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Abstract

Large language models (LLMs) continue to
face challenges in reliably solving reasoning
tasks, particularly tasks that involve precise rule
following, as often found in mathematical rea-
soning tasks. This paper introduces a novel
neurosymbolic method that improves LLM rea-
soning by encoding hidden states into neu-
rosymbolic vectors, enabling problem-solving
within a neurosymbolic vector space. The re-
sults are decoded and merged with the orig-
inal hidden state, significantly boosting the
model’s performance on numerical reasoning
tasks. By offloading computation through neu-
rosymbolic representations, this method en-
hances efficiency, reliability, and interpretabil-
ity. Our experimental results demonstrate an
average of 88.6% lower cross-entropy loss and
15.4 times more problems correctly solved on
a suite of mathematical reasoning tasks com-
pared to chain-of-thought prompting and super-
vised fine-tuning (LoRA), while not hindering
the LLM’s performance on other tasks. We
make our code available at Neurosymbolic
LLM1.

1 Introduction

Despite the remarkable progress in deep learning,
significant gaps remain between the strengths of
deep learning-based models and traditional sym-
bolic reasoning systems (Mirzadeh et al., 2024;
Petruzzellis et al., 2024). Deep learning excels at
intuition and pattern recognition, leveraging large
datasets to make flexible, context-aware predic-
tions. However, these models often suffer from
issues such as hallucinations and a lack of reliabil-
ity, especially when solving tasks that require strict
rule-following and logical consistency (Lin et al.,
2023; Chen et al., 2023). In contrast, symbolic

1https://github.com/vdhanraj/
Neurosymbolic-LLM
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Figure 1: A diagram of our method, showing how
LLM hidden states are converted into compositional
neurosymbolic representations. The encoder network
converts the LLM hidden state to a neurosymbolic vec-
tor which can be queried to obtain the ones, tens, and
hundreds digit of each number, as well as the type of
problem being asked. This information is used by the
neurosymbolic algorithm to find a solution to the prob-
lem, which the decoder converts from a neurosymbolic
vector into an LLM hidden state vector, which is then
added to the original LLM hidden state.

reasoning methods provide precision and reliabil-
ity, but they struggle to scale to complex and noisy
real-world problems.

This dichotomy has fueled a growing interest
in merging the strengths of these two paradigms.
Many integrated approaches aim to leverage the
intuition and adaptability of large language mod-
els (LLMs) while incorporating the rigor and in-
terpretability of symbolic reasoning (Xiao et al.,
2023; Gupta et al., 2023; Chakraborty et al., 2024;
Wu et al., 2024). For example, approaches such
as deep learning-guided program synthesis aim to
use LLMs to generate complex algorithms by pro-
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ducing code for various candidate programs that
could solve abstract reasoning problems (Chollet
et al., 2025). While this approach demonstrates
the potential of combining neural network-based
pattern recognition with symbolic algorithms for
programmatic reasoning, it remains constrained
to token-level operations and fails to leverage the
richer and more complex information embedded
within the LLM’s hidden states.

In this paper, we introduce a novel method that
extends the capabilities of LLMs by encoding their
hidden states into structured symbolic vector rep-
resentations. Unlike previous work focusing on
token-level program synthesis, our approach di-
rectly integrates symbolic algorithms within the
neural model by running them in a symbolic space
derived from the LLM’s internal representations.
This method bridges the gap between neural and
symbolic reasoning by extracting inputs from the
LLM’s hidden state and operating directly on a
structured, interpretable representation of the prob-
lem.

Our contributions include:

• A Neurosymbolic Method for LLMs: This
work represents a first step toward integrating
symbolic reasoning into LLMs . We explore
the ability of symbolic algorithms to operate
within a symbolic space constructed from the
LLM’s latent representations.

• Symbolic Representations from Hidden
States: We demonstrate the feasibility of de-
coding state information from LLM hidden
layers into structured, compositional symbolic
representations using Vector Symbolic Alge-
bras (VSAs). These representations enable
rule-based manipulation of mathematical and
logical constructs.

• Improved Performance on Rule-Based
Tasks: By leveraging neurosymbolic process-
ing, our approach achieves significant im-
provements in accuracy and interpretability
on numerical reasoning tasks, outperforming
methods like chain-of-thought (CoT) prompt-
ing and Low-Rank Adaptation (LoRA) fine-
tuning.

This work enables symbolic algorithms to run
directly within neural networks, laying the ground-
work for more advanced neurosymbolic systems

that balance the adaptability of LLMs with the re-
liability of symbolic reasoning. While we demon-
strate this approach on numerical tasks, the VSA
framework naturally extends to other domains re-
quiring structured symbolic manipulation.

For instance, logical propositions could be en-
coded as VSAs with their truth values and relation-
ships bound to appropriate role vectors, enabling
externalized logical inference engines. Similarly,
for embodied AI applications, environmental states
and available actions could be encoded in VSAs,
allowing the model to reason about physical in-
teractions in a structured symbolic space rather
than through the sequential token predictions that
constrain typical LLM planning. By establishing
this bridge between neural hidden states and struc-
tured symbolic representations, we aim to unlock
new possibilities for integrating diverse external
reasoning systems directly into the transformer’s
computational flow.

2 Related Work

2.1 Linear Probes

Linear probes are widely used tools for interpret-
ing the internal representations of LLMs (Hewitt
and Manning, 2019; Liu et al., 2019). They in-
volve training a lightweight, linear mapping from a
model’s hidden states to specific properties of in-
terest, such as linguistic features or numerical val-
ues. By analyzing how well these linear mappings
perform, researchers can infer what information
is encoded in the model’s hidden states. For nu-
merical reasoning, linear probes have been used to
represent values by extracting information directly
from hidden states (Elhage et al., 2021).

Previous work has extended this approach with
digit-specific circular probes, which attempt to
decompose numerical representations into their
constituent digits using circular algebra (Elhage
et al., 2022). However, such methods generally ex-
hibit lower accuracy compared to traditional linear
probes and are limited in scope. Specifically, cir-
cular probes can only detect numbers and lack the
ability to discern operations or broader semantic
relationships.

In contrast, the method proposed in this work
addresses these limitations by leveraging vector
symbolic algebras (VSAs) to encode both numbers
and operations. VSA-based representations offer
dynamic scalability, allowing new functionality to
be integrated without retraining the probe. Our ap-
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proach is thus particularly well-suited for complex
numerical reasoning tasks that require flexible and
interpretable encodings.

2.2 Sparse Autoencoders

Sparse autoencoders (SAEs) are a class of unsu-
pervised learning methods designed to parse high-
dimensional data, such as the hidden states (also
called activations) of LLMs, into sparse, monose-
mantic components (Olah et al., 2020; Le et al.,
2021). These components, often referred to as
“concepts,” are linearly combined to reconstruct the
original input data (Elhage et al., 2021). SAEs
have been used to identify which latent features in
an LLM are active during specific tasks, enabling
researchers to explore the internal representations
of the model. Furthermore, SAEs can be used to
steer LLMs by selectively amplifying or suppress-
ing certain concepts, providing a powerful tool for
interpretability and control.

