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Abstract

Transformers often struggle to generalize to
longer sequences than those seen during train-
ing—a limitation known as length extrapola-
tion. Most existing Relative Positional Encod-
ing (RPE) methods attempt to address this by
introducing either fixed linear biases or globally
learned biases, which lack the capacity to adapt
to different input contexts. In this work, we pro-
pose an additive RPE, Context-Aware Biases
for Length Extrapolation (CABLE), a method
that learns token-specific, context-aware biases
for each attention head in transformers. By
dynamically adjusting positional biases based
on the input sequence, CABLE overcomes the
rigidity of fixed RPEs. When evaluated on
sequences longer than originally trained with,
GPT-2 Medium (334M parameters) with CA-
BLE achieves lower perplexity than counter-
parts using other widely adopted positional
encoding methods. Additionally, by apply-
ing CABLE to the BERT base model we im-
proved performance in long-context retrieval
tasks. Our method significantly enhances the
extrapolation performance of existing RPE
methods tested on the FineWeb-Edu-10B and
WikiText-103 datasets. Our code is available
at: https://github.com/AlgonetLabs/Cable.

1 Introduction

Transformer based language models (Vaswani,
2017) have achieved state-of-the-art performance
in many Natural Lnaguge Processing (NLP) tasks
(Devlin et al., 2019; Liu, 2019; Chowdhery et al.,
2023; Team et al., 2023; Touvron et al., 2023;
Achiam et al., 2023). This is related to its attention
mechanism that captures contextual information by
considering inter-token interactions. However, in
contrast to Convolutional Neural Networks (CNN5)
(Gehring et al., 2017) and Recurrent Neural Net-
works (RNNs) (Sherstinsky, 2020), which implic-
itly consider positional information, transformers
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Figure 1: Next-token prediction perplexity on
FineWeb-Edu-10B eval set with varying inference se-
quence lengths. The models are GPT-2 Medium trained
on a sequence length of 1024 on FineWeb-Edu-10B
train set.

are shown to be position-agnostic and need po-
sition information (Yun et al., 2019). However,
even by incorporating positional information, trans-
former models often experience a sharp decline in
accuracy when processing inputs longer than those
seen during training (Press et al., 2021; Anil et al.,
2022). This limitation arises because training is
typically performed on short sequences to mitigate
the quadratic cost of attention. As a result, there is
increasing interest in the length extrapolation prob-
lem—namely, a model’s ability to generalize to
and accurately predict sequences longer than those
encountered during training (Press et al., 2021).
Many commonly used positional encoding meth-
ods, such as Absolute Positional Encoding (APE)
(Vaswani, 2017), fail to generalize effectively to
sequence lengths beyond those seen during training
(Kazemnejad et al., 2024). To address the length
extrapolation challenge in transformers, various
strategies have been proposed, including context
window extension (Beltagy et al., 2020; Chen et al.,
2023b; Peng et al., 2023; Zhu et al., 2023), memory
mechanisms (Dai, 2019; Bulatov et al., 2022; Wu
et al., 2022; Tworkowski et al., 2024), context com-
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pression (Mu et al., 2024; Tan et al., 2024), data for-
matting techniques (Shen et al., 2023; Zhou et al.,
2023), and Relative Positional Encodings (RPE)
(Press et al., 2021; Raffel et al., 2020; Su et al.,
2024). Among these, RPEs have emerged as one of
the most prominent and widely adopted solutions
for improving length extrapolation in transformer
models.

Recently, a number of RPE variants have been in-
troduced. Rotary Positional Encoding (RoPE) (Su
et al., 2024) encodes token positions by rotating
query and key vectors, while ALiBi (Press et al.,
2021) introduces a linear bias to attention scores.
Many subsequent works have built upon these foun-
dations, either enhancing RoPE (Xu et al., 2024;
Peng et al., 2023; Chen et al., 2023a) or refining
ALiBi-style additive biases (Chi et al., 2022b,a; Li
et al., 2023; Gao, 2024; Zhu et al., 2025).

In this work, based on ALiBi, we propose an
additive RPE method which dynamically learns
biases for tokens on each head of attention mecha-
nism in transformers. In contrast to ALiBi that uses
constant linear biases, our method, Context-aware
biases for length extrapolation (CABLE), learns
slopes for each head, enabling the model to create
dynamic biases for each token. CABLE adds negli-
gible time and memory burden to the conventional
transformer (Vaswani, 2017), while achieving bet-
ter performance. As shown in Figure 1, while the
performance of existing positional encodings de-
grades with increasing sequence length, CABLE
achieves even lower perplexity as sequence length
increases. Our method is simple and easy to im-
plement, and can be integrated into any existing
transformer model easily.

Contributions of this paper are as follows:

* We propose CABLE, an additive relative posi-
tional encoding method that, in contrast to ex-
isting methods, uses context-aware positional
information by learning token-specific biases
in each attention head. CABLE is also sim-
ple, easy to implement, and have relatively
fast inference time compared to the previous
methods.

* We evaluate our proposed method on several
benchmark datasets, using GPT-2 variants for
next-token prediction and BERT models for
long-context retrieval. Our approach consis-
tently outperforms existing positional encod-
ing methods and demonstrates superior gener-

alization to sequences longer than those seen
during training.

2 Related Work

In this section, we review key approaches to po-
sitional encoding, including absolute and relative
methods, as well as recent work exploring trans-
former models without any explicit positional en-
coding.

