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Abstract
We introduce a zero-shot merging framework
for large language models (LLMs) that consoli-
dates specialized domain experts into a single
model without any further training. Our core
contribution lies in leveraging relative task vec-
tors—difference representations encoding each
expert’s unique traits with respect to a shared
base model—to guide a principled and efficient
merging process. By dissecting parameters into
common dimensions (averaged across experts)
and complementary dimensions (unique to each
expert), we strike an optimal balance between
generalization and specialization. We further
devise a compression mechanism for the com-
plementary parameters, retaining only princi-
pal components and scalar multipliers per ex-
pert, thereby minimizing overhead. A dynamic
router then selects the most relevant domain at
inference, ensuring that domain-specific preci-
sion is preserved. Experiments on code genera-
tion, mathematical reasoning, medical question
answering, and instruction-following bench-
marks confirm the versatility and effectiveness
of our approach. Altogether, this framework
enables truly adaptive and scalable LLMs that
seamlessly integrate specialized knowledge for
improved zero-shot performance.

1 Introduction

Large Language Models (LLMs) have made sub-
stantial advancements in recent years, demonstrat-
ing proficiency in specialized fields such as natural
language processing, code generation, and scien-
tific reasoning (Abdin et al., 2024). Although effec-
tive methods for fine-tuning LLMs on individual
tasks are well-studied, the process of fine-tuning
these models for multiple, distinct tasks remains
less understood. The challenges associated with
fine-tuning for diverse tasks are complex and multi-
faceted, from finding the right data mixture propor-
tions to tuning sensitive hyper-parameters such as
learning rates, batch sizes, and optimization strate-
gies. Without a comprehensive and well-guided

search over these parameters, the model’s perfor-
mance could degrade across tasks.

In fine-tuning, accuracy increases smoothly
when shifting a pre-trained model’s weights toward
its fine-tuned counterpart (Frankle et al., 2020a;
Izmailov et al., 2018; Fort et al., 2020; Worts-
man et al., 2022a; Choshen et al., 2022; Wortsman
et al., 2022c; Matena and Raffel, 2022), and averag-
ing the weights of multiple fine-tuned models can
boost performance on those tasks (Li et al., 2022;
Choshen et al., 2022; Wortsman et al., 2022b).
These observations align with our results of Task
Arithmetic in Section 4.

Simply averaging might result in loss of infor-
mation as highly conflicting parameters across dif-
ferent tasks are canceled out. Recent works such
as TIES (Yadav et al., 2024b), DARE (Yu et al.,
2024b), try to resolve conflicts using basic arith-
metic operations. Conflict resolution may not al-
ways be possible. On the other hand, Twin-Merge
Lu et al. (2024) maintains a low-rank representa-
tion of the task parameters and routes to specific
task at inference time. This method does not scale
well with the number of experts.

In this paper, we propose a merging method that
overcomes the drawbacks of the previous methods.
Briefly, our contributions are as follows:

• We propose a novel merging algorithm called
Split-Merge (see Algorithm 1) inspired by lin-
ear algebraic techniques to merge expert LLMs,
in a zero-shot fashion, without any further train-
ing on data. Our approach takes a set of expert
LLMs, each of size d, and combines them into a
single model of size (1 + α)d, where α can be
arbitrarily small. The algorithm is designed to
effectively integrate the parameters of the expert
models, maximizing their individual contribu-
tions without introducing redundancy or signifi-
cantly increasing the overall model size.

• Unlike previous zero-shot merging algorithms,
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that resolve interferences in the model parame-
ters using heuristics, we provide theoretical mo-
tivation for our approach of resolving (or not
resolving) interferences (see Theorem 3).

• We conduct extensive experiments to evaluate the
effectiveness of our proposed method. The re-
sults are encouraging, showing that our approach
consistently outperforms existing baselines for
model merging both in terms of accuracy and
efficiency across a variety of expert tasks (Sec-
tion 4).

This work highlights the potential of model
merging and opens new avenues for optimizing
LLMs across multiple domains. As LLMs grow in
size and complexity, developing efficient methods
for handling specialized tasks will become increas-
ingly crucial. Model merging represents a key step
forward, offering a scalable, effective solution for
unifying expert LLMs into a single unified model.

2 Related Works

Motivation from the theory of linear mode con-
nectivity. Model merging techniques have relied
on the key property of neural networks called Lin-
ear Mode Connectivity (LMC) (Nagarajan and
Kolter, 2019; Frankle et al., 2020b; Lubana et al.,
2022), which says that, two neural networks trained
on the same loss function, from the same initial-
ization, do not have a loss barrier on the line join-
ing two models. Recent work on neural network
geometry (Li et al., 2018; Garipov et al., 2018;
Draxler et al., 2018; Kuditipudi et al., 2019; Fort
et al., 2019; Czarnecki et al., 2019; Wortsman et al.,
2021; Benton et al., 2021; Li et al., 2022) shows
that even though these models are non-linear, in-
terpolating between two networks that share part
of their optimization path can preserve high accu-
racy. When these assumptions do not hold, recent
works (Wortsman et al., 2022a; Ramé et al., 2023;
Entezari et al., 2022; Ainsworth et al., 2023; Stoica
et al., 2023) have proposed various optimization
objectives, the solutions of which bring the models
closer to one another to remove the loss barrier be-
tween them. In a recent work, (Adilova et al., 2024)
demonstrated that LMC can occur layer-wise, even
in deep linear networks.

However, little is known about merging models
trained on very different domains, such as math,
coding, or chat tasks. The key challenge is that
each model is fine-tuned for a different loss land-

scape depending on its own data distribution, hence,
LMC may not hold in either of the loss landscapes.

Zero-shot merging. Ilharco et al. (2023) pro-
posed task vectors as the vectors formed by sub-
tracting the pre-trained model parameters from the
fine-tuned ones, and analysed several arithmetic
operations on these task vectors. Among the zero-
shot model merging methods, Yadav et al. (2023);
Yu et al. (2024b) resolve conflicts in the task vec-
tors using heursitic algorithms, resulting in a loss
of information. On the other hand, Lu et al. (2024)
propose to dynamically route to experts models,
rather than resolving the conflicts.

