.

𝒛𝒔𝒐𝒇𝒕 = 𝟏𝟏. 𝟗𝟗 > 𝟒. 𝟏𝟑

Figure 8: Example of text generated with and without Euclidean-SimMark using BookSum dataset and OPT-1.3B
model. The first sentence (in black) is the prompt for the model, the green sentences are valid, and red sentences
are invalid/partially valid. Numbers in parentheses represent the soft count for partially valid sentences. The top
panel shows the non-watermarked text, which fails to produce a significant detection signal (zsoft = −1.07 < 4.13,
false negative). The middle panel demonstrates text generated using SimMark with Euclidean distance-based
watermarking, producing a strong detection signal (zsoft = 13.07 > 4.13). The bottom panel shows paraphrased
watermarked text using GPT-3.5-Turbo, where the embedded watermark remains detectable despite paraphrasing
(zsoft = 11.99 > 4.13).

0.2500
0.2875

0.3250
0.3625

0.4000
0.4375

0.4750
0.5125

0.5500
0.5875

0.6250
0.6625

0.7000
0.7375

0.7750
0.8125

Euclidean Distance Between Embeddings of Consecutive Sentences

0

1

2

3

4

5

6

D
en

si
ty

Distribution of Distances

LLM (OPT-1.3B)
Human

Figure 9: Distribution of Euclidean distances between
embeddings of consecutive sentences for human-written
and LLM-generated text on BookSum dataset, gener-
ated using OPT-1.3B. The figure demonstrates that the
interval [0.4, 0.55] is a reasonable choice for Euclidean-
SimMark in this case, though it is not necessarily the
only viable option.

proach, such as the one depicted in Figure 9. Specif-
ically, we employ a binning technique to approxi-
mate the area under the curve of distribution in the
interval [a, b]. The process involves dividing the
entire range of distances or similarities into a fixed
number of bins—1000 bins in our implementation.
Each bin represents a small segment of the range,
and the histogram is used to calculate the propor-

tion of samples that fall within the interval [a, b].
Mathematically, p0 is estimated as:

p0 =
Number of samples in bins corresponding to [a, b]

Size of the dataset
,

once p0 is estimated, the detection threshold β is
determined by iterating over a range of possible
values, typically from -10 to 10, to find the one that
results in the desired false positive rate. Specifi-
cally, the threshold is chosen such that the propor-
tion of human-written texts misclassified as LLM-
generated matches the target FP rate (e.g., 1% or
5%).

It is worth noting that the distribution of similar-
ities or distances may vary depending on different
factors such as the embedding model and similarity
measure (e.g., cosine or Euclidean). As a result, p0
and therefore β are determined programmatically
during the detection to ensure reliable performance
of the watermarking algorithm.

30792

Count Method K Cosine-SimMark Paraphrased cosine-SimMark Euclidean-SimMark Paraphrased Euclidean-SimMark

Soft Count

50 99.0 / 89.2 / 97.2 98.6 / 78.5 / 96.5 99.4 / 91.2 / 98.1 96.9 / 49.3 / 87.9
150 99.6 / 95.7 / 98.8 99.2 / 88.7 / 98.2 99.8 / 97.6 / 99.3 97.3 / 67.8 / 90.4
250 99.7 / 96.9 / 98.8 99.2 / 90.3 / 98.2 99.8 / 98.5 / 99.2 97.2 / 72.3 / 88.9
350 99.7 / 96.9 / 98.9 99.2 / 90.4 / 98.1 99.8 / 98.5 / 99.4 97.2 / 71.1 / 88.9

Regular Count ∞ 99.7 / 97.2 / 99.1 99.1 / 88.7 / 97.6 99.8 / 98.5 / 99.7 97.0 / 70.0 / 88.2

Table 6: Ablation study on the smoothness factor K in soft counting (Eq. (1)) using the RealNews dataset, with
Pegasus as the paraphraser. Metrics reported include ROC-AUC ↑, TP@FP=1% ↑, and TP@FP=5% ↑, from left
to right. The last row (K = ∞) corresponds to regular counting with a step function in the interval [a, b]. A
smoothness factor of K = 250 provides a good balance between performance before and after paraphrase attacks
for both cosine-SimMark and Euclidean-SimMark. Notably, while soft counting slightly reduces performance in the
absence of paraphrasing, it demonstrates enhanced robustness against paraphrasing, yielding an increase across all
metrics for Pegasus paraphraser and potentially larger gains against more advanced paraphrasers.

