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Abstract

Modern GPUs evolve rapidly, yet production
compilers still rely on hand-crafted register al-
location heuristics that require substantial re-
tuning for each hardware generation. We intro-
duce VERILOCC, a framework that combines
large language models (LLMs) with formal
compiler techniques to enable generalizable
and verifiable register allocation across GPU ar-
chitectures. VERILOCC fine-tunes an LLM to
translate intermediate representations (MIRs)
into target-specific register assignments, aided
by static analysis for cross-architecture nor-
malization and generalization and a verifier-
guided regeneration loop to ensure correctness.
Evaluated on matrix multiplication (GEMM)
and multi-head attention (MHA), VERILOCC
achieves 85-99% single-shot accuracy and
near-100% pass@100. Case study shows that
VERILOCC discovers more performant assign-
ments than expert-tuned libraries, outperform-
ing rocBLAS by over 10% in runtime.

1 Introduction

Modern GPUs have dramatically reshaped deep
learning by offering massive parallel computational
powers (Krizhevsky et al., 2012). Unleashing
this performance requires not only hardware ad-
vances (Jouppi et al., 2017; Wang et al., 2021; Zhao
et al., 2025), but also increasingly sophisticated
software stacks (Chen et al., 2018; LI et al., 2023;
Ma et al., 2020; NVIDIA Corporation, 2024; Wu
et al., 2025; Zheng et al., 2020). At the core are op-
timizing compilers, which translate high-level GPU
kernels into efficient, hardware-specific binaries.
Many of these optimizations are NP-complete; a
central example is register allocation (Alfred et al.,
2007), as illustrated in Figure 1. The task involves
assigning virtual registers in the compiler’s inter-
mediate representation (MIR) to physical registers
in the instruction set architecture (ISA). A correct
allocation must (1) consistently map each virtual
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register to the same physical register, and (2) as-
sign virtual registers with overlapping lifetimes to
disjoint physical registers.

Achieving performant register allocation is even
harder, as it requires modeling architectural details
such as register bank conflicts, pipeline stalls, and
memory spill costs. Modern compilers rely on
hand-crafted or learned heuristics (Lozano et al.,
2019; Quintao Pereira and Palsberg, 2008), while
performance-critical libraries such as BLAS (AMD
Inc., 2024a) often resort to handwritten assembly
optimized for specific GPUs. Both approaches de-
mand substantial engineering effort and are difficult
to retarget across hardware generations.

Recent work has explored learning-based com-
piler optimizations, but many rely on handcrafted
features (Chen et al., 2021) or lack correctness
guarantees from static analysis or formal verifica-
tion (Liu et al., 2024). General-purpose models
like ChatGPT also struggle with register allocation,
often producing incorrect sequential assignments
that ignore liveness constraints (see Appendix B).
This motivates our approach: combining the expres-
siveness of large language models (LLMs) (Ope-
nAl, 2023; Qwen et al., 2025) with formal com-
piler techniques to achieve correctness and cross-
architecture generalization.

This paper introduces VERILOCC, a learning-
based register allocator that formulates register as-
signment as an end-to-end sequence-to-sequence
(seq2seq) translation task (Sutskever et al., 2014)
task for LLM. Our key insight is that while GPU
architectures differ in low-level details, they share
core traits, such as in-order pipelines and sharded
register banks, which persist across vendors and
generations. VERILOCC fine-tunes an LLM to
translate MIR into target-specific register assign-
ments, treating different MIRs as dialects of a
shared computational language. Inspired by neural
machine translation (Sutskever et al., 2014; Bah-
danau et al., 2015; Vaswani et al., 2017), VER-
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Traditional Compilers
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Figure 1: Overall training and inference workflow of VERILOCC. Our seq2seq formulation learns to translate
normalized MIR into virtual-to-physical register mappings, derived from MIR and ISA through dataflow analysis
that tracks value propagation. For clarity, we show only the MIR (e.g., PTX) and ISA (e.g., SASS) fragments that
load matrix A from memory and perform dot-product accumulation. We also include illustrative examples of the
normalized MIRs and the structured mapping between virtual and physical registers across architectures.

1Locc learns to map virtual to physical registers
while adapting to the syntactic and semantic varia-
tions of diverse GPU toolchains.

