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Abstract

Pairwise preference optimization, such as Di-
rect Preference Optimization (DPO), was orig-
inally designed to align large language mod-
els (LLMs) with human values. It has recently
been used to improve the supervised fine-tuning
(SFT) performance of LLMs. Using pairs of
single samples, DPO estimates the probabil-
ity distribution of the preferences of picking
one response over another. However, in tasks
that involve more complicated preferences (e.g.,
reasoning tasks) than those in the human value
alignment task, this sampling method is likely
to bring deviations from the ground-truth dis-
tribution. To solve the problem, extra efforts
(e.g., external annotations or amendment of the
loss function) are often required. In this pa-
per, we hypothesise that the preferences can be
better estimated through a multi-sampling pro-
cess. Accordingly, we propose an Expectation
Preference Optimization (EPO) algorithm that
takes pairs of sample groups, instead of pairs
of single samples as in DPO, for preference
learning. Compared to pairwise DPO, the pro-
posed EPO tends to produce more reliable pref-
erence estimations. Applying different prefer-
ence optimization methods in a self-training
paradigm, we have conducted extensive experi-
ments on various reasoning benchmarks. The
results show that our EPO approach outper-
forms a range of baseline approaches in terms
of zero-shot accuracy on all benchmarks.

1 Introduction

Large language models (LLMs), through super-
vised fine-tuning (SFT), have shown remarkable
abilities on various reasoning tasks such as mathe-
matical reasoning. However, it is well recognised
that the effectiveness of SFT can reach an upper
limit depending on the scale and quality of training
samples, which are often expensive to construct.
Thus, an important question arises: with the same
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SFT training data, how can we further improve the
SFT performance? To tackle the problem, pair-
wise preference optimization, which was originally
developed to align with human values (e.g., harm-
lessness or honesty), has become a widely chosen
solution.

Direct Preference Optimization (DPO) (Rafailov
et al., 2024) is one of the most popular preference-
based methods due to its simplicity and effective-
ness compared to Reinforcement Learning with
Human Feedback (RLHF) (Bai et al., 2022). DPO
samples the preferred and dis-preferred responses
once in one updating step on a prompt, and then
uses the Bradley-Terry (BT) model to update the
LLM with an implicit reward function that models
the preference of picking the preferred sample over
the dis-preferred one. As it can be naturally applied
in the self-improving approaches that alleviate the
issue of data construction (Yuan et al., 2024; Sun
et al., 2023), using DPO in reasoning tasks has
shown a broad prospect.

The selection of pairwise training data is key
to DPO. The preferred and dispreferred responses
on a prompt represent an estimation of the correct
preference, which in the training process guides
the optimization direction (Rafailov et al., 2024).
Different from the human value alignment tasks, in
most reasoning tasks, the direction that the model
needs to optimize can be more multifaceted. For
example, in mathematical reasoning, the error of
an answer can be attributed to various aspects, such
as calculation, formula, and entity errors. Thus,
directly using DPO on such reasoning tasks, es-
pecially when using correctness as the selection
criterion for pairs of samples, would be insufficient
to reflect the multifaceted nature of the tasks and re-
sult in poor performance (Lu et al., 2024; Lai et al.,
2024). As shown in Fig. 1 (the red box on the
left-hand side), sampling a pair of single responses
for optimization, with one reporting the correct an-
swer and the other reporting the opposite, may lead
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Figure 1: In the latent space of the target LLM, DPO chooses a pair of samples using correctness as the signal. In
more complicated cases, as shown in the figure, DPO can result in a wrong estimation of the preference and drive
the LLM towards a wrong reward updating direction (i.e., increased reward to the wrong samples and decreased to
the correct samples). On the contrary, EPO considers multi-sampling and can provide a more reliable optimizing
direction.

to a wrong direction of preference estimation that
deviates from the other correct responses (marked
with crying faces).

Various approaches have been developed to
solve this problem. Orca-Math (Mitra et al., 2024)
applies preference optimization on a fine-tuned
LLM using an augmented dataset that is con-
structed using GPT4 to select the pairs of responses,
while Brain (Chen et al., 2024b) uses human an-
notations. DPOP (Pal et al., 2024) address the
unstable optimization direction problem of pair-
wise optimization by enhancing the supervision
of preferred ends in changing the loss function
of DPO. Step-DPO (Lai et al., 2024) uses a large
amount of sampling responses and boosts the train-
ing data into large step-level pairs. Iterative RPO
(Yuanzhe Pang et al., 2024) uses a similar form of
loss and applies it to a self-training structure. How-
ever, these methods do not fundamentally solve the
problem of unstable preference modelling when
facing complicated preferences.

