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Abstract

Reinforcement learning with verifiable rewards
(RLVR) has become a key technique for en-
hancing large language models (LLMs), with
verification engineering playing a central role.
However, best practices for RL in instruction
following remain underexplored. In this work,
we explore the verification challenge in RL for
instruction following and propose VERIF, a
verification method that combines rule-based
code verification with LLM-based verification
from a large reasoning model (e.g., QwQ-32B).
To support this approach, we construct a high-
quality instruction-following dataset, VERIN-
STRUCT, containing approximately 22,000 in-
stances with associated verification signals. We
apply RL training with VERIF to two models,
achieving significant improvements across sev-
eral representative instruction-following bench-
marks. The trained models reach state-of-the-
art performance among models of comparable
size and generalize well to unseen constraints.
We further observe that their general capabil-
ities remain unaffected, suggesting that RL
with VERIF can be integrated into existing RL
recipes to enhance overall model performance.
We have released our datasets, codes, and mod-
els to facilitate future research1.

1 Introduction

Reinforcement learning with verifiable rewards
(RLVR) has emerged as a key technique for enhanc-
ing large language models (LLMs), leading to vari-
ous advanced LLMs, such as DeepSeek R1 (Guo
et al., 2025). The core component of RLVR is ver-
ification engineering. Recently, numerous works
have explored reliable verification across diverse
domains, such as math (Lambert et al., 2024; Guo
et al., 2025; Luo et al., 2025b), code (Wang et al.,
2024b; Luo et al., 2025a), logic (Xie et al., 2025),

* Corresponding author: Juanzi Li
1https://github.com/THU-KEG/VerIF

Could you give a simple, friendly, and imaginative 
explanation of how solar panels work, as if you’re 
talking to a curious five-year-old? Submit your 
response that contains at least 160 words.

Hard Constraint

Long chain-of-
thought 

reasoning

def check (res):
... return False
return True

Verification Score for Instruction Following

Soft Constraint

Figure 1: A simplified illustration of VERIF. The in-
struction constraints are categorized as soft or hard and
verified using different methods in VERIF.

medicine (Chen et al., 2024; Wang et al., 2025),
and finance (Qian et al., 2025b; Liu et al., 2025a).

In this work, we explore verification engineering
for reinforcement learning in instruction following.
Specifically, this work focuses on the following of
constraints in the instruction (Zhou et al., 2023),
such as response length, as shown in Figure 1. The
constraints are usually divided into two types: hard
constraints, which can be verified using simple
rules, e.g., length, and soft constraints, which re-
quire semantic judgment, e.g., style. Assessing
whether a response satisfies these constraints pro-
vides a natural basis for verification in RLVR. How-
ever, reinforcement learning for instruction follow-
ing remains underexplored. The only notable work,
TULU 3 (Lambert et al., 2024), applies RLVR to
enhance instruction following. However, the im-
provement is limited, and it focuses solely on hard
constraints, neglecting soft constraints. Therefore,
the best practice of verification engineering for RL
in instruction following remains under-explored.

Given the above issues, we explore the best prac-
tice of RLVR in instruction following and propose
VERIF, a verification method for instruction fol-
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lowing that combines rule-based code verification
with verification from a large reasoning model. As
shown in Figure 1, hard constraints are verified
through code, and soft constraints are handled by
a large reasoning model, which enables effective
verification through long chain-of-thought reason-
ing (Liu et al., 2025b). VERIF requires no man-
ual annotations or reference answers, offering an
efficient solution for automatic verification. To
support this approach, we construct a high-quality
dataset, VERINSTRUCT, containing approximately
22, 000 instances with verification. The data con-
struction involves two main steps: (1) instruction
construction with multiple constraints, where we
apply constraint back-translation (Qi et al., 2024)
to augment existing instructions with additional
constraints; (2) verification generation. For hard
constraints such as length, we use Qwen2.5-72B-
Instruct (Yang et al., 2024) to generate verification
code. For soft constraints, they are verified online
during RL training using large reasoning models.

We apply reinforcement learning with VERIF
on two SFT-trained models using VERINSTRUCT,
including TULU 3 SFT (Lambert et al., 2024) and
DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025).
Specifically, VERIF computes the final reward as
the average of hard constraint scores (0 or 1) from
code validation and soft constraint scores (0 or 1)
determined by the QwQ-32B (Qwen, 2025). We
train the models using the GRPO algorithm (Shao
et al., 2024). We evaluate the trained models on sev-
eral widely-used instruction-following benchmarks,
including IFEval (Zhou et al., 2023), Multi-IF (He
et al., 2024b), SysBench (Qin et al., 2024), Follow-
Bench (Jiang et al., 2024), and CFBench (Zhang
et al., 2024a). Experimental results show that the
RLVR-trained models using VERIF achieve signif-
icant improvements. Notably, the model trained
based on TULU 3 SFT achieves state-of-the-art
performance among models of similar parameter
scale and outperforms TULU 3 (Lambert et al.,
2024), which is trained with extensive DPO data
and rule-based RLVR. The results demonstrate the
effectiveness of our verification method VERIF.