Non zero-shot merging. Daheim et al. (2024);
Ortiz-Jimenez et al. (2024) proposed gradient
matching, and Matena and Raffel (2022) proposed
to use the Fisher information between the parame-
ters to define weights of linear merging. Yu et al.
(2024a) computes the direction and magnitude of
each expert in a linear model merge separately.
However, these methods are all dense merges,
hence incurring a loss of information on highly
conflicting dimensions. A recent survey by Yadav
et al. (2024a) studies different characteristics of
merging methods that also incorporate routing to
expert models.

Mixtrue of Experts. Unlike the zero-shot merg-
ing methods, Mixture of Experts (MoE), trains all
the experts simultaneously by activating one or a
few experts and routing the input to the chosen set
of experts (Jacobs et al., 1991; Jordan and Jacobs,
1994; Sukhbaatar et al., 2024). The huge success
of MoE is due to the ability to train larger models,
while creating experts (Jiang et al., 2024). Several
design choices lead to many innovative algorithms
(Zadouri et al., 2023; Muqeeth et al., 2023; Fedus
et al., 2022b; Lepikhin et al., 2020). We refer the
readers to this recent comprehensive survey about
the MoE models (Fedus et al., 2022a).

Federated learning. Approaches like FedMix
(Reisser et al., 2021) and FedJETs (Dun et al.,
2023) in federated learning focus on training dif-
ferent models on private user data while sharing
only a router (McMahan et al., 2017), hence, not
all the expert models are available simultaneously.
Given its similarity to (Matena and Raffel, 2022)–a
model merging method, it is easy to see that sev-
eral Federated learning methods can be applied to
model merging, with appropriate adjustments to
the algorithms.
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3 Method

3.1 Relative Task Vectors

Let θpre ∈ Rd denote the vectorized pre-trained
model parameters and θ(t)ft ∈ Rd denote the vec-
torized model parameters of the t-th expert LLM,
where t = [n]1, that is fine-tuned from the pre-
trained model. Therefore, the LLMs share the same
architecture, allowing us to simplify the notation
as well as merge each layer of the architecture in-
dependently.

Previous zero-shot merging algorithms defined
task vectors (Ilharco et al., 2023; Yadav et al., 2023;
Yu et al., 2024b) and implemented arithmetic oper-
ations, conflict resolutions, and scaling to come up
with a unified model. Formally

Definition 1 (Task Vector (Ilharco et al., 2023)).
When a pre-trained model with model parameters
θpre is fine-tuned on a domain t to get task-specific
model parameters θ(t)ft , its task vector, represented

as τt, is defined as τt := θ
(t)
ft − θpre.

Because the pre-trained model may not contain
any task-specific knowledge, the task vector could
carry a lot of information that can not be expressed
meaningfully with less memory. Taking motiva-
tion from the literature on linear mode connectivity
(LMC) in language models (Adilova et al., 2024),
we define relative task vectors that capture devia-
tions of the tasks from their average, that captures
common knowledge due to LMC. Formally,

Definition 2 (Relative Task Vectors (Ours)).
When a pre-trained model with model parame-
ters θpre is fine-tuned on several expert domains
t = 1, 2, . . . , n to get task-specific model param-
eters θ(1)ft , θ

(2)
ft , . . . , θ

(n)
ft , the shared knowledge is

represented by a simple average µ = 1
n

∑
t∈[n] θ

(t)
ft

and the expert knowledge for each domain t is rep-
resented as the relative task vector, δt, defined as
δt := θ

(t)
ft − µ.

Note that Lu et al. (2024) also work with the
θt − µ. However, they work with the matrix form
of the parameters while we work with the vector-
ized form. As a result, we design a more memory-
efficient and scalable algorithm as described in the
next section. Figure 1 shows an example of how
relative task vectors could be very different from
task vectors depending on the orientation of the
pre-trained model.

1For any positive integer a, [a] := {1, 2, . . . , a}

θpre

θft
(1)

θft
(2)

θft
(3)

τ1

τ2
τ3

δ1

δ2

δ3
Pre-trained, 

Fine-tuned Parameters & 
their mean

Task Vectors Relative 
Task Vectors

μ

θpre

μ

Figure 1: Example showing that the relative task vectors
may be oriented very differently than the task vectors.

To make our algorithm scalable to any number
of experts and memory efficient, we propose to
store the top principal component of the relative
task vectors in the top k dimensions where their
variance is largest, and a scalar multiplier for each
expert, ct, ∀t ∈ [n]. Here, k is a hyperparameter of
the algorithm that is an integer in the range [0, d].
First, we construct the ordered set of indices, ψ, for
each i ∈ [k]:

ψ(i) ← argmax
j∈[d]\{ψ(1),...,ψ(i−1)}

Var (δ1,j , . . . , δn,j) .

where δt,i is the i-th entry of the task vector δt, and
Var(δ1,i, δ2,i, . . . , δn,i) denotes their variance. We
then project the relative task vectors onto the sub-
space formed by the dimensions in ψ, by keeping
the values in dimensions in the ordered set ψ. Let
the resulting relative task vector for task t ∈ [n] be
denoted by δ̂t.

δ̂t,i = δt,ψ(i), ∀i ∈ [k],∀t ∈ [n].

We now want a memory-efficient representation
of these projected vectors using a single vector.
To minimize the loss of information due to this
compression, we propose to use their first principal
component as the unified single vector, v∗, as it
minimizes the reconstruction error defined by the
following objective function,

v∗ = arg min
v∈Rd,∥v∥=1

T∑

t=1

∥∥∥δ̂t − (v⊤δ̂t) · v
∥∥∥
2

(1)

We then compute the lengths of the projections
of each of δt onto the principal component to recon-
struct the task vectors in the remaining dimensions,
which has minimal reconstruction error. The pro-
jections (scalars) can be computed as

ct = (v∗)⊤δ̂t, ∀t ∈ [n].