In this paper, we explore a different perspective
by leveraging more samples in preference estima-
tion. Starting with the basic Bradley-Terry (BT)
model, which is the basis of pairwise training, we
hypothesise that the preferences in the BT model
can be better estimated through a weighted multi-
sampling process. Specifically, we assume that
the preferences are not generated by the estima-
tion of a single response, but by the expectation of
the response sampling. Under this assumption, we
propose an Expectation Preference Optimization
(EPO) approach, a variant of DPO. EPO accepts
group-wise preference samples, i.e., pairs of sam-

ple groups, for training, with a length limitation
operation. EPO estimates the preference by calcu-
lating the weighted mean of each group. Our EPO
shares the same objective with DPO and RLHF,
while overcoming the limitation of using only one
preferred and one dispreferred response each time.
As shown in Fig. 1 (right-hand side), EPO makes
it easier to produce proper preference estimations
in reasoning tasks.

Utilizing the proposed EPO, we can simply use
correctness (i.e., whether the sampled responses
answer the question correctly) as the signal for
preference construction and boost the capability of
LLMs, yet bringing no further human annotations.
We apply a self-training algorithm (detailed in Sec-
tion 3.3), which requires no extra annotation and
a small cost on data preprocessing. After SFT on
a task-specific reasoning dataset, the target LLM
generates responses for the input queries. Then we
divide the responses for each query into two groups.
Using EPO on these grouped responses, the opti-
mization direction is estimated through multiple
samples.

Extensive experiments on various reasoning
benchmarks (i.e. GSM8K (Cobbe et al., 2021),
ARC (Clark et al., 2018), SocialQA (Amini et al.,
2019) and MathQA (Sap et al., 2019)) across dif-
ferent base LLMs (including Llama2-7B, Llama2-
13B (Touvron et al., 2023), Qwen1.5-7B (Bai et al.,
2023) and Mistral-7B (Jiang et al., 2023)) show
that our EPO constantly improves the performance
of SFT models and outperforms other preference
optimization baselines in the self-training frame-
work.
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2 Preliminaries

Given a large language model that is parameterized
by θ, donated as πθ, there are two categories of
methods to improve its performance: fine-tuning-
based and preference-optimization-based methods.

2.1 Fine-Tuning

SFT: Given a dataset D = {(xi, yi)}Ni=1, πθ is
finetuned with the cross-entropy loss following a
typical chain-of-thought rationale yi with respect
to the input query xi, resulting in πSFT

θ .
RFT: Rejection Sampling Fine-Tuning (RFT)

(Yuan et al., 2023) is a training method, where πθ
is fine-tuned on its own correct generations. After
SFT on D, πSFT

θ obtains the ability to perform
zero-shot chain-of-thought rationales. Thus we can
sample M candidate rationales ˆyi,1, ˆyi,2, · · · ˆyi,M
for each query xi. All the rationales together are
denoted as D̂ =

{
(xi, ŷi,j)

M
j=1 | (xi, yi) ∈ D

}
.

Utilizing a filtering method (e.g. reward model
annotation), we can construct D̂RFT as a subset of
D̂. The outcome πRFT

θ is trained on the augmented
dataset D ∪ D̂RFT based on πθ.

2.2 Preference-Optimization

RLHF: RLHF (Bai et al., 2022) fits a reward model
to pairwise samples of human preferences and then
uses Reinforcement Learning to optimize a lan-
guage model policy to produce responses that are
assigned high rewards without drifting excessively
far from the original model. Consider an annotated
dataset of pairwise samples Dp =

{
xi, y

i
w, y

i
l

}N
i=1

,
where xi denotes the ith prompt, yiw and yil respec-
tively represents the preferred and dis-preferred re-
sponses to xi. RLHF begins by modeling the proba-
bility of preferring yiw to yil using the Bradley-Terry
model (Bradley and Terry, 1952), which appoints
the following probabilistic form:

p
(
yiw ≻ yil | x

)
= σ

(
r
(
xi, y

i
w

)
− r

(
x, yil

))
(1)

where σ represents the logistic function and
r(xi, yi) corresponds to a reward function rϕ (i.e.,
LLM classifier) that gives the estimation of yi with
respect to xi according to human preference.