We conduct further analytical experiments. We
first evaluate the generalization of the trained mod-
els on general instruction following tasks, includ-
ing AlpacaEval 2.0 (Dubois et al., 2024) and MT-
Bench (Zheng et al., 2023), and mathematical rea-
soning tasks, including GSM8K (Cobbe et al.,
2021) and Omni-MATH (Gao et al., 2025), nat-
ural language understanding datasets: MMLU-

Pro (Wang et al.) and DROP (Dua et al., 2019), and
a natural language inference benchmark BBH (Suz-
gun et al., 2023). We observe that RL with VERIF
preserves general and mathematical capabilities,
indicating its potential as an additional RL stage
to enhance instruction following without affecting
other skills. We analyze the performance gains of
trained models across different constraint types and
find that RL with VERIF exhibits good generaliza-
tion to unseen constraints. We also conduct abla-
tion studies on the verification method, using only
code validation or only LLM verification, both of
which lead to notable performance drops. Finally,
we develop a smaller and efficient 7B LLM as the
soft constraint verifier. Specifically, we extract ap-
proximately 130k complex instructions from Wild-
Chat (Zhao et al., 2024) and Infinity Instruct (BAAI,
2024), collect responses from 6 different LLMs,
and use QwQ to generate constraint verification.
We then train DeepSeek-R1-Distill-Qwen-7B on
this dataset as a generative verifier for soft con-
straints, achieving RL performance comparable to
the model trained using QwQ-32B as the verifier.

2 Pilot Experiments

This section explores the potential of RL for in-
struction following (§ 2.1) and preliminarily ex-
plores different verification methods (§ 2.2) using
the reward benchmark IFBench (Peng et al., 2025).

2.1 Potential for RL Training

We first explore the potential of RL in instruction
following, as most previous works have adopted
supervised fine-tuning (SFT; Ouyang et al., 2022)
or direct preference optimization (DPO; Rafailov
et al., 2023), with limited use of RL. This raises
a key question: Does RL hold untapped potential
for instruction following? To explore this question,
we evaluate the pass@k performance of several
LLMs on the instruction following benchmark IFE-
val (Zhou et al., 2023). The motivation is that RL
enhances performance by increasing the likelihood
of sampling correct responses, and a high pass@k
at large k suggests untapped potential that RL can
exploit (Yue et al., 2025a). The experimental re-
sults of TULU 3 SFT and DeepSeek-R1-Distill-
Qwen-7B are shown in Figure 2. We can observe
that the results are much higher with larger k, with
pass@64 showing over a 20% increase compared
to pass@1. This suggests that LLMs can sample
correct answers on IFEval at higher k, with the
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Figure 2: Pass@k results (%) of two SFT-trained LLMs
on IFEval. We report the prompt-level strict score.

Method Hard Soft Overall

Code-only 60.6 13.2 48.6
LLM-onlyQWQ 31.5 48.1 37.4
LLM-onlyQWEN 19.7 45.3 28.6
Code+LLMQWQ 61.3 48.1 58.1

Table 1: Accuracy (%) of three verification methods on
IFBench. “Hard” or “Soft” indicates that the rejected
response only violates certain hard or soft constraints.

potential that can be exploited during RL training.

2.2 Verification Engineering

We preliminarily conduct verification engineer-
ing using reward model benchmarks. Specifically,
we evaluate different verification methods on IF-
Bench (Peng et al., 2025), a benchmark designed
for instruction-following rewards that consists of
an instruction and two responses, where the task is
to select the response that better follows the instruc-
tion. IFBench includes 3 common hard constraints:
length, format, and keyword, and 2 common soft
constraints: style and content. We explore three
verification methods: (1) code-only verification,
similar to RewardAgent proposed by Peng et al.
(2025), which uses automatically generated code
for each constraint verification; (2) LLM-only veri-
fication, which directly uses the LLM as the judge;
(3) code+LLM verification, which applies code ver-
ification for hard constraints and LLM for soft con-
straints. We explore using QwQ-32B (Qwen, 2025)
and Qwen2.5-72B-Instruct (Yang et al., 2024) as
the LLMs. The results are shown in Table 1. We
can observe that code+LLM verification performs
much better and reasoning LLMs (QwQ) also per-
form better than non-reasoning LLMs (Qwen).

We further investigate the accuracies of code and
LLM verification on different types of constraints,
and report their respective accuracy for soft and
hard constraints in Table 1, which further confirms
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Figure 3: Accuracy (%) of code-only or LLM-only
verification in verifying compliance with different types
of constraints. LLM-only adopts QwQ-32B.

that code verification is more effective for hard
constraints and LLM verification performs better
on soft constraints, supporting the rationale for the
code+LLM verification approach. The detailed re-
sults across different constraint types are shown
in Figure 3, and we can observe that LLMs per-
form particularly poorly on keyword and length
constraints, which may be due to inherent limita-
tions in numerical counting (Fu et al., 2024; Ball
et al., 2024). Since keyword and length constraints
can be efficiently verified with code, we conclude
that in instruction-following verification, hard con-
straints should be checked with code, and soft con-
straints can be reliably verified by advanced LLMs.

3 Method

This section introduces the formalization of VERIF
(§ 3.1), the construction process of VERINSTRUCT

(§ 3.2), and the RL training method (§ 3.3).

3.1 Verification Method

Suppose we are given an instruction x, which in-
cludes the task decription and a set of constraints
C = {c1, c2, ..., cn}. We follow the task defini-
tion of instruction-following by Zhou et al. (2023):
given x, generating a response y that satisfies all
constraints in C. In this work, our primary goal is
to accurately verify whether y meets all constraints
and to apply this reliable verification in reinforce-
ment learning training. Specifically, the constraint
set C consists of two types: hard constraints Ch,
which can be verified by simple rules or code (e.g.,
length), and soft constraints Cs, which require se-
mantic understanding (e.g., style). As explored in
§ 2.2, we propose a hybrid verification approach,
VERIF, that uses code verification for Ch and LLM
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Can you explain how solar panels work?