Since we need the principal component to be in
d dimensions, we construct another vector η in Rd,
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using v∗, to undo the projection. That is,

η(ψ(i)) = v∗(i), ∀i∈[k] and η(i) = 0, ∀i∈[d]\ψ.

Therefore, vectors µ, η, and the scalars
c1, c2, . . . , cn form the components of our merging
algorithm. Using this approach, we can reduce the
memory requirement to d+ k + n for the merged
model, d to store µ, k to store η, and n to store
scalars, c1, c2, . . . , cn. Figure 2 shows the inner
workings of our algorithm on a toy example with
three expert models in R5 fine-tuned from the same
base model for different domains. Note that none
of the operations done on the task vectors to con-
struct a merged model require collecting expensive
training data. Hence, our method is zero-shot.

Inference. An off-the-shelf router model θrouter
categorizes the input prompt x into one of the n
domains or ‘other’. The final model used for in-
ference is constructed as µ + ctη, if t ∈ [n]. If
the input is classified as ‘other’, we use the base
model, µ. This can be achieved by setting c0 = 0
and setting the ‘other’ class to map to this value
(see Figure 3). Algorithm 1 outlines a pseudo code
of the algorithm.

3.2 Choice of k

The choice of k depends on the underlying loss
landscapes of the expert models. Several properties
of the merged model can be controlled using k.

Let η(k) be the principal component and δ̂t(k)
be the projected task vectors computed for k in Al-
gorithm 1. By definition, any other vector, includ-
ing the one that minimizes the reconstruction error
of the vectors δ̂(k′) for any k′ > k, has to have a re-
construction error equal to or more than that of v∗

for k. Hence, constructing a principal component
for the most varying k dimensions is more benefi-
cial than constructing a principal component on the
most varying k′ dimensions, whenever k < k′, to
capture variances in the top k dimensions better.

On the other hand, a larger value of k ensures
that the common component µ is not performing
averaging on highly conflicting dimensions leading
to a higher increase in the overall loss. Consider
the following theorem (proof in Appendix A).

Theorem 3. Consider L-Lipschitz loss functions
L1, . . . ,Ln for all the expert domains, for some
constant L. Let S ⊂ [d] be any subset of di-
mensions. Let µ = 1

n(θ
(1)
ft + θ

(2)
ft + · · · + θ

(n)
ft ).

Let θ̂t be the model t after partial merging. That
is, θ̂t(i) := µ(i), ∀ i ∈ S and θ

(t)
ft (i), ∀ i ̸∈

S, ∀t ∈ [n]. Then, ∥(∆L1, . . . ,∆Ln)∥2 ≤
L ·

√∑
i∈S Var(δ1,i, . . . , δn,i). where ∆Lt :=

Lt(θ(t)ft )− Lt(θ̂t) for all t ∈ [n].

This theorem says that under some smoothness
assumptions of the loss functions of the experts, the
variance of the k least varying dimensions gives
us an upper bound on the overall increase in the
loss in terms of an ℓ2 norm. Hence, choosing S
to be a small set of least varying dimensions of
the relative task vectors gives a good upper bound
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Algorithm 1 Algorithm 1: Split-Merge

Input: θ(1)ft ∈ Rd,∀t ∈ [n], k ∈ [d], a router
model θrouter, and a set of prompts X .

Output: A set of outputs Y .

// Constructing merge components

Compute shared component: µ = 1
n

∑
t∈[n] θ

(t)
ft .

Compute relative task vectors: δt = θ
(t)
ft − µ, ∀t.

Initialize: ψ(i) = 0, ∀i ∈ [k]
for i = 1, 2, . . . , k do

Compute the top i-th variance dimension:
ψ(i) ← argmax

j∈[d]\{ψ(1),...,ψ(i−1)}
Var (δ1,j , . . . , δn,j) .

end

Project onto Rk formed by dimensions in ψ:

δ̂t,i ← δt,ψ(i),∀i ∈ [k],∀t ∈ [n].

Compute top PC as in Eq. (1):
v∗ ← PCA(δ̂1, δ̂2, . . . , δ̂n).

Compute coefficients: ct ← (v∗)⊤δ̂t, ∀t ∈ [n].
Set c0 = 0 for base model, µ.

Initialize η as a zero vector in Rd.
Project back to Rd: η(ψ(i))← v∗(i), ∀i ∈ [k]

// Inference
Initialize: Y = ∅.
for an input prompt x ∈ X do

Classify domain within [n] ∪ {0}:
t = θrouter(x).

Perform inference: y = (µ+ ctη)(x).
Append: Y = Y ∪ {y}.

end
Return Y .

on the overall increase in the loss functions, im-
plying that larger k is better. Therefore, there is
a sweet spot for the parameter k that achieves the
best performance, while being memory-efficient.

4 Experiments

We perform experiments using two different pre-
trained language models, and various expert do-
mains, to analyze the scalability and memory-
efficiency of our algorithms across different archi-
tectures and different number of experts.

4.1 Setup
Varying different architectures and domains.
We perform experiments using two different pre-

trained language models – Qwen2.5-1.5B (Team,
2024) and Mistral-7B-v0.1 (Jiang et al., 2023)
to observe results across different architectures and
sizes. The Qwen pre-trained model is fine-tuned on
four domains: (a) Math: Tasks related to symbolic
math, arithmetic, and theorem proving; (b) Cod-
ing: Programming-related tasks, including code
generation and editing; (c) General Instruction
Following: Tasks related to following user instruc-
tions, and (d) MedQA: Tasks related to multiple
choice questions from the medical domain. We use
the Qwen2.5-1.5B-Instruct2 as the instruction
following expert, but train all other experts using su-
pervised fine-tuning on the pre-trained model. The
setup of Mistral model is deferred to Appendix B.2.