Despite these advantages, SAEs face notable lim-
itations. First, the concepts learned by SAEs are
not guaranteed to be atomic or aligned with struc-
tured representations, such as individual digits in
numerical data. This ambiguity makes SAEs less
suitable for tasks that require precise decomposi-
tion of hidden states. Second, the representations
learned by SAEs are probabilistic and emergent,
determined during training without external con-
straints, which complicates their use in symbolic
algorithms (Olah et al., 2020; Elhage et al., 2021).

Additionally, the concepts extracted by SAEs
are typically non-interpretable by default, requir-
ing manual inspection of activations to identify
their semantic meaning (Olah et al., 2020; Elhage
et al., 2021). While this can provide insights into
LLM internals, it is labor-intensive and less system-
atic than the interpretable symbolic representations
proposed in this paper. Finally, SAEs operate in
an unsupervised setting, whereas the approach pre-
sented here uses supervised learning to enforce
specific properties on the learned representations.
This trade-off introduces inductive biases but en-
sures that the resulting encodings are structured
and interpretable, facilitating their use in numerical
reasoning tasks.

3 Vector Symbolic Algebras

Vector Symbolic Algebras (VSAs) are a family of
methods for constructing compositional, symbol-
like representations within a fixed-dimensional vec-

tor space. In this work, we use Holographic Re-
duced Representations (HRRs) (Plate, 1995), a type
of VSA, to encode and interpret the internal states
of LLMs for numerical reasoning tasks.

A VSA supports three core operations: bundling,
binding, and similarity. Bundling (vector addition)
enables representing sets of items; binding (cir-
cular convolution) encodes associations between
elements; and similarity (dot product) is used for
comparison and querying. VSAs also support un-
binding, which is the inverse of binding that allows
extraction of specific components from a composite
representation. By binding with the pseudo-inverse
of a vector, we can retrieve individual components
from the VSA.

To represent a structured query such as “What is
842 mod 910?”, we compose randomly-initialized
vectors for each digit and place value (e.g., ones,
tens, hundreds), then bind these with role vectors.
We use bundling (addition) at the top level to com-
bine the first number (n1), second number (n2),
and problem type (problem type). This allows
each component to be independently queried via
unbinding without needing to know the structure
of other components.

The key advantage of VSAs for neurosymbolic
integration lies in the bilinear property of circular
convolution: when one operand is fixed (as with
our predefined label vectors), convolution becomes
linear in the other operand. Combined with the lin-
earity of bundling, this means a linear layer suffices
to encode LLM hidden states into our VSA struc-
ture. Moreover, the success of this linear encoder
reveals that LLMs naturally develop internally sep-
arable representations for numerical operands and
operations, providing mechanistic insights into the
compositional representations LLMs use. The full
encoding structure and mathematical details are
provided in Appendices A and B.

4 Methodology

Our method consists of three stages, which together
provide an approach for enhancing the reasoning
capabilities of LLMs through neurosymbolic pro-
cessing. These stages are:

1. Prompting the LLM with mathematical rea-
soning problems and gathering the hidden
states from the model’s layers.

2. Encoding the gathered hidden states into neu-
rosymbolic VSA representations that capture
key features of the reasoning process.
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3. Applying rule-based algorithms to the repre-
sentations, then decoding the results back into
the LLM to generate final solutions.

Next, we describe the dataset used in this study,
before returning to describe each of these stages in
more detail.

4.1 Dataset
We release a formally specified, procedurally gener-
ated benchmark, the Symbolic-Math Dataset2, to
foster reproducible evaluation of arithmetic reason-
ing in LLMs. The dataset is open-source (MIT li-
cense) and fully regenerable, enabling reproducibil-
ity and scaling to more complex queries of the
same arithmetic form (i.e., operations over arbitrar-
ily many digits).

Construction. In this study, each example is built
by (i) sampling two independent three-digit in-
tegers (x, y ∈ {0, . . . , 999}) and (ii) sampling a
problem type t from a fixed set of p = 10 symbolic
operations (listed below). To ensure every operand
and result remains a single sub-word token in
Llama-3, we mod-reduce any outcome that exceeds
three decimal digits: e.g. (932×152) mod 1000 =
816. The instance is rendered as a natural-language
question such as

‘‘What is 932 times 152 mod 1000?’’

and paired with the numeric answer encoded as a
single token. The problem types used in this study
are:

(1) Modulo: x mod y,

(2) Multiplication: (x · y) mod 103,

(3) GCD: gcd(x, y),

(4) LCM: lcm(x, y) mod 103,

(5) Square Modulo: x2 mod y,

(6) Bitwise AND: int(bin(x)&bin(y)),

(7) Bitwise XOR: int(bin(x) ⊕ bin(y)),

(8) Bitwise OR: int(bin(x) ∨ bin(y)),

(9) Addition: x+ y,

(10) Integer Division: x//y.

Separate training, validation, and test splits are
procedurally generated. The training and valida-
tion sets exclude addition and integer division,
which are included only in the test set to evaluate
out-of-distribution generalization.

2https://github.com/vdhanraj/
Symbolic-Math-Dataset

Prompting format. In our study, each test query
is presented in a few-shot format with two in-
context exemplars of the same problem type, pre-
ceding the target question. This consistent demon-
stration style encourages the model to learn the
syntactic and arithmetic patterns of the task from
examples alone, promoting the model to provide
responses in a consistent and easy to evaluate for-
mat.

4.2 Prompting and Gathering Hidden States

In the first stage of our method, the LLM is pre-
sented with mathematical reasoning problems for-
mulated as natural language questions. For each
prompt, we extract the hidden state of the most
recent token from a designated layer of the LLM,
capturing an intermediate representation of the rea-
soning process.

For this study, we use Llama 3.1 8B, which
features 4096-dimensional hidden state vectors at
each of its 32 layers. Each layer consists of a self-
attention mechanism, a feed-forward MLP, skip
connections, and RMS normalization (Grattafiori
et al., 2024). Our approach records the hidden
states just before they are processed by the selected
layer, preserving an unaltered view of the model’s
internal representations at that stage.

4.3 Encoding Hidden States

The second stage, after prompting, involves con-
verting the hidden states of the LLM into neurosym-
bolic vector representations. For this purpose, we
train a linear encoder network designed to map the
hidden states recorded during the forward pass into
neurosymbolic vectors that represent the problem’s
key components: the two input numbers and the op-
eration type (see Figure 1). For problems involving
mod 1000 to truncate the final three digits, the 1000
is not represented as an input number, but instead
is tied to a problem type (e.g., multiplication prob-
lem types will always apply modulo 1000 to the
final answer). The symbolic vectors are structured
using the framework described in Section A.1. The
encoder is trained using a root mean squared error
(RMSE) loss, with the objective of minimizing the
difference between the predicted and true symbolic
vectors.

4.4 Decoding Neurosymbolic States

Once the encoder network is trained, a correspond-
ing linear decoder network is trained to reverse this
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mapping. The decoder network takes symbolic vec-
tors as input, reconstructs the LLM’s hidden state,
and is optimized to minimize the RMSE loss be-
tween the original and reconstructed hidden states.
The input dataset for the decoder training is gen-
erated by converting hidden states from the LLM
into symbolic vectors using the trained (and now
frozen) encoder network.