To be practical, VERILOCC must overcome three
key challenges. First, compiler transformations
such as inlining and loop unrolling (Alfred et al.,
2007) can inflate MIR size beyond the LLM’s ef-
fective context window (Hsieh et al.); for instance,
a single multi-head attention (MHA) kernel can
exceed 50,000 tokens. Second, the model must
generalize across architectures while respecting
hardware-specific constraints like register file sizes
and reserved registers. Third, correctness is criti-
cal — an invalid allocation may silently corrupt a
program or render it unexecutable.

VERILOCC addresses these challenges via a
combination of normalization and verification, as
illustrated in Figure 1. We use static analysis to
normalize both MIR and ISA representations while
preserving program semantics (Lattner et al., 2007;
Xie and Aiken, 2007). As shown in Figure 1,
MIRs from different compilers are transformed

into a unified format, and register mappings are
extracted via dataflow analysis as JSON-style dic-
tionaries. This reduces token length by 80-90% in
our experiments (see Table 1), improving LLM
reasoning efficiency and allowing the model to
focus on allocation logic. Normalization also
enables the creation of a heterogeneous training
dataset that combines compiler-generated outputs
from multiple toolchains with expert-optimized li-
braries—teaching the model both general strategies
and target-specific heuristics. To ensure correct-
ness, we incorporate a verifier that checks candi-
date allocations and re-samples until all hardware
constraints are satisfied.

We evaluate VERILOCC on two critical GPU
kernels: general matrix multiplication (GEMM)
and multi-head attention (MHA), which together
account for over 90% of inference time in modern
LLMs. A fine-tuned 7B LLM achieves 85-99%
single-shot correctness and near-100% pass@ 100
with verification. A case study on the GEMM ker-
nel running on AMD’s MI250x GPU shows that
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VERILOCC discovers register assignments that ex-
ploit architectural features overlooked by existing
compilers, outperforming rocBLAS (AMD Inc.,
2024a), a production-grade, hand-optimized library,
by 11.6% in runtime. These results demonstrate
that VERILOCC combines the flexibility of data-
driven learning with the reliability required for de-
ployment in production compiler toolchains.
This paper makes the following contributions.

* We propose VERILOCC, a learning-based regis-
ter allocator that combines LLMs, static analysis,
and verifier-guided regeneration to achieve cor-
rectness and cross-architecture generalization.

* We evaluate VERILOCC on GEMM and MHA
kernels, where a fine-tuned 7B LLM achieves
85-99% single-shot accuracy and near-100%
pass@100, validating the feasibility of LLM-
based register allocation.

* We show that VERILOCC can discover novel reg-
ister assignments that outperform expert-tuned
libraries, achieving 11.6% runtime improvement
over rocBLAS on AMD MI250x.

Reproducibility. We will release our implementa-

tion and datasets upon acceptance.

2 Preliminaries: Register Allocations in
GPU Compilers

IR and MIR. Modern compilers use Intermedi-
ate Representations (IRs) extensively to perform
optimizations. The compilers take the application
written in high level languages (e.g., CUDA) as in-
puts and then transform it to multiple levels of IRs.
The compilers tackle different optimization goals
at different levels of IRs. For example, LLVM (Lat-
tner and Adve, 2004) performs target independent
optimizations such as constant propagations and
dead code elimination at the level of LLVM IR, and
performs target-specific optimizations such as coa-
lescing memory accesses at the lower level machine
IR (MIR). While different compiler toolchains have
different namings (e.g., CUDA PTX vs SASS in
the NVIDIA toolchains, and LLVM IR and LLVM
MIR in the ROCm toolchains (AMD Inc., 2024b)),
they share similar design principles. In the rest
of the paper we use IR and MIR to refer to the
target-independent and target-specific IRs.

Register Allocation. Programs in MIR are not
directly executable. MIRs use virtual registers, or
¢-nodes in SSA forms (Bilardi and Pingali, 2003)
to represent values in the programs. To realize the
MIR to executable ISAs, the register allocators as-

sign these virtual values to physical registers. It
must consistently assign the same value to the same
register, and ensure that values with overlapping
life cycles are assigned to disjoint registers. Addi-
tionally, the assignment must satisfy the hardware
constraints (e.g., a 64-bit value must be assigned
to two consecutive 32-bit registers). Due to the
limited number of physical registers and hardware
constraints, the register allocator might copy the
values across registers, or temporarily spill the val-
ues to main memory.