Then the target model πθ can be trained by the
feedback from the learned reward function. In gen-
eral, we formulate the following optimization target
for this learning process:

max
πθ

E [rϕ(x, y)]− βDKL [πθ(y | x)∥πref(y | x)]
(2)

where β is a parameter controlling the deviation
of the target model πθ from the status when the
training starts.

DPO: DPO (Rafailov et al., 2024) shows the
possibility of keeping the same optimization target
as RLHF, yet without explicitly training a reward
function and implementation of RL. The loss func-
tion of DPO is presented as below:

LDPO (πθ;πref) = −E(x,yw,yl)∼D log σ
(
β log

πθ (yw | x)
πref (yw | x) − β log

πθ (yl | x)
πref (yl | x)

) (3)

Notably, this optimization objective is based on
a theoretical optimal πθ beyond rU (x, y), which
enables its equivalence to Eq.2.

3 Expectation Preference Optimization

3.1 An Analysis of Pairwise Preference
Optimization

Taking DPO as an example, the Pairwise Prefer-
ence Optimization methods accept pairs of one
preferred sample and one dis-preferred sample as
the unit to calculate the loss for updating the re-
ward function. Considering that an ideal reward
function r̂(x, y) reflects the ground-truth prefer-
ence, let us assume a sampling of four responses
{yα1, yα2, yβ1, yβ2} with respect to the query x,
where r̂(x, yαi) > r̂(x, yβi) holds. When an ini-
tial reward function rtϕ is optimized on (yα1, yβ1),
the optimization directions of yα2 and yβ2 are not
restricted to follow the ground-truth. The updated
rt+1
ϕ may give a wrong estimation rt+1

ϕ (x, yα2) <

rt+1
ϕ (x, yβ2) while correctly estimating the train-

ing pair as rt+1
ϕ (x, yα1) > rt+1

ϕ (x, yβ1), and vice
versa.

The trigger for this issue is that the sampling
of (yα1, yβ1) with respect to the prompt x may
be away from the ground-truth preference distri-
bution. Accordingly, the optimization of rtϕ gives
wrong guidance on yα2 and yβ2. When the purpose
of training is to align with humans, the inconsis-
tency of preference estimation is less pronounced
(compared to that in reasoning tasks), making the
problem less significant. However, the reasoning
tasks present a different situation. For example,
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in math reasoning tasks such as GSM8K, LLMs
can make mistakes for many reasons (e.g., equa-
tion calculation errors, incorrect understanding of
problems, etc.) and the estimates from different as-
pects are not independent. Thus the true preference
distribution is complicated and varies with respect
to the target LLM.

3.2 Expectation Preference Optimization

Aiming to solve the aforementioned problem
brought by the single sampling of preference dis-
tribution in the reasoning tasks, we propose an
Expectation Preference Optimization (EPO) algo-
rithm, starting from the RLHF pipeline. As we
have previously mentioned, the reward modelling
phase of RLHF is based on the BT model. Af-
ter a single sampling of response pair (y1, y2) for
a prompt x, we can annotate the responses using
human labellers or some stronger LLMs. As the
preferences are presented as yw ≻ yl | x where
yw, yl ∈ {y1, y2}, we can optimize a reward func-
tion through Eq. 1.

By estimating preferences through multi-
sampling, which results in a group of responses
{yi}Ni=1 for a prompt x, we present the group-wise
preference form Gw ≻ Gl | x, where Gw, Gl ⊆
{yi}Ni=1. In general, Gw represents the preferred
group and Gl represents the dispreferred group. We
assume that the reward level of Gw and Gl is the
expectation for all rewards in the group:

r∗(x,G) = Eyi∼G[r(x, yi)] (4)

Thus, the Bradley-Terry model is rewritten as:

p∗ (Gw ≻ Gl | x) =
σ (EGl

[r(x, yi)]− EGw [r(x, yi)])
(5)

EPO objective. Following the derivation pro-
cess of DPO, we can construct the reward function
under the optimal solution to Eq. 2 as follows:

r(x, y) = β log
π̂(y | x)

πref (y | x) + β logZ(x) (6)

where Z(x) =
∑

y πref(y | x) exp
(

1
β r(x, y)

)

represents a partial function referring to the previ-
ous work (Peters and Schaal, 2007; Rafailov et al.,
2024). Using this re-parameterization of r(x, y),
Eq. 5 can be formed as below using the optimal
solution.

p∗ (Gw ≻ Gl | x) = σ(βPGl
− PGw)

PG = EG[log
π (yi | x)

πref (yi | x)
)]

(7)

Due to space limitations, we present the detailed
proof and derivation process in Appendix B.1.