Sure! Solar panels are devices that convert sunlight into 
electricity through the photovoltaic effect. …

Instruction

Response

1. A simple, friendly, and 
imaginative tone.
2. …

Soft Constraint Generation Hard Constraint Generation
1. Contain at least 160 
words
2. …

Could you give a simple, friendly, and imaginative 
explanation … contains at least 160 words.

Complex Instruction

Sure! Let’s imagine the Sun is a giant 
flashlight in the sky, shining down …

1. Writing Style
2. Semantic Elements

3.   …

Final Verification Score∈ [0, 1]

Cs Response Response

Aggregation

LLM Verification

[LLM] [Length] [Keyword] …

Verification Construction …

[Keyword]

[Length]
[LLM]

Policy Model

Code VerificationTagging Coding

Figure 4: Left: The construction process for VERINSTRUCT, including complex instruction generation and
verification construction. Right: Our verification method, VERIF, providing verification for instruction following.

verification for Cs. Formally, this is defined as:

VERIF(x, y) = F (Code(y, Ch),LLM(y, Cs))

Code(y, Ch) ∈ {0, 1} denotes whether y satis-
fies all hard constraints in Ch, and LLM(y, Cs) ∈
{0, 1} indicates whether y satisfies all soft con-
straints in Cs. F denotes the aggregation method
used to combine the code verification score and
the LLM verification score, including averaging or
multiplication. In this work, we consider only three
types of hard constraints, including length, format,
and keyword. All other constraints are taken as soft
and verified using LLMs. As explored in § 2.2, we
use large reasoning models for LLM-based verifica-
tion, which is a form of scaling up verification and
has been demonstrated effective in practice (Liu
et al., 2025b; ByteDance-Seed, 2025).

3.2 Data Construction Method

We construct a high-quality instruction-following
dataset for reinforcement learning, where each in-
stance is paired with a corresponding verification.
Prior works on enhancing instruction-following of
LLMs (Sun et al., 2024; Dong et al., 2024; Qi et al.,
2024) have primarily focused on generating com-
plex instructions and corresponding high-quality
responses for supervised fine-tuning (SFT). In this
work, we focus on generating complex instruc-
tions with associated verification, eliminating the
efforts to generate and filter high-quality responses.
As shown in Figure 4, the construction process
consists of two main parts: (1) Complex instruc-
tion generation. We adopt the constraint back-
translation approach (Qi et al., 2024) to generate

complex instructions, which produces few unrealis-
tic cases. Specifically, we randomly sample 25, 000
data instances from four high-quality datasets, in-
cluding Alpaca GPT4 (Peng et al., 2023), Orca
Chat (Es, 2023), Evol Instruct (Xu et al., 2023),
and OpenAssitant (Köpf et al., 2024). We use
Llama3.1-70B-Instruct (Grattafiori et al., 2024) to
generate constraints implicitly satisfied by each re-
sponse, such as language style. Since LLMs often
struggle with understanding length constraints (Sun
et al., 2024), we instead automatically synthesize
them based on response length using Python scripts.
We combine the generated constraints with the orig-
inal instruction to form the final complex instruc-
tion. (2) Verification construction. We then auto-
matically generate a verification method for each
constraint. For hard constraints, including length,
format, and keyword presence, we use Qwen2.5-
72B-Instruct to generate verification Python code.
Given the simplicity of these generated Python
code scripts, we manually check them and find
nearly no errors. For soft constraints, we do not
generate code but instead tag them with “LLM”,
which indicates that verification during RL train-
ing should be online produced by an LLM. We
finally filter out instructions with fewer than 2 con-
straints, resulting in VERINSTRUCT, which con-
tains 22, 000 instructions, each including an aver-
age of 6.2 constraints and corresponding verifica-
tion methods. The details of VERINSTRUCT are
placed in Appendix A.

3.3 RL Training

We conduct reinforcement learning using VERIF
on VERINSTRUCT. Specifically, we adopt the
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Model IFEval Multi-IF SysBench FollowBench CFBench

Pr. (S) Pr. (L) Ins. (S) Ins. (L) Turn 1 Turn 2 Turn 3 ISR SSR ISR

GPT-4o 79.9 84.8 85.6 89.6 82.3 71.7 59.3 80.2 75.3 67.0
QwQ-32B 82.8 86.1 88.0 90.4 64.2 56.6 48.4 67.8 73.5 −
Qwen2.5-7B-Instruct 71.5 74.1 79.4 81.3 75.3 57.9 47.0 − 65.9 50.0
LLaMA3.1-8B-Instruct 72.6 77.3 80.8 84.2 71.3 62.8 54.6 − 65.9 35.0
TULU 3 79.7 82.8 85.1 87.5 82.1 63.2 51.2 48.9 70.3 43.0

Crab-7B-DPO 47.3 57.1 59.7 67.9 47.2 36.5 28.9 − 56.3 30.0
Conifer-7B-DPO 48.1 52.3 59.1 63.3 50.7 37.6 26.6 − 56.9 30.0
UltraIF-8B-DPO† 71.3 75.4 79.4 83.1 69.6 58.3 46.9 − 62.6 −
R1-Distill-Qwen-7B 59.9 65.1 70.4 74.2 55.8 43.6 32.7 16.9 53.9 37.0

+VERIF 75.6 79.5 82.7 85.5 66.0 53.8 41.9 26.5 61.0 44.0
TULU 3 SFT 68.4 71.7 76.3 79.5 67.3 50.9 40.3 33.2 62.0 32.0

+VERIF 84.5 87.1 89.3 91.4 79.4 65.2 54.0 54.7 68.6 42.0

Table 2: Experimental results (%) on several representative instruction-following benchmarks. “Pr.” and “Ins.”
denote prompt-level and instruction-level metrics respectively. “S” and “L” mean strict and loose respectively. †
denotes the results are sourced from the original paper (An et al., 2025). All the other results are reproduced by us
in this paper. For reasoning LLMs, we remove the thinking tokens and evaluate using only the final response.

