
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 30465–30481
November 4-9, 2025 ©2025 Association for Computational Linguistics

Reflective Agreement: Combining Self-Mixture of Agents with a Sequence
Tagger for Robust Event Extraction

Fatemeh Haji1,2, Mazal Bethany1,2, Cho-Yu Jason Chiang3,
Anthony Rios2, Peyman Najafirad1,2,*

1Secure AI and Autonomy Lab 2University of Texas at San Antonio
3Peraton Labs

{fatemeh.haji, mazal.bethany, anthony.rios, peyman.najafirad}@utsa.edu
jchiang@peratonlabs.com

Abstract

Event Extraction (EE) involves automatically
identifying and extracting structured informa-
tion about events from unstructured text, in-
cluding triggers, event types, and arguments.
Traditional discriminative models demonstrate
high precision but often exhibit limited re-
call, particularly for nuanced or infrequent
events. Conversely, generative approaches
leveraging Large Language Models (LLMs)
provide higher semantic flexibility and recall
but suffer from hallucinations and inconsistent
predictions. To address these challenges, we
propose Agreement-based Reflective Inference
System (ARIS), a hybrid approach combining a
Self Mixture of Agents with a discriminative se-
quence tagger. ARIS explicitly leverages struc-
tured model consensus, confidence-based filter-
ing, and an LLM reflective inference module to
reliably resolve ambiguities and enhance over-
all event prediction quality. We further inves-
tigate decomposed instruction fine-tuning for
enhanced LLM event extraction understanding.
Experiments demonstrate our approach outper-
forms existing state-of-the-art event extraction
methods across three benchmark datasets.

1 Introduction

Event Extraction (EE) aims to identify structured
event information from unstructured textual data,
including event triggers, event types, and associ-
ated arguments with their roles (Doddington et al.,
2004). Effective event extraction underpins crit-
ical applications in information retrieval, knowl-
edge graph construction, and automated decision-
making. Despite considerable advancements, ro-
bust event extraction remains challenging, primar-
ily due to linguistic variability, semantic complex-
ity, and limited generalization to infrequent or pre-
viously unseen events (Li et al., 2022).

There are two predominant methodologies in
EE: discriminative approaches and generative meth-

*Corresponding author.

ods leveraging LLMs. Discriminative methods, in-
cluding transformer-based sequence taggers (e.g.,
RoBERTa) and structured prediction models, offer
superior precision and structural consistency due
to their explicit token-level training (Zeng et al.,
2022; Liu et al., 2024a). However, these methods
often struggle with recall, especially for nuanced
or rare events not extensively covered by training
datasets. Conversely, generative LLM-based ap-
proaches (Zhu et al., 2024; Gao et al., 2024) demon-
strate enhanced semantic flexibility and contextual
understanding, achieving broader coverage and im-
proved recall. Yet, these generative approaches
frequently produce inconsistent predictions and
hallucinations due to the inherent stochasticity of
LLM decoding and the lack of structured grounding
mechanisms to enforce consistency across agents
(Meng et al., 2024).

Recently, hybrid multi-agent debate-based meth-
ods have emerged, leveraging multiple generative
LLM agents to iteratively critique and refine pre-
dictions (Chan et al., 2024). Although promising,
these debate approaches have critical limitations:
they rely on iterative, often unstructured discus-
sions without explicit grounding, leading to ampli-
fied hallucinations and inconsistent outputs; they
lack principled mechanisms for systematically re-
solving persistent disagreements; and they intro-
duce substantial computational overhead with un-
predictable inference times. These shortcomings
significantly limit their effectiveness and practical
applicability.

In this paper, we introduce ARIS (Agreement-
based Reflective Inference System), a hybrid event
extraction framework explicitly designed to over-
come these limitations. ARIS systematically inte-
grates the complementary strengths of a generative
Self Mixture-of-Agents (Li et al., 2025), which
uses multiple LLM instances decoding in parallel
to promote output diversity, with a discriminative
sequence tagger that provides essential structural

30465

grounding and precision. ARIS introduces the Re-
flective Agreement mechanism, a structured infer-
ence process that explicitly leverages model con-
sensus and confidence-based filtering to select high-
confidence event predictions, while employing re-
flective inference to resolve ambiguities systemati-
cally. Crucially, our reflective inference module re-
lies on an LLM explicitly trained to understand the
complete event extraction chain (trigger identifica-
tion, trigger classification, argument identification,
and argument classification) through decomposed
instruction fine-tuning, significantly enhancing the
accuracy and reliability of reflective reasoning.

Our contributions are as follows:

• We propose ARIS, a hybrid event extraction
framework that systematically integrates gen-
erative flexibility and discriminative precision,
explicitly addressing the limitations inherent
to existing debate-based and standalone gen-
erative approaches.

• We introduce Reflective Agreement, a novel
structured reflective inference mechanism
that leverages explicit model agreement,
confidence-based filtering, and contextual re-
flective reasoning to robustly resolve ambigu-
ous predictions.

• We demonstrate empirically that ARIS
achieves state-of-the-art performance across
three event extraction benchmarks, consis-
tently surpassing discriminative, generative,
and existing hybrid debate-based methods.
Beyond empirical results, ARIS advances the-
oretical understanding by providing new in-
sights into structured reflective reasoning and
hybrid model integration for complex NLP
tasks.

2 Related Work

Traditional Discriminative Event Extraction
Earlier work on event extraction largely adopted
pretrained transformer encoders such as BERT
and RoBERTa (Devlin et al., 2019; Liu et al.,
2019). Representative systems include span- and
sequence-tagging frameworks such as DYGIE++
(Wadden et al., 2019), TagPrime (Hsu et al., 2023),
and document-level extensions built on RoBERTa
encoders to capture cross-sentence arguments (Liu
et al., 2024b). These methods leverage token-level
supervision and yield structurally consistent extrac-

tions, though recall often drops on infrequent types
and context-dependent cases.

Event Extraction with LLMs LLMs have
emerged as promising tools for Event Extraction
tasks, offering strengths in contextual understand-
ing and handling linguistic variation. Several
studies have investigated zero-shot and few-shot
prompting approaches for Event Extraction with
LLMs (Chen et al., 2024). More sophisticated
prompting frameworks like the Debate as Optimiza-
tion (DAO) (Wang and Huang, 2024) employ mul-
tiple agent roles to iteratively refine event extrac-
tion predictions through structured debate. Other
researchers have explored hybrid approaches com-
bining task-specific models with LLMs. LC4EE
(Zhu et al., 2024) uses task-specific models for
initial Event Extraction, then employs manually
defined rules to guide an LLM in verifying and
correcting the output. Recent work has begun ex-
ploring fine-tuning approaches, with studies incor-
porating textual descriptions of event types into in-
struction tuning datasets (Srivastava et al., 2025) or
combining Supervised Fine-Tuning with reinforce-
ment learning (Gao et al., 2024). However, signif-
icant limitations persist across these approaches.
Prompting-only methods typically underperform
supervised fine-tuning of smaller discriminative
models, such as RoBERTa-based models. Hybrid
approaches rely on manual rule creation, which
limit scalability. Importantly, there is also limited
work on systematically designing instruction tun-
ing datasets that address the distinct challenges of
event extraction’s core subtasks: trigger identifica-
tion, trigger classification, argument identification,
and argument classification. Consequently, many
LLM-based methods still fail to outperform super-
vised fine-tuning of task-specific models.