Varying Expert Domains. We use the
nickrosh/Evol-Instruct-Code-80k-v1 (Luo
et al., 2023), meta-math/MetaMathQA (Yu et al.,
2024c), and bigbio/med_qa (Jin et al., 2021)
datasets to train the Coding, Math, and Medical
experts, all available on Huggingface. We do not
perform any modifications on these datasets. We
evaluate all the merged models on relevant public
benchmarks: HumanEval-Python (Chen et al.,
2021), GSM8K (Cobbe et al., 2021), MedQA (Jin
et al., 2021), and IFEval (Zhou et al., 2023).

Varying Routers. We experiment with several
router models for Split-Merge as well as other
routing-based baselines. We experiment with
two LLMs as routers: (a) Mistral-7B-Instruct-
v0.2 (Chaplot et al., 2023) (M-7b) and (b) Mixtral-
8x7B-Instruct-v0.1 (AI, 2023) (M-8x7b), where we
expect the latter to be a stronger router than the for-
mer. For prompting these LLM-Routers for routing,
we adopt a simple multiple-choice prompt where
we ask the LLM-router to classify the expert cat-
egory of a user prompt. The prompt we use is
detailed in Appendix B.4. Note that we did not
train any router ourselves. (c) Random Routing:
Additionally, we also introduce a random router
that randomizes the routing decisions across the
categories to stress-test our algorithm. (d) Oracle
Routing: Finally, oracle routing means we select
the appropriate expert model for the given user
prompts, e.g., math expert for math prompt. We
use the same routing setup for Twin-Merge.

2https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
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Method GSM8K IFEval MedQA H-Eval Overall
(acc) (acc) (acc) (acc) Eq. (2)

(#samples) (1319) (541) (1273) (164) (3297)

Pre-trained 0.6209 0.3106 0.2781 0.0 0.6753
Math Expert 0.6331 0.3945 0.4171 0.1098 0.8597
IF Expert 0.3093 0.5012 0.4627 0.2317 0.7394
Med Expert 0.4898 0.3573 0.5075 0.2744 0.8455
Code Expert 0.5519 0.3118 0.443 0.4146 0.8376

Routing to LoRA (rank = 16) Experts as baseline:
↬ Oracle 0.6543 0.4412 0.4258 0.3963 0.9294

Zero-shot Dense Merging baselines:
TA 0.655 0.3897 0.4886 0.4634 0.9688
TIES 0.6687 0.3945 0.4792 0.4329 0.9682
DARE-TA 0.6679 0.3897 0.4918 0.4573 0.9787
DARE-TIES 0.6459 0.3897 0.3629 0.3537 0.8543
Model Stock 0.6399 0.3297 0.2828 0.0183 0.7296

Zero-shot Routing-based Merging baseline: Twin-Merge (rank = 16)
↬ Oracle 0.6073 0.4317 0.4878 0.3902 0.9430
↬ M-7b 0.6232 0.4020 0.4790 0.3780 0.9352
↬ M-8x7b 0.6588 0.4140 0.4800 0.3902 0.9638
↬ Random 0.6361 0.3980 0.4530 0.2866 0.9113

Our algorithm: Split-Merge (density = 0.95)
↬ Oracle 0.6755 0.3777 0.4902 0.4817 0.9812
↬ M-7b 0.6694 0.3729 0.4965 0.4817 0.9806
↬ M-8x7b 0.6687 0.3765 0.4965 0.4817 0.9814
↬ Random 0.6664 0.3765 0.4996 0.4695 0.9808

Table 1: The performance of the Qwen expert models
and merged models on the benchmarks. We bold the
number of the highest performing model and underline
the close second. Note: H-Eval refers to HumanEval.
In the first column, ↬ <model> represents the usage
of a <model> for routing the input prompt to the ap-
propriate expert component in the merged model. See
Equation (2) for the metric in last column.

4.2 Results of Split-Merge and Baselines
Table 1 reports results of various merge methods.
Lu et al. (2024) defined an average normalized scor-
ing function (Eq. 4 in the paper) to compare vari-
ous merged models using a unified score. However,
their score takes a simple average of the normalized
score per domain. To account for varying test set
sizes, we use a slightly different version of their
score where we weigh the domain-wise normalized
score with the relative sizes of the datasets,

Wt. Norm. Score(θ) :=
n∑

t=1

Nt

N
·
Score
x∼Dt

[f(x; θ)]

Score
x∼Dt

[f(x; θ
(t)
ft )]

,

(2)

where Nt = |Dt| and N =
n∑

t′=1

|Dt′ |. This

score, always ≥ 0, typically falls below 1; a value
= 1 indicates that the merged model matches
oracle-routed experts, and values > 1 suggest
surpassing them (though this is uncommon due
to model compression). When all the datasets

Method Qwen2.5-1.5B Mistral-7B-v0.1 Avg.
4 tasks 3 tasks

Pre-trained 0.6753 0.3620 0.5186
Fine-tuned 1 1 1
TA 0.9688 0.8951 0.9319
TIES 0.9682 0.9101 0.9392
DARE-TA 0.9787 0.8259 0.9023
DARE-TIES 0.8543 0.7967 0.8255
Twin ↬ M-8x7b 0.9638 0.9209 0.9424
Split ↬ M-8x7b 0.9814 0.9264 0.9539

Table 2: Average of the Wt. Norm. Scores across differ-
ent architectures with different number of experts.

are of equal size, Normalized Score in (Lu et al.,
2024) and Wt. Norm Score in Equation (2) are
equal. We use Overall Score interchangeably with
Wt. Norm. Score.

Expert Models. We begin with a Pre-trained
base model, then produce specialized expert mod-
els for each domain: Math Expert, Instruct Expert,
MedQA Expert, and Coding Expert. As expected,
each expert excels primarily on its own domain (see
Table 1)–for instance, the Math Expert achieves
higher accuracy on GSM8K, while the MedQA
Expert does best on MedQA.

