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Abstract

This paper investigates to what extent the inte-
gration of morphological information can im-
prove subword tokenization and thus also lan-
guage modeling performance. We focus on
Spanish, a language with fusional morphology,
where subword segmentation can benefit from
linguistic structure. Instead of relying on purely
data-driven strategies like Byte Pair Encoding
(BPE), we explore a linguistically grounded
approach: training a tokenizer on morphologi-
cally segmented data. To do so, we develop a
semi-supervised segmentation model for Span-
ish, building gold-standard datasets to guide
and evaluate it. We then use this tokenizer to
pre-train a masked language model and assess
its performance on several downstream tasks.
Our results show improvements over a baseline
with a standard tokenizer, supporting our hy-
pothesis that morphology-aware tokenization
offers a viable and principled alternative for
improving language modeling.

1 Introduction

The way tokenization is performed has been shown
to be essential for the performance of neural
language models. Early embeddings such as
WORD2VEC (Mikolov et al., 2013) and GLOVE
(Pennington et al., 2014) treated whole words as
tokens, producing semantically meaningful repre-
sentations, but at the cost of large vocabulary sizes
and sensitivity to out-of-vocabulary words. To ad-
dress these limitations, i.e., to reduce vocabulary
size and improve generalization, research shifted
to subword tokenization, which splits a continu-
ous sequence of characters into frequent character
subsequences. Over time, the use of subword tok-
enizers such as SentencePiece (Kudo and Richard-
son, 2018), WordPiece (Wu et al., 2016), Unigram
(Kudo, 2018), or Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016) has become a must in state-of-
the-art NLP models. In particular, BPE established

itself as a de facto standard. Still, despite their
advantages, these tokenizers reveal an important
drawback: they operate on purely statistical pat-
terns in the data, which optimizes for frequency and
compression, but is agnostic to the internal struc-
ture of the words. As a consequence, the result-
ing subword tokens are frequently misaligned with
morphological boundaries (Church, 2020). This
misalignment has been shown to impact the mod-
els’ ability to represent and generalize morpho-
logical information, ultimately limiting the perfor-
mance of the models in downstream tasks that rely
on fine-grained linguistic cues (Hofmann et al.,
2020, 2021; Klein and Tsarfaty, 2020; Bostrom
and Durrett, 2020; Tan et al., 2020). Nonetheless
the picture is not settled: other recent studies report
only marginal gains or even advantages for purely
statistical approaches (Saleva and Lignos, 2021;
Truong et al., 2024; Arnett et al., 2024; Arnett and
Bergen, 2025). Against this backdrop, a growing
body of work explores linguistically-informed tok-
enization. Jabbar (2024) does so for English, Tora-
man et al. (2023) for Turkish, Park et al. (2020)
for Korean and Westhelle et al. (2022) for Brazil-
ian Portuguese. While Jabbar (2024) demonstrates
gains by integrating morphology into subword to-
kenization, their strategy can hardly be applied to
morphologically richer languages since it relies on
static vocabularies that struggle with unseen forms
and linguistic variability. Results from the other
studies are less clear-cut: some linguistically in-
formed models perform better but often require
rule-based preprocessing, while in other cases lin-
guistically agnostic models outperform them.
Therefore, we investigate to what extent mor-
phologically informed tokenization can improve
linguistic modeling and downstream task perfor-
mance in Spanish. This language has so far re-
mained underexplored in this context, despite the
challenges posed by the fusional nature of its mor-
phology, where multiple grammatical features are
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encoded in a single morpheme. To ensure porta-
bility of the proposed approach, we infuse mor-
phological knowledge at the training stage of the
tokenizer, without that any changes to the tokeniza-
tion algorithm or the language model architecture
are required. Our strategy results in a fully inte-
grated tokenizer that avoids extra preprocessing, as
in the rule-based approach of Toraman et al. (2023),
nor relies on static vocabularies with complex deto-
kenization schemes, as Jabbar (2024) does.

First, we develop a segmentation model for Span-
ish using MorphAGram (Eskander et al., 2020),
which shows a considerably higher quality in mor-
phological segmentation compared to Morfessor
(Smit et al., 2014; Gronroos et al., 2014) used, e.g.,
by Westhelle et al. (2022). The segmentation model
is applied to a dataset to obtain linguistically mean-
ingful sub-word units, on which we train a standard
BPE tokenizer. To evaluate the linguistic quality
of both the segmentation model and the resulting
tokenizer, we contrast their outputs against two
manually annotated word lists totaling over 7,000
entries that we created for this purpose.

Finally, we pretrain a RoBERTa-based language
model with the resulting morphology-aware tok-
enizer and a novel left-to-right within-word mask-
ing strategy inspired by recent evaluation practices
(Kauf and Ivanova, 2023), and compare it with a
baseline model trained with a standard BPE. Our
evaluation combines intrinsic and extrinsic metrics,
including perplexity, word prediction accuracy, and
performance on common downstream tasks such
as natural language inference, paraphrase detec-
tion, and semantic text similarity, as well as a more
fine-grained linguistic evaluation on the model’s
morpho-syntactic capabilities.