After training, both the encoder and decoder net-
works are included in the LLM (as shown in Figure
1) to assist in solving mathematical reasoning prob-
lems. The inference process begins by encoding
the hidden state of the designated LLM layer into a
neurosymbolic vector. This vector is then queried
to determine the problem type, which dictates the
selection of an appropriate rule-based Python func-
tion. If the queried problem type is not sufficiently
similar to any the problem types encountered dur-
ing training, the decoder is bypassed, and the LLM
proceeds with its standard forward pass. Other-
wise, the predefined rule-based function is applied
to the extracted input values from the neurosym-
bolic vector, generating a new neurosymbolic rep-
resentation containing the computed solution. This
solution vector is then decoded back into an LLM-
compatible hidden state via the decoder network,
allowing the model to incorporate the computed
result into its forward pass.

The output of the decoder is linearly combined
with the original hidden state at the intervention
layer to form the final hidden state. This linear mix-
ing is performed using a 50-50 ratio, as described
in Appendix I.

Note that the layer at which the encoder gen-
erates the neurosymbolic vector from the hidden
state does not need to be the same layer at which
the decoder network uses the solution neurosym-
bolic vector to impact the hidden state of the LLM.
In fact, multiple decoder layers may be trained and
used to influence the hidden state of the LLM at
different layers using the solution symbolic vec-
tor. For simplicity, we only choose layer 17’s en-
coder and decoder network to both generate the
neurosymbolic vector of the problem and to apply
intervention to the forward pass of the LLM. The
reasoning in choosing layer 17 is discussed further
in Appendix C.

Although the decoder networks are pretrained
to reconstruct hidden states corresponding to sym-
bolic vectors, their direct use during the LLM’s
forward pass may disrupt the algorithm being ex-
ecuted by the LLM, leading to degraded perfor-

mance. This disruption occurs because the pre-
trained decoder networks map neurosymbolic vec-
tors containing problem solutions directly into the
LLM’s hidden states. However, the LLM’s original
forward pass has hidden states that encode the prob-
lem inputs rather than the solution. Replacing the
hidden states with representations of the solution
can interfere with subsequent layers of the LLM,
which expect input representations to align with
the problem’s original structure.

To address this issue, the decoder networks are
fine-tuned by calculating the cross entropy loss of
the logits of the correct token during the LLM’s
forward pass. This loss measures the discrepancy
between the model’s predicted output and the ex-
pected solution, allowing the decoder networks to
adapt their mappings. The fine-tuning process en-
sures that the modified hidden states generated by
the decoder networks not only represent the so-
lution but also align with the LLM’s internal ex-
pectations, enabling the model to generate correct
outputs.

Fine-tuning the decoder layers achieves two ob-
jectives:

(1) It teaches the decoder networks to map solu-
tion neurosymbolic vectors into hidden states
that align with the LLM’s forward-pass expec-
tations.

(2) It mitigates disruptions to the LLM’s computa-
tions caused by direct interventions in hidden
states, ensuring the model generates correct
outputs.

Without fine-tuning, decoder outputs may cause
the model to deviate from its learned reasoning
pathways, leading to errors. By fine-tuning, the
decoder networks adapt to the model’s computa-
tional context, improving overall performance in
mathematical reasoning tasks.

4.5 Overview of Inference Procedure
Algorithm 1 presents the complete inference proce-
dure for our neurosymbolic intervention approach.
During standard forward pass computation, the
LLM processes tokens through its transformer lay-
ers (1 through L) as usual. At a designated inter-
vention layer Lint, we retrieve the hidden state of
the most recent token and encode it into a VSA
representation using the neurosymbolic encoder
ENS.

The system then identifies whether the current
context matches any known problem type by com-
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puting similarities in the VSA space. If a suffi-
ciently strong match is found (exceeding threshold
τ ), the corresponding symbolic algorithm (imple-
mented in python in our work) is executed, and its
result is injected back into the LLM’s hidden state
via the neurosymbolic decoder DNS. If the simi-
larity is below the threshold, no intervention takes
place. By design, this threshold-based approach
allows the model to bypass intervention when pre-
sented with unfamiliar problem types, maintaining
the LLM’s standard processing for tasks outside
the scope of our symbolic algorithms.

4.6 Computational Complexity
Although our method introduces additional neu-
rosymbolic processing steps, its computational
overhead is minimal. As detailed in Appendix H,
the total runtime cost per forward pass through the
neurosymbolic block is

Θ
(
d v + v log v

)
,

which is independent of the sequence length n
and number of layers L, and is asymptotically
dominated by the standard key–value cached trans-
former cost of O(L(nd+d2)). The space overhead
is likewise modest, Θ(dv), which is negligible rel-
ative to the memory usage of the full LLM. This
confirms that the neurosymbolic extension can be
deployed efficiently without impacting scalability.

4.7 Comparisons to Other Methods
We compared the performance of our method to
two other popular strategies for improving the
mathematical reasoning capabilities of LLMs: zero-
shot chain-of-thought (CoT) reasoning and super-
vised fine-tuning via LoRA modules. These meth-
ods were selected as baselines because they rep-
resent two distinct paradigms: implicit reasoning
through prompting and explicit task-specific fine-
tuning.

Chain-of-Thought reasoning (Wei et al., 2022;
Kojima et al., 2022; Wang et al., 2022) involves
prompting the model to generate intermediate rea-
soning steps explicitly, rather than directly provid-
ing a final answer. This approach encourages step-
by-step reasoning, which is particularly beneficial
for solving complex mathematical problems that re-
quire multi-step calculations or logical deductions
(Zhou et al., 2022). CoT has been shown to im-
prove interpretability and correctness in reasoning
tasks by enabling the model to break down prob-
lems into smaller, manageable components (Nye

et al., 2021; Wei et al., 2022). CoT prompting
can be implemented by including examples of de-
tailed reasoning in the training dataset or through
few-shot prompting during inference (Kojima et al.,
2022). This strategy leverages the model’s inherent
capabilities without requiring architectural modi-
fications, making it efficient for a wide range of
reasoning tasks.

LoRA (Low-Rank Adaptation) modules (Hu
et al., 2021; Xie et al., 2023; Wang et al., 2023)
are an efficient fine-tuning strategy where trainable
low-rank matrices are introduced into the atten-
tion layers of the LLM. Unlike full fine-tuning,
which updates all model parameters, LoRA mod-
ules selectively modify a small number of param-
eters while keeping the pre-trained model largely
intact (Li and Liang, 2021; Houlsby et al., 2019).
This makes fine-tuning computationally efficient
and memory-friendly, even for very large models
(Ding et al., 2022). LoRA modules are typically
inserted into the attention mechanism, where they
adapt the query, key, and value projections to im-
prove task-specific performance (Hu et al., 2021).
For mathematical reasoning, LoRA fine-tuning en-
ables the model to learn domain-specific represen-
tations and reasoning strategies effectively, while
minimizing the computational burden (Xie et al.,
2023).

By comparing these two strategies with our
method, which encodes symbolic representations
directly into the model, we aim to evaluate the
trade-offs between interpretability, efficiency, and
reasoning accuracy. Unlike CoT reasoning, which
relies on implicit reasoning through prompting, our
approach explicitly encodes symbolic representa-
tions, enabling precise manipulation of mathemat-
ical structures. Compared to LoRA, which fine-
tunes the model for specific tasks while potentially
degrading the performance of the LLM on other
problems, our method avoids this by checking if the
queried problem type has been seen during train-
ing, and if not, it does not intervene in the LLM’s
forward pass. These distinctions highlight the po-
tential of our approach to bridge the gap between
interpretability and task-specific adaptability.