Routing to LoRA Experts. One natural baseline
is to consider the parameter-efficient fine-tuning
of expert models using techniques like LoRA (Hu
et al., 2022), and using the router model to route
the input prompt to the corresponding experts dur-
ing inference. This gives us a memory-efficient
baseline as the experts are all low-rank and do not
need any further processing. We observe that the
LoRA experts perform poorly on almost all of the
benchmarks, and get a poor overall score compared
to other methods.

Zero-shot Dense Merging Baselines. Task
Arithmetic (TA) (Ilharco et al., 2023), TIES (Yadav
et al., 2023), DARE-TA, DARE-TIES (Yu et al.,
2024b), and Model Stock (Jang et al., 2024) merge
the domain-specific experts without further training
on combination of strategies. While these baselines
have better overall scores than any single expert’s
performance (especially for tasks that rely on mul-
tiple capabilities), they under-perform compared to
the router-based zero-shot methods (Twin-Merge
and Split-Merge) as they are restricted to resolve
conflicts forcing the merged model to lose informa-
tion on conflicting dimensions.

Routing-Based Zero-Shot Merging (Twin-
Merge (Lu et al., 2024) with rank = 16). Next,
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we report the results of the Twin-Merge, which can
be paired with various “routers” to decide which
expert’s parameters to leverage. Twin-Merge
achieves decent results (e.g., 0.9638 overall with
the M-8×7b router), confirming that routing-based
expert selection can provide a unified model.

Our Algorithm: Split-Merge (α = 0.95). For
the sake of experiments, we use α to be the density
parameter of our algorithm where k = α ∗ d in
Algorithm 1. The lower block of results in Table 1
shows our proposed Split-Merge method, again us-
ing several router strategies (oracle, M-7b, M-8×7b,
random). Across nearly all task-specific metrics
and the Overall Score, Split-Merge exceeds the
previous baselines and Twin-Merge. A few obser-
vations stand out:

• Consistently High Performance: All Split-
Merge variants exceed the strongest zero-shot
baselines and Twin-Merge results with the
Weighted Normalized Score higher than DARE-
TA and Twin-Merge ↬ M–8×7b.

• Robustness to Routers: Perhaps surprisingly, a
random router yields an overall score marginally
below the best from the M–8×7b router suggest-
ing Split-Merge’s parameter-splitting mechanism
provides a strong foundation.

• Per-Task vs. Aggregate: On a task-by-task ba-
sis, Split-Merge sometimes ties or slightly un-
derperforms on IFEval. However, it makes up
ground on other tasks (notably coding), giving it
a higher aggregate score.

• Best Average Results across Architectures Ta-
ble 2 shows that when we average the weighted
normalized scores over the Qwen and the Mistral
models, Split-Merge beats all the baselines, even
though some of the baselines seem strong on
one of these architectures (for example, DARE-
TA on Qwen). Therefore, our results show that
our method is robust across model architectures,
model sizes, and the number of experts.

4.3 Memory Requirements of Split-Merge
While both Twin-Merge (Lu et al., 2024) and Split-
Merge maintain an expert representation, the key
difference is in the compression technique. They
use SVD-based reduction, compressing each expert
independently. As a result, memory requirements
grow much faster for Twin-Merge scales with the
number of experts than Split-Merge.

Toy example. Consider a model architecture
with just one parameter matrix of dimensions
din × dout, hence having a total of n · din · dout
parameters for n experts. The SVD operation with
rank r in Twin-Merge reduces the final parameter
count to din · dout + nr(din + dout + 1), where r ∈
[1,min{din, dout}]. In contrast, Split-merge will
have a final parameter count of (2−α) · din · dout +
n, where α ∈ [0, 1].

Fair comparison between Twin- and Split-
Merge. Given a fixed number of expert domains
n, for every rank value r for Twin-Merge, there is
a corresponding density value α for Split-Merge
such that they both have roughly equal memory.
To analyze the cases when Split-Merge is more
memory-efficient than Twin-Merge, we plot the ef-
ficiency ratio, defined in Equation (3), by varying
Twin’s rank, Split’s density, and number of experts.

Efficiency ratio(n, α, r) :=
Memory(Split;α, n)
Memory(Twin; r, n)

.

(3)
Figure 4 plots efficiency ratio for Qwen2.5-1.5B.
As the number of expert domains increases, say 64
experts, we observe that even for very small values
of rank (say 2) Twin-Merge has larger memory than
Split-Merge with many values of density parameter
(α ≤ 0.97). Therefore, Split-Merge scales better
with the number of experts. See Figure 7 for effi-
ciency ratio of Mistral-7B-v0.1. We also plot in
Figure 5 the comparison of memory requirements
and weighted normalized score of Split-Merge and
Twin-Merge with different hyperparameter values
for 4 Qwen experts, when used with an Oracle
router. Clearly Split-merge achieves higher perfor-
mance with fewer parameters.

Zero-shot dense merging baselines. Task Arith-
metic, TIES, DARE, and Model Stock would only
need din · dout many parameters, hence being the
most memory-efficient merges; however, their per-
formance is lower than our method.

LoRA Routing baseline. The memory require-
ments of a LoRA model with rank r for all the n
experts will be similar to those of the Twin-merge
with rank r of n experts. This is because both
maintain independent rank r decompositions of n
experts. Therefore, the efficiency ratio of Split with
Twin-Merge will be similar to the efficiency ratio
fo Split with LoRA expert routing. In our experi-
ments, we also compare Split-Merge with density
parameter α = 0.95 with rank 16 LoRA experts
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Figure 4: Each cell in this subfigure represents efficiency ratio–the ratio of memory requirements of Split-merge
to that of Twin-merge. For example, a ratio of 1 indicates equal memory usage and > 1 means Split-Merge uses
more. Within each subfigure, we plot this ratio while varying Twin’s rank and Split-Merge’s density, and across
subfigures we vary the number of experts. The yellow boxes highlight (rank, density) settings where ratio ≈ 1.
In experiments, we compare Twin and Split merges where the ratio is ≤ 1, ensuring Twin has at least as much
memory as Split-Merge for a fair comparison.