No Positional Encoding (NoPE). Surprisingly,
Haviv et al. (2022) showed that decoder-only Trans-
formers with causal attention can implicitly learn
positional information without explicit encodings.
Kazemnejad et al. (2024) further supported this
NoPE approach, especially in out-of-distribution
(OOD) settings, suggesting that the causal mecha-
nism alone can suffice (Wang et al., 2024). How-
ever, Li et al. (2023) found that NoPE generally
underperforms compared to models with explicit
positional encodings. In a concurrent effort with
our work, FoX (Lin et al., 2025) suggested a sim-
ilar idea by not using positional encoding and in-
stead proposed a forgetting gate. While NoPE is
compatible with arbitrary sequence lengths, its per-
formance often degrades when extrapolating far
beyond training lengths.

Absolute Positional Encoding (APE). APE was
one of the earliest approaches introduced to incor-
porate positional information into Transformers.
Vaswani (2017) proposed both fixed (sinusoidal)
and learned encodings, while Gehring et al. (2017)
applied learnable absolute embeddings in convolu-
tional architectures. Later, Devlin et al. (2019)
adopted learned absolute embeddings in BERT,
adding them to token embeddings. Chen et al.
(2021) further refined APE with a decoupled atten-
tion mechanism to better separate content and posi-
tional signals. In general, APE assigns a fixed or
learned vector ¢; € R? to each position i, forming
amatrix £ = [e1, e, ..., ;] that is added element-
wise to token embeddings (Vaswani, 2017; Devlin
et al., 2019; Kiyono et al., 2021; Likhomanenko
et al., 2021). A key limitation of APE methods
is their poor generalization to sequence lengths
beyond those seen during training, making them
unsuitable for length extrapolation.

Relative Positional Encoding (RPE). RPE is
an increasingly popular way to encode positional
information for Transformers. (Shaw et al., 2018)
was the first to propose learning relative positional
information within a clipping distance. Among the
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most popular methods in RPEs, is rotary positional
embedding (RoPE) (Su et al., 2024). RoPE rotates
a query and key pair vectors with an angle pro-
portional to their relative positions before the dot
product attention, which results in attention being a
function of the relative distance between the tokens,
capturing the relative positional information. One
of the primary arguments for the effectiveness of
RoPE—and a key reason it is widely adopted in
modern LLMs—was put forth by Su et al. (2024),
who claimed that RoPE enables attention scores
to decay as the relative distance between tokens
increases. However, Barbero et al. (2024) later pro-
vided a mathematical analysis showing that this
claim is flawed: attention weights under RoPE do
not necessarily decay proportionally with relative
query-key distances. This insight offers a possi-
ble explanation for RoPE’s limitations in length
extrapolation. In RoPE-based methods, Yarn (Peng
et al., 2023) modifies RoPE by integrating atten-
tion scaling and Neural Tangent Kernel (NTK) in-
terpolation (Jacot et al., 2018), and (Chen et al.,
2023a) extends the context window size of RoPE
by interpolating positions in the range seen during
training. However, recent studies have shown that
RoPE-based language models perform poorly on
sequences longer than those seen during training
(Press et al., 2021; Kazemnejad et al., 2024). To
address this limitation, several positional encod-
ing methods with better length extrapolation ca-
pabilities have been proposed (Chen et al., 2023a).
Among these, additive approaches have gained pop-
ularity—where a bias matrix is directly added to
the pre-softmax attention logits. This design is
typically intended to enforce a decay in attention
weights proportional to the relative distance be-
tween query-key pairs, as shown in the following
formula:

Appe(X) = XWo(XWr)"+B (1)

The bias matrix for an input sequence with ¢ tokens
is B € R**!, generated by a positional encoding
function b : N?> — R, where the (i, j)-th entry of
B is given by b(3, j). Naturally, different formula-
tions of the function b lead to different variants of
Relative Positional Encodings (RPEs). Below are
a few examples of additive RPEs that are capable
of extrapolating:

ALIiBi (Press et al., 2021). The kernel function is
defined as b(i, j) = —r|i — j|, where r > 0 is a hy-
perparameter. ALiBi incorporates bias based on the

pairwise distances into the pre-softmax attention
scores. However, the function rapidly approaches
the zero point (Chi et al., 2022a), hence may not
be a realistic assumption.

T5-bias (Raffel et al., 2020). The kernel func-
tion is defined as b(7, j) = Tin{i—j,K}> Where K is
a hyperparameter and {ri}fio are learnable scalars.
For positions beyond the training sequence length,
the model reuses the maximum learned relative
bias. While this approach allows some extrapola-
tion, it suffers from latency issues on modern ac-
celerators due to inefficient vectorized operations
with long sequences.

Kerple (Chi et al., 2022a). The kernel function
is defined as b(i,j) = —r1log(1 + r2]i — j|) in
its logarithmic form and —r1|i — j|"2 in its power
form, where 71,79 > 0 are learnable scalars. This
approach employs a shift-invariant kernel for the
bias terms.

Fire (Li et al., 2023). The kernel function is

defined as b(i, j) = fo (%) where fy is
an MLP with 0 parameters, ¢: x +— log(cz + 1)
is a monotonically increasing function and L >
0 is a learnable scaler. This formulation allows
Fire to assign more attention to distant query-key
pairs—contrary to methods like ALiBi, and Kerple,

which tend to focus on nearby tokens.