Finding performant results of register allocations
is particularly important for GPU programs since
it directly affects the available parallelism and in-
struction latency. A performant allocation would
minimize the copies and spills, and consider low-
level hardware features to minimize pipeline stalls.
For example, NVIDIA GPUs organize the registers
into 4 banks. Reading values in the same banks
requires stalling the pipeline for another cycle, thus
in Figure 1 the compiler avoid the stalls by choos-
ing R4, R6, and R9 in the FFMA instruction which
are in separate register banks. Note that finding the
optimal register allocation is NP-complete (Chaitin
et al., 1981), thus compilers often rely on either
manual or learning-based heuristics when optimiz-
ing register allocations.

Complexity and Challenges. Low-level code gen-
eration introduces substantial complexity that poses
unique challenges for our sequence-to-sequence
formulation. When compiled for GPUs, kernels un-
dergo aggressive transformations such as inlining,
loop unrolling, and memory coalescing. These op-
timizations significantly inflate the size of both the
MIR and the final assembly. As shown in Table 1,
each multi-head attention (MHA) kernel averages
419 lines in PTX format, compared to 1,860 lines
in LLVM IR. After tokenization, this corresponds
to 9,294 tokens for PTX and 51,037 tokens for
LLVM, far exceeding the context limits of current
coding LLMs (Hsieh et al.). As a result, naively
fine-tuning LLLMs struggles to capture long-range
dependencies among register uses and assignments.

Architectural variability presents a second ma-
jor challenge. Different GPU vendors employ dis-
tinct IRs and toolchains: NVIDIA uses PTX, while
AMD uses a custom MIR format. As shown in
Figure 1, these representations differ in syntax, in-
struction structure, and register classes, making it
difficult for cross-architecture modeling without
careful normalization.

Finally, correctness is non-negotiable in compil-
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ers. A single invalid register assignment can lead to

runtime crashes or silent corruption, rendering the

compiled program unusable. Any learning-based

allocator must therefore be paired with a mecha-

nism that ensures compiler-level soundness.
These observations lead to three key challenges:

1. Long sequences. Optimized kernels produce
IRs and ISAs that exceed the effective context
window of typical LLMs, making long-range
reasoning difficult.

2. Cross-architecture generalization. The model
must reconcile shared allocation strategies with
ISA-specific syntax and constraints.

3. Compiler-level correctness. The system must
ensure sound register assignments to produce
functional executables.

3 The VERILOCC Framework

Figure 1 illustrates the overall workflow of VER-
1ILocc, which formulates register allocation as
a sequence-to-sequence (seq2seq) transformation.
Given tokenized MIR as input, the model generates
structured register assignments in JSON format.
However, raw MIR and ISA representations are
often long, sparse, and inconsistent across architec-
tures, making it difficult for LLMs to infer control
flow and data dependencies implicitly. To address
this, VERILOCC applies static analysis to normal-
ize inputs and explicitly expose key semantic infor-
mation at inference time. Finally, a verifier-guided
regeneration loop ensures that the generated alloca-
tions satisfy semantic correctness.

3.1 Seq2Seq Formulation

Formally, given an input sequence X" representing
the tokenized MIR (potentially augmented with
auxiliary information), the model generates an out-
put sequence Y corresponding to register assign-
ments in structured JSON format:

m

PY|X) = ][ Pwil®. s, ..

i=1

yi-1) (D)

We train this mapping with a standard cross-
entropy loss:

1 m
L= _Ezlogp(yip(’yla---yyifl) 2
i=1

VERILOCC normalizes the MIR before using
it as input. The auxiliary information consists of

the control and data dependency, the constraints of
the task (e.g., the number of available registers), as
well as hardware constraints on reserved registers
and values. VERILOCC follows the control flow
graph to allocate registers per basic block. Fig-
ure 1 presents two concrete examples of normal-
ized MIRs along with their corresponding register
mappings.

3.2 Static Analysis-based Normalization

VERILOCC performs static analysis for two tasks:
(1) reconstructing the results of register allocations
from the training data, as well as making control
and data dependency explicit during inferences,
and (2) normalizing the MIR / ISA to reduce the
number of tokens and to improve generalizations.