Dataset Configuration No paraphrase Pegasus

R
ea

lN
ew

s Cosine-SimMark (No PCA) 99.7 / 96.9 / 98.8 99.2 / 90.3 / 98.2
Cosine-SimMark (PCA) 99.6 / 96.9 / 99.1 92.1 / 33.8 / 71.2

Euclidean-SimMark (No PCA) 99.4 / 92.6 / 98.4 90.5 / 19.7 / 58.0
Euclidean-SimMark (PCA) 99.8 / 98.5 / 99.2 97.2 / 72.3 / 88.9

B
oo

kS
um

Cosine-SimMark (No PCA) 99.8 / 98.8 / 99.5 99.5 / 93.3 / 98.5
Cosine-SimMark (PCA) 100 / 99.9 / 99.9 98.7 / 87.3 / 95.1

Euclidean-SimMark (No PCA) 100 / 100 / 100 98.8 / 82.6 / 94.9
Euclidean-SimMark (PCA) 99.9 / 99.3 / 99.5 97.4 / 69.8 / 88.6

R
ed

di
t-

T
IF

U Cosine-SimMark (No PCA) 99.1 / 96.3 / 97.6 98.9 / 94.5 / 96.4
Cosine-SimMark (PCA) 99.7 / 98.8 / 99.3 96.6 / 78.9 / 89.3

Euclidean-SimMark (No PCA) 99.6 / 98.1 / 99.1 96.7 / 72.6 / 90.0
Euclidean-SimMark (PCA) 99.8 / 98.7 / 99.2 99.0 / 94.7 / 97.6

Table 7: Ablation study on the impact of applying PCA
to embeddings across three datasets. Metrics reported
include ROC-AUC ↑, TP@FP=1% ↑, and TP@FP=5%
↑, respectively, from left to right. Higher values in-
dicate better performance across all metrics. Bold
and underlined numbers denote the highest and second-
highest values, respectively. For cosine-SimMark, not
applying PCA yields better results, while for Euclidean-
SimMark, applying PCA improves performance except
on the BookSum dataset.

M Human Evaluation of SimMark’s
Imperceptibility

Human evaluation provides a more direct measure
of imperceptibility for our watermarking algorithm.
To assess this, we conducted a small-scale A/B
test comparing outputs generated by SimMark to
unwatermarked ones, using 10 randomly selected
BookSum samples. Each sample pair consisted of
one watermarked and one unwatermarked text.

Three volunteers (all master’s students in
Canada, Iranian, aged between 18 and 25, with a
Computer Science background) participated in the
study. No sensitive data was collected beyond age
range, academic level, and general field of study.
Before starting the evaluation, participants were
shown the consent and instruction form (Figure 10),

Option Chosen Percentage

SimMark identified as watermarked 36.7%
No noticeable difference 23.3%
Unwatermarked identified as watermarked 40.0%

Table 8: Results of a small-scale human evaluation
measuring the imperceptibility of SimMark. Partici-
pants were asked to identify which of two outputs (wa-
termarked vs. unwatermarked) appeared to be water-
marked across 10 random samples. Responses were
nearly evenly split, indicating that SimMark watermark-
ing is largely imperceptible to human readers.

which described the task, the absence of any risks,
and the use of their responses solely for academic
purposes. Participants provided explicit consent by
filling out the form and then proceeded with the
evaluation task.

After filling in the form, participants were asked
to identify which option—A or B—was more likely
to contain a watermark. We also included the “N”
(no noticeable difference) option to avoid forcing
a binary choice when participants genuinely could
not distinguish between the texts, thereby making
the evaluation more reliable given the scale of the
evaluation.

We focused our human evaluation on asking par-
ticipants to detect watermarking, rather than assess
fluency or preference. This directly targets Sim-
Mark’s design objective of imperceptibility: ensur-
ing that even when readers are explicitly prompted
to spot a watermark, they find it difficult to do so.

As shown in Table 8, on average, participants la-
beled the SimMark output as watermarked in 36.7%
of cases, while in 40.0% of cases they mistakenly
identified the unwatermarked text as watermarked.
In 23.3% of comparisons, they reported no notice-
able difference. These results are close to random

30793

Prompt for Regular Attack
Previous context: {context} \n Current
sentence to paraphrase: {sent}

Prompt for Bigram Attack
Previous context: {context} \n Paraphrase
in {num_beams} different ways and return a
numbered list: {sent}

Table 9: Prompts used to generate paraphrases with
GPT-3.5-Turbo for regular and bigram attacks. These
are the same prompts used by Hou et al. (2024a) for
consistent and comparable evaluation. Here, “sent”
represents the target sentence to rephrase, “context” in-
cludes all preceding sentences, and “num_beams” speci-
fies the number of paraphrases generated for the bigram
attack. A higher “num_beams” value indicates a more
aggressive attack. Following Hou et al. (2024a), we
set “num_beams” to 10 to have 10 rephrases of each sen-
tence.

guess, suggesting that SimMark’s watermark is
largely imperceptible to human readers while main-
taining natural fluency. A larger-scale evaluation is
deferred to future work.

N Prompts Used with GPT-3.5-Turbo for
Paraphrasing

Table 9 presents the prompts we used to obtain
paraphrases using GPT-3.5-Turbo (accessed via
OpenAI API2) for both regular paraphrasing and
more aggressive bigram paraphrasing attacks3. By
using the same prompts as Hou et al. (2024a), we
ensured that our results were directly comparable
to those extracted from their paper, maintaining
consistency in evaluation methodology.

2https://platform.openai.com/docs/api-reference
3Used “gpt-3.5-turbo-16k” model.

30794

https://platform.openai.com/docs/api-reference

Figure 10: Screenshot of the instructions and consent form shown to participants before the human evaluation study.
It describes the task, evaluation criteria, expected time commitment, and privacy assurances.

30795