GRPO algorithm (Shao et al., 2024) and perform 16
rollouts per prompt for value estimation. For each
response, the reward is provided online by VERIF.
To reduce the overhead of LLM-based verification,
we input all soft constraints Cs to the LLM at once
to assess whether the response satisfies all of them
in a single pass. We conduct RL training using the
VeRL framework2 and integrate a parallel reward
computation mechanism to accelerate RL training.

4 Experiments

This section introduces experimental setup (§ 4.1),
main results (§ 4.2), analytical experiments (§§ 4.3
to 4.5), and developing a smaller verifier (§ 4.6).

4.1 Experimental Setup

Reported Models We conduct RL training based
on two SFT-trained models: TULU 3 SFT (Lam-
bert et al., 2024) and DeepSeek-R1-Distill-Qwen-
7B (Guo et al., 2025). For the specific implemen-
tation of VERIF, we use QwQ-32B as the LLM
verifier and set F in Equation 3.1 as average. For
comparison, we evaluate TULU 3 (Lambert et al.,
2024), which is trained directly based on TULU
3 SFT with extensive DPO and RLVR training.
We also evaluate various industrial models, includ-
ing GPT-4o (Hurst et al., 2024), QwQ-32B (Qwen,
2025), Qwen2.5-7B-Instruct (Yang et al., 2024),
LLaMA3.1-8B-Instruct (Grattafiori et al., 2024),
and open-source models specifically optimized for
instruction following, including Conifer (Sun et al.,
2024), Crab (Qi et al., 2024), and UltraIF (An et al.,
2025). More details are placed in appendix B.

2https://github.com/volcengine/verl

Evaluation benchmarks We evaluate the mod-
els on several representative instruction-following
benchmarks, including IFEval (Zhou et al., 2023),
the most commonly used dataset; Multi-IF (He
et al., 2024b), which includes multi-turn and multi-
lingual instruction following; SysBench (Qin et al.,
2024), which evaluates instruction following to sys-
tem prompts; FollowBench (Jiang et al., 2024) and
CFBench (Zhang et al., 2024a), which cover a com-
prehensive range of constraint types.

4.2 Main Results

All experimental results are presented in Table 2.
We have the following observations: (1) Reinforce-
ment learning with VERIF demonstrates strong per-
formance. Compared to their corresponding back-
bones (R1-Distill-Qwen-7B and TULU 3 SFT),
the trained models using RL perform much bet-
ter. Notably, the model trained based on TULU 3
SFT even outperforms the original TULU 3 (Lam-
bert et al., 2024), which is trained based on TULU
3 SFT using approximately 271k DPO pairs and
specialized RLVR data. Among models with sim-
ilar parameter scales, the model trained based on
TULU 3 SFT achieves state-of-the-art performance
and surpasses several open-source models devel-
oped by industry using larger datasets and more
resources. This demonstrates the potential of RL
training for instruction following and the effective-
ness of VERIF in providing reliable rewards. (2)
RL with VERIF generalizes effectively to unseen
instruction-following tasks. Although the training
dataset VERINSTRUCT contains only English and
single-turn instruction-following data, the trained
model shows substantial improvements on multi-
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Model AlpacaEval 2.0 MT-Bench GSM8K Omni-MATH MMLU-Pro BBH DROP

Qwen2.5-7B-Instruct 37.5 7.8 91.4 13.6 56.5 71.8 77.2
Llama3.1-8B-Instruct 29.4 6.0 83.6 10.8 48.1 63.0 74.4
TULU 3 39.9 7.5 88.4 14.2 35.9 68.5 69.4

R1-Distill-Qwen-7B 16.6 5.7 87.0 35.0 54.3 21.5 74.0
+VERIF 15.5 5.9 90.0 33.6 54.8 32.2 75.6

TULU 3 SFT 7.9 6.3 78.8 11.4 36.4 67.4 58.3
+VERIF 22.0 7.0 83.4 12.4 36.0 67.9 59.5

Table 3: Experimental results (%) on various general natural language benchmarks.

lingual, multi-turn (Multi-IF) instruction following,
and following system prompts (SysBench). This
suggests that the patterns of instruction following
may be inherently generalizable and that RL further
enhances this generalization (Chu et al., 2025). (3)
RL with VERIF benefits both reasoning and non-
reasoning models. As reinforcement learning has
demonstrated its effectiveness in enhancing reason-
ing abilities on challenging tasks (Guo et al., 2025;
Luo et al., 2025a), such as math and code, we sug-
gest integrating instruction-following training into
RL pipelines. Our further analysis (§ 4.3) shows
that general capabilities, such as mathematical rea-
soning and language understanding, do not degrade
after RL with VERIF and may even slightly im-
prove, indicating that RL with VERIF can be inte-
grated into broader model development for enhanc-
ing the model’s instruction following capabilities.
(4) Models developed by the academic community,
such as Conifer, Crab, and UltraIF, show relatively
lower performance, which is reasonable given their
focus on exploring effective SFT data synthesis
and limited training resources. Given that there is
abundant open-source SFT data, such as Infinity In-
struct (BAAI, 2024) with approximately 7 million
instances, we encourage the research community
to devote more attention to constructing RL data
instead, as RL data remains scarce and RL has been
demonstrated to be effective for instruction follow-
ing. In conclusion, RL with VERIF effectively en-
hances instruction-following capabilities, and we
encourage more efforts on developing effective RL
methods or data for instruction-following.