We can now formulate a minimum loss function
for the target model πθ through this preference
function:

LR (rϕ,D) = −E(x,Gw,Gl)∼D[logσ(P )] (8)

While the sampling model (reference model) pro-
vides the group result (i.e. Gw, Gl), we regard the
πref (yi | x) as the probability of yi in the expec-
tation. In practice, this means that the response
with a higher probability has a higher impact on
the overall optimization direction. Thus, the loss
function of EPO can be derived as:

LR (rϕ,D) = −E(x,Gw,Gl)∼D
[logσ (βf(Gw, π, πref )− βf(Gl, π, πref ))]

f(G, π, πref ) =

∑
yi∈G πref (yi|x)γ log

π(yi|x)
πref (yi|x)∑

yi∈G πref (yi|x)γ

(9)
Notably, this method only calculates an approx-

imate expectation, as the sum of probabilities is
not strictly 1. Thus, we introduce a smoothing co-
efficient 0 < γ ≤ 1, to avoid weights with large
variants caused by the incomplete calculation of
expected deviations.

A further interpretation of EPO. We here
present a brief analysis of EPO. The objective func-
tion of EPO is derived from RLHF, which means
that we share the same overall optimal solution
with RLHF and DPO. As we estimate the prefer-
ences through a multi-sampling assumption, EPO
has a more reliable implicit reward function com-
pared to the pair-wise DPO, especially in reasoning
tasks with complicated preferences. EPO drives
the target LLM to have higher probabilities of gen-
erating responses in the preferred group and lower
probabilities of generating responses in the dispre-
ferred group, while ensuring the responses with
higher probabilities have a greater impact on the
optimization. Notably, when the sampling number
of Gl and Gw is 1, EPO becomes a typical DPO
algorithm. Theoretically, in random sampling, the
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Figure 2: Overview of self-improving approach with EPO

larger the sampling size, the more accurate the esti-
mation of preferences in line with the ground-truth
distribution.

Length Limitation Operation. After the brief
analysis of the EPO’s loss function, we introduce
an additional module to the EPO algorithm. Pre-
vious work (Wang and Zhou, 2024) indicates that
the beginning tokens affect most of the decoding
(generating) process of an LLM. Considering the
subsequent tokens of the responses could adversely
impact the coherence of the model in the optimiz-
ing process, especially the dispreferred responses,
we aim to increase the stability of the EPO opti-
mization process by limiting the length of samples.

Specifically, we truncate the responses in Gl and
Gw and ensure that the length of the responses
is smaller than a preset threshold. Knowing that
this truncation drops some information from the
supervised data, we will analyze the effect of this
operation in our experiments.

3.3 Self-improve Training approach With
EPO

As EPO is expected to provide a more reliable
preference estimation, we can simply use correct-
ness (i.e., whether the answer of the sampled re-
sponse is the same as the answer of the target) as
a signal of preference, and boost the capability of
LLM on the datasets that contain verifiable answers
(e.g., math datasets). Specifically, we design a self-
improvement training approach, which is presented
in Fig. 2.

We start with the access to a base LLM πinit
and data of a verifiable task D = {xi, yi}Ni=1.
First, we give the model the ability to follow and
generate rational instructions by applying SFT to
it. The fine-tuned model is denoted as πSFT .
Then we generate M different responses for ev-
ery query in D. We denote all the generated
responses (Ri) with the original responses yi as
Daug = {xi, yi, Ri}Ni=1 where Ri = {ri,j}Mj=1.

In the next step, we generate the group-wise

preference data from Daug using the correctness of
generated responses in Ri as the annotation signal.
Specifically, if a response reports the same answer
as the typical rationale, it is put into Gw; and it is
put into Gl if it reports a different answer (meaning
it is wrong). The constructed training data are
presented as follows:

DEPO = {xi, Gw
i , G

l
i}N

′
i=1 (10)

where Gw
i ∪Gl

i = Ri ∪ {yi}. Notably, we con-
struct the preference groups on Ri combining with
yi. Thus for each prompt x, the number of candi-
date’s correct responses is always greater than 1.
As the wrong response of a query does not always
exist in the sampling, we drop the triplets in Daug

whose Ri contains all correct responses.
Applying EPO algorithm on πSFT with DEPO,

we can obtain the resultant LLM, denoted as πEPO.
In general, πEPO is optimized based on the super-
vising information of the base dataset D (i.e. the
correct answer), and the self-improving training
ensures that the model can achieve a better perfor-
mance on the fine-tuning dataset.