Data-dependent Positional Encoding: Re-
cently, several data-dependent RPEs have been
proposed. CoPE (Golovneva et al., 2024) applies
fixed ALiBi-style biases with a learned binary gate.
While effective in its domain (mathematics), it
lacks the flexibility of continuous, learnable span
control. DAPE (Zheng et al., 2024a,b) functions
as an augmentation to existing additive positional
bias methods and is not a standalone mechanism.
Furthermore, its architecture imposes a relatively
high computational cost, as it uses feedforward or
convolutional layers over the full attention matrix.
FoX (Lin et al., 2025), a near-concurrent work,
introduces forgetting mechanisms while minimiz-
ing reliance on positional encodings by learning
token-wise biases.

Our method differs from these baselines, as CA-
BLE avoids binarization and instead uses dynamic
biases (unlike CoPE), functions as a standalone
RPE and applies a lightweight MLP over the input
(unlike DAPE), and additionally conditions the bias
slope on the query token (unlike FoX).
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Figure 2: Comparison of how ALiBi and CABLE compute final attention scores per head. Left: ALiBi adds
constant linear biases with head-specific slopes, fixed across tokens. Right: CABLE adds learned, token-specific

context-aware biases and weights to the scores.

3 Proposed Method

In this section, we formally introduce CABLE
(Context-Aware Biases for Length Extrapolation),
a novel additive relative positional encoding (RPE)
approach designed to enhance the length general-
ization capabilities of Transformer models.

CABLE computes context-aware positional bias
scores for each attention head and adds them to the
pre-softmax attention logits. Unlike existing RPE
methods, which are typically static and indepen-
dent of the input sequence, our proposed biases are
dynamically conditioned on the input context. Sim-
ilar to the ALiBi method, we incorporate relative
positional biases at the attention score level. How-
ever, CABLE introduces two key modifications: (1)
the biases are learned and explicitly dependent on
the input context, and (2) we learn distinct scalar
weights for these biases. To implement this, we
employ two separate linear layers—one to generate
the context-aware biases and another to compute
their associated weights.

Let ¢ and d be the sequence length and the dimen-
sion of embeddings on each head, respectively. The
learned bias for each token in the input sequence
X € R4 s as follows:

fo(X) = ReLU(Xwe) 2)

Where fy : R*? — RY  and 0 = {w, € R},
Hence, we obtain context dependent biases for each
token. Here ReLLU ensures the biases are positive.
Then, by taking a cumlative sum of these biases we
inherently make these biases aware of how much
positional bias should be incorporated until their

position and obtain S(X) € RY.

S(X) = Lfa(X), 3)
1 ifj<i

Li; = 4

J {O otherwise @

Where L € R'™! is a lower triangular matrix of
ones. Therefore, the relative biases B(X) € R*?
for each pair of tokens in the input sequence is
calculated by:

B(X)ij = 5(X)i = 5(X); ®)

At this stage, we have obtained context-aware bi-
ases that can be directly added to the pre-softmax
attention logits. In our experiments, we refer to
this version—without any additional learnable pa-
rameters for the biases—as CABLENw. To further
enhance flexibility, we introduce a linear layer that
learns a bias weight vector gg(X) for each token, al-
lowing the model to modulate (dampen or amplify)
the positional biases based on the input context.

99(X) = Softplus(Xwy) (6)

Where g : R4 — RY, and = {w, € R},
Finally, we multiply each relative bias by its corre-
sponding weight to produce the final CABLE bias
for each attention head, as follows:

B(X)ij = g9o(X)i(S(X)i = S(X);) (D

CABLE exhibits an inductive bias similar to slid-
ing window attention by penalizing distant query-
key pairs—penalties that increase with positional
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FineWeb-Edu-10B

Sequence Length CABLE CABLExw ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal
512 17.00 17.22 17.30 17.60 17.79 17.22 17.39 17.99 17.98
1024 16.52 16.73 16.79 17.11 17.26 16.70 16.89 17.47 17.48
2048 15.97 16.24 16.56 19.60 38.32 16.28 38.95 — 219.80
4096 15.34 15.79 16.67 10198 243.69 16.78 146.72 — 1058.84
8192 15.41 15.97 17.23 383.08 799.53 20.32 361.26 — 2485.84
15360 15.41 16.03 17.46 835.92 1450.83 26.13 691.90 — 3355.86
WikiText-103
Sequence Length CABLE CABLExw ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal
512 23.70 24.32 24.09 2434 2506 2395 23.66 24.94 25.18
1024 22.32 23.01 2274 2290 23.60 2256 22.26 23.53 23.73
2048 21.48 22.19 22.05 22.68 27.64 21.72 41.40 — 172.33
4096 20.94 21.70 21.73 29.57 7399 2132 114.77 — 607.48
8192 20.65 21.46 21.58 54.89 198.64 21.33 220.56 — 1348.23
15360 20.33 21.13 21.30 104.79 411.09 21.58 375.62 — 2017.42

Table 1: Perplexity comparison on the FineWeb-Edu-10B and WikiText-103 evaluation sets. The models in the
upper table are GPT-2 Medium variants trained on the FineWeb-Edu-10B training set for 19k steps with a sequence
length of 1024. The models in the lower table are GPT-2 Tiny variants trained on the WikiText-103 training set for

9k steps, also with a sequence length of 1024.

distance. It can be seen as a generalization of AL-
iBi. while ALiBi applies fixed linear biases, CA-
BLE learns context-aware biases for each token.
Notably, if we set each token’s bias and weight
to -1 and 1/2" respectively, CABLE reduces to
ALIiBi, with relative biases simply reflecting token
distances. However, CABLE’s key advantage is its
ability to adapt these biases based on token context,
enabling more expressive and flexible positional
encoding.