3.2.1 Register Assignment Reconstruction

The NVIDIA toolchain does not make the results
of register allocations readily available. To recover
the mappings for training, VERILOCC transforms
both the MIR and ISA to the Static Single Assign-
ment (SSA) forms, and performs standard context-
insensitive, path-insensitive, flow-sensitive global
analysis (Xie and Aiken, 2007) to reconstruct the
mappings. Particularly, VERILOCC follows the
control flow graphs of both MIR and ISA, recon-
structs the mappings by comparing the correspond-
ing basic blocks, and finally consolidates the map-
pings for the full function. Using SSA forms al-
lows VERILOCC easily to deal with the reordered
instructions. VERILOCC uses heuristics to deal
with cases where the toolchain chooses different
instructions between MIRs and ISAs (e.g., lower-
ing the mul.wide.u32 instruction to a bit shift in
Figure 1).

VERILOCC uses the same techniques above to
analyze the control flows and data dependency of
the inputs. The information is later injected as
auxiliary information into the input sequences.

3.2.2 Normalizing MIRs

VERILOCC normalizes the MIRs for the training
data and the inference inputs to reduce the number
of tokens and to enhance generaliability across mut-
liple architectures and workloads. First, it strips
out irrelevant metadata (e.g., comments and de-
bug symbols), and replaces the ISA-specific pro-
logues (e.g., the pointer to the function arguments)
as symbolic values since they are irrelevant to the
task of register allocations. Second, it normal-
izes the instructions and register classes of differ-
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ent architectures to common representations. For
example, VERILOCC normalize fma.rn.f32 and
V_FMAC_F32_e64 to FMA in the normalized MIR.
VERILOCC also classifies a register to either a
scalar or vector register, and it stores an either in-
teger, float, or boolean value. Additionally, VER-
1Locc renumbers the registers for each basic block
to reduce the ranges of the tokens which improves
the reasoning performance of the models.

3.3 LLM Fine-tuning Pipeline

We implement VERILOCC using a 7B decoder-only
language model fine-tuned on the normalized input-
output pairs described above. As the backbone
model, we use Qwen2.5-Coder-7B-Instruct
for its strong coding performance and effi-
ciency (Qwen et al., 2025). During training, the
model is exposed to register allocation examples
from NVIDIA and/or AMD toolchains. We will
present more details in the experiment section.

3.4 Verifier-guided Inference

At inference time, the input is a normalized, tok-
enized MIR sequence along with auxiliary annota-
tions, and the model autoregressively generates a
register assignment dictionary. To eliminate hallu-
cinations or incorrect results from the LLM, VER-
1LOcCC consists of a verifier to validate the results
of register allocations before returning them to the
compiler toolchain.

VERILOCC constructs a Satisfiability Modulo
Theories (SMT) problem based on the input MIR
to validate the followings:

* Consistency. It consistently assigns a virtual reg-
ister to the same physical register.

* Safety. Virtual registers with overlapping life
cycles are assigned to disjoint physical registers.

* Realizability. The assignment satisfies the hard-
ware constraints.

Modeling the verification as SMT problems en-
ables VERILOCC to reason about the solutions
across various control flow paths, which is crucial
for well-optimized performance-critical workloads
like GEMM. Specifically, we use Z3 4.14.0 for val-
idating the results of register allocations. It continu-
ously re-samples the model until a valid allocation
is found or a maximum number of attempts are
exhausted.

4 Experiments

The evaluation aims to answer the following ques-
tions both qualitatively and quantitatively:

Table 1: Statistics of the data sets. The numbers of lines
and tokens are averaged across different configurations.

Kernel # Configs GPU  #Lines # Tokens (raw / normalized)

NVIDIA 79 1233/113  90.8% |

GEMM 3375 “Mp 71 2280/274  88.0% |
NVIDIA 419 9204/1944 79.1% |

MHA 1312 aMD o 1860 51,037/8955  82.5%

* How effective can VERILOCC generate correct
register allocations?

* How effective can VERILOCC generalize over
new programs and architectures?

» How effective can normalizations improve model
performance?

* Is VERILOCC sufficiently fast to be used real-
world settings?