4.3 Analysis on General Capabilities

We further investigate the general capabilities of the
trained models to assess the broader impact of RL
with VERIF. Specifically, we conduct an evaluation
on various representative general benchmarks, in-
cluding general instruction-following datasets that
focus on task completion and are evaluated using

50 60 70 80 90 100
Accuracy (%)

Change Case
Combination

D. Content
D. Format
Keywords
Language

Length
Punctuation

Startend

TULU3 + VerIF TULU3

Figure 5: Prompt-level strict scores (%) across different
types of constraints on IFEval. “D.” denotes Detectable.

LLM-as-a-judge: AlpacaEval 2.0 (Dubois et al.,
2024) and MT-Bench (Zheng et al., 2023), math-
ematical reasoning benchmarks: GSM8K (Cobbe
et al., 2021) and Omni-Math (Gao et al., 2025),
natural language understanding datasets: MMLU-
Pro (Wang et al.) and DROP (Dua et al., 2019), and
a natural language inference benchmark BBH (Suz-
gun et al., 2023). The results are shown in Table 3.
We can observe that RL training does not degrade
general performance and even improves the perfor-
mance in some cases, such as MT-Bench, GSM8K,
and BBH. We attribute this to a key difference
between RL and SFT: while SFT learns and memo-
rizes patterns from data and is prone to catastrophic
forgetting (Chu et al., 2025), RL typically maxi-
mizes optimal patterns it has learned (Yue et al.,
2025b), thereby reducing the risk of knowledge for-
getting. These results suggest a promising finding
that instruction-following reinforcement learning
can be integrated into existing RL pipelines to en-
hance adherence to instructions without compro-
mising the model’s general capabilities.

4.4 Analysis on Constraint Types

VERINSTRUCT includes only five constraint types:
length, keyword, format, content, and style. We fur-
ther investigate the improvements across different
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Figure 6: Reward curves during RL training with dif-
ferent verification methods. We visualize the first 200
steps and smooth the data for better visualization.

Model IFEval Multi-IF CFBench

VERIF 84.5 54.0 42.0
w/o code* 81.7 51.2 41.0
w/o code 76.2 52.0 39.0
w/o LLM 74.7 46.0 32.0

VERIF (Qwen-2.5) 76.9 48.5 38.0

Table 4: Ablation results (%) for different verification
methods. “Qwen-2.5” uses Qwen2.5-72B-Instruct as
the LLM instead of QwQ-32B. We report the prompt-
level strict score for IFEval, the Turn 3 score for Multi-
IF, and the ISR score for CFBench.

constraint types in IFEval to analyze the general-
ization of constraint adherence. Results are shown
in Figure 5. We observe clear improvements across
most types except for “Startend” and “Language”
(which already achieves 100% accuracy). This in-
dicates that RL training can generalize instruction-
following ability to unseen constraint types. For
constraint types covered in VERINSTRUCT, such
as length, keyword, and content, the improvements
are more pronounced, which demonstrates the pre-
cision of the verification provided by VERIF. This
also suggests that incorporating datasets with richer
constraint types can further improve performance.
We encourage the community to explore more di-
verse data for RL for instruction following.

4.5 Ablation Studies

We conduct ablation studies on the verification
method. Specifically, we perform three ablations:
(1) “w/o code*”, which uses only the LLM to verify
all constraints; (2) “w/o code”, which uses only the
LLM for soft constraints; (3) “w/o LLM”, which
verifies only hard constraints using Python code
scripts. We conduct RL training using different
verification methods based on TULU 3 SFT. The
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Figure 7: Reward curves during RL training using dif-
ferent LLM verifiers in VERIF. Qwen-7B is short for
DeepSeek-R1-Distilled-Qwen-7B.

reward curves during training are shown in Fig-
ure 6. We observe that using only code verification
yields lower rewards and limited growth, likely due
to the difficulty of following hard constraints. In
contrast, using only LLM verification results in
higher and more pronounced reward growth, pos-
sibly because the LLM verifier is easier to fit or
hack (Li et al., 2024). The results are shown in
Table 4. We can observe that removing any veri-
fication component degrades model performance
compared to VERIF. Notably, “w/o LLM”, which
uses only Python scripts for hard constraint veri-
fication, performs significantly poorly. This may
be due to that approximately 77.7% constraints in
training data are soft. This suggests that using code
verification for hard constraints only, as adopted
in training TULU 3 (Lambert et al., 2024), is sub-
optimal for RL in instruction following. We also
adopt Qwen2.5-72B-Instruct as the LLM verifier
in VERIF and find it significantly underperforms
QwQ-32B. The potential reason may be that in our
implementation of VERIF, the LLM is required
to verify whether a response satisfies all soft con-
straints in a single pass, which requires step-by-step
reasoning and poses significant challenges. The
results demonstrate the potential of scaling up ver-
ification (Liu et al., 2025b). In conclusion, we
suggest that the best practice for verification in RL
for instruction following is VERIF with reasoning
models as the LLM verifier. We further explore a
smaller reasoning LLM as the verifier in § 4.6.