Our experiments confirm that incorporating mor-
phological awareness into the tokenization process
consistently enhances language modeling perfor-
mance for Spanish over a range of different tasks,
reinforcing the idea that morphology-informed tok-
enizers provide a robust and linguistically grounded
alternative to purely statistical standard approaches.

2 Related work

Most of the state-of-the-art LM applications use
BPE (Sennrich et al., 2016) for subword tokeniza-
tion with little scrutiny. However, a growing body
of research highlights limitations of purely statis-
tical pattern-driven subword tokenization. For in-
stance, Hofmann et al. (2021) study how tokeniza-

tion affects the way models internalize complex
morphology, focusing on BERT representations of
derivationally complex words. For languages with
rich morphology, the inadequacy of purely statis-
tical subword units becomes even more apparent;
see, e.g., Klein and Tsarfaty (2020), who probe
how well BERT captures morphological informa-
tion in Hebrew and find that its default word pieces
fail to reflect meaningful morphemes.

While statistical tokenizers remain practical and
performant, their linguistic blind spots can hin-
der model efficiency, generalization, and down-
stream interpretability, as has been shown by a
wave of work on morphologically informed alter-
natives. Thus, Bostrom and Durrett (2020) show
that Unigram (Kudo, 2018) produces subwords
that are better aligned with morphological bound-
aries and yields equal or superior performance on
downstream tasks than BPE. Cross-linguistic evi-
dence also points to the limits of BPE: Park et al.
(2021) show that BPE tokenization fails to ade-
quately capture morphological structure across lan-
guages, with surprisal strongly correlated to mor-
phological complexity, while morphology-aware
methods yield more robust language modeling per-
formance. Other studies reinforce this trend: Tan
et al. (2020) shows that adding morphological in-
formation to the tokenization stage increases lan-
guage modeling robustness to inflectional variation
in L2 and World Englishes, and Bauwens and Delo-
belle (2024) prune BPE’s vocabulary with morpho-
logical semi-supervision making it better aligned
to derivational and compound boundaries in En-
glish, Dutch and German, and find improvements
in downstream tasks for Dutch.

Building on these insights, a number of works
explicitly implement morphology-aware tokeniza-
tion schemes and analyze their effect on down-
stream performance. MorphPiece (Jabbar, 2024)
demonstrates performance gains by integrating
morphological segmentation into subword tok-
enization, but it is limited to English and re-
lies on static vocabularies that struggle with un-
seen forms and linguistic variability. Other work
has explored linguistically-motivated tokenization
for morphologically-richer languages. Thus, in
Turkish, Toraman et al. (2023)’s morphologically-
informed tokenizer rivals much larger models de-
spite a simpler architecture, but implies preprocess-
ing by a rule-based morphological analyzer. Simi-
lar patterns have been observed for Korean (Park
et al., 2020), where a hybrid tokenizer achieves
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strong downstream results combining morphology
and subword units. In Brazilian Portuguese, mor-
phological tokenization based on Morfessor (Smit
et al., 2014) has shown advantages over standard
WordPiece (Westhelle et al., 2022).

At the same time, the research landscape is more
nuanced, and several studies report that statistical
tokenization can outperform morphological strate-
gies or that the latter provide only marginal gains
(e.g., Saleva and Lignos, 2021; Zhu et al., 2019;
Banerjee and Bhattacharyya, 2018). These find-
ings, however, need to be understood with care.
For example, Arnett and Bergen (2025) argue that
morphological alignment does not explain perfor-
mance differences, but their comparisons are across
languages with different morphological typologies
(fusional vs. agglutinative), rather than across to-
kenization strategies within the same language,
which is the focus of our work. Similarly, some
studies that report no benefits from morphology-
aware segmentation examine only narrow linguis-
tic phenomena. For instance, Truong et al. (2024)
restrict their evaluation to affixal negation in En-
glish, and Arnett et al. (2024) analyze only the
plural forms of Spanish nouns. Such focused tests
do not necessarily reflect the broader impact that
morphology-aware tokenization can have on the
intrinsic quality of language models or on their
downstream applications.

Our work contributes to this ongoing discussion
by focusing on Spanish, which has received so far
little attention from the perspective of subword tok-
enization. In contrast to, e.g., the agglutinative mor-
phology of Turkish and Korean, its morphology is
fusional, as in Portuguese, and can thus be expected
to be more challenging to capture. In contrast to the
previous works such as (Jabbar, 2024) on English
or (Toraman et al., 2023) on Turkish, our tokenza-
tion strategy is not limited to predefined lists, does
not involve convolute detokenization strategies, and
does not imply any preprocessing stages. Also, in
contrast to (Westhelle et al., 2022)’s study on Por-
tuguese, we rely on MorphAGram (Eskander et al.,
2020) instead of Morfessor, as our preliminary ex-
periments (see Section 4.1) showed that it produces
much higher-quality morphological segmentations.