As with most RPE methods, CABLE adds po-
sitional information only to the queries and keys
(not the values), a practice shown to enhance length
extrapolation in methods like ALiBi, T5-bias, and
RoPE.

CABLE is simple, lightweight, and easily inte-
grates into standard attention mechanisms. It re-
quires only two additional linear layers, minimal
parameters, and can be implemented in a few lines
of code. The design involves two unfolding opera-
tions, a cumulative summation, and bias addition to
the attention logits. Despite its simplicity, CABLE
significantly improves extrapolation performance
with negligible time and memory overhead com-
pared to the vanilla transformer. Furthermore, it
offers training time and memory usage on par with
existing RPE methods, while maintaining low in-
ference overhead and demonstrating notable gains
in extrapolation, as shown in Section 5.

4 Experiment Setup

4.1 Datasets

For training, we use the FineWeb dataset (Penedo
et al., 2024), a large-scale dataset (15 trillion to-
kens) for LLM pretraining, derived from 96 Com-
monCrawl snapshots. FineWeb has been shown to
produce better-performing LLMs than other open
pretraining datasets (Penedo et al., 2024). More
specifically, we use a 10B sample of the FineWeb-
Edu dataset, which consists of 1.3T tokens from
educational web pages filtered from the FineWeb
dataset. We allocate 9.9B tokens for training and
0.1B for evaluation. Furthermore, we also train the
models on WikiText-103 (Merity et al., 2016), a
small dataset containing a preprocessed version
of Wikipedia, widely used in many NLP tasks.
For evaluation, we use the test sets of FineWeb-
Edu, WikiText-103, and a 1B-token sample of the
FineWeb dataset.

4.2 Settings

For all next-token prediction tasks, we use the GPT-
2 variants (Brown et al., 2020). For the FineWeb-
Edu-10B dataset, we use its small version (12 lay-
ers, 10 heads, and a hidden dimension of 768)
with 124M parameters, and its medium version
(24 layers, 16 heads, and a hidden dimension of
1024) with 334M parameters. We also incorporate
a tiny version of GPT-2 (44M parameters) with 6
layers, 8 heads, and a hidden dimension of 512
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for the WikiText-103 dataset, as it is a relatively
small dataset. The evaluation metric is perplex-
ity (PPL), and we train the models with sequence
length of 1024. All the models are trained on eight
H100 GPUs with 80G GPU RAM. Training set-
tings are the same as those used for GPT-2 (Rad-
ford et al., 2019). Gradients are updated after pro-
cessing 524,288 tokens and vocab size is 50304.
For training on the FineWeb-Edu-10B dataset, we
run 19k steps (~1 epoch) with batch sizes of 64,
32, and 16 for the tiny, small, and medium mod-
els, respectively. On WikiText-103, the tiny, small,
and medium variants are trained for 9k, 5k, and 3k
steps(~10, 5, 3 epochs respectively). The learning
rate starts at 0.0006, with a linear warmup over 750
steps, followed by cosine decay to a minimum of
0.00006.

4.3 Baselines

We compare our method against the following po-
sitional encoding approaches:

Learnable (Vaswani, 2017): A trainable APE
where each position is associated with a learned
embedding. The number of positions is fixed and
predefined during training.

Sinusoidal (Vaswani, 2017): A fixed APE
used in early Transformer models (Vaswani, 2017;
Baevski and Auli, 2018; Ott et al., 2018; Lewis
etal., 2021).

RoPE (Su et al., 2024): A non-learnable non-
additive RPE widely adopted in LLMs such as
GPT-2 (Brown et al., 2020), LLaMA (Touvron
et al., 2023), PalLM (Chowdhery et al., 2023), and
Gemma (Team et al., 2024a,b).

ALiBi (Press et al., 2021): A non-learnable ad-
ditive RPE used in models like BLOOM (Le Scao
et al., 2023) and Falcon (Almazrouei et al., 2023).

T5-bias (Raffel et al., 2020): A learnable addi-
tive RPE used in the TS5 model.

Kerple (Chi et al., 2022a): A learnable additive
RPE with logarithmic and power variants; we use
the logarithmic variant due to its superior perfor-
mance.

Fire (Li et al., 2023): A learnable additive RPE
designed to give more weight to distant query-key
pairs than other methods.

5 Results

We evaluate the effectiveness of our method across
multiple settings. First, we examine its extrapo-
lation capability in decoder-only models for next-

token prediction, comparing it against several rep-
resentative RPEs as well as commonly used APEs.
Next, we analyze runtime and memory efficiency,
followed by a detailed comparison with another
context-aware RPE, namely DAPE (Zheng et al.,
2024b). We then provide a visualization of the
positional biases learned by CABLE. Finally, we
conduct an ablation study, demonstrating that cer-
tain modifications can further enhance CABLE’s
performance in specific scenarios.