5 Experiments

5.1 Evaluation Setup

We evaluate the proposed Neurosymbolic LLM
(NS LLM) against three baselines: (i) a Standard
LLM (frozen, with few-shot prompting), (ii) a
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Algorithm 1 Neurosymbolic Intervention in LLM Forward Pass

1: Embed tokens to initial hidden states: h0t = TokenEmbed(xt) for all t ∈ {1, . . . , T}
2: for layer ℓ = 1, . . . , L do
3: hℓt = Transformer(hℓ−1

t ) // Standard LLM layer (self attention, MLP, skip connections)
4: if ℓ == Lint then // Intervention at specified layer
5: VSA = ENS(h

ℓ
T ) // Encode most recent token’s hidden state

6: Extract problem type from VSA
7: VSAPROBLEM = VSA ⊛ ϕ−1

TYPE TAG // Query for problem type
8: for i = 1, . . . , N do // Compute similarities with known problem types
9: simi = ⟨VSAPROBLEM, ϕi⟩ // Dot product similarity

10: end for
11: simmax = max{simi}Ni=1 // Maximum similarity
12: curr problem = argmax{simi}Ni=1 // Problem type with maximum similarity
13: Perform a similar procedure to extract n1 and n2 from VSA
14: n1, n2 = ExtractNumbers(VSA) // Extract digits of n1 and n2 from VSA
15: Execute symbolic algorithm and modify LLM hidden state
16: if simmax > τ then // Only intervene if similarity is above τ
17: result = RunSymbolicAlgorithm(curr problem, n1, n2) // Run corresponding algorithm
18: VSAresult = NumberToVSA(result) // Convert to VSA
19: hmodified = DNS(VSAresult) // Pass through Decoder
20: hℓT = 0.5 · hℓT + 0.5 · hmodified // Modify hidden state
21: end if
22: end if
23: end for
24: logits = LMHead(hLT ) // Final layer output
25: xT+1 = Sample(logits) // Predict next token
26: return xT+1

LoRA-fine-tuned LLM trained on the same task
corpus, and (iii) a CoT prompted LLM.

All models are evaluated on the Symbolic-Math
Dataset described in Section 4.1. We use a procedu-
rally generated split consisting of 20,000 training
examples, 200 validation examples, and 2,000 test
examples. The training set is used to fit model pa-
rameters, the validation set tracks accuracy during
training, and the test set is used for final evaluation.

Each model is prompted using the same few-
shot format: two in-context exemplars of the same
problem type precede the target query, as detailed
in Section 4.1. For all approaches, generation uses
greedy decoding (temperature = 0).

We report two evaluation metrics:

• Score (% ↑): The percentage of test examples
for which the model assigns highest probabil-
ity to the correct answer.

• Loss (↓): The categorical cross-entropy loss
on the target token, i.e., the negative log-
likelihood of the correct answer.

The reported results are taken from single runs
of each approach over the entire testing dataset.

5.2 Base LLM
The base LLM is evaluated using the same few-shot
prompt format described in Section 5.1, with two
in-context examples preceding each query. The
model performs a single forward pass to generate
its prediction for the final answer token.

We use the Llama 3.1 8B model for all experi-
ments (except the experiments done in Appendix E,
which use Llama 3.2 1B), following the inference
procedure and key–value caching mechanism out-
lined in Grattafiori et al. (2024). The model weights
are frozen during evaluation, and no additional fine-
tuning is applied.

5.3 NS LLM
To avoid erroneous interventions, the decoder’s
output is only incorporated into the LLM’s hidden
state when the model is confident that the encoded
neurosymbolic vector correctly reflects the problem
type. Specifically, we compute the dot product sim-
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ilarity between the extracted neurosymbolic vector
and each problem type vector in the vocabulary,
and apply the decoder output only if the highest
similarity exceeds a threshold of 0.8 (justification
for this threshold is provided in Appendix F). This
gating mechanism prevents the neurosymbolic pro-
cedure from modifying the LLM’s internal state on
unfamiliar or out-of-distribution tasks, preserving
performance on problems that lack an associated
neurosymbolic algorithm. Further discussion of the
performance of the NS LLM on out-of-distribution
tasks is provided in Appendix G.

In this study, we intervene at layer 17, as it
achieves the lowest encoder reconstruction loss
(see Appendix C). The dimensionality of the vec-
tor symbolic architecture (VSA) is fixed at 2048.
The decoder output is combined with the original
hidden state using a 50/50 linear mixture. The
empirical justification for this mixing strategy is
provided in Appendix I.

The encoder and decoder networks are initially
trained for 1,000 epochs to ensure accurate neu-
rosymbolic representations. Subsequently, the de-
coder is fine-tuned for one epoch using cross-
entropy loss to align its outputs with the LLM’s
internal expectations during inference.

5.4 LoRA
To ensure a fair comparison with the NS LLM,
we implement a LoRA module with rank 2048,
matching the dimensionality of the VSA used in
the neurosymbolic method. This ensures both ap-
proaches have an equivalent number of trainable
parameters. As with the NS LLM, the output of
the LoRA module is mixed with the original hid-
den state at the intervention layer using a 50/50
weighted sum.

The LoRA module is trained for 1 epoch to
match the fine-tuning stage of the NS LLM. Unlike
the NS LLM, LoRA does not undergo a symbolic
pretraining phase, as its encoder output is uncon-
strained. In contrast, the NS LLM explicitly en-
forces its encoder to produce structured VSA-style
representations, enabling neuro symbolic querying
and interpretation.

5.5 CoT
For the Chain-of-Thought (CoT) baseline, the LLM
is not prompted with few-shot exemplars. Instead,
its system prompt instructs it to "Always explain
your reasoning step by step", encouraging
it to perform structured reasoning autonomously.

This setup ensures that the model generates its own
intermediate steps rather than relying on algorith-
mic demonstrations embedded in the prompt.

6 Results

Table 1: Performance of Symbolic, Standard, CoT, and
LoRA LLMs on Various Problem Types. Note that
Addition and Integer Division problem types are not
seen during training

Problem Model Score (% ↑) Loss (↓)

Mod NS LLM 98.7 0.093
Standard LLM 53.5 2.904

CoT LLM 69.7 4.424
LoRA LLM 51.5 3.838

Mult. NS LLM 95.6 0.314
Standard LLM 1.1 9.279

CoT LLM 25.3 11.755
LoRA LLM 4.5 6.279

GCD NS LLM 94.2 0.205
Standard LLM 62.6 1.31

CoT LLM 93.2 0.874
LoRA LLM 74.5 1.235

LCM NS LLM 87.3 1.051
Standard LLM 2.5 7.359

CoT LLM 10.8 14.778
LoRA LLM 2.0 5.941

Square NS LLM 58.9 2.818
Mod Standard LLM 7.0 5.054

CoT LLM 32.7 9.934
LoRA LLM 5.5 5.600

Bitwise NS LLM 91.2 0.755
And Standard LLM 2.7 7.152

CoT LLM 5.5 11.556
LoRA LLM 9.0 4.670

Bitwise NS LLM 99.4 0.094
Xor Standard LLM 6.7 10.606

CoT LLM 1.1 16.606
LoRA LLM 8.0 6.116

Bitwise NS LLM 97.6 0.093
Or Standard LLM 4.4 9.527

CoT LLM 7.8 12.423
LoRA LLM 10.5 5.046

Addition NS LLM 98.2 0.206
Standard LLM 100.0 0.000

CoT LLM 78.8 2.218
LoRA LLM 46.5 6.299

Integer NS LLM 97.4 0.066
Division Standard LLM 95.2 0.148

CoT LLM 94.3 0.709
LoRA LLM 72.0 1.797

Across all trained problem types, the Neurosym-
bolic LLM achieves the best overall performance
among all models, as shown in Table 1. It con-
sistently attains higher accuracy and lower cross-
entropy loss. For most problems, both the loss
is significantly reduced and the accuracy is much
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higher than that of the Standard LLM.
However, on more complex tasks, such as LCM

and square modulo, performance is slightly lower.
This may be due to the complexity of the underly-
ing forward-pass algorithm required for these prob-
lems (e.g., square modulo requires two-hop rea-
soning), which makes applying interventions via a
single decoder network more challenging. Another
reason for the reduction in scores is the encoding
error rate, as discussed in Appendix D.