LLM Instruction Fine-Tuning Instruction fine-
tuning has emerged as a powerful approach for
enhancing language models’ capabilities on spe-
cific tasks. Recent advancements have focused on
structuring the fine-tuning process to improve rea-
soning abilities and handle complex tasks more
effectively. Chain-of-Thought (CoT) fine-tuning
has gained significant attention, where instruction
datasets are augmented with reasoning rationales.
This enables the models to learn reasoning capabil-
ities (Kim et al., 2023; Zelikman et al., 2022; Ho
et al., 2023). Compositional Fine-Tuning addresses
complex tasks by explicitly breaking them down
into simpler component subtasks (Bursztyn et al.,

30466

Figure 1: Overview of the proposed ARIS framework illustrating the Reflective Agreement process. ARIS
systematically integrates predictions from a discriminative sequence tagger and a generative Self Mixture of Agents.
Event triggers and arguments are extracted by each model with associated positions and confidence scores. The
framework identifies consented predictions, filters out low-confidence disagreements, and employs a reflective
inference module to resolve remaining ambiguities, ultimately producing robust, accurate, and structurally grounded
event extraction results.

2022). Rather than using end-to-end learning, CFT
fine-tunes models on a set of component tasks, as
well as the end-to-end task, enabling them to learn
the end-to-end task more effectively.

LLM Inference Time Improvement Advanced
inference strategies significantly enhance LLM per-
formance without requiring model parameter up-
dates. Chain-of-Thought prompting (Wei et al.,
2022) enables LLMs to break down complex prob-
lems into intermediate reasoning steps, improv-
ing performance on tasks requiring compositional
reasoning. Tree of Thoughts (Yao et al., 2023)
extends this approach by allowing models to ex-
plore multiple reasoning paths simultaneously, eval-
uating alternatives and backtracking when nec-
essary. Retrieval-Augmented Generation (Lewis
et al., 2020) incorporates external knowledge re-
trieval to improve factuality and reduce hallucina-
tion. Recent work has also explored self-correction
mechanisms for LLMs, where LLMs can iteratively
self-correct their outputs through interaction with
external tools (Gou et al., 2024), or use episodic
memory buffers to improve decision-making in sub-
sequent attempts (Shinn et al., 2023).

Mixture of Agents (MoA) (Wang et al., 2025) is
an ensemble approach that combines predictions
from multiple different LLMs to improve perfor-
mance through complementary strengths of diverse
models. Self Mixture of Agents (Self-MoA) (Li

et al., 2025) extends this concept by using mul-
tiple instances of the same model with different
sampling parameters to generate diverse outputs.
While these approaches have shown promise in
general language generation tasks, their systematic
application to structured prediction tasks like event
extraction remains underexplored.

Our work builds upon these advances in LLM
fine-tuning and self-correction mechanisms, specif-
ically addressing the challenges of Event Extrac-
tion by developing a decomposed instruction fine-
tuning approach combined with a structured self-
reflection module that enables effective reasoning
about event structures. Additionally, we are the
first to systematically apply Self-MoA to event
extraction, leveraging multiple instances of the
same LLM to generate diverse candidate events
that are then refined through agreement detection
and confidence-based filtering with a discrimina-
tive sequence tagger.

3 Methodology

ARIS aims to enhance event extraction by inte-
grating generative and discriminative approaches
through structured model consensus and reflective
reasoning. As illustrated in Figure 1, ARIS initiates
with an explicit fine-tuning phase to equip an LLM
with specialized capabilities for event subtasks, in-
cluding trigger identification, event classification,
and argument extraction. Following fine-tuning,

30467

ARIS implements a Self Mixture of Agents (Self-
MoA), where each agent independently generates
predictions for all events found in the input text.
Concurrently, a discriminative sequence tagging
model independently predicts events. To consoli-
date predictions, ARIS employs structured consen-
sus detection and confidence-based filtering, selec-
tively retaining high-confidence agreements while
discarding uncertain disagreements. To systemati-
cally address remaining ambiguities, ARIS utilizes
a reflective inference module that capitalizes on the
fine-tuned LLM’s contextual reasoning capabilities.
The subsequent sections detail the implementation
and interactions of these key components. The de-
tailed procedure of our approach is formalized as
Algorithm 1, which can be found in Appendix E.

3.1 Self Mixture of Agents for Event
Extraction

We formalize our approach with the following no-
tation. Let A = {A1, A2, . . . , An} be the Self
Mixture of Agents, where each agent Ai is an LLM
with temperature Ti.

Event Decomposed Fine-Tuning. To enhance
the LLM’s base understanding of the event extrac-
tion task, we develop a decomposed instruction
fine-tuning dataset to explicitly guide the LLM to
master distinct subtasks inherent to event extrac-
tion.

Given an event extraction dataset Devent =
{(xi, yi)}Ni=1 (input texts xi and corresponding
event annotations yi), we convert it into a de-
composed instructional dataset Ddecomp structured
around three primary subtasks:

First, we create holistic event structure model-
ing instructions that supervise complete event con-
struction. These include full-structure construction
tasks requiring the model to output a complete list
of events in the passage (with triggers, types, and
arguments with roles), and role-ablated construc-
tion variants that systematically mask one argument
role per instance, requiring the model to infer the
remainder while maintaining structural coherence.

Second, we develop trigger-focused reasoning
instructions that isolate the foundational stages of
event extraction: trigger detection focuses solely on
identifying trigger spans; type classification assigns
event types to known triggers (both individually
and in batches); trigger discrimination provides
binary classification supervision for distinguishing
triggers from non-triggers; and joint trigger-type
prediction unifies detection and classification into

a single structured output.
Third, we create argument-level inference in-

structions that target post-trigger prediction. Ar-
gument extraction requires identifying argument
spans for known triggers, role assignment classi-
fies the role of each known argument, and joint
argument-role prediction unifies extraction and
classification into a single coherent operation.

We fine-tune the initial LLM M init
LLM on the de-

composed dataset Ddecomp, where the model first
learns atomic subtasks (trigger identification, argu-
ment extraction) before progressing to intermediate
compositional tasks (joint trigger-type prediction,
role assignment) and finally to full event structure
generation. Further details on this dataset construc-
tion can be found in Appendix F.

3.2 Hybrid Event Aggregation
Let S be a pretrained sequence tagger (e.g., a
fine-tuned transformer such as RoBERTa) trained
for event extraction. For an input document x
(sentence or article), we define Gx as the space
of possible valid event spans in x. Each LLM
agent Ai produces event extraction predictions
EAi(x;Ti) ⊂ Gx. Simultaneously, the sequence
tagger produces its own set of event predictions
ES(x) ⊂ Gx. Initially, the predictions from all
individual LLM agents are aggregated to create a
preliminary combined prediction set Eraw

SMoA(x) =⋃n
i=1EAi(x;Ti).
Since the LLM agents generate multiple indepen-

dent predictions through the self mixture of agents
approach, these parallel predictions may identify
the same trigger multiple times or reference non-
existent spans due to hallucination. To ensure accu-
rate alignment between model predictions and the
source text, we apply a rule-based cleanup mech-
anism that consists of two sequential steps: span
validation and positional sorting.

We first filter out predictions that reference
non-existent text spans. Let Stext(x) =
{s1, s2, . . . , sm} be the set of all possible con-
tiguous text spans present in the input document
x. We retain only predictions whose spans ex-
ist in the source text, creating Evalid

SMoA(x) which
contains only events e from Eraw

SMoA(x) where
span(e) ∈ Stext(x).

We sort the valid predictions by their textual po-
sitions to establish a canonical ordering, producing
ESMoA(x) = sort(Evalid

SMoA(x), by position in x).
The resulting cleaned prediction set ESMoA(x)

serves as the foundation for subsequent agreement

30468

detection and disagreement handling steps.

3.3 Consensus Detection
We identify consensus predictions as events jointly
extracted by both the Self-MoA and sequence tag-
ger, defined as Econ(x) = ESMoA(x) ∩ ES(x).
Events match when they have the same trigger iden-
tification, trigger classification, argument identifica-
tion and argument classification predictions. These
consensus predictions represent the most reliable
predictions, where both generative and discrimina-
tive methods converge on the same result. Further
details on the exact mechanism for consensus de-
tection can be found in Appendix A.