4.6 Training a Smaller Verifier

Although we have demonstrated VERIF with a
large reasoning model, such as QwQ-32B, is ef-
fective for RL in instruction following, the long
outputs of QwQ-32B lead to high latency during
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Model IFEval Multi-IF SysBench FollowBench CFBench

Pr. (S) Pr. (L) Ins. (S) Ins. (L) Turn 1 Turn 2 Turn 3 ISR SSR ISR

VERIF (QwQ-32B) 84.5 87.1 89.3 91.4 79.4 65.2 54.0 54.7 68.6 42.0

VERIF (Qwen-7B) 77.1 80.4 84.3 86.6 78.5 60.8 49.0 42.7 62.0 38.0
VERIF (IF-Verifier-7B) 80.0 84.5 86.0 89.4 80.1 63.7 52.7 49.5 68.8 38.0

Table 5: Experimental results (%) of models trained using different LLM verifiers. Qwen-7B is short for DeepSeek-
R1-Distilled-Qwen-7B. The base model used for RL training is TULU 3 SFT.

online reward computation. For example, when
training TULU 3 SFT, we adopt 8 H800 GPUs for
deploying QwQ-32B and set batch size to 32, roll-
outs to 16, and the average time to obtain the reward
for a batch reaches about 180 seconds, accounting
for roughly 80% of the time per training step. To
address this, we explore using smaller reasoning
models as LLM verifiers while maintaining compa-
rable performance. A straightforward approach is
to distill a verifier from QwQ-32B. Therefore, we
distill 130k SFT data instances from QwQ, where
each instance consists of an instruction, a response,
and a critic indicating whether a response satisfies
the given constraints in the instruction. The data
collection process is detailed in Appendix C.

We fine-tune DeepSeek-R1-Distill-Qwen-7B on
the collected dataset, resulting in IF-Verifier-7B.
We then conduct RL training on TULU 3 SFT using
the new LLM verifiers in VERIF. Figure 7 shows
the reward curves during training. We can observe
that DeepSeek-R1-Distill-Qwen-7B yields higher
initial rewards, but its reward growth is limited.
IF-Verifier-7B exhibits a similar reward trajectory
as QwQ-32B. The results of the trained models
are shown in Table 5. We observe that using IF-
Verifier-7B as the LLM verifier in VERIF signifi-
cantly outperforms DeepSeek-R1-Distill-Qwen-7B
and achieves competitive performance to QwQ-
32B. Moreover, IF-Verifier-7B reduces computa-
tional cost a lot. Deploying IF-Verifier-7B requires
only one single H800 GPU, with an average re-
ward computation time of 120 seconds per batch,
which can be further reduced with multi-GPUs.
This makes VERIF a practical method for effective
RL training under limited resources. This work
preliminarily explores more efficient LLM verifiers
and encourages further efforts (Liu et al., 2025b).

5 Related Work

Instruction following requires models to generate
responses that satisfy complex user instructions.
Recent work has primarily focused on following
constraints in instructions, such as length and key-

word (Zhou et al., 2023). Existing efforts to en-
hance instruction-following capabilities primarily
focus on methods for (1) collecting SFT data, in-
cluding directly distilling from larger LLMs (Sun
et al., 2024; He et al., 2024a; Dong et al., 2024;
Ren et al., 2025), back-translation (Qi et al., 2024;
Pham et al., 2024), and training dedicated instruc-
tion composers (An et al., 2025), and (2) collecting
preference pairs (Cheng et al., 2024; Pham et al.,
2024; Dong et al., 2024; Zhang et al., 2024b). No-
tably, two works are similar to ours: AutoIF (Dong
et al., 2024), which constructs both instructions
and corresponding verification code, but but does
not explore RL training or soft constraints verifi-
cation; and TULU 3 (Lambert et al., 2024), which
adopts RLVR for instruction following but the im-
provement is limited and also does not consider
soft constraints. In summary, the best practice for
RL in instruction following remains underexplored.

As RL has proven to be an effective post-training
technique, many prior studies have explored its ap-
plications across various domains, primarily focus-
ing on verification engineering, such as math (Lam-
bert et al., 2024; Guo et al., 2025; Luo et al., 2025b;
ByteDance-Seed, 2025), code (Wang et al., 2024b;
Luo et al., 2025a), logic (Xie et al., 2025), tool
using (Feng et al., 2025; Jin et al., 2025; Qian et al.,
2025a; Li et al., 2025; Zheng et al., 2025), machine
translation (Wang et al., 2024a; He et al., 2025),
medicine (Chen et al., 2024; Wang et al., 2025),
and finance (Qian et al., 2025b; Liu et al., 2025a).
In this work, we explore the best practice of RL
for instruction following and propose VERIF, an
effective verification method for RL training.

6 Conclusion

In this work, we propose VERIF, an effective verifi-
cation method for RL in instruction following. We
also construct VERINSTRUCT, a dataset for instruc-
tion following where each instruction is paired with
corresponding verification signals. We perform RL
training with VERIF on VERINSTRUCT, leading
to significant improvements. The trained models
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achieve SoTA performance on several representa-
tive instruction-following benchmarks at a similar
model scale, without hurting general capabilities.
This work demonstrates the promising potential
of RL in instruction following, and we encourage
further exploration of novel RL methods and data.

Limitations

We discuss the limitations of our work here, in-
cluding two main aspects: (1) The training dataset
VERINSTRUCT includes only English data, which
may limit the broader usage of the dataset. We
observe that RL on VERINSTRUCT still general-
izes well to multiple languages, and we encourage
the community to collect more diverse data cover-
ing more languages. (2) VERIF relies on an LLM
as the verifier, which inherits common issues of
LLM-as-a-judge, such as potential biases (Ye et al.,
2024) and vulnerability to adversarial attacks (Shi
et al., 2024). We believe developing more robust
and efficient LLM judges (Liu et al., 2025b) is a
promising direction and leave it for future work.