3 Morphology-Aware Tokenization

Morphological segmentation and subword tok-
enization share a common objective: breaking
down words into smaller units, but they differ fun-

damentally in their guiding principles. While the
former aims for linguistically meaningful com-
ponents (morphs)', the latter relies only on co-
occurrence statistics to identify frequent character
sequences. For example, the word undeniability
may be morphologically segmented as un+ deni
+ abil + ity*, whereas a standard tokenizer like
RoBERTa’s BPE splits it into unden + iability.

We combine morphological segmentation and to-
kenization in a two-stage approach. First, we apply
segmentation to generate linguistically-informed
subword units, and then we use these units to train
the tokenizer.

3.1 Morphological segmentation for Spanish

For segmentation, we adapt MorphAGram (Eskan-
der et al., 2016, 2018, 2020), which proved to con-
sistently outperform or match the performance of
other morphological segmenters on a wide range
of morphologically diverse languages (Eskander
et al., 2020, 2021, 2022; Tan Le et al., 2022; Ok-
abe and Yvon, 2023). MorphAGram is based on
Adaptor grammars, 1.e., non-parametric Bayesian
extensions of Probabilistic Context-Free Grammars
(PCFGs) (Johnson et al., 2007). MorphAGram
models learn a PCFG and a collection of frequent
morphs directly from an input lexicon (a supplied
list of words) and an initial grammar which speci-
fies the internal structure of words. The framework
provides several built-in grammars; we use the one
that performed best in our experiments. Figure 1
illustrates its output for the word irreplaceables.
While an input lexicon and a PCFG are suffi-
cient to provide output of reasonable quality, Mor-
phAGram also supports a semi-supervised learn-
ing setup where prior linguistic knowledge can be
seeded within the PCFG as a list of known affixes.
To adapt MorphAGram to Spanish, we compiled
a 50,000-word Spanish lexicon by combining two
sources: the list of words and their frequencies
(derived from real-word usage) in the CREA cor-
pus® and the complete Real Academia Espaiiola
(RAE) dictionary. Words not listed in the RAE dic-
tionary have been filtered from the corpus. On the
"Morphological segmentation can be either canonical —
morpheme-based and thus, better aligned with morphological
theory— or surface —morph-based, which is more practical
from a tokenization standpoint, since it allows for easy recon-
struction of the original word. Throughout our study we will
always use surface segmentation.
%See the slight difference with the corresponding canonical
segmentation: un + deny + able + ity

*Corpus de Referencia del Espafiol Actual https://
corpus.rae.es/1frecuencias.html
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Word
Prefix Stem Suffix
PrefixMorph PrefixMorph SuffixMorph SuffixMorph
SM SM SM SM SM SM SM
P N / /
N T N N N
i r r e p | a c¢c e a b I e s

Figure 1: Segmentation of the English word irreplace-
ables using the selected grammar.

other side we include plurals, clitic-attached verb
forms, feminine participles, diminutives, superla-
tives, and also adverbs ending in -mente (such as,
e.g., claramente ‘clearly’), which are represented
in RAE through their base form only. For the semi-
supervised setup, we compiled a list of affixes, in-
cluding verb conjugation paradigms, known gender
and number suffixes, and derivational affixes from
RAE’s compendium®*. In addition to the affixes
used during training, we also incorporated into the
model a list of common invariable words (including
prepositions, conjunctions, and frequent adverbs
and interjections) that should never be segmented.

3.2 Tokenization for Spanish

To incorporate morphological knowledge while re-
maining compatible with state-of-the-art subword
tokenization, we developed a hybrid tokenizer that
combines linguistically-motivated and statistical
subword segmentations. To this end, we apply the
segmentation model presented in Subsection 3.1 to
a dataset so that each word is previously segmented
into morphs before training a BPE tokenizer (Sen-
nrich et al., 2016) on this pre-segmented dataset>.
We opted for this approach instead of using the
segmentation model directly as a tokenizer for sev-
eral reasons. First, while the morphological seg-
mentation model can generalize to unseen words,
performing inductive segmentation at runtime for
every word would be computationally inefficient,
particularly in large-scale applications. Second,
although the segmentation model generalizes be-
yond its training data, it does so imperfectly. For
instance, it relies on a finite list of compatible pre-

*https://www.rae.es/sites/default/files/
Elementos_compositivos_prefijos_y_sufijos_del_
espanol_Esencial.pdf

5Note that this preprocessing step is required only once:
the segmentation model is used during tokenizer training to
preprocess the data. Afterward, both the tokenizer and the
language model are applied directly to raw text.

fix—suffix patterns and sometimes fails to segment
novel words that fall outside these learned combi-
nations, defaulting to leaving them unsegmented.
Also, while the segmentation model may identify
linguistically valid but exceedingly rare morphs,
including them in a tokenizer’s vocabulary would
be inefficient for language modeling purposes. By
training BPE on top of morphologically segmented
data, we strike a balance between linguistic infor-
mativeness and statistical efficiency. Finaly, inte-
grating the BPE tokenizer into existing language
modeling pipelines is more straightforward using
tools such as the HuggingFace Transformers li-
brary (Wolf et al., 2020), which expects standard
tokenizer interfaces.