3.4 Disagreement Handling via Confidence
Filtering

For cases where the Self-MoA and sequence tagger
disagree, we employ a confidence-based filtering
strategy. We first define the complete set of pre-
dictions Ecomb(x) = ESMoA(x) ∪ ES(x) and the
disagreement set Edis(x) = Ecomb(x) \ Econ(x).

We then compute confidence scores for predic-
tions in the disagreement set. To calculate confi-
dence for Self-MoA predictions, we need to track
the origin of each prediction. Let Ae = {i : e ∈
EAi(x;Ti)} be the set of agent indices that pre-
dicted event e. For Self-MoA predictions, confi-
dence is calculated as the proportion of agents that
made the same prediction:

CSMoA(e) =
|Ae|
n

=
|{i : e ∈ EAi(x;Ti)}|

n

For sequence tagger predictions, confidence is
derived from the softmax score of the predicted
token in the output layer. Let Ttags be the set
of all possible event tags in the sequence tag-
ger’s output vocabulary (including event types
and argument roles), and let span(e) denote the
text span associated with event e. Since span(e)
may contain multiple tokens, we interpret PS(t |
span(e), x) as the probability distribution aggre-
gated over all tokens in the span, and calculate
confidence by taking the maximum probability
across them. Formally, the confidence is calculated
as: CS(e) = maxt∈Ttags PS(t|span(e), x), where
PS(t | span(e), x) denotes the highest token-level
probability assigned to tag t within the span. This
max-probability strategy emphasizes the strongest
token-level evidence, making the confidence score
robust to span length.

We define confidence thresholds θSMoA and θS
to filter out low-confidence predictions. Given the
sequence tagger’s superior precision in predictions,
high-confidence sequence tagger predictions that
disagree with the Self-MoA are retained in the final
prediction set. Specifically, for sequence tagger pre-
dictions with confidence exceeding the threshold
(CS(e) ≥ θS), we include them directly in the set
ES

hi_conf (x) = {e ∈ ES(x) ∩ Edis(x) | CS(e) ≥
θS}.

For low-confidence predictions from both mod-
els, we apply confidence-based filtering. Let
Erem(x) be the set of events to be removed
due to low confidence, where ESMoA

rem = {e ∈
ESMoA(x)∩Edis(x) | CSMoA(e) < θSMoA} rep-
resents low-confidence Self-MoA predictions and
ES

rem = {e ∈ ES(x) ∩ Edis(x) | CS(e) < θS}
represents low-confidence sequence tagger predic-
tions. The complete set of removed events is then
Erem(x) = ESMoA

rem ∪ ES
rem.

3.5 Reflection on Ambiguous Predictions
The remaining disagreement predictions after con-
fidence filtering represent ambiguous cases that
require further analysis. We define this set as
Ereflect(x) = Edis(x) \ Erem(x), capturing all
disagreements not removed during filtering.

We resolve these ambiguous cases through a
reflection mechanism R that formulates a struc-
tured query containing the original text context x
and the ambiguous predictions Ereflect(x). This
query presents each ambiguous prediction along
with its surrounding context, asking the LLM to
analyze and determine the correct prediction based
on linguistic cues, event semantics, and contextual
understanding. The reflection process leverages
the LLM’s reasoning capabilities to produce a re-
fined set of resolved predictions Ereflected(x) =
R(Ereflect(x), x). Further details on this proce-
dure can be found in Appendix C.

3.6 Final Prediction Set
The final prediction set combines high-confidence
agreed predictions with those resolved through
reflection, forming Efin(x) = Econ(x) ∪
ES

hi_conf (x) ∪ Ereflected(x). This approach lever-
ages the complementary strengths of both gen-
erative and discriminative models: the structural
consistency and precision of sequence taggers for
straightforward cases, and the contextual reason-
ing capabilities of LLMs for resolving complex
ambiguities.

30469

Base LLM Approach
CASIE M2E2 MLEE

Trg-I Trg-C Arg-I Arg-C Trg-I Trg-C Arg-I Arg-C Trg-I Trg-C Arg-I Arg-C

TagPrime 72.00 71.60 47.47 45.61 63.97 63.30 37.47 34.19 74.61 72.38 48.30 46.74

DEBATE-EE – 41.80 – 40.50 – – – – – – – –
MMUTF – – – – – 55.50 – 38.20 – – – –

Llama-3.1 8B

One-Shot 0.15 0.15 0.00 0.00 3.77 3.77 0.40 0.40 0.23 0.23 0.00 0.00
FineTuned-EE 42.59 42.27 26.72 25.30 66.87 63.16 31.94 27.78 50.64 44.96 38.75 34.93
FineTuned-DEE 65.89 65.34 44.60 42.56 67.43 64.00 36.33 32.80 55.40 52.14 50.98 48.33
ARIS 70.78 70.27 48.79 46.84 73.49 71.39 41.41 38.84 73.80 70.33 54.30 50.86

Phi-3 7B

One-Shot 3.11 2.49 0.85 0.60 31.37 27.45 9.35 4.68 1.13 0.68 0.72 0.72
FineTuned-EE 41.99 41.32 26.83 25.74 59.44 55.11 28.14 24.31 29.11 26.53 26.98 24.25
FineTuned-DEE 62.26 61.53 42.00 40.55 67.26 64.31 32.30 29.57 37.89 35.52 45.93 44.31
ARIS 69.08 68.39 46.63 44.99 74.22 71.39 41.11 36.61 74.78 72.45 59.19 56.98

Table 1: F1 score of Event Extraction performance (Trg=trigger, Arg=argument; I=identification, C=classification)
across three benchmark datasets. Bold numbers indicate best performance on evaluation metric.

As shown in Figure 1, our framework effectively
handles hallucinations and disagreements between
models. For instance, in the example text "The pros-
ecutor, Alberto Nisman, was found shot dead in his
bathroom in January - four days after he accused
Fernandez and her aides of making a deal with Iran
to cover up the alleged roles that Iranian officials
played in the 1994 bombing of a Jewish center in
Argentina.", the sequence tagger identifies only the
trigger [’bombing’], while the MoA detects mul-
tiple candidates including [’dead’, ’shot’, ’bomb-
ing’]. Through our reflective agreement process,
the incorrect trigger ’shot’ is filtered out, resulting
in the accurate final triggers [’dead’, ’bombing’].
This demonstrates how ARIS combines discrim-
inative precision with generative coverage while
eliminating hallucinations.

4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluate our approach on three benchmark
datasets for event extraction processed following
the TextEE benchmark standardization process
(Huang et al., 2024): CASIE (Satyapanich et al.,
2020), M2E2 (Li et al., 2020), and MLEE (Pyysalo
et al., 2012). We use the train/dev/test partitions de-
fined in TextEE’s "split1" for all three datasets. For
M2E2, we used only the text, and did not include
any image or video information. These datasets rep-
resent diverse domains and text structures: CASIE
covers cybersecurity news with 5 event types in
long paragraphs; M2E2 contains shorter news con-
tent with 8 event types primarily in 1-2 sentence
format; and MLEE represents the biomedical do-
main with 29 event types across long paragraphs.

For evaluation, we report micro F1 scores for the
following tasks: Trigger Identification, which eval-
uates the model’s ability to correctly identify event
trigger spans in text, regardless of event type; Trig-
ger Classification, which measures performance in
both identifying event triggers and correctly clas-
sifying their event types; Argument Identification,
which assesses the model’s capability in identifying
argument entities associated with correctly identi-
fied event triggers; and Argument Classification,
which requires correct identification of both the
argument entity and its role assignment for a given
event trigger. For all metrics, we employ exact
match scoring.

4.2 Implementation

For the discriminative sequence tagger component
of our proposed approach, we utilize TagPrime
(Hsu et al., 2023), a unified framework for rela-
tional structure extraction that has demonstrated
superior performance on event extraction tasks. We
implement TagPrime with roberta-large from hug-
gingface (FacebookAI, 2024) as the backbone en-
coder (Liu et al., 2019).