4.1 Datasets

To understand the practical requirements of reg-
ister allocation on modern GPUs, we curate data
from two of the most computationally intensive
kernels in large-scale deep learning: general matrix
multiplication (GEMM) and multi-head attention
(MHA) (Vaswani et al., 2017). These kernels dom-
inate the inference workload of LLMs, often ac-
counting for more than 90% of runtime (Dao et al.,
2022).

To comprehensively evaluate register allocation
strategies, we collect MIRs and ISAs of GEMM
and MHA of various configurations. Each configu-
ration has its own shapes of memory tiles (Kjolstad
et al., 2017), different levels of unrolling, and dif-
ferent lengths of software pipelines. The dataset
closely resembles real-world libraries including
BLAS and FlashAttention (Dao et al., 2022), which
compute the results for different dimensions of in-
puts with GPU-specific configurations for best run-
time performances. The dataset consists of MIRs
and ISAs for both NVIDIA RTX 4090 and AMD
MI210 GPUs. Table 1 describes the statistics of the
data set. The MHA kernels exhibit higher compu-
tational complexity with significantly more basic
blocks per instance than GEMM, resulting in a
total dataset of 9,325 instances. Please refer to
Appendix A for more details.

4.2 Evaluation setups

We evaluate VERILOCC on two servers: one with
equipped with 500GB SSD, 10GbE ethernet, and
a RTX 4090 GPU. The other server with equipped
with 17TB SSD, 10GbE ethernet, and a MI210
GPU. Both servers run Ubuntu 22.04, CUDA 12.4
and ROCm 6.3.1. We serve the models at the server
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Table 2: Effectiveness of VERILOCC in three different settings. “w/o norm.” is an ablation study of VERILOCC by
disabling the MIR normalization. It reports the numbers for both the GEMM and MHA test cases.

GEMM (768 test cases)

MHA (1865 test cases)

Greedy Decoding

Sampling Decoding

Greedy Decoding Sampling Decoding

Setup Model Pass 1/ Fail | Pass Ratet Pass@1001 AvgTry| MaxTry| Pass?/Fail| PassRate{ Pass@1007 AvgTry| MaxTry |

Same-NV VERILOCC 764 /4 99.48% 99.47 % 115 122 1796 / 69 96.30% 99.74% 1.44 149
w/o norm. 756112 98.44% 99.08% 1.51 158 1779/ 86 95.39% 99.74% 1.52 181

Same-AMD VERILOCC 76414 99.48% 99.86 % 1.10 183 1794 /71 96.19% 96.84% 2.61 105
w/0 norm. 762/6 99.22% 99.35% 1.15 201 1775790 95.17% 95.87% 3.09 176

Mixed VERILOCC 753/15 98.05% 98.56 % 1.14 143 1601 /264 85.84% 89.76 % 6.37 227
w/0 norm. 749/13 98.29% 98.05% 1.13 170 1491/374 79.95% 84.24% 9.11 241

Mixed Same-AMD Same-NV

with NVIDIA GPU and report the average of 100
runs of the runtime performances.

We randomly partition the dataset and use 80%
/ 20% of the data for training and testing, respec-
tively. We consider two experiment settings: (1)
Same-NV and Same-AMD: training and infer-
ences are done with data on the same NVIDIA
or AMD hardware architecture; and (2) Mixed,
where training and inferences are done with data
from both architectures.

Our primary metric is the Pass Rate, which
measures the percentage of single-shot greedy de-
coding generations that pass the verification, i.e.,
produce a correct register allocation. We also re-
port Pass @100, the proportion of test cases where
at least one valid allocation is generated within
100 attempts. To assess runtime overhead if one
integrates our LL.M-based register allocator into
the compiler toolchains, we additionally report the
average attempts (AvgTry) and the maximum at-
tempts (MaxTry) required to generate the first cor-
rect allocation.

4.3 Main Results

Table 2 reports the number of passing and failing
instances, along with the percentages of valid gen-
erations under one-shot (Pass@1) and up to 100
attempts (Pass@100). It also includes the aver-
age and maximum number of attempts required to
produce the first valid allocation.