The CoT LLM improves over the Standard LLM
in tasks like GCD (93.2% score, 0.874 loss) and
modulo (69.7% score, 4.424 loss). However, CoT
performs worse on tasks like bitwise XOR, where
the score drops from 6.7% (Standard LLM) to 1.1%.
This is likely due to the increased opportunity for
errors in multi-step reasoning, such as incorrect
bitstring conversion during intermediate steps (fur-
ther discussed in Appendix K). Furthermore, CoT
strategies consistently exhibit higher loss values
than other methods, reflecting the narrow token
path required to generate correct outputs from rea-
soning steps.

While LoRA fine-tuning improves performance
on some tasks, it underperforms on more complex
operations and exhibits poor generalization to tasks
it was not trained on (i.e., addition and integer di-
vision). This contrasts with the NS LLM, which
adapts by avoiding interventions for unseen prob-
lem types, preserving its generality.

Discussion

Our results highlight the following:

• The Neurosymbolic LLM outperforms all
other models on trained problems, while also
not significantly sacrificing performance on
testing problems (i.e., Addition and Integer
Division).

• The Standard LLM performs well on simpler
tasks but struggles with problems requiring
intermediate reasoning or symbolic represen-
tation. The Standard LLM has a 87% higher
loss and a 25.5 times lower score than the
Neurosymbolic LLM.

• The CoT LLM’s reliance on multi-step reason-
ing introduces opportunities for errors, partic-
ularly in tasks involving non-trivial intermedi-
ate computations. The CoT LLM has a 91%
higher loss and a 16.9 times lower score than
the Neurosymbolic LLM.

• The LoRA LLM’s inability to generalize to
unseen tasks underscores the advantage of
neurosymbolic encoding for maintaining task
flexibility. The LoRA LLM has a 86% higher
loss and a 13.8 times lower score than the
Neurosymbolic LLM.

These findings validate the utility of neurosym-
bolic encoding as a useful tool for enhancing the
reasoning capabilities of LLMs, demonstrating an
average of 88.6% lower cross entropy loss and
15.4 times more problems correctly solved than the
baselines. The advantages of our method are evi-
dent particularly in domains where precision and
rule-following are required, while also providing
insights into the model’s internal representations
by converting hidden states into interpretable and
compositional symbolic vectors.

7 Conclusion

We introduce a neurosymbolic method that bridges
the strengths of LLMs and symbolic reasoning sys-
tems to address challenges in rule-based reasoning
tasks. By encoding LLM hidden states into neu-
rosymbolic representations, solving problems in
a symbolic domain, and merging solutions back
into the LLM, our approach achieves significant
improvements in mathematical reasoning tasks. Ex-
perimental results demonstrate superior accuracy
and reliability compared to traditional methods like
CoT reasoning and fine-tuning with LoRA mod-
ules.

Our method not only enhances task performance
but also fosters greater interpretability, providing
insights into the internal representations of LLMs.
Moreover, by leveraging neurosymbolic representa-
tions capable of encoding complex and structured
data, our method has the potential to scale across a
broad range of reasoning tasks. These results high-
light the potential of neurosymbolic integration as
a useful approach to enhancing the reasoning ca-
pabilities of LLMs, enabling them to solve prob-
lems with the robustness and precision previously
achievable only by symbolic AI systems.

Limitations

While our neurosymbolic LLM approach demon-
strates strong improvements in rule-based mathe-
matical reasoning, there are several limitations to
note:

• Input Data Structure: Our method has been
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evaluated primarily on tasks with a fixed, pre-
determined structure and format. Scaling our
approach to handle unstructured or free-form
problems is an important direction for future
work. This would enable compatibility with
strategies such as chain-of-thought prompting,
where mathematical reasoning occurs as an
intermediate step rather than the entire goal.
Expanding to less structured tasks would also
allow our approach to be applied to a wider
range of mathematical reasoning datasets.

• Linear encoder network: Our approach cur-
rently employs a linear encoder network that
processes only the hidden state of the most
recent token (at the 17th layer). While this
is effective for tasks involving short, well-
structured prompts, it may be insufficient for
problems that span many tokens or require
modeling longer contexts. Addressing this
limitation will likely require architectures ca-
pable of integrating information across multi-
ple tokens, such as transformers or recurrent
models. Expanding the encoder in this way
is an important direction for future work to
enable broader applicability of the neurosym-
bolic method.

• Model Generalization: While our approach
shows promising results on Llama 3.1 8B and
Llama 3.2 1B (Appendix E), evaluation has
been limited to the Llama model family. Test-
ing on diverse model architectures (e.g., Mis-
tral, Qwen, Gemma) would provide stronger
evidence of generalizability and may reveal
architecture-specific considerations for opti-
mal intervention layer selection and encoder
design.

• Computational Cost: Although the neu-
rosymbolic block only incurs an overhead that
does not change the overall asymptotic infer-
ence time or space complexity of the LLM, it
does add to the computational cost of infer-
ence, as outlined in Appendix H.

• Societal Impact: While the current method
is targeted at safe, mathematical tasks, future
work applying neurosymbolic interventions to
more sensitive domains (e.g., social reasoning
or decision-making) should carefully consider
fairness, transparency, and misuse risks.
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A Vector Symbolic Algebras

VSAs are characterized by three key operations:
bundling, binding, and similarity:

• Bundling: combines multiple vectors to rep-
resent a set (vector addition in HRRs).

• Binding: represents associations (circular
convolution in HRRs).

• Similarity: compares two vectors (dot prod-
uct in HRRs).

The binding operation (circular convolution) is:

(x⊛y)i :=
d∑

j=1

xjy((i−j) mod d)+1, i ∈ {1, . . . , d},

(1)
where x and y are two VSAs of dimensionality

d.

A.1 Encoding Compositional Data

VSAs allow compositional data to be encoded in a
fixed-dimensional vector. For example, to represent
the three-digit number 842, we assign vectors to
the digits (0–9) and their respective place values
(ones, tens, hundreds):

x = hundreds⊛8+tens⊛4+ones⊛2. (2)

This generalizes to multiple numbers and rela-
tions by assigning vectors for different possible
problems we want our model to recognize (e.g.,
modulo, multiplication, see Section 4.1 for a
full list of possible problem types). Additionally,
we create vectors representing different tags, which
we use to combine different pieces of information
into a single VSA in a compositional and sepa-
rable manner. These tag VSAs are n1, n2, and
problem type, which we will use to represent
the data corresponding to the first number, second
number, and problem type, respectively. For exam-
ple, “What is 842 mod 910?” is encoded as:

x = n1 ⊛ (hundreds⊛ 8+

tens⊛ 4+

ones⊛ 2)+

n2 ⊛ (hundreds⊛ 9+

tens⊛ 1+

ones⊛ 0)+

problem type⊛modulo.