Figure 5: Memory vs. Score comparison of Split-Merge
(with varying density parameter, α) and Twin-Merge
(with varying rank parameter, r). The top left corner
indicates highest score with lowest memory, mostly
occupied by the Split-Merge variants.

and this setting gives us efficiency ratio ≤ 1, indi-
cated by the yellow box in Figure 4 for 4 experts.

4.4 Varying Router Model
Routing Analysis. Table 6 shows the perfor-
mance of each expert model constructed by the
algorithm (before routing), called Split-Merge w/
[Expert], all of which have high overall perfor-
mance compared to the pre-merge experts. There-
fore, our algorithm is very robust to the errors in
routing. Figures 6 and 8 summarize the routing pre-
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Figure 6: Routing prediction accuracy for 4 domains
(Math, Code, IF, and Med) when the prompt is cate-
gorized into one of these domains or ‘others’, using
Mistral-7b and Mistral-8x7b as routers.

dictions, where we observe that the LLM-routers
are highly effective in identifying the relevant ex-
pert categories given user prompts. For example,
Mistral-7b router achieves 64.1% routing accu-
racy in Math and 98.2% routing accuracy in Code.
Between the two LLM-routers, we observe that
M-8x7b generally has better accuracy in routing
compared to M-7b, except for the math domain. In-
terestingly, routing errors does not imply a drop
in performance (See last block of results in Ta-
ble 1). In fact, in Table 5 we demonstrate how
some prompts from one domain can be logically
classified as another domain. Appendix B.4 demon-
strates how we test various prompt complexities for
different number of experts. Surprisingly, our algo-
rithm has good performance even if we randomly
route the prompts (last row of Table 1).
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4.5 Generalization
We report MT-Bench results of some of the models
to understand generalization to unseen domains
in Table 7. The results show that Twin/Split Ex-
pert components mostly retain the generalization
abilities of the fine-tuned models.

5 Conclusion

We introduced a novel zero-shot merging algorithm
that efficiently integrates multiple domain-specific
expert models into a unified model. By leverag-
ing relative task vectors to decompose the model
parameters into shared and domain-specific com-
ponents, we are able to maintain expert-level per-
formance across distinct domains. Our approach
incorporates principal component analysis for di-
mensionality reduction and a router model to dy-
namically select the most relevant domain for each
input. Extensive experiments demonstrate that our
method outperforms existing zero-shot merging
techniques, providing a highly effective and scal-
able solution without the need for additional re-
training or inference steps.

Limitations

While our proposed merging framework demon-
strates strong zero-shot performance across diverse
domains, this study is constrained by the availabil-
ity of computational resources. In particular, the
number of experts, model sizes, and tasks consid-
ered in our experiments were limited to what was
feasible under our compute budget. As a result, we
were unable to explore several promising directions,
such as scaling the framework to a larger number
of experts, incorporating more diverse or multi-
lingual domains, or evaluating the performance
of Split-Merge on significantly larger architec-
tures. Exploring more sophisticated routing mech-
anisms, potentially based on multi-task learning
or reinforcement learning, could improve domain
selection accuracy in more complex tasks. Merging
models with differing architectures or sizes remains
an open challenge.

Ethical Considerations

This paper introduces research intended to advance
the field of machine learning by proposing new
methods and insights. As with many developments
in this area, there may be a range of societal impli-
cations depending on how the work is applied in
practice. However, after careful consideration, we

do not identify any specific risks or concerns that
need to be highlighted at this stage. We encourage
future users and researchers to consider the broader
impacts of deploying this work in real-world set-
tings.
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A Missing Proofs

A.1 Proof of Theorem 3

Proof of Theorem 3. Given, θ(1)ft , θ
(2)
ft ∈ Rd be the model parameters of the fine-tuned expert model, and

θpre ∈ Rd be the common base model. Let S ⊂ [n] be any subset of size k that are chosen to apply partial
merging. We want to show that applying a partial merge on the dimensions chosen in S gives us a good
upper bound on the increase in the loss functions of both models. Let µ = 1

n(θ
(1)
ft + θ

(2)
ft + · · ·+ θ

(n)
ft ).

Let θ̂t be the model t after partial merging. That is,

θ̂t(i) :=

{
µ(i) ; ∀ i ∈ S
θ
(t)
ft (i) ; ∀ i ̸∈ S,

∀t ∈ [n].

From the assumption that the loss functions used to fine-tune both the experts are L-Lipschitz, for some
constant L, we get that,

∆Lt(θ(t)ft , θ̂t) := Lt(θ̂t)− Lt(θ
(t)
ft ) ≤ L∥θ(t)ft − θ̂t∥2. (4)

where Lt is the loss function of the experts t.
Now, note that for any t ∈ [n],

∥θ(t)ft − θ̂t∥22 =
∑

i∈S

(
θ
(t)
ft (i)− µ(i)

)2
+
∑

i/∈S

(
θ
(t)
ft (i)− θ(t)ft (i)

)2
(5)

=
∑

i∈S
Var(θ(1)ft (i), θ

(2)
ft (i), . . . , θ

(n)
ft (i)) (6)

=
∑

i∈S
Var(θ(1)ft (i)− µ(i), θ(2)ft (i)− µ(i), . . . , θ(n)ft (i)− µ(i)) (7)

=
∑

i∈S
Var(δ1,i, δ2,i, . . . , δn,i) (8)

Therefore,

∥ (∆L1,∆L2, . . . ,∆Ln) ∥2 ≤ L ·
√∑

i∈S
Var(δ1,i, δ2,i, . . . , δn,i).

Hence, choosing S to be a small set of least varying dimensions of the relative task vectors gives a good
upper bound on the overall increase in the loss functions.