5.1 Length Extrapolation

Our method demonstrates strong length extrapola-
tion performance on the FineWeb-Edu-10B dataset,
when trained with a sequence length of 1024 and
evaluated on shorter and longer sequences, as
shown in Figure 1. Table 1 further compares the
extrapolation capabilities of CABLE against base-
line methods on the test sets of FineWeb-Edu-10B
and WikiText-103. ! The sinusoidal method suf-
fers a sharp performance drop even with slight in-
creases in sequence length. RoPE shows a simi-
lar trend—initial improvement followed by a sig-
nificant decline at longer lengths. The learnable
method performs competitively at 512 and 1024
tokens but lacks extrapolation ability beyond the
training length. T5-bias follows a similar trend, but
its performance degrades more gradually than Si-
nusoidal. It initially extrapolates well to sequences
slightly longer than those seen during training,
thanks to its mechanism of learning relative po-
sitional information and reusing the maximum rela-
tive distance for unseen positions. ALiBi performs
well on longer contexts overall but experiences
slightly degradation at extreme lengths.

In contrast, our method consistently achieves
lower PPL on longer sequences. Specifically, for
models trained on sequence length of 1024, our
method achieves lower PPL even when extrapolat-
ing to sequences 16 times longer.

Moreover, on the FineWeb-Edu-10B dataset,
which contains far more tokens than WikiText-103,
a model trained with ALiBi on T=1024 performs
well on T=2048 but begins to degrade with longer
sequences. In contrast, CABLE shows consistent
improvement, even for T=15360, and achieves a
better PPL than it does on T=1024, the sequence
length seen during training.

Our results demonstrate that the learned biases

'For the longest sequences tested, we report results for

15,360 tokens instead of 16,384 due to computational con-
straints.
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Figure 3: Comparison of batched training time, memory usage in training, and unbatched inference time in GPT-2
Medium among the Sinusoidal, RoPE, Kerple, Fire, T5-bias, ALiBi, CABLE, and Learnable positional encoding

methods.

in CABLE capture contextual information more ef-
fectively than ALiBi, leading to superior length ex-
trapolation, especially on very long sequences. No-
tably, even CABLENw outperforms ALiBi, high-
lighting the strength of our context-aware design.
Additionally, the improved performance with the
full CABLE model underscores the benefit of the
learned weight function gy (X).

5.2 Runtime and Memory Overhead

We also evaluate our method against existing meth-
ods in terms of training/inference runtime and mem-
ory usage. As shown in Figure 3, our method
achieves the same training Token Per Second (TPS)
as ALiBi and Kerple. However, both our method
and ALiBi have slightly higher overhead compared
to RoPE, Sinusoidal, and Learnable methods, while
T5-bias exhibits significant overhead. During infer-
ence, our method achieves faster performance than
other RPE:s. It is the third fastest overall—trailing
only Sinusoidal and Learnable encodings—while
outperforming ALiBi in speed. Moreover, CABLE
uses almost the same GPU memory as other meth-
ods during training and adds negligible overhead
compared to methods like ALiBi. It should be
noted that, due to the extrapolation ability of CA-
BLE, it can be trained on shorter sequence lengths
and effectively tested on much longer sequences.
This approach addresses training overhead by re-
ducing the sequence length during training, mak-
ing it feasible on commonly available GPUs. The
overhead of our method is primarily related to the
cumulative sum operation in our computations. Im-
portantly, for inference, we cache the cumulative
sums, so there is no need to re-calculate them for all
tokens each time. This optimization helps CABLE
achieving superior inference time to other methods,
such as ALiBi.

5.3 Data-dependent RPEs: CABLE vs. DAPE

As discussed in the related work section, a few
context-aware RPEs have already been proposed,
with DAPE (Zheng et al., 2024a) and its successor
DAPEV2 (Zheng et al., 2024b) being the most no-
table. In this section, we compare CABLE against
DAPEvV2, since the latter represents a direct im-
provement over the former.

DAPE and DAPEV2 are data-dependent RPEs
that act as augmentations to existing additive posi-
tional bias methods rather than standalone mecha-
nisms. However, they come with considerable com-
putational cost: DAPE relies on MLP layers, while
DAPEV2 applies convolutional layers over the full
attention matrix of shape [B, nh, T, T|, leading to
higher training and backward-pass overhead. In
contrast, CABLE applies a lightweight MLP over
the input representations of shape [B, T, D], result-
ing in significantly lower computational overhead.

Here we augment DAPEv2 with CABLE and
Kerple for the comparison. Table 2 presents extrap-
olation results on the FineWeb-Edu-10B dataset,
with models trained at sequence length 512 using
GPT-2 Small. The results show that while DAPEv2
improves the performance of both CABLE and Ker-
ple, the overall ranking remains unchanged: CA-
BLE consistently outperforms Kerple, both with
and without DAPEv2 augmentation.

Kerple suffers from severe degradation at longer
sequence lengths (from 4096 onward), whereas
CABLE maintains robust performance even with-
out augmentation. Applying DAPEv2 to kerple
can alleviate this weakness, but DAPEv2 intro-
duces substantial computational overhead. For in-
stance, GPT-2 Small with CABLE trains at 1.9M
tokens/sec, while DAPEv2+CABLE drops to 0.6M
tokens/sec (about 3x slower). Also at inference,
DAPEvV2+CABLE is 1.7x slower than CABLE
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Figure 4: Comparison of CABLE and ALiBi positional biases in GPT-2 Small. CABLE biases (left three panels)
vary with context and attention head, while ALiBi biases (right panel) are fixed across all layers and tokens. This
figure illustrates how CABLE can modulate attention selectively based on token context, capturing richer structural

information compared to the uniform ALiBi biases.