(3)

Representing the data in this format allows us to
query x for the problem type, as well as any of
the digits of the first and second number, as shown
in (6).

To encode the structure of numbers, digits can
be constructed by binding the vector for 1 with
itself multiple times, e.g., 3 = 1 ⊛ 1 ⊛ 1. Simi-
larly, place values can be constructed as repeated
binding of ones, e.g., tens = ones⊛ ones. This
systematic construction ensures that desired numer-
ical relations exist between the neurosymbolic vec-
tors (Choo and Eliasmith, 2010; Eliasmith, 2013).

A.2 Unbinding and the Pseudo-Inverse
VSAs support unbinding, which allows extraction
of components from a compositional vector. For
HRRs, unbinding is performed by binding with the
pseudo-inverse of a vector y, denoted y†, defined
by flipping the order of all but the first element:

y† = (y1, yd, yd−1, . . . , y2), (4)

where d is the dimensionality.
If z = x⊛ y, then unbinding retrieves (approxi-

mately) x:
x ≈ y† ⊛ z. (5)

For example, to query the hundreds digit of the
second number in (3):

result = hundreds† ⊛ (n2
† ⊛ x), (6)

which has maximal similarity with 9 (the hundreds
digit of 910).

A.3 Vector Orthogonality and Capacity
A key strength of VSAs is the ability to con-
struct many roughly orthogonal vectors, support-
ing complex structured representations. For a d-
dimensional space, the number of vectors with pair-
wise similarity below ϵ scales as:

N ∝ exp
(
αdϵ2

)
, (7)

where α is a constant derived from spherical
code packing and the Kabatiansky–Levenshtein
bound (Kabatiansky and Levenshtein, 1978; Plate,
1995). For ϵ ∼ O(1/

√
d), the capacity grows ex-

ponentially with d.

In summary, VSAs provide a robust framework
for encoding and manipulating structured numeri-
cal representations, supporting scalability, compo-
sitionality, and interpretability.
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B VSA Structure

Equation (3) outlines how we have designed the
VSAs that the encoder network produces during the
forward pass of the LLM. This specific structural
choice is motivated by the bilinear property of cir-
cular convolution, which enables efficient learning
through a simple linear encoder.

B.1 Bilinearity of Circular Convolution

The primary advantage of our VSA structure lies in
the bilinear property of circular convolution. When
one operand is fixed (as with our predefined label
vectors like hundreds, tens, ones, etc.), circu-
lar convolution becomes a linear operation with
respect to the other operand. Combined with the
inherent linearity of bundling (vector addition), this
means that constructing the entire VSA represen-
tation from scalar values is a linear transformation
when all label vectors are fixed.

Mathematically, for fixed label vectors L and
symbols vi, the operation:

output =
∑

i

Li ⊛ VSA(vi)

can be learned by a single linear layer if VSA(vi)
represents the VSA encoding of the symbol vi.
This would not be possible with alternative struc-
tures. For instance, if we had bound all components
together using only circular convolution rather than
bundling them with addition, this would create two
problems: the resulting non-linear structure would
require a more complex encoder architecture, and
querying specific information from the VSA would
become significantly more difficult, as unbinding
requires knowing the exact binding structure.

B.2 Implications for Hidden State
Separability

The fact that our linear encoder successfully learns
to produce these structured VSAs (achieving low re-
construction loss as shown in Appendix C) has im-
portant implications for understanding the LLM’s
hidden representations. A linear transformation
can only rearrange and recombine information that
already exists in its input: it cannot create new
separability where none exists.

Consider a counterexample: if we fed the en-
coder a null vector or random noise, no linear trans-
formation could produce a meaningful VSA encod-
ing the correct numerical values and problem type.

Therefore, the encoder’s ability to extract and re-
format information into our VSA structure implies
that the LLM’s hidden states already encode the
component values (the two numbers and the prob-
lem type) in a somewhat separable format. The
encoder essentially reformats this implicit separa-
tion into the explicit symbolic structure we require
for downstream symbolic processing.

This observation suggests that LLMs trained on
arithmetic tasks naturally develop internal repre-
sentations that separate operands and operations,
a finding that aligns with recent mechanistic inter-
pretability work showing that transformer models
learn to encode numerical magnitudes and arith-
metic operations in distinct subspaces of their hid-
den states (Lindsey et al., 2025).

C Encoder and Decoder Performance

Figure 2: Average RMSE loss of the encoder (blue) and
decoder (red) across layers of the LLM.

After training, the encoder networks achieve
RMSE loss curves shown in Figure 2. The re-
sults indicate that earlier layers of the LLM are
less effective at encoding the problem into sym-
bolic vectors due to a lack of global context. As the
hidden states progress through more layers, the self-
attention mechanism provides increasing amounts
of contextual information, improving the encoder’s
performance. The RMSE loss reaches its minimum
at layer 17, suggesting that this layer optimally
encodes the problem’s symbolic structure.

However, at layers deeper than 17, the RMSE
loss increases. We believe that this phenomenon
can be attributed to the cumulative effects of resid-
ual connections and RMS normalization applied in
the LLM. As described in the equations below, the
residual connections repeatedly add outputs from
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earlier layers to the hidden state:

hn+1 = fn(hn) + hn, (8)

hL = h0 +

L∑

n=1

fn(hn−1), (9)

where hn represents the hidden state at layer n, and
fn denotes the non-linear transformation applied
at each layer. At deeper layers, the hidden state
becomes a mixture of earlier representations and
intermediate computations, making the problem
information less prominent for encoding.

Another source of error that As shown in Fig-
ure 2, the reconstruction loss of the decoder net-
works monotonically increase with layer depth. We
believe that this trend reflects the increasing com-
plexity of hidden states at deeper layers, as they
incorporate non-linear transformations from previ-
ous layers. Because decoder networks are linear,
they struggle to reconstruct the intricate structure
of hidden states in deeper layers, resulting in higher
RMSE losses.

The decision to use layer 17’s encoder and de-
coder networks is based on the encoder evaluation
results, which indicate that layer 17 minimizes
RMSE loss for symbolic vector encoding. Al-
though decoder interventions could be applied at
multiple layers, restricting the intervention to layer
17 simplifies the experimental setup while leverag-
ing the layer’s optimal encoding performance.

D Error Sources

As mentioned in Section 6, one potential reason the
NS-LLM approach does not reach 100% accuracy
on all problem types is due to the complexity of
certain algorithms, which results in steering the for-
ward pass of the LLM on those problems difficult
with only a single layer of intervention, as was done
in this work. A potential method to mitigate this ef-
fect could involve using multiple decoder networks
to insert neurosymbolic information at different
stages of the forward pass, enabling more precise
alignment with the LLM’s internal computations.

Another source of error that could result in re-
duced performance for the NS-LLM is imperfect
representations produced by the encoder. If the
encoder fails to generate accurate representations,
then the resultant symbolic computations would be
incorrect, leading to the decoder steering the LLM
towards an incorrect answer.