4 Subword tokenization experiments

Prior to the analysis of the influence of
morphologically-informed tokenization on down-
stream tasks, we carried experiments to assess the
quality of morphologically-informed segmentation
itself and its effects on tokenization.

4.1 Morphological segmentation experiments

We trained a fully unsupervised MorphAGram
model and a semi-supervised model as described in
Section 3.1, with the same parameters® as recom-
mended in the original work (Eskander et al., 2020).
Training took around 5.5h each on a single HPC
node (24-core Xeon node with 96GB RAM), with
limited parallel efficiency. Table 1 illustrates typi-
cal outputs of both models, contrasting them with
the output of a Morfessor 2.0 baseline (Virpioja,
2013). We used the Morfessor off-the-shelf Span-
ish model from Polyglot’ as a simple and widely
used baseline, rather than a semi-supervised setup,
since our aim was merely to provide a common
point of comparison; prior work (Eskander et al.,
2020, 2021, among others) has already shown adap-
tor grammars to outperform Morfessor. We also
provide gold segmentations to highlight the models’
limitations. The results demonstrate that the seg-
mentations provided by the semi-supervised Mor-
phAGram model are, overall, more closely aligned
with the references, especially considering what
they identify as stems for the words.

See https://github.com/rnd2110/MorphAGram/
tree/@ccf@74149baf78735c0f5adcc359a0f90e96135.

Via https://github.com/aboSamoor/polyglot/
tree/master. Unfortunately, the training details for this
model are not disclosed.
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MorphAGram

Morfessor 2.0 Unsupervised

MorphAGram

. . Reference
Semi-supervised

impre-visible
inter-nacional
des-cuida-da-mente
rédpida-mente
transforma-cion
re-conocimiento
re-formula-mos
configura-s-te

impre-vis-ible
inter-n-acional

ré-pid-amente
trans-form-acion
re-conoc-imiento
re-formul-amos
con-figur-aste

des-cuid-adamente

im-pre-vis-ible

intern-a-cion-al
des-cuid-ada-mente

rap-ida-mente
trans-form-acion
reconoc-imiento
re-formul-amos

configuraste

im-pre-vis-ible
inter-nacion-al
des-cuid-ada-mente
rapid-a-mente
trans-form-acion
re-conoc-imiento
re-formul-amos
con-figur-aste

Table 1: Segmentation examples from the adapted MorphAGram models, Morfessor 2.0, along with reference
segmentations (stem morphs in bold). Note that Morfessor models do not differentiate between stems and affixes.

Morphology-aware

La _heroica _ciudad  dormia _la siesta. El _viento Sur, caliente y _perez oso,
_empuj aba _las nubes blanque cinas _que _se rasg aban _al _correr hacia el Norte.

Standard BPE

La _heroica _ciudad _dormia _la _siesta. El _viento Sur, caliente y _perez oso,
_empu jaba _las nubes _blanque cinas _que _se ras gaban _al _correr _hacia el Norte.

‘The heroic city was taking a nap. The hot, lazy South wind pushed the chalky clouds, which tore as they raced North.’

Table 2: Tokenization samples from the morphologically informed tokenizer and the standard BPE. Blanks mark the
separation between tokens; ‘_’ stands for the beginning of a word; differing tokenizations appear in color: teal for

the morphology-aware strategy, purple for BPE.

To obtain a more objective picture, we evaluated
both the unsupervised and the semi-supervised con-
figurations of our MorphAGram adaptation. Since
we could not find publicly available reference seg-
mentations for Spanish®, we manually curated our
own. We selected 1,200 unique words from the
CREA corpus ensuring none of them overlapped
with the lexicon used for training. Additionally,
to assess the model’s performance on naturalistic
input, we annotated approximately 5,400 words
drawn from short texts randomly sampled from the
Spanish portion of the AnCora Universal Depen-
dencies dataset (Taulé et al., 2008). Our segmen-
tations were produced following linguistic criteria
grounded in RAE guidelines, drawing on Spanish
compositional elements and affixes, as well as the
most recent edition of the official Spanish grammar
(Real Academia Espaiiola, 2010). Note that we did
not aim for maximal morphological granularity. In
particular, gender and number markers in nouns, as
well as tense, aspect, mood, person, and number in
verbs were not separated.

Table 3 compares the segmentation accuracy of
both MorphAGram configurations against the Mor-

8Canonical segmentations were available, but not surface
segmentations.

fessor 2.0 baseline. We report the F1 score for
two different metrics: Boundary Precision and Re-
call (BPR) and EMMA-2 (Virpioja et al., 2011)°
on word-level and text-level segmentations, with
reference to our manually annotated data. BPR is
the traditional metric for evaluating morphologi-
cal segmentation, assessing how well the predicted
boundaries align with reference segmentation. In
contrast, EMMA-2 shifts the focus to morph-level
matching, allowing multiple predicted morphs to
map to a single reference one.

The semi-supervised MorphAGram model
(AGSS) achieves the highest scores across all set-
tings, significantly outperforming both the baseline
and the unsupervised variant (AGUS). This con-
firms the effectiveness of incorporating linguistic
knowledge into the segmentation process, and sup-
ports our decision to use this specific model for the
following steps.