For the generative component, we employ
Llama-3.1-8B-Instruct (Grattafiori et al., 2024) and
Phi-3-small-8k-instruct (Abdin et al., 2024). We
access both models through their respective Hug-
ging Face implementations (Meta-Llama, 2024;
Microsoft, 2024). To train both LLMs for event
extraction, we used LoRA (Hu et al., 2022) im-
plemented with the Hugging Face PEFT library
(Mangrulkar et al., 2022). Our LoRA configuration
uses a rank of 32, a scaling factor (α) of 128, and
a dropout rate of 0.05. In all of our experiments
we utilize 10 Self-MoA Agents that have a tem-

30470

Base LLM Approach
Trg-I Trg-C Arg-I Arg-C

P R F1 P R F1 P R F1 P R F1

Llama-3.1 8B
Self-MoA 46.99 71.17 56.51 44.98 68.29 54.15 28.03 63.15 38.76 26.28 59.09 36.32
ARIS w/o TagPrime 60.87 60.08 60.31 58.69 58.08 58.23 33.26 57.10 42.03 31.38 53.87 39.66
ARIS 69.16 76.85 72.69 67.20 74.75 70.66 42.94 55.27 48.17 40.60 52.19 45.51

Phi-3 7B
Self-MoA 39.02 73.50 50.47 37.15 70.34 48.13 24.80 60.23 35.08 23.30 56.55 32.95
ARIS w/o TagPrime 53.52 64.50 57.52 50.84 61.65 54.78 31.30 52.44 38.53 29.38 49.55 36.26
ARIS 71.55 74.81 72.69 69.58 72.86 70.74 47.16 51.65 48.79 44.52 48.64 46.00

TagPrime 76.64 65.33 70.19 75.43 64.32 69.09 49.34 40.88 44.41 46.76 38.88 42.18

Table 2: Ablation study demonstrating component contributions to event extraction performance. Results highlight
the complementary strengths of discriminative (TagPrime) and generative approaches.

perature of 0.9 unless stated otherwise. For our
confidence-based filtering for our ARIS approach,
we dynamically determined dataset-specific thresh-
olds for each model and temperature setting to op-
timize system performance. These thresholds and
details on how they were computed, are reported in
Appendix B.

4.3 Overall Event Extraction Performance

We compare our proposed event extraction ap-
proach against several baseline approaches and
state-of-the-art methods across multiple configura-
tions. Our baselines include various LLM-based ap-
proaches using both zero-shot and few-shot prompt-
ing, as well as fine-tuned variants. The One-Shot
baseline employs off-the-shelf LLMs with carefully
designed prompts that explain the event extraction
task and dataset structure, and provide a single
event extraction example without any task-specific
training. For each test instance, we selected the
most similar training example using TF-IDF vec-
torization (Salton and Buckley, 1988) with cosine
similarity, ensuring that the provided examples are
contextually relevant to the test cases.

For fine-tuned approaches, we implement two
training strategies: FineTuned-EE represents stan-
dard end-to-end fine-tuning where the LLM learns
to directly map input text to complete event struc-
tures (event triggers, event types, event arguments,
and event argument roles) in a single step. In con-
trast, FineTuned-DEE leverages our proposed de-
composed instruction fine-tuning approach (Sec-
tion 3.1), where the model first learns individual
subtasks before progressing to complete event ex-
traction. For both FineTuned-EE and FineTuned-
DEE, inference is performed using a single LLM
with a temperature setting of 0.9. Our final pro-
posed method, ARIS, combines the decomposed
fine-tuning with our proposed inference framework

that integrates the Self Mixture of Agents, con-
sensus detection, confidence-based filtering, and
reflection mechanisms.

We compare against several strong baselines in-
cluding TagPrime (Hsu et al., 2023), a RoBERTa-
based sequence tagging model reported as the best
overall discriminative approach across datasets in
the TextEE benchmark (Huang et al., 2024), as well
as recent LLM-based approaches, reporting for
each dataset the best-performing model available:
DEBATE-EE (Wang and Huang, 2024), which em-
ploys a multi-agent debate framework that itera-
tively refines event extraction predictions through
discussions between debating agents, critics, and
judges, enhanced with diverse retrieval-augmented
generation and adaptive conformal prediction mod-
ules, and MMUTF (Seeberger et al., 2024), a uni-
fied template filling framework that extracts event
arguments by matching candidates to argument
roles using templates as queries. The results shown
for DEBATE-EE and MMUTF rows are the F1
scores provided in their original papers.

The results in Table 1 demonstrate that our pro-
posed approach achieves significant improvements
over baseline methods across all three datasets. Our
ARIS approach consistently outperforms compet-
ing methods, particularly in argument extraction
tasks.

On CASIE, our method is competitive with Tag-
Prime for trigger detection while surpassing it
on argument tasks. For M2E2, we achieve the
strongest performance across all metrics, with both
Llama-3.1 and Phi-3 implementations of ARIS sig-
nificantly outperforming TagPrime. On MLEE,
our Phi-3 based ARIS implementation shows the
strongest performance across all metrics. Notably,
ARIS with Phi-3 improves argument classification
F1 scores over the TagPrime model, surpassing the
strong baseline by over 10 points.

30471

Base LLM Approach Temp.
Trg-I Trg-C Arg-I Arg-C

P R F1 P R F1 P R F1 P R F1

Llama-3.1 8B

Self-MoA 0.9 46.99 71.17 56.51 44.98 68.29 54.15 28.03 63.15 38.76 26.28 59.09 36.32
Self-MoA 0.6 53.12 68.42 59.72 50.99 65.79 57.37 30.73 58.79 40.33 28.81 55.02 37.80
Self-MoA 0.1 63.18 61.31 62.07 60.79 59.02 59.75 39.25 52.83 44.98 37.19 50.03 42.61
ARIS 0.9 69.16 76.85 72.69 67.20 74.75 70.66 42.94 55.27 48.17 40.60 52.19 45.51
ARIS 0.6 68.26 76.59 72.15 66.37 74.52 70.17 48.56 50.52 49.37 46.30 48.04 46.94
ARIS 0.1 66.72 77.19 71.56 64.72 74.92 69.43 44.78 53.06 48.38 42.61 50.53 46.59

Phi-3 7B

Self-MoA 0.9 39.02 73.50 50.47 37.15 70.34 48.13 24.80 60.23 35.08 23.30 56.55 32.95
Self-MoA 0.6 46.29 69.46 55.02 44.27 66.75 52.72 32.35 58.62 41.54 30.69 55.43 39.37
Self-MoA 0.1 59.77 60.80 59.82 57.15 58.35 57.30 41.40 49.14 44.62 39.52 46.73 42.52
ARIS 0.9 71.55 74.81 72.69 69.58 72.86 70.74 47.16 51.65 48.79 44.52 48.64 46.00
ARIS 0.6 73.49 74.52 73.78 71.46 72.54 71.78 50.01 49.33 49.43 47.68 46.94 47.06
ARIS 0.1 68.84 76.03 72.04 66.70 73.77 69.85 46.64 50.76 48.38 44.63 48.45 46.24

Table 3: Impact of sampling temperature on event extraction performance. Results show precision (P), recall (R),
and F1 scores across different sampling temperatures.

The results of the one-shot experiment show that
LLMs may struggle with event extraction when
using basic prompting strategies, showing the need
for fine-tuning on the task. The effectiveness
of decomposed instruction fine-tuning is evident
when comparing FineTuned-DEE with standard
FineTuned-EE, showing consistent improvements
across all datasets. The ARIS framework further
enhances performance, particularly for argument-
related tasks. These results validate our hypothesis
that combining the complementary strengths of
discriminative models and LLMs through our re-
flective agreement approach effectively addresses
the limitations of individual approaches.

4.4 Ablation Study

To understand the contributions of different com-
ponents in our approach, we conducted an ablation
study focusing on the integration of the sequence
tagger with the ARIS framework. Table 2 presents
results averaged across all datasets, comparing our
full ARIS approach against variants with compo-
nents removed.