One possible error the encoder could make is by
generating a VSA whose maximally likely prob-

lem type is different than the actual problem type,
leading to the incorrect symbolic algorithm being
executed. Our findings, however, indicate that for
the training problems, this never occurs (i.e., the
actual problem type of the question always has the
highest similarity with the problem type queried
from the encoders output).

Another error the encoder could make is in rep-
resenting the two input numbers incorrectly. This
would lead to the symbolic algorithm taking as
input incorrect values, leading to an incorrect so-
lution even if the correct symbolic algorithm was
executed. As shown in Figure 3, at layer 17, the
errors for each of the digits are all under 2% (0.49%
for the ones digit, 1.2% for the tens digit, and 0.57%
for the hundreds digit). While these error percent-
ages are relatively low, any errors in the encoding
of any of the digits would have caused the the NS-
LLM to output the incorrect answer, accounting for
some of the error observed in Section 6.

Figure 3: Classification Error Rate vs. Layer Number,
across all problem types.

E Generalization to Llama 3.2 1B

To evaluate whether our neurosymbolic interven-
tion approach generalizes across model sizes, we
applied our method to Llama 3.2 1B, a model with
approximately 1/8th the parameters of our primary
8B model. This experiment tests whether models of
different sizes can similarly benefit from symbolic
intervention despite potentially having different in-
ternal representations.

E.1 Encoder and Decoder Performance

Figure 4 shows the encoder and decoder RMSE
loss across different layers for the 1B model. Simi-
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lar to our 8B results, we observe that middle-to-late
layers (layers 12-15) achieve the lowest encoder
RMSE, suggesting that numerical information be-
comes most accessible in these intermediate rep-
resentations. The decoder loss remains near zero
through layer 14, indicating successful reconstruc-
tion of hidden states after symbolic intervention.

Figure 4: Encoder (Top) and decoder (Bottom) RMSE
loss across layers for Llama 3.2 1B. Lower values indi-
cate better reconstruction of VSA representations and
hidden states respectively.

Figure 5 demonstrates that the encoder success-
fully extracts digit-level information, with the hun-
dreds digit showing the clearest signal (error rate
dropping to near zero at layer 12). The similarity
distribution (Figure 5) shows clear separation be-
tween problems seen during training versus unseen
problems, validating that our similarity-based gat-
ing mechanism can reliably identify when to apply
symbolic intervention.

E.2 Task Performance
Table 2 compares the performance of our symbolic
intervention approach against the standard Llama

Figure 5: Classification error rates for individual digits
across layers (Top). Distribution of dot product simi-
larities for problems seen vs. unseen during encoder
training (Right).

3.2 1B model across ten arithmetic tasks. The
results demonstrate substantial improvements on
most challenging operations:

The symbolic intervention achieves an average
accuracy of 80.5% compared to 24.3% for the stan-
dard model—a 56.2% absolute improvement. No-
tably, tasks that are nearly impossible for the base
1B model (multiplication: 2%, LCM: 1%, bitwise
AND: 0%) achieve strong performance with sym-
bolic intervention (88%, 70%, 90% respectively).

These results demonstrate that our neurosym-
bolic approach successfully generalizes to smaller
models, suggesting that even models with limited
capacity can benefit from explicit symbolic reason-
ing modules when properly integrated into their
computational flow.
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Task Standard 1B Symbolic 1B

Acc (%) Loss Acc (%) Loss

Multiplication 2.0 6.842 88.0 1.190
Modulo 28.0 3.892 91.0 0.947
GCD 49.0 2.342 83.0 0.538
LCM 1.0 7.357 70.0 2.327
Square Mod 5.0 6.104 83.0 1.804
Bitwise AND 0.0 7.288 90.0 1.053
Bitwise XOR 4.0 6.336 79.0 2.034
Bitwise OR 3.0 6.791 67.0 2.156

Addition 70.0 0.648 74.0 0.653
Division 81.0 0.500 80.0 0.643

Average 24.3 4.75 80.5 1.35

Table 2: Accuracy and loss comparison between stan-
dard and symbolic Llama 3.2 1B across arithmetic tasks.
Bold indicates best performance per metric.

F Determining Problem Types and
Intervention Thresholds

As discussed in Section 4.4, after the encoder gen-
erates the neurosymbolic vector corresponding to
a given LLM prompt, in order to determine which
program to execute, the problem type is extracted
as: result = x ⊛ problem type†, where x is
defined in Equation 3.

For problems seen during training, we expect
that result will be approximately equal to a prob-
lem type seen during training, since one of the
encoder’s purposes is to represent the correct prob-
lem type in its neurosymbolic vector output. For
problems not seen during training, the expected
behavior is that result should be dissimilar to all
problem types seen during training. This allows us
to prevent the neurosymbolic system from interven-
ing on untrained problems.

For example, if the LLM is asked “What is 920
mod 895?”, the neurosymbolic vector generated
by the encoder is queried for its problem type, and
the dot product of this vector is taken with the neu-
rosymbolic vector representing every problem type.
The various dot product similarities are shown in
Table 3. The left table shows the Modulo prob-
lem type has the highest similarity. For unseen
problems such as integer division (right table), sim-
ilarities are lower, but modulo is still highest, sug-
gesting similarity in underlying computation.

Figure 6 shows the distribution of dot product
similarities of different problems. We avoid inter-
vention on problems not seen during training by
imposing a maximum similarity threshold; if the
maximum dot product similarity is below 0.8, the

neurosymbolic system does not intervene.

G Performance Comparison to
Non-Mathematical Problems

As discussed in Section 6, LoRA modules lack se-
lective deactivation and cannot generalize to unseen
problem types. In contrast, the NS LLM dynami-
cally determines whether to intervene, allowing it
to skip symbolic execution for unfamiliar prompts.

To evaluate this property, we test the NS LLM
on non-mathematical questions from seven topic
categories: philosophy, ethics, history, psychol-
ogy, science fiction, technology, and art/culture.
For each prompt, we compute the maximum dot
product similarity between the encoder-generated
neurosymbolic vector and problem type vectors.

Figure 7 shows the maximum similarity for all
non-mathematical queries remains below the 0.8
threshold, confirming the NS LLM suppresses de-
coder intervention for out-of-distribution prompts.

H Computational Complexity

We analyze the time and space requirements of
three settings: (a) vanilla Transformer, (b) Trans-
former inference with key–value caching, (c)
our neurosymbolic extension that inserts an en-
coder–symbolic–decoder block at layer ℓ⋆.

Notation. n: sequence length; d: hidden width
(4096); L: layers (32); v: VSA dimensionality
(2048); D: maximal digit length (5); p: problem
types (10)

H.1 Baseline Transformer
During training every layer computes self–attention
and a feed-forward network:

Timetrain = O(L(n2d+ nd2)), (10)

Spacetrain = O(Lnd) + Θ(#LLM params) (11)

H.2 Transformer Inference with KV Caching
Llama-style decoding stores past key–value pairs,
so a new token attends to n cached tokens but does
not recompute the n2 matrix:

TimeKV = O(L(nd+ d2)) (12)

SpaceKV = O(Lnd) + Θ(#LLM params) (13)

H.3 Neurosymbolic Extension
At layer ℓ⋆ we add: (i) encoder We ∈ Rd×v, (ii)
symbolic computation in VSA of width v, (iii) de-
coder Wd ∈ Rv×d.
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Problem Type Similarity

Multiplication -0.0623
Modulo 1.0264
GCD 0.0686
LCM -0.0655
Square Mod -0.0022
Bitwise AND 0.0109
Bitwise XOR -0.0209
Bitwise OR 0.0037

(a) LLM is asked a modulo question

Problem Type Similarity

Multiplication 0.2488
Modulo 0.5666
GCD 0.1817
LCM -0.1408
Square Mod 0.0407
Bitwise AND -0.0451
Bitwise XOR -0.0374
Bitwise OR -0.0212

(b) LLM is asked an integer division question

Table 3: Dot product similarities for problem type queries.