4.2 Morphological tokenization experiments

We took a random 10% subset of the Spanish por-
tion of the OSCAR corpus as our tokenizers’ train-
ing dataset. We applied the semi-supervised Mor-

°As implemented for MorphoChallenge shared tasks:
http://morpho.aalto.fi/events/morphochallenge/
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Segmentation Words Texts
Model BPR EMMA2 BPR EMMA?2
Morfessor 0.29 0.72  0.64 0.74
AGUS 0.68 0.78 0.84 0.84
AGSS 0.77 0.88 0.89 0.89

Table 3: Segmentation model evaluation. Morfessor 2.0
baseline against our unsupervised (AGUS) and semi-
supervised (AGSS) MorphAGram models.

phAGram model to segment the dataset so that each
word in the subset is segmented into morphs, and
a special boundary symbol (which we include as
a special token in the tokenizer’s specifications)
is inserted between morphs. Segmentation took
12.4h on an Intel Core i7 (with 8 cores and 16GB
RAM). We then trained two BPE tokenizers with a
50K-size vocabulary, using the HuggingFace Trans-
formers library (Wolf et al., 2020) on the same HPC
node (24-core Xeon node with 96GB RAM). One
was trained on the morphologically pre-segmented
dataset and the other on the raw dataset, taking 7.7h
and 9.4h respectively (both single-threaded). The
remaining training settings (initial alphabet, pre-
tokenizer, postprocessor, etc.) were the same for
both tokenizers. Table 2 shows the differences in to-
kenization outputs between our morphology-aware
tokenizer and the standard BPE, while Figure 2
illustrates how the subwords produced by the mor-
phological tokenizer better align with our reference
segmentations than those from BPE.

We also evaluated both tokenizers using the BPR
and EMMA -2 metrics on our two manually anno-
tated gold segmentation datasets to assess their mor-
phological quality, along with their subword fertil-
ity (the average number of tokens per word), a more
standard evaluation metric. As Table 4 shows, the
morphologically informed tokenizer substantially
outperformed the standard BPE model in terms of
segmentation accuracy, while resulting in a higher
subword fertility due to the finer granularity of the
morph-based tokens.

5 Language modeling and applications

To explore the impact of morphologically informed
tokenization, we conducted a series of experi-
ments incorporating both our morphology-aware
tokenizer and the standard BPE baseline into a
Spanish language model. We compare the resulting
models, first evaluating their core language mod-
eling capabilities, and then assessing their perfor-
mance on a selection of downstream applications.

Alignment with Gold Subwords

Both MORPH BPE
1
4 1
2
2
10000 | 2
4
5+ 3 ?
4 4
5+ 5+
5000
Missing
Missing
0
BPE Gold Morph

Figure 2: Subword alignment between the morphologi-
cal or standard BPE and our gold segmentations. The
figure shows the number occurrences (Y axis) of sub-
words of different length (1, 2, ... 5+ characters) from
the gold subset that are also present in standard BPE
(purple), morphological variant (teal) or both (green).

5.1 Impact on language modeling

For our experiments, we use a standard RoBERTa-
based masked language model with 12 transformer
layers, 768 hidden dimensions, and 12 attention
heads for Spanish. In order to isolate the effect of
tokenization, we trained it, on the one hand, with
the standard BPE tokenizer, which was trained on
raw text data, and, on the other hand, with our
morphologically informed tokenizer (Section 3.2).

Both model variants (referred to as ‘morphology-
aware’ and ‘vanilla’ model, respectively) were
pre-trained from scratch on a randomly selected
16GB subset of the FineWeb-2 corpus (Penedo
et al., 2024). Inspired by recent recommendations
for masked language models (Kauf and Ivanova,
2023), we experimented with three different mask-
ing strategies during pre-training: naive, left-to-
right (L2R), and whole-word (WW). Naive mask-
ing is the original dynamic masking strategy for
the ROBERTa models: a random 15% of tokens
is masked and loss is computed over them. In the
L2R setup, 12% of tokens are randomly selected as
prediction targets and all subsequent tokens within
the same word are masked as well (however, loss
is computed only on the originally selected ones).
WW masking is similar, but only a 10% of tokens

30499



Words Texts Subword Tokenization
Tokenizer BPR EMMA2 BPR EMMA2 (fertility examples
Morph-aware  0.67 0.84 0.83 0.84 1.45 _in comprens ible _caminos _des activ ase
Standard 0.39 0.74 0.70 0.68 1.12 _incomprensible _caminos _desac tivase

Table 4: Tokenizer evaluation: subword fertility and morph detection accuracy using BPR and EMMA?2 metrics.

are selected for prediction and all other tokens per-
taining to the same words are also masked. L2R
and WW aim to preserve word-internal coherence
during training, which is especially important for
morphologically segmented input.