The results reveal clear complementary strengths
between the discriminative and generative compo-
nents. The RoBERTa-based TagPrime sequence
tagger demonstrates superior precision across all
tasks, but shows lower recall. Conversely, the ARIS
approach without TagPrime or reflection exhibits
higher recall, but show lower precision.

Our full ARIS approach effectively leverages
these complementary strengths that results in
higher F1 scores across all metrics. The improve-
ments are even more pronounced for argument-
related tasks. The practical impact of these comple-
mentary strengths is demonstrated through detailed

pipeline examples in Appendix H. These examples
trace the complete processing flow from initial pre-
dictions through agreement detection, confidence
filtering, and reflection, providing concrete illustra-
tions of how ARIS effectively leverages the preci-
sion of discriminative models and the semantic flex-
ibility of generative approaches to improve event
extraction performance.

4.5 Impact of Temperature on Self-MoA
LLMs

To understand how sampling diversity impacts per-
formance, we evaluated our approach across three
temperature settings (t=0.9, t=0.6, and t=0.1) dur-
ing inference. Table 3 presents the averaged results
across all datasets.

The results reveal that while temperature substan-
tially affects standalone Self-MoA performance,
the full ARIS approach maintains consistent perfor-
mance across all settings. For Self-MoA alone, tem-
perature variations produce dramatic differences in
precision-recall trade-offs, where higher tempera-
tures lead to higher recall and lower precision. We
observe dramatic shifts in precision-recall balance
for Phi-3, with precision increasing from 39.02% to
59.77% for trigger identification while recall drops
from 73.50% to 60.80%.

In contrast, our full ARIS approach demonstrates
stability across the tested temperatures, with F1
scores for all metrics showing variation of less
than 2 points. This stability demonstrates that
our confidence-based filtering, agreement detec-
tion, and reflection mechanisms effectively normal-
ize the varying predictions produced at different
temperatures.

30472

5 Conclusion

In this paper, we introduced ARIS, a hybrid event
extraction method that combines the complemen-
tary strengths of discriminative sequence taggers
and generative LLMs through a structured reflec-
tive agreement mechanism. Our approach lever-
ages a Self Mixture of Agents to generate diverse
event predictions, employs agreement detection
to identify high-confidence consensus predictions,
applies confidence-based filtering to eliminate low-
precision candidates, and utilizes a reflection mech-
anism powered by decomposed instruction fine-
tuning to resolve ambiguous cases. Experiments
across three benchmark datasets demonstrate that
ARIS consistently outperforms existing state-of-
the-art methods, with particularly notable improve-
ments in argument extraction tasks. Beyond em-
pirical performance gains, our work advances the
theoretical understanding of hybrid model integra-
tion and structured reflective reasoning in complex
NLP tasks.

Limitations

While our proposed approach demonstrates im-
provements in event extraction performance, it
comes with significant computational overhead.
The approach requires running multiple LLM in-
stances for the Self-MoA component, which sub-
stantially increases both inference time and compu-
tational resources compared to traditional discrim-
inative models. Additionally, the training process
for decomposed instruction fine-tuning demands
considerable GPU resources and time, particularly
when working with larger LLMs. A further lim-
itation concerns the reflection mechanism itself,
which handles the most ambiguous cases that nei-
ther the Self-MoA nor discriminative model could
confidently resolve. While effective for some diffi-
cult instances, the reflection component may still
struggle with highly challenging cases. This is an
inherent ceiling to the reflection-based approach
when confronted with the hardest examples. An-
other limitation of our current study is its dataset-
specific evaluation; future work could investigate
cross-domain generalization through joint training
across datasets.

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed

Awadallah, Ammar Ahmad Awan, Nguyen Bach,

Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, and 1 others. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
arXiv preprint arXiv:2404.14219.

Victor Bursztyn, David Demeter, Doug Downey, and
Larry Birnbaum. 2022. Learning to perform complex
tasks through compositional fine-tuning of language
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 1676–1686.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2024. Chateval: Towards better LLM-based eval-
uators through multi-agent debate. In The Twelfth
International Conference on Learning Representa-
tions.

Ruirui Chen, Chengwei Qin, Weifeng Jiang, and
Dongkyu Choi. 2024. Is a large language model
a good annotator for event extraction? In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 17772–17780.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 conference of the
North American chapter of the association for com-
putational linguistics: human language technologies,
volume 1 (long and short papers), pages 4171–4186.

George R Doddington, Alexis Mitchell, Mark Przy-
bocki, Lance Ramshaw, Stephanie Strassel, and
Ralph Weischedel. 2004. The automatic content ex-
traction (ace) program–tasks, data, and evaluation. In
Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04).

FacebookAI. 2024. Facebookai-roberta-large. https:
//huggingface.co/FacebookAI/roberta-large.

Jun Gao, Huan Zhao, Wei Wang, Changlong Yu, and
Ruifeng Xu. 2024. Eventrl: Enhancing event ex-
traction with outcome supervision for large language
models. arXiv preprint arXiv:2402.11430.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024.
CRITIC: Large language models can self-correct
with tool-interactive critiquing. In The Twelfth Inter-
national Conference on Learning Representations.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14852–14882.

30473

https://huggingface.co/FacebookAI/roberta-large
https://huggingface.co/FacebookAI/roberta-large
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek

I-Hung Hsu, Kuan-Hao Huang, Shuning Zhang, Wenxin
Cheng, Prem Natarajan, Kai-Wei Chang, and Nanyun
Peng. 2023. Tagprime: A unified framework for re-
lational structure extraction. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12917–12932.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Kuan-Hao Huang, I-Hung Hsu, Tanmay Parekh, Zhiyu
Xie, Zixuan Zhang, Prem Natarajan, Kai-Wei Chang,
Nanyun Peng, and Heng Ji. 2024. Textee: Bench-
mark, reevaluation, reflections, and future challenges
in event extraction. In Findings of the Association for
Computational Linguistics ACL 2024, pages 12804–
12825.

Seungone Kim, Se Joo, Doyoung Kim, Joel Jang,
Seonghyeon Ye, Jamin Shin, and Minjoon Seo. 2023.
The cot collection: Improving zero-shot and few-shot
learning of language models via chain-of-thought
fine-tuning. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 12685–12708.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, and 1 others. 2020. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. Advances
in neural information processing systems, 33:9459–
9474.

Manling Li, Alireza Zareian, Qi Zeng, Spencer White-
head, Di Lu, Heng Ji, and Shih-Fu Chang. 2020.
Cross-media structured common space for multime-
dia event extraction. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 2557–2568, Online. Association
for Computational Linguistics.

Qian Li, Jianxin Li, Jiawei Sheng, Shiyao Cui, Jia Wu,
Yiming Hei, Hao Peng, Shu Guo, Lihong Wang,
Amin Beheshti, and 1 others. 2022. A survey on
deep learning event extraction: Approaches and ap-
plications. IEEE Transactions on Neural Networks
and Learning Systems, 35(5):6301–6321.

Wenzhe Li, Yong Lin, Mengzhou Xia, and Chi Jin. 2025.
Rethinking mixture-of-agents: Is mixing different
large language models beneficial? arXiv preprint
arXiv:2502.00674.

Wanlong Liu, Li Zhou, DingYi Zeng, Yichen Xiao,
Shaohuan Cheng, Chen Zhang, Grandee Lee, Malu
Zhang, and Wenyu Chen. 2024a. Beyond single-
event extraction: Towards efficient document-level
multi-event argument extraction. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 9470–9487, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Wanlong Liu, Li Zhou, Dingyi Zeng, Yichen Xiao, Shao-
huan Cheng, Chen Zhang, Grandee Lee, Malu Zhang,
and Wenyu Chen. 2024b. Beyond single-event extrac-
tion: Towards efficient document-level multi-event ar-
gument extraction. arXiv preprint arXiv:2405.01884.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Zihao Meng, Tao Liu, Heng Zhang, Kai Feng, and Peng
Zhao. 2024. Cean: Contrastive event aggregation
network with llm-based augmentation for event ex-
traction. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
321–333.