4 Experiments

We evaluate the effectiveness of our EPO on two
representative reasoning tasks: arithmetic reason-
ing and commonsense reasoning. We test four
different base LLM models: Llama3-8B (Dubey
et al., 2024), Llama2-13B (Touvron et al., 2023),
Qwen2.5-7B (Yang et al., 2024) and Mistral-
7B (Jiang et al., 2023). We mainly evaluate the per-
formance of EPO in the self-improving scenario.

4.1 Datasets and Preprocessing

The experiments are carried out on two arithmetic
reasoning datasets and three commonsense reason-
ing datasets.

GSM8K. GSM8K (Cobbe et al., 2021) has been
adopted as a benchmark for the mathematical rea-
soning capabilities of LLMs. It contains 7,473

30124



training and 1,319 test problems, and each sample
is paired with a rationale that clearly states the final
answer.

MetaMaths. MetaMath (Yu et al., 2023)
is a popular augmentation of the GSM8K and
MATH (Hendrycks et al., 2020) datasets. It con-
tains 240K augmented samples based on GSM8K
and 155K samples based on MATH. Notably, for
lighter response generation, we only take 80K aug-
mented GSM8K samples for training. The subset
is denoted as MetaMaths.

AI2 Reasoning Challenge (ARC). ARC (Clark
et al., 2018) consists of two subsets: ARC-Easy
and ARC-Challenge. To obtain the rationales of the
queries for SFT, we apply a strong LLM (i.e., Yi-
Chat-34B (Young et al., 2024)) to generate typical
answers. Using the prompt presented in Appendix
A, we generate a rationale ending with an answer
statement for each query. After filtering the ratio-
nales with wrong answers and incorrect format, we
construct an SFT training set with 1599 samples
from ARC-Easy, and another with 793 samples
from ARC-Challenge. These training data are then
applied in the first SFT phase of the approach. For
the generation phase, we use the original training
set.

MathQA. MathQA (Amini et al., 2019) con-
tains 29837 training samples and 2985 test samples.
Each sample contains a math query, four candidate
results, a rationale, and a correct answer. We man-
ually add the answer statements at the end of the
rationales for SFT.

SocialIQA. Social IQA (Sap et al., 2019) has
33410 training samples, each containing a query
and 3-5 candidate results without rationales, as
well as 2224 test samples. We utilize the same
method used in constructing the ARC SFT dataset
to generate rationales. Notably, we generate 23624
samples with one correct rationale each.

4.2 Baselines
In the experiments, we compare the proposed self-
training EPO method (i.e. SFT + EPO) with various
existing self-training approaches. They are: SFT,
(SFT +) RFT, (SFT +) DPO, (SFT +) DPObatch,
(SFT +) RPO, and (SFT +) Step-DPO. We present
more detailed description and implementation of
these methods in Appendix C.1.

4.3 Implementation Details
The experiments are carried out on 16 A100-80G
GPUs with a Linux system. For all methods, we

Table 1: The False Positive Situation.

N 5 10 20 30 50
All Positive 22800 45660 79508 118978 198047
False Positive 804 1634 4252 6921 11884
Proportion 3.52% 3.58% 5.35% 5.82% 6.00%

search the hyperparameters as presented in Ap-
pendix C.2. We train for 3 epochs in each set-
ting and report the performance of the best check-
point. For the response generation phase in the
self-improving scenario, we use the sample num-
ber N = 20 with temperature T = 0.7, following
(Yuanzhe Pang et al., 2024). We use Pytorch1 and
Huggingface2 as tools for the implementation. For
preference optimization, we run our experiments
based on trl3. All the generations were done using
vllm (Kwon et al., 2023)4. The code is available on
GitHub5.

For the SFT training setup, we train SFT mod-
els using the following hyperparameters: learning
rate of 2e-5, batch size of 64, maximum sequence
length of 2048, and cosine learning rate schedule
with 10% warmup steps for 3 epochs. All the mod-
els are trained with an Adam optimizer (Kingma
and Ba, 2017). The same setting is also used for
RFT.

For the preference optimization (DPO,
DPObatch, RPO and EPO), we apply a search on
the learning rate, training epoch, and additional
hyperparameters. The search range is presented in
Appendix C.2.