The model is then trained using the Hugging-
Face Transformers library (Wolf et al., 2020).
Apart from the aspects defined above, the train-
ing parameters were set as recommended in the
TrainingArguments class. 5% of the dataset were
set aside as a development subset to monitor per-
plexity. We trained for 5 epochs using a computing
node with two NVIDIA H100 cards, which lasted
53 or 91 hours for the baseline and morphology-
aware variant, respectively. To assess the models’
intrinsic quality, we evaluate their language mod-
eling capabilities using perplexity and word pre-
diction accuracy, and test how well they handle
agreement phenomena.

Perplexity measurements

We computed the perplexity of both variants of
the model over a Spanish dataset distinct from the
pre-training data. For the computation, we used
the same three masking strategies employed during
pre-training: naive, whole-word, and left-to-right.

As shown in Table 5, the morphology-aware
model performs best with the left-to-right within-
word masking strategy, while the vanilla model that
uses a standard BPE tokenizer achieves a lower
BPB with naive masking. Based on these results,
we retained only the best-performing configuration
for the vanilla model in the subsequent tasks.

Perplexity has long been a standard evaluation
metric, but direct comparisons across models with
different tokenizers are not completely fair. For this
reason, we additionally report a normalized metric
such as bits-per-byte (BPB), c.f. Table 6. However,
the choice of metric does not affect our conclusions:
the best-performing vanilla and morph-aware mod-
els remain the same.

LAMBADA word prediction

For the word prediction experiment, we used a
machine-translated version of the original English

Perplexity
Tokenizer = Masking Naive L2R WW
Standard BPE ~ Naive 10.11 1446 20.51
Standard BPE L2R 16.88 15.82 21.54
Standard BPE wWw 27.07 24.76 20.61
Morph-aware L2R 7.61 7.76 20.71
Morph-aware wWwW 2341 25.64 20.03

Table 5: Perplexity of evaluated models under three
masking strategies: naive, left-to-right (L2R), and
whole-word (WW). Rows show the masking strategy
during pre-training, and columns show that applied dur-
ing evaluation. Lower perplexity values indicate better
language modeling quality. Boldface marks lowest per-
plexity within each tokenizer family: BPE vs. morph-
aware.

Bits-per-byte

Tokenizer = Masking Naive L2R WW
Standard BPE ~ Naive 0.657 0.759 0.859
Standard BPE L2R 0.803 0.784 0.872
Standard BPE wWw 0.938 0912 0.860
Morph-aware L2R 0.781 0.789 1.168
Morph-aware WwWwW 1.214 1249 1.155

Table 6: Bits-per-byte of evaluated models under three
masking strategies: naive, left-to-right (L2R), and
whole-word (WW). BPB measures the average num-
ber of bits required to encode each byte of text. Lower
values correspond to more efficient modeling of the data.
Boldface marks lowest BPB within each tokenizer fam-
ily: BPE vs. morph-aware.

Model
Task Morph-L2R  Morph-WW

LAMBADA word prediction (Acc.)

Vanilla

Final word 0.338 0.400 0.370
Random word  0.393 0.434 0.381
Morpho-syntactic tests (Acc.)

Agreement 0.864 0.926 0.745

Table 7: Word prediction and agreement tests accuracy
of a vanilla baseline and two morphology-aware models,
trained with left-to-right (L2R) and whole-word (WW)
masking. Bold marks the best model per task.
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dataset (Paperno et al., 2016), which challenges
models to predict the final word of a narrative pas-
sage. The task is designed to require sentence and
discourse-level understanding, since the last word
is typically not recoverable from the local context
alone. Translation quality is especially critical here,
hence, we manually reviewed a few examples to
ensure the dataset’s adequacy. To reduce the bias
introduced by proper nouns, many of which were
untranslated English names, we added a second
task in which a randomly selected non-final word
in each passage was also selected as a prediction
target. This facilitated the inclusion of a broader
range of parts of speech and syntactic contexts.

As our models are bidirectional rather than gen-
erative, and since the target words could consist
of multiple tokens (especially for the morphology-
aware model with its finer-grained vocabulary), we
adopted a greedy prediction strategy. Each word
was predicted in a both left-to-right and right-to-
left fashion, the final choice being the version with
higher joint probability. Accuracy was measured as
an exact match between predicted and target words.
As shown in Table 7, in this task, the morphology-
aware model with left-to-right masking achieves an
accuracy of 40.0% compared to 37.0% with whole-
word masking, and 33.8% for the vanilla model
when predicting the final word of the texts, and a
43.4% vs. 38.1% and 39.3%, respectively, for the
randomly selected word.

Morpho-syntactic agreement tests

To have a more linguistically-oriented assessment
of the performance of the models, we also exam-
ined their behavior on a set of controlled morpho-
syntactic tests targeting agreement phenomena in
Spanish. The tests, which reveal the model’s grasp
on morpho-syntactic dependencies, are drawn from
SyntaxGym ES (Pérez-Mayos et al., 2021), which
adapts the SyntaxGym methodology (Hu et al.,
2020; Gauthier et al., 2020) to Spanish. To this end,
the model is presented with two or more nearly
identical sentence variants, differing only in the
agreement features of a specific target word. Only
one variant is grammatically correct (in which the
target word agrees in number and gender or num-
ber and person with its controller), while the other
variants contain mismatches. The model is ex-
pected to assign lower surprisal, i.e., higher prob-
ability, to the grammatically correct target than
to any of the incorrect ones. The tests cover a
range of contexts: nominal agreement within noun