Meta-Llama. 2024. Llama-3.1-8B-Instruct.
https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct.

Microsoft. 2024. Phi-3-small-8k-instruct.
https://huggingface.co/microsoft/
Phi-3-small-8k-instruct.

Sampo Pyysalo, Tomoko Ohta, Makoto Miwa, Han-
Cheol Cho, Jun’ichi Tsujii, and Sophia Ananiadou.
2012. Event extraction across multiple levels of bi-
ological organization. Bioinformatics, 28(18):i575–
i581.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation processing & management, 24(5):513–
523.

Taneeya Satyapanich, Francis Ferraro, and Tim Finin.
2020. Casie: Extracting cybersecurity event informa-
tion from text. In The Thirty-Fourth AAAI Confer-
ence on Artificial Intelligence (AAAI).

Philipp Seeberger, Dominik Wagner, and Korbinian
Riedhammer. 2024. MMUTF: Multimodal multime-
dia event argument extraction with unified template
filling. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 6539–6548,
Miami, Florida, USA. Association for Computational
Linguistics.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36:8634–8652.

30474

https://doi.org/10.18653/v1/2020.acl-main.230
https://doi.org/10.18653/v1/2020.acl-main.230
https://doi.org/10.18653/v1/2024.findings-acl.564
https://doi.org/10.18653/v1/2024.findings-acl.564
https://doi.org/10.18653/v1/2024.findings-acl.564
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/microsoft/Phi-3-small-8k-instruct
https://huggingface.co/microsoft/Phi-3-small-8k-instruct
https://doi.org/10.18653/v1/2024.findings-emnlp.381
https://doi.org/10.18653/v1/2024.findings-emnlp.381
https://doi.org/10.18653/v1/2024.findings-emnlp.381

Saurabh Srivastava, Sweta Pati, and Ziyu Yao.
2025. Instruction-tuning llms for event extrac-
tion with annotation guidelines. arXiv preprint
arXiv:2502.16377.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
arXiv preprint arXiv:1909.03546.

Junlin Wang, Jue WANG, Ben Athiwaratkun, Ce Zhang,
and James Zou. 2025. Mixture-of-agents enhances
large language model capabilities. In The Thirteenth
International Conference on Learning Representa-
tions.

Sijia Wang and Lifu Huang. 2024. Debate as optimiza-
tion: Adaptive conformal prediction and diverse re-
trieval for event extraction. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 16422–16435, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809–11822.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. Advances in Neural Information Processing
Systems, 35:15476–15488.

Qi Zeng, Qiusi Zhan, and Heng Ji. 2022. EA2E: Improv-
ing consistency with event awareness for document-
level argument extraction. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2022,
pages 2649–2655, Seattle, United States. Association
for Computational Linguistics.

Mengna Zhu, Kaisheng Zeng, JibingWu JibingWu, Li-
hua Liu, Hongbin Huang, Lei Hou, and Juanzi Li.
2024. LC4EE: LLMs as good corrector for event
extraction. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 12028–12038,
Bangkok, Thailand. Association for Computational
Linguistics.

A Agreement Detection

Agreement detection reconciles event predictions
from the Self-MoA ensemble and the sequence tag-
ger by identifying cases where both systems refer
to the same underlying event mention. This process
involves separate matching criteria for triggers and
arguments, as detailed below.

A.1 Trigger Span Agreement
Trigger predictions from both models are consid-
ered to be in agreement if their textual spans over-
lap beyond a predefined threshold, indicating they
refer to the same underlying event mention. This
criterion effectively handles partial overlaps, such
as when one span is a substring of another—for ex-
ample, "attached" versus "was attached"—as
they semantically represent the same trigger. In
these scenarios, the span predicted by the sequence
tagger is retained due to its higher precision in de-
termining exact span boundaries.

A.2 Argument Span Agreement
To determine agreement between argument predic-
tions, we first align them based on their associated
trigger and event type. For each matched trigger
between the two systems, its candidate arguments
are evaluated independently for span-level over-
lap. This enables partial agreement at the argu-
ment level: a single trigger may have some argu-
ments in agreement and others not, depending on
their span overlap. For example, arguments like
"the government officials" and "government
officials" linked to the same trigger and event
type are considered to be in agreement. In such
cases, we retain the span predicted by the sequence
tagger due to its higher precision in boundary iden-
tification.

B Confidence Threshold Selection

Predictions that are not in agreement between the
two systems enter this phase. Confidence thresh-
olds for filtering event predictions were dataset-
specific, determined by analyzing the distribution
of confidence scores on validation sets. For each
dataset, we:

1. Computed confidence score distributions sep-
arately for correct (found in gold annotations)
and incorrect predictions.

2. Used descriptive statistics (mean, median,
quartiles) to guide a targeted search range for
optimal thresholds.

3. Conducted a search within this range, select-
ing thresholds that maximized the validation
set F1 score.

This threshold selection procedure was repeated in-
dividually for trigger and argument predictions, en-
suring dataset-specific tuning that improved overall
performance. After the agreement detection phase,

30475

https://openreview.net/forum?id=h0ZfDIrj7T
https://openreview.net/forum?id=h0ZfDIrj7T
https://doi.org/10.18653/v1/2024.findings-emnlp.958
https://doi.org/10.18653/v1/2024.findings-emnlp.958
https://doi.org/10.18653/v1/2024.findings-emnlp.958
https://doi.org/10.18653/v1/2022.findings-naacl.202
https://doi.org/10.18653/v1/2022.findings-naacl.202
https://doi.org/10.18653/v1/2022.findings-naacl.202
https://doi.org/10.18653/v1/2024.findings-acl.715
https://doi.org/10.18653/v1/2024.findings-acl.715

predictions identified as disagreements are handled
based on finalized confidence thresholds: high-
confidence disagreements are retained directly, low-
confidence disagreements are discarded immedi-
ately, and intermediate-confidence cases are for-
warded to the reflection mechanism for further anal-
ysis.

B.1 Dataset and Temperature Specific
Confidence Thresholds

These two tables present the per-dataset, per-
temperature confidence thresholds applied during
disagreement handling. Table 4 gives the trigger-
level thresholds, while Table 5 lists the argument-
level thresholds. In both tables, θS is the sequence-
tagger (TagPrime) retention threshold, θ+SMoA is
the high-confidence Self-MoA keep threshold, and
θ−SMoA is the low-confidence Self-MoA drop thresh-
old.

Model Dataset Temp θS θ+SMoA θ−SMoA

Phi-3

M2E2 0.1 0.90 0.90 0.20
0.6 0.89 0.95 0.60
0.9 0.89 0.90 0.50

CASIE 0.1 0.035 1.10 0.90
0.6 0.008 1.10 0.80
0.9 0.007 0.95 0.40

MLEE 0.1 0.99 1.10 0.90
0.6 0.99 1.10 0.90
0.9 0.99 1.10 0.80

Llama-3.1

M2E2 0.1 0.80 1.00 0.70
0.6 0.80 0.90 0.50
0.9 0.80 0.85 0.30

CASIE 0.1 0.004 1.00 0.90
0.6 0.004 0.95 0.50
0.9 0.004 0.90 0.50

MLEE 0.1 1.00 1.00 0.10
0.6 1.00 0.95 0.40
0.9 0.00 0.80 0.55

Table 4: Trigger-level confidence thresholds

C Reflection Mechanism

Our reflection mechanism addresses ambiguous
predictions, cases of disagreement between the
Self-MoA ensemble and the sequence tagger that
remain unresolved after confidence-based filtering.
This section details the structured reflection proce-
dure, including prompt design, parsing strategies,
and LLM configuration.