B Additional Experimental Details

B.1 Hyperparameters

We fine-tuned all the experts with learning rate 2e − 5 and global batch size 16 for one epoch. This
created experts as shown in Table 1. For our algorithm and the baselines, we do a grid search on
the density parameter and choose the model with the best performance across the benchmarks. For
Algorithm 1 we vary the parameter α ∈ {0.1, 0.2, . . . , 0.9, 1.0}. For any given α in this range, we can
set k = ⌈(1− α) · d⌉ in Algorithm 1, where d is the number of parameters in the model. Hence, in
the implementation of the algorithm we use α instead of k. We observe that α = 0.1, that is doing a
linear merge on 90% of the least varying dimensions and leaving the rest 10% as conflicting dimensions
works the best for our algorithm. However, each expert may need a different value of k where SPLIT w/
Expert performs the best. This is because some expert domains may share more common knowledge
than others, i.e, doing the partial linear merge with a large value of k might preserve the performance, but
the same value of k may lead to losing high variance parameters in other experts. Figure 5 shows how the
average performance of our method varies with α vs how the performance of Twin merge varies with its
hyperparameter, rank.
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For TIES and DARE, we do a grid search on the density parameter λ. Specifically we search in
λ ∈ {0.2, 0.4, 0.6, 0.8} and report the results from the best checkpoint.

For all the algorithms, we use uniform weights on all the source models while performing a weighted
average. We use the lm-evaluation-harness3 (Gao et al., 2024) and bigcode-evaluation-harness4

(Ben Allal et al., 2022) github public repositories to evaluate our merged models.

B.2 Results on Mistral

We use three expert models fine-tuned for the Mistral architecture. We use Mistral-7B-Instruct-v0.1
(Jiang et al., 2023) as the instruction following expert, but train a Math and a Code expert using supervised
fine-tuning on the pre-trained model, Mistrla-7B-v0.1 with learning rate 2e− 5 and batch size 16 for
one epoch.

Model Human-Eval GSM8K TruthfulQA Overall
(acc) (acc) (BLEU acc)

Pre trained 0.3048 0.3836 0 0.362
Coding Expert 0.378 0.2434 0.377 0.5394
Math Expert 0.1158 0.7225 0.3721 0.8667
Instruct Expert 0.3109 0.3412 0.4871 0.6847

TA 0.3658 0.6179 0.4602 0.8951
TIES 0.3109 0.6285 0.4835 0.9101
TA w/ DARE 0.3476 0.5193 0.4774 0.8259
TIES w/ DARE 0.3171 0.4549 0.5153 0.7967

Twin-Merge (rank = 32)
↬ Oracle 0.335 0.629 0.507 0.9322
↬ M-7b 0.329 0.608 0.506 0.9137
↬ M-8x7b 0.359 0.61 0.506 0.9209
↬ Random 0.341 0.558 0.465 0.8463

Split-Merge (density = 0.97)
↬ Oracle 0.354 0.668 0.503 0.9637
↬ M-7b 0.347 0.602 0.508 0.9137
↬ M-8x7b 0.335 0.619 0.51 0.9264
↬ Random 0.341 0.524 0.477 0.8281

Table 3: The performance of the expert models and merged models on the benchmarks. We bold the number of
the highest performing model and underline the close second.

Split Human-Eval GSM8K TruthfulQA Overall
(acc) (acc) (BLEU acc)

w/ Coding Expert 0.3536 0.6611 0.4357 0.9092
w/ Math Expert 0.3414 0.6679 0.4321 0.9096
w/ Instruct Expert 0.3231 0.4867 0.5031 0.8141

Table 4: The performance of the expert models before routing.

3https://github.com/EleutherAI/lm-evaluation-harness/blob/main/LICENSE.md
4https://github.com/bigcode-project/bigcode-evaluation-harness/blob/main/LICENSE
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B.3 Efficiency Ratio for Mistral Models

Figure 7: Efficiency ratios for the Mistral models.
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B.4 Routing

Prompt for LLM-Router. In our routing prompt, we provide multiple choices of topics that a user
could ask about. Additionally, as the space of topics is expansive, and our provided choices might not be
exhaustive, we provide a category dubbed OTHER to route all user prompts that do not fall in the specified
categories. Finally, we also provide in-context examples to demonstrate the format of prediction to the
LLM-router. With this setup, we apply each sample in our test sets to an LLM-router and ask the router to
classify amongst the provided categories.

In our Mistral experiments, we route prompts classified as CODING to our coding expert, as
MATH/REASONING QUESTION to our math expert, and the remaining categories to our instruct expert.
Finally, the prompts classified as OTHER is routed to the ‘Split w/ Base’ model.

In our Qwen experiments, we test a simpler prompt category, with lesser number of total categories
for the router to classify amongst. In this setting, ambiguous classifications are expected to result in the
OTHER category.
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Routing Prompt Example for Mistral Experts

You are given a prompt string asked by a user. Your job is to classify the topic of this prompt
amongst the following categories:

- A) CODING: a prompt that is related to coding or programming languages.
- B) MATH/REASONING QUESTION: this is a math/reasoning prompt where the user asks for a
solution to a math problem or a problem that requires reasoning skills, e.g., calculating something
or proving something, etc.
- C) INSTRUCTION FOLLOWING: this is a prompt where the user is asking the model to
generate something by explicitly following a set of instructions, e.g., generating in some format, or
following a set of instructions, etc.
- D) GENERAL QUESTION: this is a prompt where the user is asking a question to the model,
e.g., asking for a definition of a word, asking for a solution to a problem, etc.
- E) CREATIVE WRITING: this is a prompt where the user is asking for creative content, such as
stories, poems, or scripts.
- F) ANALYSIS: this is a prompt where the user is asking for an analysis or interpretation of text,
data, or a situation.
- G) TRANSLATION: this is a prompt where the user is asking for translation between languages.
- H) ROLEPLAY: this is a prompt where the user is asking the model to assume a specific role or
persona.
- I) SUMMARIZATION: this is a prompt where the user is asking for a summary of text or
information.
- J) OTHER: this is a prompt that does not fit into any of the above categories

Choose only amongst the above options and give a reasoning/evidence of your choice.
If there are multiple questions in the prompt, answer for the last question.
Choose more specific choices over more general ones, e.g. if a question is about ’math’, choose
’math’ over ’question’.