Seq. Len. CABLE Kerple DAPEv2+Cable DAPEv2+Kerple
512 21.17 21.41 20.41 20.56
1024 20.72 21.12 19.91 20.07
2048 20.23 22.58 19.30 19.51
4096 19.60 28.04 18.55 18.79
8192 19.87 39.38 18.63 18.92

Table 2: Extrapolation results for CABLE and Kerple
when augmented with DAPEv2.

alone. Similar slowdowns are observed for Kerple
with DAPEv2.

Overall, these findings suggest that CABLE of-
fers the best trade-off between accuracy and ef-
ficiency, achieving state-of-the-art extrapolation
quality while preserving high training and infer-
ence throughput.

5.4 Analysis of Positional Biases

In this section, we analyze the positional biases
added by CABLE and ALiBi to the original atten-
tion scores, with a focus on how contextual infor-
mation influences these biases. Figure 4 illustrates
the relative biases for three different heads in the
last layer, alongside the ALiBi biases. Unlike AL-
iBi, which applies a fixed bias uniformly across all
layers and tokens, CABLE biases are both head-
and context-dependent. Appendix A.3 presents
the complete set of visualizations for all attention
heads across all examined methods.

The biases presented in Figure 4 were computed
using a GPT-2 Small model trained and evaluated
with a sequence length of 512 tokens. The contex-
tual dependence of CABLE can be interpreted as a
mechanism that allows the model to dynamically
calibrate positional information based on the struc-
ture of the input sequence. For example, tokens
that serve as anchors (e.g., punctuation, repeated
entities, or syntactic markers) may receive weaker
biases, enabling the model to maintain stronger at-

tention to them even at long distances. In contrast,
less informative tokens may be more heavily pe-
nalized. Such adaptive behavior could explain why
CABLE provides stronger representational flexibil-
ity and, in practice, has been observed to improve
extrapolation and performance on tasks requiring
nuanced handling of context length. Taken together,
these findings suggest that while ALiBi provides a
simple and efficient positional prior, its uniformity
across layers and tokens constrains its ability to
model diverse contextual dependencies. By con-
trast, CABLE introduces a more expressive bias
structure that adapts to both token content and at-
tention head, potentially offering a more faithful
integration of positional and semantic information.

5.5 Bidirectional Models

In this major experiment, we evaluate the effec-
tiveness of our proposed additive RPE method in
learning contextual representations. To do this,
we replace the original fixed learnable positional
encodings in BERT (Devlin et al., 2019) with CA-
BLE during pre-training. We use the 10B-sample
FineWeb-Edu dataset and train the models using
only the masked language modeling (MLM) objec-
tive, following Liu (2019), who showed that remov-
ing next sentence prediction (NSP) can improve
performance. Our BERT models are based on the
bert-base-uncased architecture and are trained on
four H100 GPUs with a batch size of 32 and a
maximum sequence length of 512 for 14k steps
(~1 epoch on FineWeb-Edu-10B). We use Adam
(Kingma and Ba, 2014) with a learning rate of le-4.
As shown in Figure A, CABLE achieves faster con-
vergence in MLLM loss compared to other positional
encoding baselines.

Since RPE methods do not impose strict limita-
tions on context length, BERT models trained with
these encodings show improved long-context per-
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MLDR - nDCG @10 vs. Sequence Length

Seq. Len. CABLE ALiBi RoPE Learnable Sinusoidal
512 14.96 14.02 15.16 10.42 13.57
1024 15.15 12.88 14.41 — 12.80
2048 16.77 14.30  10.26 — 1.03
4096 21.36 18.71 1.17 — 0.00
8192 24.59 22.86 0.12 — 0.00
16384 25.10 23.44 0.12 — 0.00

Table 3: Retrieval performance (nDCG@10) on the
MLDR test set for BERT models with different posi-
tional encodings, trained at sequence length 512 and
evaluated on longer inputs.

formance compared to existing encoder-only mod-
els. However, standardized long-context bench-
marks for encoder-only architectures remain lim-
ited. Following Warner et al. (2024), we evaluate
long-context performance using the English subset
of MLDR (Chen et al., 2024), a retrieval bench-
mark consisting of over 200,000 long documents.

To adapt BERT models for this task, we fine-
tune them on MS-MARCO (Nguyen et al., 2016)
using mined hard negatives (Xuan et al., 2020),
with 1.25M samples, a batch size of 128, and a 5%
learning rate warmup over one epoch, leveraging
the sentence-transformers framework (Reimers and
Gurevych, 2019). We then evaluate the fine-tuned
models on the MLDR test set using nDCG@10
as the evaluation metric. Table 3 presents the re-
sults for several competitive positional encoding
methods.?

At shorter sequence lengths (512 tokens), RoPE
performs slightly better than other methods. How-
ever, as sequence length increases, CABLE consis-
tently outperforms all baselines, showing notable
gains beyond 1024 tokens. ALiBi maintains reason-
able performance but still trails behind CABLE. In
contrast, RoPE’s effectiveness drops sharply after
1024 tokens, becoming nearly unusable at longer
lengths. Learnable absolute encodings perform not
competitively even at 512 tokens and cannot gen-
eralize to longer sequences. Sinusoidal encoding
is effective at short lengths but fails completely
beyond 1024 tokens. Overall, CABLE exhibits
the strongest scalability to long sequences, while
others either degrade significantly or become unus-
able.