VERILOCC achieves strong single-shot perfor-
mance, with Pass@1 rates ranging from 85% to
99% across GEMM and MHA test cases. MHA
kernels pose greater difficulty due to longer se-
quences and more complex dependencies, with a
Pass Rate of 85.84% in the mixed training setting.
Nevertheless, a simple resampling strategy proves
highly effective, Pass@100 is nearly 100%, with
the average number of attempts under 10, and max-
imum attempts typically falling within 100 to 200.

Overall, VERILOCC works very well in the two

a

Syntactic Error Dataflow Violation ® Hardware Constraint Violation

Figure 2: Error Distributions of VERILOCC on MHA
under Different Settings. The total numbers of errors on
GEMM are too limited, so we skip them.

Same settings. While the Mixed setting is more
challenging, VERILOCC still generalizes well. This
indicates that LLMs can learn transferable patterns
in register allocation across different ISAs.

4.4 Ablation on MIR Normalization

The MIR normalization is effective at reducing
the input token numbers by about 80% to 90% as
shown in Table 1. We further compare the end-to-
end effect of disabling the normalization in Table 2.
The normalized version consistently perform bet-
ter in terms of almost all evaluation metrics. This
confirms the importance of our proposed MIR nor-
malization.

4.5 Error Analysis of Greedy Decoding

We analyze all error cases from VERILOCC’s
greedy decoding on MHA to better understand its
limitations. GEMM is excluded because the total
number of errors on GEMM is too small. Figure 2
shows the distribution of error types across differ-
ent settings. Errors fall into three main categories
e Syntactic Errors: These account for 4-8% of
failures and involve malformed JSON output,
e.g., missing braces, broken key-value pairs, or
extraneous text. Such errors are typically easy to
fix via post-processing.
» Dataflow Violations: The most severe, compris-
ing 62-73% of errors, where VERILOCC over-
writes values that are still live later in the pro-
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gram. These semantic violations directly com-
promise program correctness.

* Hardware Constraint Violations: Making
up 24-29% of errors, these occur when the
model assigns values to register configurations
that violate hardware rules, for example, us-
ing non-consecutive registers (vgpr@_vgpr2) for
64-bit operands, where contiguous pairs (e.g.,
vgpro_vgpr1) are expected.

Interestingly, the proportion of dataflow violations
is lower when the model is trained on a single ar-
chitecture, suggesting that cross-architecture gener-
alization remains a key challenge despite our nor-
malization efforts. As a future direction, one could
incorporate constrained decoding that explicitly
masks out currently occupied registers during gen-
eration, helping to reduce both dataflow violations
and hardware constraint errors.

4.6 Efficiency in End-to-End Compilation

The NVIDIA and AMD toolchains compile the test
cases in 1107 ms on average. VERILOCC spends
most of the time in two components: model serv-
ings and verification. Our evaluation server serves
the Qwen2.5-Coder-7B-Instruct model at the speed
of 8260 input tokens per second and 131 output to-
kens per second with no concurrent requests. Our
end-to-end measurements closely match the num-
bers: the average time of serving a single inference
in VERILOCC is 945 ms. VERILOCC can adopt
techniques like continuous batchings (Kwon et al.,
2023) and radix attentions (Zheng et al., 2024) to
significantly speed up the inferences. This is left to
future work.

The verifications take significant more time. On
average it takes 31.77 ms to verify the correctness
of the assignments with Z3. The longest verifica-
tion takes 7.7 seconds. While validating worst case
assignments does require the full capabilities of Z3,
it is possible to accelerate the common cases where
the verification can be done via following the con-
trol and data dependency in polynomial time. We
leave this optimization to future work.

4.7 Case Study: Beyond Existing Compilers

One thing worth noting is that VERILOCC is able
to find a more performant solution for GEMM com-
pared to rocBLAS, the state-of-the-art GEMM li-
brary offered by AMD. This refined version of
GEMM achieves 111.44 TFLOPS when multiply-
ing 128 x 4096 and 4096 x 4096 fp16 matrices
with a strided batch of 3, which is 11.63% faster

Table 3: Effectiveness of VERILOCC while using 3B
model on GEMM. MHA is too hard for 3B model.