C.1 Prompt Format
Our reflection mechanism employs carefully de-
signed structured prompts to elicit precise re-

Model Dataset Temp θS θ+SMoA θ−SMoA

Phi-3

M2E2 0.1 1.00 1.00 0.70
0.6 0.99 0.85 0.60
0.9 0.99 0.75 0.30

CASIE 0.1 0.07 1.10 0.95
0.6 1.10 0.95 0.50
0.9 0.07 0.81 0.30

MLEE 0.1 1.10 0.90 0.30
0.6 1.10 0.90 0.40
0.9 1.10 0.60 0.30

Llama-3.1

M2E2 0.1 0.99 0.99 0.50
0.6 0.99 1.00 0.90
0.9 0.90 0.99 0.50

CASIE 0.1 0.05 1.00 0.70
0.6 0.03 0.90 0.60
0.9 0.04 0.90 0.60

MLEE 0.1 1.00 0.70 0.50
0.6 1.00 0.80 0.50
0.9 1.00 0.50 0.10

Table 5: Argument-level confidence thresholds

sponses from the LLM. Each prompt follows a
format comprising:

1. Role specification: Defines the LLM’s pre-
cise role (e.g., argument validator).

2. Task description: Provides explicit instruc-
tions for classifying candidates.

3. Generation rules: Sets strict output con-
straints to avoid hallucinations and ensure
structured responses.

4. Context: Supplies the complete passage and
candidate triggers or arguments for accurate
contextual evaluation.

5. Example output: Demonstrates the required
structured output format.

C.2 LLM Configuration
For both trigger and argument reflection, we use
our fine-tuned LLMs with the following settings to
ensure deterministic and accurate outputs:

• Temperature: 0.1 (to ensure consistent, de-
terministic outputs)

• Max tokens: 4096
• Length penalty: 1.05 (to maintain concise,

focused responses)

C.3 Trigger Reflection
Triggers requiring reflection are presented within
structured prompts (see Figure 2). The
LLM classifies each candidate as "Trigger" or
"Non-Trigger". Parsed reflection results update

30476

You previously identified the following
candidate triggers:

<CANDIDATE_TRIGGERS_TO_VERIFY>

Your task is to decide for each whether it truly
signals an event trigger.

Generation Rules:
1. Classify each phrase as either 'Trigger' or '
Non-Trigger'.
2. Output strictly in the required format-no
extra text.

Output Format (strict):
- Wrap the answer in triple backticks (```)
- Write: ClassificationMap = {"phrase1": "
Trigger", "phrase2": "Non-Trigger", ...}