5.6 Ablation Study: Kernelized CABLE

For models with a low number of layers, we tested
a kernelized version of our method (K-CABLE).

We report only ALiBi among additive RPEs for BERT, as
it outperformed other variants in our experiments.

Extrapolation of CABLE and K-CABLE on Wikitext-103

Pos Method
=@~ CABLE
K-CABLE

Perplexity
/
»

-

512 1024 2048 4096 8192 15360
Context Length

Figure 5: Extrapolation performance of CABLE vs. its
kernelized variant (K-CABLE). Both models are GPT-2
Tiny architectures trained on the WikiText-103 training
set with a sequence length of 1024.

In this setting, we use — log (b* + 1) as a kernel,
which is applied to the relative biases before adding
them to the attention scores. Figure 5 shows the
extrapolation comparison between CABLE and K-
CABLE. As can be seen, K-CABLE achieves better
PPL when trained on sequence length of 1024, com-
pared to original CABLE, demonstrating improved
extrapolation. This improvement is related to the
sliding window nature of additive RPEs, where,
with a low number of layers, they struggle to prop-
agate information across longer sequences. In con-
trast, K-CABLE has a slower slope for biases and
behaves less like a sliding window, making it more
suitable for networks with fewer layers. More gen-
erally, different types of kernels can be applied to
CABLE based on the network architecture, allow-
ing it to achieve optimal performance.

6 Conclusion

We introduced CABLE, a novel additive relative
positional encoding method that learns context-
aware biases for each token by injecting them
into the attention matrix at every decoder layer.
Unlike constant linear biases in ALiBi, CABLE
adapts to tokens’ roles within the sequence. Exper-
iments show that CABLE lowers perplexity, signif-
icantly improves length extrapolation, and consis-
tently outperforms baselines on edu-fineweb10B
and wikitext-103. Moreover, CABLE improves the
long-context retrieval performance of encoder-only
models. These gains come with only minimal train-
ing overhead but faster inference compared to the
existing RPEs.
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Limitation

While CABLE demonstrates strong performance
in length extrapolation, it has several limitations.
First, it incurs higher training time compared to
ROPE due to its dynamic bias computation, though
this overhead is negligible in inference. Second,
CABLE occasionally underperforms RoPE at base
sequence lengths (e.g., 1024 tokens in our exper-
iments), particularly in tasks where fixed posi-
tional patterns suffice, suggesting a trade-off be-
tween adaptability and consistency for shorter con-
texts. Additionally, the method’s computational
overhead, though minimal, may become more pro-
nounced for extremely long sequences (>100K to-
kens), and its extrapolation capabilities remain de-
pendent on the diversity of positional patterns in
training data. While empirical results are promis-
ing, theoretical analysis of its attention dynamics at
arbitrary lengths remains an open question. Future
work could explore optimizations for training effi-
ciency and head-specific bias adaptation to further
enhance flexibility.
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A Appendix

A.1 Bert Models Training

Figure 6 shows the masked language modeling loss
during BERT pre-training with different positional
encodings. Traditional methods like learnable and
sinusoidal fail to match the loss achieved by RPEs,
highlighting the effectiveness of RPEs. CABLE
also converges faster than other methods.

Figure 7 shows the contrastive loss during fine-
tuning BERT models with different positional en-
coding methods on the MS-MARCO training set.
Once again, learnable and sinusoidal methods lag
behind, while CABLE achieves the lowest loss
among all methods.

Comparison of BERT MLM Pre-training Loss on FineWeb-Edu-10B

—— ALiBi
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Figure 6: Masked language modeling (MLM) loss dur-
ing BERT pre-training on FineWeb-Edu-10B with dif-
ferent positional encoding methods. CABLE achieves
the fastest convergence and lowest final loss, demon-
strating superior training efficiency over traditional and
other RPE methods.

Comparison of BERT Contrastive Fine-tuning Loss on MS-MARCO
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Figure 7: Contrastive fine-tuning loss on the MS-
MARCO dataset for BERT models using different posi-
tional encoding methods. CABLE achieves the lowest
loss, while learnable and sinusoidal encodings underper-
form.

A.2 Results for GPT-2 Small and Tiny

Tables 4 and 5 present the extrapolation results for
GPT-2 Small and GPT-2 Tiny models evaluated
on the FineWeb-Edu-10B dataset. As shown in
Table 4, CABLE consistently outperforms other
positional encoding methods across all sequence
lengths, particularly at extrapolated lengths beyond
1024 tokens. Both GPT-2 Small and GPT-2 Tiny
models trained with CABLE achieve significantly
lower perplexity than those using ALiBi, RoPE,
T5-bias, and other baselines. Notably, standard
methods such as sinusoidal or learnable encodings
degrade sharply at longer lengths, whereas CABLE
maintains stable and superior performance. These
results further confirm CABLE’s effectiveness in
enhancing length extrapolation, even in smaller
model regimes.