Greedy Decoding Sampling Decoding

Setup Model Pass Rate 1 Pass@100 + AvgTry| MaxTry |

Same-NV VERILOCC 89.06 % 98.44% 6.84 782
w/o norm. 88.02% 97.14% 7.03 977
VERILOCC 87.24% 98.67 % 7.29 793

Same-AMD

w/o norm. 86.46% 98.67% 7.85 993

than rocBLAS. A detailed analysis shows that
VERILOCC discovers a more performant assign-
ment than the one used in the expert-optimized
rocBLAS. Particularly, the MI250x GPU is based
on the CDNAZ2 architecture, which introduces ded-
icated matrix core units to accelerate matrix mul-
tiplications. It offers two types of vector registers:
standard architectural vector registers (VGPRs) or
accumulation VGPRs (AccVGPRs), where the VG-
PRs can be used by all compute components but
the AccVGPRs are exclusive to the matrix core
uints. VERILOCC discovers an assignment that
stores the values of the matrices in the AccVG-
PRs aggressively while rocBLAS stores them in
the VGPRs. The publicly available ISA documen-
tation (AMD Inc., 2022) indicates there should
be no performance differences. We suspect that
the matrix core units have quickly access to the
AccVGPRs at the micro architecture level, which
has a lower latency thus improves the performance.
Though anecdote, it demonstrates the practical ad-
vantage and potential of VERILOCC over expert-
optimized libraries.

4.8 Performance of 3B Model

We evaluate Qwen2.5-Coder-3B-Instruct to as-
sess the feasibility of using smaller models for
register allocation. While the 3B model achieves
reasonable performance on GEMM (up to 98%
pass @100 with sampling), it consistently fails on
MHA tasks. This highlights a clear capability
gap: smaller models struggle with the complex
dependencies and register pressure present in real-
world kernels like MHA. Notably, our normaliza-
tion method continues to provide benefits at this
scale, improving pass rates and reducing decoding
attempts. These results suggest that more sophisti-
cated compiler tasks may require larger models to
maintain effectiveness.

5 Related Work

Learning-based Compiler Optimization. Re-
cent advances in machine learning have opened
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new directions for compiler optimization by re-
placing handcrafted heuristics with learned models.
MLGO (Chen et al., 2021) applies reinforcement
learning in LLVM for tasks like inlining and reg-
ister allocation, but depends on manual features
and tight coupling with compiler internals. Meta’s
LLM Compiler (Liu et al., 2024) trains large lan-
guage models on IR and assembly for end-to-end
translation, yet lacks static analysis or verification,
limiting correctness guarantees. General-purpose
models like ChatGPT also struggle with register
allocation, producing sequential, invalid assign-
ments without liveness reasoning (Appendix B). In
contrast, our work combines the expressiveness of
LLMs with formal compiler techniques, using nor-
malization and verifier-guided decoding to ensure
correctness and cross-architecture generalization.
Optimizing tensor compilers. Modern Al models
are essentially tensor programs. Optimizing ten-
sor compilers (Chen et al., 2018; LI et al., 2023;
Ma et al., 2020; Ragan-Kelley et al., 2013; Wu
et al., 2025; Zheng et al., 2020) realize tensor pro-
grams to perfomant implementations on GPU or
ASICs (Jouppi et al., 2017). They automatically
apply techniques such as memory tiling (Ragan-
Kelley et al., 2013), operator fusions (Chen et al.,
2018), software pipelining (Ma et al., 2020) to
search efficient schedules to utilize the hardware.
They mostly operate at the tensor level on interme-
diate representations such as MLIR (Lattner et al.,
2021), and delegates the effort of generating low-
level ISAs to the GPU / ASIC toolchains. VER-
ILOCC operates at a lower level of the software
stack. It focuses on improving the register alloca-
tions inside the toolchains. They can be combined
together to further improve performances.
Register allocation. Register allocation is one of
the integral components of the compiler backends.
Optimal register allocation is NP-Complete, there-
fore compilers uses manual heuristics, constraint
solvings (Quintdo Pereira and Palsberg, 2008),
combinatorial optimizations (Lozano et al., 2019)
and reinforcement learnings (VenkataKeerthy et al.,
2023) to find satisfactory solutions. Compilers
also opt for linear register allocations (Poletto and
Sarkar, 1999) in just-in-time compilations. VER-
1Locc leverages LLMs to learn effective strategies
of register allocations directly from the MIRs and
ISAs, opening a new path path toward generaliz-
able, semantics-aware compiler optimization.
Static analysis and validations. Static analy-
sis (Lattner et al., 2007; Xie and Aiken, 2007)

is effective to detect errors and vulnerabilities in
the programs. VERILOCC uses sound static anal-
ysis (Mai et al., 2023) (i.e., no false negative) to
effectively validate the results of register alloca-
tions are correct.