Example:
```ClassificationMap = {"therapy": "Trigger", "
increase dose": "Non-Trigger"}```

Passage:
<FULL_PASSAGE_TEXT>

Candidates:
<TRIGGER_CANDIDATE_LIST>

Q: For each candidate above, decide whether it
is a 'Trigger' or 'Non-Trigger'.

Figure 2: Structured prompt for binary trigger verifica-
tion via reflection.

the final trigger set by retaining only confirmed
triggers for subsequent argument extraction.

C.4 Argument Reflection

Ambiguous arguments undergo similar reflection
prompts (Figure 3), explicitly linking each argu-
ment to its trigger. The LLM assigns a binary
is_correct flag, enabling precise filtering and in-
tegration into final event representations.

D Final Integration of Predictions

After performing agreement detection, confidence-
based filtering, and reflection, we consolidate pre-
dictions into a unified output representation.

D.1 Triggers

Trigger predictions fall into one of three categories:

• Agreed triggers: Identified by both the Self-
MoA ensemble and the sequence tagger.

• High-confidence single-source triggers: Pro-
duced by only one model but retained due to
exceeding the confidence threshold.

You are an argument validator.
Given a single trigger and its candidate
arguments, decide which arguments are valid.

Generation Rules:
1. An argument is valid only if the passage
supports its role for this trigger.
2. Preserve the input order-do not add, remove,
or reorder.
3. Output exactly three fields per argument: `
text`, `role`, `is_correct`.
4. Wrap the entire response in triple backticks
(```).

Passage:
"<FULL_PASSAGE_TEXT>"

Trigger:
"<TRIGGER_TEXT>" (type: "<EVENT_TYPE>")

Candidate Arguments to verify:
<CANDIDATE_ARGUMENTS_TO_VERIFY>

Q: For each candidate above, set `is_correct` to
`true` or `false`.

Figure 3: Structured prompt for binary argument verifi-
cation via reflection.

• Reflected triggers: Ambiguous cases re-
solved by the LLM reflection mechanism.

Each group is maintained as a separate list dur-
ing processing. In the final stage, all triggers are
merged to form the complete trigger set for each
document.

D.2 Arguments

Arguments are integrated per trigger, preserving
the provenance of each prediction. For a given
trigger, its associated arguments may come from
any of the following sources:

• Agreed arguments: Confirmed by both sys-
tems for a shared trigger.

• High-confidence disagreements: Provided
by one system with sufficient confidence.

• Reflected arguments: Verified after reflec-
tion over ambiguous trigger-argument pairs.

Throughout processing, argument predictions carry
the identifier of their associated trigger, allowing us
to correctly reassemble arguments under their origi-
nating triggers during the final merge. This ensures
that each trigger in the final output is paired with
the full set of validated and reconciled arguments,
regardless of their source path in the pipeline.

30477



E ARIS Algorithm

The Reflective Agreement algorithm integrates
predictions from a discriminative model (Tag-
Prime) and a generative Mixture-of-Agents (Self-
MoA), systematically leveraging model consensus,
confidence-based filtering, and reflective inference
to enhance event extraction accuracy. The ARIS
Algorithm can be found in Algorithm 1.

F Decomposed Instruction Dataset
Construction

This appendix describes the construction of the
Decomposed Instruction Dataset that is used for
the instruction fine-tuning stage in ARIS (Sec-
tion 3.1). The goal of this dataset is to teach the
LLM the complete reasoning chain of event extrac-
tion through a curriculum of thirteen task variants.
To equip the LLMs with a rich understanding of
each event extraction subtask. We curated instruc-
tion datasets from MLEE, M2E2, and CASIE, con-
verting each into a unified JSON schema following
the TextEE split 1 configuration.

Holistic Event-Structure Modeling These vari-
ants require the model to generate an end-to-end
representation of every event in a passage, en-
forcing coherence across triggers, types, and ar-
guments:

• Full-Structure Construction: extract all trig-
gers in passage order, assign each the correct
event type, and list every argument with its
role.

• Role-Ablated Construction: as above, but
systematically mask exactly one argument
role per instance, compelling the model to
infer missing components.

Trigger-Focused Reasoning By isolating the
foundational stage of event extraction, these vari-
ants sharpen the model’s precision in identifying
and classifying triggers:

• Trigger Detection Only: list every trigger
span in passage order, without type informa-
tion.

• Trigger Type Classification – Single: given
one trigger, choose its event type.

• Trigger Type Classification – Multi: batch-
classify the types of all triggers.

• Trigger vs. Non-Trigger Discrimination: bi-
nary classification of candidate n-grams as

triggers or non-triggers, using hard negatives
drawn from the local context.

• Event Detection (joint): detect all triggers
and assign types within a single structured
output.

Argument-Level Inference Focusing on post-
trigger reasoning, these variants train the model to
extract and label arguments conditioned on known
triggers:

• Argument Extraction – Single: list all ar-
gument spans for one specified trigger (roles
omitted).

• Argument Extraction – Multi: for each trig-
ger in passage order, list its arguments (roles
omitted).

• Role Assignment – Single: given one trig-
ger–argument pair, assign the correct role.

• Role Assignment – Multi: for a specified trig-
ger, assign roles to all its candidate arguments
in order.

• Argument Extraction (Joint): Given all trig-
gers, extract all associated arguments for each
trigger and assign a semantic role to each.

Table 7 summarizes the number of instruction ex-
amples per variant and dataset, illustrating the scale
and balance of our decomposed curriculum. To-
gether, these thirteen variants provide a curriculum
that progresses from atomic subtasks (e.g., isolated
classification) to full event construction.
All prompts follow a six-part canonical struc-
ture (role → task → rules → format → example
→ query) and answers are serialized as fenced
code blocks under a single top-level key (e.g.,
EventArguments, Triggers, RoleAssignments).

F.1 Negative Sampling for Trigger
Discrimination

To generate trigger vs. non-trigger examples,
we sample negative n-grams that (i) occur exactly
once in the passage, (ii) share no substring with any
gold trigger, (iii) lie within a three-token window
of any trigger, and (iv) satisfy a POS constraint
(verbs, nouns, or determiners). We draw up to
three negatives per document to ensure sufficient
coverage of hard negatives.

F.2 Example Instruction
Figure 4 presents a complete Argument Extraction
– Single instruction.

30478



Algorithm 1: Reflective Agreement for Event Extraction (ARIS)
Data: Ordered trigger sets Etagger and ESMoA, confidence threshold τ , Reflection Module R,

input text x
Result: Final event trigger set Efinal(x)
Eagree(x)← {(t, p) | (t, p, _) ∈ Etagger, (t, p, _) ∈ ESMoA}
Edisagree(x)← {(t, p) | (t, p, _) ∈ (Etagger ∪ ESMoA) \ Eagree(x)}
Ehigh_conf (x), Eambiguous(x)← ∅, ∅
foreach (t, p) ∈ Edisagree(x) do

conftagger ← confidence of (t, p) in Etagger (0 if missing)
confSMoA ← confidence of (t, p) in ESMoA (0 if missing)
combined_conf ← conftagger+confSMoA

number of models predicting (t,p)

if combined_conf ≥ τ then
Ehigh_conf (x)← Ehigh_conf (x) ∪ {(t, p)}

else
Eambiguous(x)← Eambiguous(x) ∪ {(t, p)}

Ereflected(x)← R(Eambiguous(x), x)
Efinal(x)← SortByPosition(Eagree(x) ∪ Ehigh_conf (x) ∪ Ereflected(x))
return Efinal(x)

Model Trg-I Trg-C Arg-I Arg-C
One-Shot 0.15 0.15 0.00 0.00
FineTuned-EE 42.59 42.27 26.72 25.30
+ Trigger-only Instructions 65.63 65.05 31.12 30.15
FineTuned-DEE 65.89 65.34 44.60 42.56

Table 6: Incremental improvements from decomposed
instruction fine-tuning on CASIE.

F.3 Incremental Effects of Decomposed
Instruction Fine-Tuning

To clarify how decomposed instruction fine-tuning
progressively improves task performance, we re-
port an incremental analysis on Llama-3.1-8B with
the CASIE dataset. Table 6 shows how perfor-
mance changes as subtasks are introduced.
These results illustrate progressive learning. The
trigger-only decomposed stage equips the model
with stronger trigger representations, explaining the
large jump in Trg-I/Trg-C but only modest gains
on argument scores. Once argument-specific in-
structions are included, the model extends these
foundations to improve Ar-I and Ar-C. These re-
sults support our hypothesis that decomposed fine-
tuning enables models to first acquire foundational
skills before mastering compositional tasks.

G Training and Hyperparameter Details

This section outlines the hardware setup and key hy-
perparameters used to train the RoBERTa sequence
tagger and fine-tune the LLM-based components
in ARIS.

You are an argument extractor.
Extract all arguments for the specific trigger
shown below.

Generation Rules:
1. List arguments in the exact order they appear
in the passage.
2. Ignore argument roles and include only the
argument texts.

Output Format (strict):
- Wrap the answer in triple backticks (```).
- Write: Arguments = ["arg1", "arg2", ...].

Example:
```
Arguments = ["insulin", "VEGF"]
```

Passage:
"US Needs Broad Coalition to Fight IS Militants,
Analysts Say-With President Barack Obama
setting a new strategy to combat Islamic State
militants (also known as ISIL or ISIS) in Iraq
and Syria, analysts say he will need to build a
broad-based coalition of international and
regional players to support those efforts"

Q: What are the arguments of the trigger "combat
" (event type: "Conflict:Attack")?
A: ```\nArguments = ["militants"]\n```

Figure 4: Argument Extraction – Single instruction
example

30479



Task Variant Casie M2E2 MLEE

Full-Structure Construction 1,047 640 199
Role-Ablated Construction 930 606 194
Trigger Detection Only 1,047 640 199
Trigger Type Classification (Single) 5,181 736 1,793
Trigger Type Classification (Multi) 1,047 640 199
Trigger vs. Non-Trigger Discrimination (Multi) 931 526 193
Trigger vs. Non-Trigger Discrimination (Single) 4,184 1,381 938
Event Detection (Joint) 1,047 640 199
Argument Extraction (Single Trigger) 5,183 736 1,839
Argument Extraction (Multi Triggers) 1,047 640 199
Argument Extraction (Joint) 1,047 640 199
Role Assignment (Single Argument) 15,466 1,108 2,760
Role Assignment (Multi Arguments) 5,980 748 4,705

Total 44,137 9,681 13,616

Table 7: Number of examples per decomposed instruction variant and dataset.

G.1 Infrastructure for LLM Fine-Tuning

Experiments were conducted on a single GPU per
run:

• CASIE/ MLEE: NVIDIA H200 (140GB)
• M2E2: NVIDIA A100 (80GB)

Average fine-tuning times: CASIE (8h), MLEE
(3h), M2E2 (<1 h).

Training We fine-tune two instruction mod-
els: microsoft/Phi-3-small-8k-instruct and
meta-llama/Llama-3.1-8B-Instruct, each us-
ing LoRA-based parameter-efficient adaptation.
Both models are trained for 2 epochs with con-
text length 4096, a batch size of 4. For Phi-3,
we apply LoRA with r=32, α=128, dropout 0.05,
and target modules {q_proj, k_proj, v_proj,
o_proj, gate_proj, down_proj, up_proj}.
For LLaMA-3.1, LoRA is applied to q_proj and
v_proj with the same rank and scaling settings.

G.2 RoBERTa Sequence Tagger

We use roberta-large as the backbone encoder
for all sequence tagging experiments.

Training Batch sizes and epochs per dataset are
summarized in below table.

Dataset Task Batch Size Epochs

CASIE ED / EAE 16 / 4 10 / 90
MLEE ED / EAE 16 / 4 60 / 90
M2E2 ED / EAE 32 / 6 10 / 90

H Examples

ARIS Refinement on M2E2 sample input Fig-
ure 5 illustrates the three-stage ARIS pipeline:

agreement detection, confidence-based filtering,
and reflection-based resolution.

30480



Input Text Moments after the revered activist was escorted through a crowd, the assassin walked
towards Gandhi and, at a range of just one meter, fired his gun three times, killing the
man who led India’s historic revolt against British rule.

Self–MoA Triggers fired, killing
TagPrime Triggers killing

Agreement Set killing
Disagreement (high-conf.) –
Disagreement (low-conf.) fired (discarded) ✓
Disagreement (need reflection) –

Final Trigger List killing

Argument Pipeline for "killing"

Self–MoA Arguments assassin
Agent−−−→ killing; Gandhi Victim−−−→ killing

TagPrime Arguments assassin
Agent−−−→ killing; man Victim−−−→ killing

...

Final Event Representation assassin
Agent−−−→ killing; Gandhi Victim−−−→ killing

Gold Reference assassin
Agent−−−→ killing; Gandhi Victim−−−→ killing; gun Instrument−−−−−→ killing

Figure 5: Illustrative walk-through of the ARIS pipeline on an M2E2 document. Step 1: the Self–MoA ensemble
suggests two triggers (killing, fired) while the TagPrime outputs (killing). Step 2: the agreement module keeps
the shared trigger killing and flags the disagreement fired. Step 3: confidence filtering rejects the low-confidence
fired. Step 4: reflection resolves argument-level mismatches. Outcome: the final event representation matches
gold except for the still-missing Instrument (gun), revealing an open error category.

30481