Figure 6: Histogram of maximum similarity of queried problem type across all problem types, segregated per
training and non-training problems.

Encoder/decoder cost. Each is a matrix–vector
product: O(dv).

Neurosymbolic cost. Binding/unbinding use
FFT-based circular convolution: Θ(v log v).

Total symbolic overhead:

O(dv)+O((10D+p+1)v log v)+O(M(D) logD)

where M(D) is the multiplication cost. In practice,
this is dominated by the standard transformer cost
when v < d.

Space complexity. Overhead is Θ(dv), negligi-
ble compared to the LLM parameter and KV cache
sizes.

I Mixing Ratio Ablations

We use a 50/50 weighted sum to combine the neu-
rosymbolic decoder output with the LLM hidden
state, such that the resulting hidden state is:

hfinal = 0.5 · hdecoder + 0.5 · horiginal,

where hdecoder is the output of the decoder network
and horiginal is the LLM’s hidden state at the same
layer.

RMS Layer Normalization was tested as an al-
ternative; Table 4 shows the 50/50 mix is generally
better.

J Decoder Fine Tuning

As mentioned in Section 4.4, the decoder network
requires fine tuning to properly enhance LLM per-
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Figure 7: Histogram of maximum problem type similarity for training problems vs. non-mathematical queries.
None of the non-math queries exceed the 0.8 threshold.

Table 4: Performance of NS LLM using 50/50 mixing vs. RMS Layer Normalization.

Problem Type 50/50 Score 50/50 Loss RMS Score RMS Loss

Addition 98.7 0.093 98.6 0.140
Division 97.4 0.066 96.1 0.210
Multiplication 95.6 0.314 95.1 0.399
Modulo 98.7 0.093 97.4 0.277
GCD 94.2 0.205 88.4 0.459
LCM 87.3 1.051 81.0 1.441
Square Mod 58.9 2.818 56.1 3.189
Bitwise AND 91.2 0.755 92.3 0.809
Bitwise XOR 99.4 0.094 97.8 0.270
Bitwise OR 97.6 0.093 88.4 0.422

formance. Figures 8a and 8b illustrate that as
fine-tuning progresses, both cross-entropy loss de-
creases and task performance improves. One fine-
tuning step is a batch.

K Error Analysis of Chain-of-Thought
Reasoning

One interesting result of Section 6 is that for certain
problem types, CoT prompting performs worse
than not using CoT. To understand why, in this
section we show a few common causes of error
when prompting the model to use CoT reasoning,
and how those relate to the strengths of LLMs as
probabilistic systems.

K.1 Representation Errors

One source of errors is when the LLM incorrectly
represents the input numbers, and consequently
gets the wrong final answer. In the below example,
we query the LLM with “Solve the following prob-
lem step by step: What is 601 plus 106”. In the
LLM’s CoT response, it says 601 has 6 hundreds
and 1 tens and 1 ones, which is incorrect, leading
to the wrong answer.

In contrast, if the LLM was asked an addition
problem without being prompted to provide a chain
of thought, it would be extremely likely to return
the correct answer (see Table 1). This demon-
strates the LLM’s strength in pattern-matching
tasks, while underscoring its limitations in program
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(a) Average cross-entropy loss vs. step (b) Average score vs. epoch

Figure 8: Training performance over steps. (a) Loss decreases over time, indicating effective learning. (b) Score
increases, confirming improved model accuracy.

synthesis and strict logical reasoning.

To solve this problem, we will add the
two numbers together.

Step 1: We will start by adding the hun-
dreds place of both numbers. 601 has 6
hundreds and 1 tens and 1 ones. 106 has
1 hundreds and 0 tens and 6 ones.

Step 2: Add the hundreds place of both
numbers. 6 hundreds + 1 hundreds = 7
hundreds

Step 3: Now, we will add the tens place
of both numbers. 1 tens + 0 tens = 1 tens

Step 4: Now, we will add the ones place
of both numbers. 1 ones + 6 ones = 7
ones

Step 5: Now, we will combine the hun-
dreds, tens, and ones place to get the final
answer. 7 hundreds = 700 1 tens = 10 7
ones = 7

Step 6: Combine the values from step 5
to get the final answer. 700 + 10 + 7 =
717

Final Answer: 717

K.2 Intermediate Step Errors
The CoT approach also underperforms the standard
LLM in more complicated tasks, such as bitwise
OR. This is because these problems require mul-
tiple rules or algorithms being applied, increasing
the opportunity for the LLM to make an error. For
example, if we query the LLM with “Solve the
following problem step by step: What is 513 OR
107”, the model must convert each number to bi-
nary, perform bitwise OR, and then convert back
to decimal. In the below example, the LLM in-
correctly converts one input number from decimal

to binary (513 is 1000000001, not 1000001001),
causing the final solution to be incorrect.

Despite bitwise OR being a difficult problem
with multiple steps, the standard LLM (which pro-
duces an answer in a single forward pass) outper-
forms CoT prompting on this problem type.

To solve this problem, we need to per-
form a bitwise OR operation between
the two binary numbers 513 and 107.

First, let’s convert the decimal numbers
to binary:

513 in binary is: 1000001001 107 in bi-
nary is: 1101011

Now, let’s perform the bitwise OR oper-
ation:

...

K.3 Stuck in Infinite Loops
Another source of errors when using CoT is the
LLM being stuck in an endless cycle. In the be-
low example, we query the LLM with “Solve the
following problem step by step: What is 661 plus
420”. The LLM starts with the correct procedure,
but keeps applying the procedure to digits that are
not in the original problem, repeating endlessly and
never producing the final answer.

To solve this problem, we will add the
two numbers together.

Step 1: We will start by writing the num-
bers to be added, with the first num-
ber (661) on top and the second number
(420) below it.

661 + 420

Step 2: We will add the numbers in the
ones place (the rightmost digit). In this

30596



case, we have 1 (from 661) + 0 (from
420) = 1.

Step 3: We will add the numbers in the
tens place (the next digit to the left). In
this case, we have 6 (from 661) + 2 (from
420) = 8.

Step 4: We will add the numbers in the
hundreds place (the next digit to the left).
In this case, we have 6 (from 661) + 4
(from 420) = 10.

Step 5: We will add the numbers in the
thousands place (the next digit to the left).
In this case, we have 0 (from 661) + 0
(from 420) = 0.

Step 6: We will add the numbers in the
ten-thousands place (the next digit to the
left). In this case, we have 0 (from 661)
+ 0 (from 420) = 0.

...

Step 21: We will add the numbers in the
ten-quintillion place (the next digit to the
left). In this case, we have 0 (from 661)
+ 0 (from 420) = 0.

...
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