6 Conclusions and Future Work

We demonstrate that large language models (LLMs)
can effectively learn register allocation as a
sequence-to-sequence task, achieving high correct-
ness rates and competitive runtime performance.
VERILOCC generalizes across architectures, bene-
fits from normalization, and even surpasses expert-
optimized libraries in some scenarios, highlighting
the potential of learning-based approaches in com-
piler backends.

A key direction for future work is integrating the
verifier into training. One possibility is to provide
verifier feedback as additional input to the model
during fine-tuning. Another avenue is to explore
reinforcement learning, where the verifier acts as
a reward signal to directly guide the model toward
sound and performant allocations.

Limitations

While VERILOCC shows strong results on regis-
ter allocation for key GPU kernels, it has several
limitations. First, our evaluation focuses on struc-
tured compute kernels (GEMM and MHA) that
dominate LLM inference workloads; generalizing
to less regular or control-heavy programs remains
future work. Second, although we demonstrate
cross-architecture generalization between NVIDIA
and AMD backends, adaptation to entirely different
compilation pipelines (e.g., CPU, tensor compilers)
would require additional normalization and fine-
tuning. Third, the model’s performance degrades
for highly complex kernels when using smaller ar-
chitectures (e.g., 3B), suggesting that larger models
may still be necessary for difficult compiler tasks.
Finally, while our verifier ensures correctness, the
re-sampling loop can add latency in low-confidence
cases.

We believe these are meaningful directions for
future work, including scaling to more optimiza-
tion targets, improving efficiency, and expanding
to broader compiler infrastructures.
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A Kernel Configurations

A GEMM kernel calculates C = a- Ax B+ 5-C
with matrices A € RM*K B ¢ REXN and
C € RM*N To comprehensively evaluate register
allocation strategies, we vary the matrix dimen-
sions M, N, and K across a range of values from
2 to 16, resulting in 15 x 15 x 15 = 3, 375 distinct
problem configurations. This breadth of configura-
tions allows us to observe how register allocation
patterns adapt to different memory access patterns
and computational requirements.

MHA is the defining component of Transformer
architectures, consisted of several computational
phases: (1) projection of queries, keys, and values
through linear transformations, (2) computation of
attention scores through scaled dot-product atten-
tion, and (3) application of attention weights to val-
ues, followed by a final linear projection. This com-
plex sequence of operations introduces intricate de-
pendencies and memory access patterns, making
optimal register allocation particularly challenging
and impactful for performance.

We sample a large configuration space inspired
by real LLM inference workloads:

» Heads: [16, 24, 32, 40, 64, 128]
* Batch Size: [1, 32, 64, 128, 256, 512, 1024]
* Head Dim: [32, 40, 59, 64, 80, 96, 111, 128,

160, 192, 224, 256]

* Sequence Length: [2048]

¢ Attention Group: [1, 4, 8]

This parameter space yields 6 x 7 x 12 x 1 x 3 =
1, 512 distinct configurations, representing a com-
prehensive sampling of the operational demands
placed on modern LLM inference systems.

B ChatGPT Results

We analyze ChatGPT’s behavior! on the register al-
location task and observe substantial limitations in
its ability to handle this core compiler optimization.
As shown in Figure 3, ChatGPT outputs a naive
sequential assignment strategy that fails to employ
register reuse. This is reflected in the monotoni-
cally increasing register identifiers (vgpr1 through
vgpr15), with no attempt to recycle registers whose
associated variables have expired. The result sug-
gests a lack of liveness-aware reasoning and high-
lights the need for more specialized modeling or
structural supervision to support compiler-level cor-
rectness.

Final Register Allocation
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Figure 3: Allocation Result from ChatGPT

1ht’cps: //chatgpt.com/share/
682a07f9-bf50-8006-a7ac-f07b439439¢e4
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