Model

Task Vanilla Morph-aware
Natural language inference

XNLI (Accuracy) 0.733 0.742
InferES (Accuracy) 0.656 0.666
Paraphrase identification

PAWS-X (F1) 0.841 0.845
Semantic text similarity

STS (Combined) 0.776 0.801

Table 8: Downstream performance of a vanilla baseline
and the selected morphology-aware model. Bold marks
the best model per task.

phrases (noun-article, noun-adjective) and at the
clause level between subject nouns and predica-
tive attributes and complements, as well as verbal
agreement between subject nouns or pronouns and
finite verbs. They result in 92.6% accuracy for the
morphology-aware model with left-to-right mask-
ing against 74.5% with whole-word masking and
86.4% for the vanilla baseline; cf. Table 7.

Considering the results from both the LAM-
BADA word prediction task and the agreement
tests, the rest of our study, which is computation-
ally more demanding, is conducted only for the
morphology-aware model with left-fo-right mask-
ing and the vanilla baseline.

5.2 Downstream applications

To assess how well the two variants of the model
transfer to real-word language understanding tasks,
we fine-tuned them on three standard downstream
tasks commonly used and featured in benchmarks
such as EvalES!? and GLUES (Canete et al., 2020):
natural language inference, paraphrase identifica-
tion, and semantic text similarity. For this purpose,
we performed a basic hyperparameter search us-
ing combinations of batch sizes (8, 16), learning
rates (1072, 3 x 107>, 5 x 10~?), and weight de-
cay values (0.1, 0.01). Training was conducted for
either 5 or 10 epochs depending on the task, with
a fixed warm-up ratio of 0.1. For each task and
dataset, the best combination was chosen based
on the validation set performance. The specific
train/validation/test splits for each task are detailed
below. The final results of the best combination on
the corresponding test sets are reported in Table 8.

Yhttps://benchmark.plantl.bsc.es/
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Natural language inference

We first used the Spanish portion of the Cross-
Lingual Natural Language Inference corpus (XNLI;
Conneau et al. 2018), which contains 400,202 sen-
tence pairs annotated for entailment, contradiction,
or neutrality. 2,490 of these sentence pairs consti-
tute the validation set and other 5,010 pairs con-
stitute the test set. However, while XNLI is a
widely adopted benchmark for Spanish LM evalu-
ation, it is based on machine translation of incon-
sistent quality, which often introduces artifacts that
can negatively influence learning. To mitigate this
limitation, we also fine-tuned both variants of the
model on InferES (Kovatchev and Taulé, 2022) — a
smaller, but original Spanish NLI corpus of 8,055
sentence pairs. InferES was specifically designed
to be challenging and linguistically rich. It includes
contrastive and adversarial examples that target
complex linguistic phenomena, such as negation
and co-reference. Since the dataset does not con-
tain a validation set, we created one by splitting the
original test set into 645 examples for validation
and 967 for final testing. The morphology-aware
model scores 74.2% accuracy on XNLI and 66.6%
on InferES, a point over the baseline in both cases.

Paraphrase identification

For paraphrase identification, we used the Spanish
portion of PAWS-X (Yang et al., 2019), a multilin-
gual dataset containing adversarially constructed
paraphrase pairs. The dataset includes 49,401 train-
ing pairs, 2,000 pairs for the development and
2,000 pairs for the test set. PAWS-X emphasizes
lexical overlap while varying syntactic structure,
making it especially useful for assessing a model’s
deeper understanding of sentence semantics. In
this particular task, the differences are quite small,
with F1 scores going from an 84.1% for the vanilla
model to 84.5% for the morphology-aware one.

Semantic text similarity

For this task, we used the STS dataset included
in the EvalES benchmark. This dataset was built
from the Spanish test sets of SemEval-2014 and
SemEval-2015 (Agirre et al., 2014, 2015) and con-
sists of 1,321 sentence pairs for training, 78 for de-
velopment, and 156 for testing. The task involves
predicting a graded similarity score, typically us-
ing regression. In this task, the morphology-aware
model achieves an accuracy of 80.1%, compared
to 77.6% of the vanilla baseline.

6 Discussion and concluding remarks

Our findings show that morphology-aware tok-
enization provides consistent and meaningful im-
provements in language modeling for Spanish.

We began by demonstrating that morphological
segmentation benefits from the incorporation of lin-
guistic knowledge. Our semi-supervised MorphA-
Gram model outperforms both the unsupervised
variant and the Morfessor baseline, supporting its
use as the foundation for our tokenizer. Applied
at the training stage, this segmentation strategy
yields units that better reflect true morphological
structure, as evidenced by their stronger alignment
with gold-standard segmentations. While this mor-
phologically informed tokenizer introduces higher
subword fertility due to its finer granularity, the
resulting tokens are more linguistically meaningful
and better capture internal word structure.