Ethical Considerations

We discuss potential ethical concerns as follows:
(1) Intellectual property. Alpaca-GPT4 and Infinity-
Instruct are licensed under CC BY-NC 4.03, Ope-
nAssistant is licensed under Apache License 2.04.
WildChat is licensed under ODC-By license5. Evol-
Instruct and Orca-Chat do not specify explicit li-
censes. We strictly adhered to all claimed licenses.
Our dataset will be released under the Apache Li-
cense 2.0. We believe the original open-source
datasets are properly anonymized, and we do not
introduce any additional sensitive information. (2)
Potential risk control. In this paper, we propose
VERIF, a verification method for RL to improve
instruction-following capabilities of LLMs. As
VERIF includes an LLM verifier, it inherits the
known risks of LLMs, such as potential bias (Gal-
legos et al., 2024; Ye et al., 2024). We do not intro-
duce any additional risks. Users should not exploit
VERIF for reward hacking (Skalse et al., 2022) and
are responsible for verifying the compliance of the
models trained using it. (3) AI assistance. We use
ChatGPT and Claude to refine some sentences.

3https://creativecommons.org/licenses/by-nc/4.
0/

4https://www.apache.org/licenses/LICENSE-2.0
5https://opendatacommons.org/licenses/by/1-0/
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Appendices

A VERINSTRUCT

A.1 Dataset Construction Details
Following Qi et al. (2024), we collect original
instructions and responses from several publicly
available instruction-tuning datasets, including Al-
paca GPT-4 (Peng et al., 2023), Orca Chat (Es,
2023), Evol Instruct (Xu et al., 2023), and Ope-
nAssistant (Köpf et al., 2024). We then apply a
back-translation-based method to extract both soft
and hard constraints from the instruction-response
pairs. Table 6 presents the prompt to generate soft
constraints used in VERINSTRUCT construction.
The hard constraints, including Length, Keyword,
and selected aspects of Format, are automatically
generated through Python-based processing. These
constraints are subsequently combined to form the
final constraint-enhanced prompt.

A.2 Dataset Statistics
Figure 8 shows the distribution of 22, 000 in-
stances in the VERINSTRUCT dataset. Following
IFBench (Peng et al., 2025), we categorize con-
straints into five types: length, keyword, format,
content, and style. The left chart presents the pro-
portional distribution of constraint types. Since
certain format constraints, such as those requiring
hierarchical output structures, are not easily veri-
fiable via Python, we define format, content, and
style as soft constraints, which together account
for 77.7% of the total. Length and keyword are de-
fined as hard constraints, making up the remaining
22.3%. The right chart categorizes the data by the
number of constraints after merging.

B Experimental Details

We train our model using the open-source VeRL
framework6 with the GRPO algorithm (Shao et al.,
2024), setting the KL loss coefficient to 1× 10−3.
The batch size is set to 32, the number of rollouts
to 16, the maximum generation length of rollout
to 4, 096, and the learning rate to 1 × 10−6. We
save checkpoints every 20 steps during training.
Following TULU 3 (Lambert et al., 2024), we use
IFEval (Zhou et al., 2023) as the validation set to
select the best checkpoint. We train the models
for one epoch on VERINSTRUCT with early stop-
ping if performance on IFEval does not improve
for more than 5 checkpoints. The best checkpoints

6https://github.com/volcengine/verl

Figure 8: left: Proportional distribution of constraint
types in the dataset. right: Distribution of the number
of constraints per instruction.

are typically found within the first 200 steps. For
evaluation, we set the sampling temperature to 0
to ensure reproducibility. For all evaluations us-
ing LLM-as-a-judge, we adopt gpt-4o-2024-11-20
as the judge. Since the Conifer model (Sun et al.,
2024) is not publicly open-sourced, we instead train
a model using its SFT and DPO data, and the re-
ported results of Conifer are evaluated based on our
reproduced model. For the evaluation of reasoning
LLMs, we remove thinking tokens and evaluate
only the final responses. For evaluation of general
capabilities, we report the length-controlled win
rate for AlpacaEval 2.0 (Dubois et al., 2024). Both
training and evaluation are conducted on Nvidia
H800 GPUs, with the entire training process taking
approximately 1, 900 GPU hours in total.

C Training a Small Verifier

We provide a detailed description of the training
data construction process and training details. Fol-
lowing the construction of VERINSTRUCT, we first
generate an additional 20, 000 data instances. To
ensure diversity, we additionally mined complex
instructions from WildChat (Zhao et al., 2024) and
Infinity Instruct (BAAI, 2024). Specifically, we
use Qwen2.5-72B-Instruct to extract constraints
from each instruction and classify them as hard
or soft. For hard constraints, we adopt Qwen2.5-
72B-Instruct to generate corresponding verifica-
tion Python code scripts. The full prompt is pre-
sented in Table 7. For each instruction, we ran-
domly sample a response from 6 different models,
including Llama3.1-8B-Instruct (Grattafiori et al.,
2024), Llama-3.3-70B-Instruct (Grattafiori et al.,
2024), Qwen2.5-7B-Instruct (Yang et al., 2024),
Qwen2.5-72B-Instruct (Yang et al., 2024), QwQ-
32B (Qwen, 2025), DeepSeek-R1-Distilled-Qwen-
32B (Guo et al., 2025). We then adopt QwQ-32B
to generate a step-by-step verification indicating
whether the output satisfies the instruction for each
instruction-response pair. As a result, we collect
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about 130k instruction–response pairs with corre-
sponding step-by-step verification. For SFT train-
ing, we use the open-source alignment-handbook
framework (Tunstall et al.). Based on DeepSeek-
R1-Distill-Qwen-7B, we train the model on the
collected dataset for 2 epochs, with 2× 10−5 learn-
ing rate, 64 batch size, 8, 192 max sequence length,
resulting in the verifier IF-Verifier-7B.
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Prompt: Generating Constraints from Instruction and Output
As a linguist with expertise in contextual language nuances, please add constraints to enrich the #Given Instruction# based on the
#Given Output#. The goal is to enhance the specificity and detail of the instruction to ensure that the response is more aligned
with the output text.
To supplement the instruction using the output, please consider adding specific and detailed constraints across the following
dimensions:

• Desired_Writing_Style: Specify the intended tone or narrative voice, such as humorous, formal, poetic, or conversational.

• Semantic_Elements: Clarify the core meaning, focus, or conceptual emphasis that the response should reflect.

• Morphological_Constraints: Indicate any forbidden words, expressions, or formatting (e.g., avoid passive voice or
markdown).

• Multi-lingual_Constraints: Specify the language(s) or code-switching rules to be used in the response.

• Hierarchical_Instructions: Define a priority order among multiple tasks, outlining how they should be structured or
emphasized.

• Special_Output_Format: Specify required formats, such as Python code, JSON structure, tables, LaTeX, or HTML.

• Paragraphs_Constraints: Indicate how many paragraphs are needed, and whether any separators (e.g., horizontal lines,
“***”) should be used.

• Specific_Sentence: Require inclusion of a specific sentence at the beginning or end of the response.

• Key_Formatting: Specify formatting of key phrases—such as using bold, italics, or ALL CAPS—based on content in the
#Given Output#.

• Item_Listing_Details: Define how items should be listed, including use of symbols like bullets (•), numbers (1., 2., 3.), or
dashes (-).

#Given Instruction#
{Instruction}

#Given Output#
{Response}

Please format your response directly in JSON, using "Constraint_Type" as the key and the specific constraint as its value.
Ensure that each constraint is a concise and complete sentence of 10–20 words, and use varied phrasing across types.
If a specific type of constraint cannot be derived from the #Given Output#, assign the value "NULL". For example:
"Constraint_Type": "NULL",
Do not include any headings or prefixes in your response.

Table 6: Prompt for generating format, content, and style constraint types based on the back-translation method.
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Prompt: Extracting Constraints from Instruction
You are an expert in natural language processing and constraint checking. Your task is to analyze a given instruction and identify
which constraints need to be checked.
The ‘instruction’ contains a specific task query along with several explicitly stated constraints. Based on the instructions, you
need to return a list of checker names that should be applied to the constraints.
[Task Example 1]
Instruction: Write a 300+ word summary of the Wikipedia page "https://en.wikipedia.org/wiki/Raymond_III_Count_of_Tripoli".
Do not use any commas and highlight at least 3 sections that have titles in markdown format, for example *highlighted section
part 1*, *highlighted section part 2*, *highlighted section part 3*.
Response: NumberOfWordsChecker: 300+ word <sep> HighlightSectionChecker: highlight at least 3 sections that have titles in
markdown format <sep> ForbiddenWordsChecker: Do not use any commas.
#Task Instruction#
{Instruction}

### Your task:
- Generate the appropriate checker names with corresponding descriptions from the original instruction description. - Return the
checker names with their descriptions separated by <sep>.
- Focus only on the constraints explicitly mentioned in the instruction.
- Ensure that each constraint is complete, such as specifying whether the 300-word limit applies to the entire text or a specific
section. A defined scope is required.
- Do **not** generate checkers for the task query itself or its quality.
- If the instruction is in Chinese/English, please output the constraint in the same language.
- Each checker should be responsible for checking only one constraint.
- Do not output any constraints that are not included in the instruction.

Prompt: Classifying Constraints
Please classify whether the given checker can be judged using simple lexical rules.
#Checker#
{checker_name}

Classification rules:
- If the checker can be determined using simple lexical rules—such as word count, text length, number of paragraphs, number of
sentences, or presence of specific keywords—output [[A]].
- If the checker requires semantic understanding—such as style, tone, sentiment, language, context, genre, or structure—and thus
necessitates an additional semantic analysis model (e.g., a large language model), output [[B]].
- If the constraint is meaningless, non-informative, or irrelevant (e.g., "NA"), output [[C]].

Prompt: Generating code
You are tasked with implementing a ‘Python’ function ‘check_following’ that determines whether a given ‘response’ satisfies the
constraint defined by a checker. The function should return ‘True’ if the constraint is satisfied, and ‘False’ otherwise.
[Example Input 1]
no more than 800 words
[Example Output 1]
def check_following(response): return len(response.split()) <= 800
[Example Input 2]
Include keywords ’cloud storage’, ’open-source’
[Example Output 2]
import re def check_following(response): return bool(re.search(r’cloud storage’, response, re.IGNORECASE) and
re.search(r’open-source’, response, re.IGNORECASE))
[Example Input 3]
The word ’huge’ should appear 3 times
[Example Output 3]
import re def check_following(response): return len(re.findall(r’huge’, response, re.IGNORECASE)) == 3
#Task Input Checker#
{checker_name}

[Requirements]
- The function should be self-contained with necessary imports.
- DO NOT use nltk.
- Only return exactly ‘Python‘ code script, without any other info.

Table 7: Prompt for extracting constraints from instruction, classifying constraint types, and generating code for
hard constraints.
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