PROMPT: Write a Python function to calculate the factorial of a number.
CLASSIFICATION: (A)

PROMPT: Calculate the probability of rolling a sum of 7 with two six-sided dice.
CLASSIFICATION: (B)

PROMPT: Compose a haiku about the changing seasons.
CLASSIFICATION: (E)

PROMPT: prompt
CLASSIFICATION:
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Routing Prompt Example for Qwen Experts

You are given a prompt string asked by a user. Your job is to classify the topic of this prompt
amongst the following categories:

- A) CODING: a prompt that is related to coding or programming languages.
- B) MATH/REASONING QUESTION: this is a math/reasoning prompt where the user asks for a
solution to a math problem or a problem that requires reasoning skills, e.g., calculating something
or proving something, etc.
- C) MEDICAL: this is a prompt where the user is asking for a medical question or answer.
- D) INSTRUCTION FOLLOWING: this is a prompt where the user is asking the model to
generate something by explicitly following a set of instructions, e.g., generating in some format, or
following a set of instructions, etc.
- E) GENERAL QUESTION: this is a prompt where the user is asking a question to the model,
e.g., asking for a definition of a word, asking for a solution to a problem, etc.
- F) OTHER: this is a prompt that does not fit into any of the above categories

Choose only amongst the above options and give a reasoning/evidence of your choice.
If there are multiple questions in the prompt, answer for the last question.
Choose more specific choices over more general ones, e.g. if a question is about ‘math’, choose
‘math’ over ‘question’.
If the prompt is a code prompt or requires coding to answer, choose ‘code’.

PROMPT: Write a Python function to calculate the factorial of a number.
CLASSIFICATION: (A)

PROMPT: Calculate the probability of rolling a sum of 7 with two six-sided dice.
CLASSIFICATION: (B)

PROMPT: Compose a haiku about the changing seasons.

CLASSIFICATION: (D)

PROMPT: Compose a haiku about the changing seasons such that each line has 5 sylla-
bles.
CLASSIFICATION: (D)

PROMPT: A surgeon is performing a heart transplant. Which of the following is NOT a
critical step in the procedure?
A) Connecting the donor heart’s blood vessels
B) Administering immunosuppressant drugs
C) Painting the operating room walls blue
D) Monitoring vital signs during surgery
CLASSIFICATION: (C)

PROMPT: prompt
CLASSIFICATION:

Routing Errors
In Table 5, we observe several examples of prompts that are classified under different categories, such

as code rather than maths.
In the first example, classification to code stems from the problem’s structure, which involves performing
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Prompt Original Category Predicted Category
Ivan had $10 and spent 1/5 of it on cupcakes. He
then spent some money on a milkshake and had
only $3 left. How much is the milkshake?

math code

John builds a model rocket that can travel 500
ft in the air. He builds a second rocket that can
travel twice as high. What is the combined height
of the two rockets?

math code

Table 5: Examples of prompts classified as code instead of pure math.

a series of arithmetic operations that could easily be interpreted by a computer program or algorithm,
similar to how code processes numerical inputs step-by-step. Similarly, the second prompt is also classified
as code. Like the previous example, this problem lends itself to a straightforward computational approach,
breaking down the steps needed to calculate the combined height of the rockets, a task that could be
readily implemented in code.

These examples illustrate how some prompts lend themselves more to computational, step-by-step
reasoning and get classified as prompts that should be routed to a coding expert.

B.5 Qwen Routing
In Table 6, we also show the results of each expert model constructed by the algorithm (before routing),
called Split-Merge w/ [Expert]. For example, if we always use the coefficient corresponding to the
Coding expert and say that the Coding domain is index by 1 among the 4 domains (Math, IF, Coding,
MedQA), we get the model Split w/ Coding, that is, µ+ c1η.

Split GSM8K IFEval MedQA H-Eval Overall
w/ Code 0.6657 0.3789 0.4949 0.4817 0.9790
w/ Math 0.6755 0.3777 0.4611 0.4634 0.9569
w/ IF 0.6641 0.3777 0.4902 0.4878 0.9748
w/ Med 0.6717 0.3765 0.4902 0.4634 0.9763

Table 6: Results of the Qwen experts created by Split-Merge before routing. Notably, after routing, the Weighted
Normalized Score increases with any of the routers we have experimented with (see Split-Merge rows in Table 1).

B.6 Mistral Routing

code instruct math base

gsm8k

truthfulqa

humaneval

Da
ta

se
t

4.7% 11.0% 83.2% 1.1%

7.0% 90.2% 1.0% 1.8%

85.4% 13.4% 0.0% 1.2%

Model: mistral-7b-instruct-v0.2

code instruct math base
Predicted

gsm8k

truthfulqa

humaneval

Da
ta

se
t

0.4% 9.7% 89.8% 0.1%

0.0% 98.7% 0.6% 0.7%

26.8% 73.2% 0.0% 0.0%

Model: mistral-8x7b-instruct-v0

Routing Decisions

Figure 8: Routing prediction over three test sets: GSM8k, TruthfulQA and Coding HumanEval with M-7b and
M-8x7b.
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B.7 Generalization to Unseen Domains
Table 7 reports MT-Bench results of some of the models to understand generalization to unseen domains.
The results show that Twin/Split Expert components mostly retain the generalization abilities of the
fine-tuned models.

Method Code Exp Math Exp IF Exp Med Exp
Fine-Tuned 5.8266 6.1258 7.0609 6.2344
Twin (r = 16) 6.0219 6.1625 6.8438 6.7406
Split (α = 0.95) 6.6250 6.6969 6.4531 6.5594

Table 7: MT-Bench numbers of the (a) Fine-Tuned expert models and the (b) experts created by Split-Merge, and
(c) experts created by Twin-Merge. Note that the Qwen Pre-trained model only has MT-Bench score of 1.6840.
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