These gains translate into an overall higher LM
quality. Our morphology-aware model consis-
tently outperforms the baseline on all evaluated
tasks. The strongest gains are seen in morpholog-
ically sensitive settings, with a 6-point improve-
ment in the word prediction task and a 7-point
accuracy boost in the morpho-syntactic agreement
tests. General-purpose tasks that do not explic-
itly target morphology (e.g., natural language infer-
ence, paraphrase detection and semantic text simi-
larity) also reflect consistent, albeit smaller gains,
suggesting that awareness of word structure con-
tributes to more robust and semantically coherent
language representations. Our approach achieves
these benefits without modifying tokenization algo-
rithms or model architectures. By pre-processing
the tokenizer’s training data with a morphological
segmentation model, we guide it towards linguisti-
cally sound subword units. This method is easily
extendable to other languages, provided a morpho-
logical segmenter is available, or in its abscence, a
language-agnostic option.

Our results reinforce prior findings that incor-
porating morphology into tokenization improves
model performance and suggest embracing linguis-
tic structure as a way to enrich language modeling.
To enable further research on morphological seg-
mentation for Spanish, we release (under Apache-
2.0 license) the segmentation resource, reference
data, lexicon, and affix list (cf., Section 3), along
with the tokenizers and models presented in Sec-
tions 3.2 and 5.1, respectively !!.

Uhttps://github.com/Albalbalba/morphtokenizer
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Limitations

Despite its simplicity and effectiveness, our ap-
proach comes with several limitations.

First, the resulting tokenization is not fully mor-
phological. We intentionally avoid highly granular
segmentations based on the intuition that they may
hinder language modeling. As a result, some fre-
quent derivational and inflectional sequences are
grouped together, even if they consist of multiple
morphs. Additionally, we do not alter the tokeniza-
tion algorithm itself, but rather influence it indi-
rectly by training it over segmented data. This
makes integration straightforward but limits con-
trol: the algorithm sometimes joins morphs that the
segmenter would have seprated (like verb inflec-
tions and clitics). Concurrent work (Asgari et al.,
2025) addresses this by injecting morphological
information directly into the algorithm, though we
reserve judgment until implementation details be-
come available.

Second, our work focuses on a single language,
Spanish, which is morphologically richer than
English, but arguably not at the most complex
end of the typological spectrum. We expect our
method to yield stronger benefits in agglutinative or
polysynthetic languages. Moreover, this approach
is language-specific, whereas modern LLMs are
multilingual. Adapting morphology-aware tok-
enization for such models is a challenging and open
problem that is already attracting attention (see the
multilingual approach based on morphological seg-
mentation proposed by Limisiewicz et al. (2024),
for instance).

Third, we only experimented with a single
masked language model architecture (ROBERTa)
and relatively small model sizes by current stan-
dards. It is possible that the observed improve-
ments may diminish at larger scales, where models
can have the capacity to bypass suboptimal tok-
enizations. However, even very large models have
shown a poor grasp of the underlying morphology
(Ismayilzada et al., 2025). Our evaluation is also
limited in scope, focusing mostly on sentence-level
tasks. While results are promising, morphology-
aware tokenization may show clearer benefits for
token-level and morphologically sensitive tasks
such as POS tagging, parsing or semantic role label-
ing. Moreover, the high computational cost of pre-
training limits our ability to explore larger model
sizes as well as the eventual impact of parameters
like vocabulary size or masking strategy.

Our focus was not to compete with other pre-
trained models, however, their performance can
provide a useful reference point. Thus, for context,
we compared our models with BETO (Canete et al.,
2020) and mBERT (Devlin et al., 2019). While
both of them outperform our morphologically in-
formed model on downstream tasks (achieving, for
instance, an F1 score for PAWS-X of 0.89 vs. 0.85),
the opposite is true for tasks that require a better
morphological knowledge (the morph-aware model
achieves a 0.93 accuracy in the agreement tests
compared to BETO’s 0.91 or mBERT’s 0.80), see
Table 9 in the Appendix for further details.

Finally, the fact that word-level tokenization is
commonly assumed as a fixed component of the
language modeling pipeline, does not mean it is
the only option. Recent proposals challenge this
assumption altogether suggesting alternatives both
at the lower level (Clark et al., 2022) and at the
higher one (LCM team, 2024). It would be valuable
to investigate how these alternatives fare compared
to our suggested approach, particularly in tasks
where morphological structure plays a central role.
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A Additional Comparisons

Our objective was not to outperform existing pre-
trained models, yet their results provide a useful
benchmark. To offer perspective, we compared
our models with BETO (Canete et al., 2020) and
mBERT (Devlin et al., 2019), c.f. Table 9. While
these models achieve higher scores on standard
downstream tasks, our morphologically informed
model shows superior performance on agreement
tests, which specifically require stronger morpho-
logical knowledge.

XNLI PAWS-X STS Agreement
Model (Acc.) (F1) (Comb.) (Acc.)
Morph-aware | 0.742 0.845 0.801 0.926
Vanilla 0.733 0.841 0.776 0.864
BETO 0.813 0.893 0.816 0.913
mBERT 0.771 0.886 0.807 0.795

Table 9: Comparison to existing baselines
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