A.3 Visualizations

Figures 8 to 14 illustrate the additive biases incor-
porated into the attention scores (B in Equation 1)
for the additive RPEs Cable, DAPEv2+Cable, Ker-
ple, DAPEv2+Kerple, ALiBi, Fire, and T5-bias.
The visualizations are derived from the final layer
of GPT-2 Small model using a randomly selected
input example. Since RoPE does not introduce
an explicit additive bias but instead modifies the
query and key representations, the corresponding
attention scores after this transformation are shown
separately in Figure 15.
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GPT-2 Small
Sequence Length CABLE CABLExw ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal

512 21.19 21.42 21.55 21.84 22.17 2146 2143 22.16 22.38
1024 20.63 20.89 2099 2126 21.57 20.86 20.87 21.56 21.83
2048 20.02 20.34 20.67 22.48 2937 2038 58.59 - 207.53
4096 19.24 19.67 21.23 5325 13136 21.11 225.78 - 956.41
8192 19.31 19.81 2242 155.32 40594 2659 554.12 - 2376.51
15360 19.28 19.82 22.89 33391 75736 3491 957.87 - 3589.97
GPT-2 Tiny

Sequence Length CABLE CABLExw ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal
512 29.37 30.12 29.88 30.23 30.78 29.60 29.44  30.73 30.67
1024 28.73 29.57 29.25 2956 30.08 2895 28.81 30.11 30.03
2048 27.96 28.88 28.82 29.60 33.81 2832 76.29 — 275.28
4096 26.90 27.85 28.28 37.86 86.33 2831 23995 — 1166.46
8192 26.97 27.92 26.80 70.72 222.60 32.00 452.67 — 2561.54
15360 26.80 27.75 28.52 124.29 448.08 37.67 652.52 — 3679.78

Table 4: Perplexity comparison on the FineWeb-Edu-10B evaluation sets. The upper table shows GPT-2 Small
variants, and the lower table shows GPT-Tiny variants—both trained on the FineWeb-Edu-10B training set for 19k
steps with a sequence length of 1024.

GPT-2 Medium
Sequence Length CABLE CABLExw ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal
512 20.33 20.80 20.80 22.18 23.33 2096 20.81 22.52 24.16
1024 19.12 19.63 19.62 20.89 22.00 19.73 19.60 21.23 22.77
2048 18.36 18.91 19.04 21.86 3546 19.01 20.78 — 143.58
4096 17.87 18.47 1891 46.60 124.19 18.63 31.22 — 467.51
8192 17.58 18.23 18.89 106.27 363.59 18.61 51.54 — 1006.37
15360 17.36 17.95 18.60 195.93 726.18 18.79 91.53 — 1516.97
GPT-2 Small

Sequence Length CABLE CABLExw ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal
512 20.93 21.34 2146 22.03 22.80 21.50 21.38 22.51 23.09
1024 19.71 20.15 20.22 20.74 2149 2022 20.13 21.21 21.73
2048 18.95 19.42 19.62 21.28 33.85 1945 30.14 — 163.49
4096 18.47 18.98 19.39 36.02 123.05 19.04 63.75 — 580.86
8192 18.20 18.75 19.29 81.77 34722 1891 117.81 — 1121.08
15360 17.92 18.48 19.06 163.91 659.72 19.00 202.23 — 1652.53

Table 5: Perplexity comparison on the WikiText-103 evaluation set. The upper table shows GPT-2 Medium variants
trained for 3k steps, and the lower table shows GPT-2 Small variants trained for Sk steps. All models use a sequence
length of 1024.
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Figure 8: Visualization of CABLE positional biases across all attention heads in the final layer of GPT-2 Small,
shown for a randomly sampled input sequence. As like other additive RPEs, these biases are added to the attention
scores. The varying patterns across tokens highlight the context-dependent nature of CABLE.
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Figure 9: Visualization of DAPEv2+CABLE positional biases across all attention heads in the final layer of GPT-2
Small, shown for a randomly sampled input sequence. As like other additive RPEs, these biases are added to the
attention scores. The varying patterns across tokens highlight the context-dependent nature of CABLE.
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Figure 10: Visualization of Kerple positional biases across all attention heads in the final layer of GPT-2 Small,
shown for a randomly sampled input sequence. As like other additive RPEs, these biases are added to the attention
scores. The uniform patterns across tokens highlight the context-independent nature of Kerple.
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Figure 11: Visualization of DAPEv2+Kerple positional biases across all attention heads in the final layer of GPT-2
Small, shown for a randomly sampled input sequence. As like other additive RPEs, these biases are added to
the attention scores. The varying patterns across tokens highlight the context-dependent nature of Kerple when
augmented with DAPEv2.
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Figure 12: Visualization of ALiBi positional biases across all attention heads in the final layer of GPT-2 Small,
shown for a randomly sampled input sequence. As like other additive RPEs, these biases are added to the attention
scores. The uniform patterns across tokens highlight the context-independent nature of ALiBi.
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Figure 13: Visualization of Fire positional biases across all attention heads in the final layer of GPT-2 Small, shown
for a randomly sampled input sequence. As like other additive RPEs, these biases are added to the attention scores.
The uniform patterns across tokens highlight the context-independent nature of Fire.
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Figure 14: Visualization of T5-bias positional biases across all attention heads in the final layer of GPT-2 Small,
shown for a randomly sampled input sequence. As like other additive RPEs, these biases are added to the attention
scores. The uniform patterns across tokens highlight the context-independent nature of T5-bias.
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Figure 15: Visualization of RoPE attention scores across all attention heads in the final layer of GPT-2 Small, shown
for a randomly sampled input sequence. Since, RoPE is a non-additive RPE, these scores are the final attention
scores, obtained by modifying the query and key vectors.
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