4.4 Analysis of Misclassification Situation

To label the correctness of the sampled responses,
a rule-based verifier is used. It is inevitable that
there could be misclassified samples. For True
Negative samples, we consider that it gives either
no answer at the end of the responses or wrongly
formatted answers. This is not the behaviour we
want the model to learn. For the analysis of False
Positive samples, we utilize DPSK-Distill-Qwen-
32B (Guo et al., 2025) to annotate whether the
positive sampled responses are true positives using
the prompt given in Appendix A. From Tab. 1
we can observe that although the proportion of
false positive samples increases with the increase
of N, it only hovers around a 5% proportion of all

1https://pytorch.org/
2https://huggingface.co/
3https://github.com/huggingface/trl
4https://github.com/vllm-project/vllm
5https://github.com/Vespertinus9/EPO

30125



positive samples. This can indirectly confirm the
effectiveness of our method.

4.5 Main Results
The main results of our experiments are presented
in Tab. 2 and Tab. 3. Remarkably, for the math rea-
soning task, EPO achieves a 5.43% improvement
over the SFT model in accuracy on the GSM8K
dataset and a 3.29% improvement on the Metasubs
dataset for Llama2-13B. This improvement comes
to 2.64% and 2.05% for Qwen2.5-7B. As for the
Commonsense tasks, EPO brings an increase of
3.58% for Llama3-*B on SocialIQA, 4.47% for
Mitral-7B on ARC-Easy, 6.94% for Llama2-13B
on ARC-Challenge, and 6.29% for Mistral-7B on
MathQA.

A cursory examination reveals that our EPO con-
sistently outperforms all the preference optimiza-
tion baselines across all tasks. Such a pattern un-
derscores the effectiveness of EPO in improving
LLM’s ability in reasoning tasks. In contrast, the
DPO baselines can eventually damage the perfor-
mance of the model, and this happens more fre-
quently in mathematical reasoning. The DPObatch

method also shows an unstable effect compared to
DPO, although it can bring a slight improvement
in many cases. RPO, compared to the former two,
shows a more stable improvement over the base
models. However, our EPO provides a more reli-
able preference estimation and constantly brings
better performance improvements.

4.6 Further Analysis
4.6.1 Analysis of Generation Parameters and

Length Limitation
Effect of sampling temperature and length limi-
tation. We analyze the effect of sampling tempera-
ture in the generation phase and the length limita-
tion operation in the training phase. Fig. 3(a) shows
the effectiveness of length limitation in contribut-
ing to the optimization stability. For the GSM8K
datasets, limiting the length of participation in the
responses to the interval between 10 and 20 can
result in better performance. As the sampling tem-
perature grows, the peak is gradually moving to the
right. This effect may be due to the increasing vari-
ety of responses that would decrease the instability
of responses.

Effect of sampling number and length limita-
tion. We analyze the effect of sampling number in
the generation phase and the length limitation in
the training phase. As shown in Fig. 3(b), with the

increase of sampling number, the performance in-
creases for the length limitation less than 20. This
result indicates that our EPO estimates the prefer-
ence distribution more accurately as the number of
samples increases. When the length limitation is
increased, this benefit becomes unstable.

4.6.2 Effect of EPO from the Training Set
Perspective

Considering that all the self-improving methods
can more effectively utilize the training set com-
pared to simple SFT, we analyze the performance
of our EPO in comparison with baselines from the
perspective of the training set. We apply an N=5
inference on GSM8K for each trained model with
different methods. Taking the leftmost bar (SFT)
in Fig. 4 as the reference, we can observe that EPO
increases the probability of the model responding
correctly (i.e., an increased number of the "5" seg-
ments and decreased number of the "0" segments)
most. In fact, EPO drives the increase in the num-
ber of all-correct generations from 2441 to 3253,
while DPO and RPO even drive it to decrease.

4.6.3 Effect of Sampling Distribution on
Training Result

As we utilize the expectation of a sampling process
to estimate the preference in EPO, the sampling
distribution (i.e. the samples in groups) can affect
the final optimization direction. Here we present an
analysis of the choice of responses for EPO. Firstly,
we apply an N=30 generation on GSM8K with
T=0.7. Then we present three different methods
to select 15 responses for each prompt: randomly
selecting, selecting the responses with the highest
probabilities, and selecting the responses with the
lowest probabilities. We perform this analysis on
two base LLMs: Llama3-8B and Llama2-13B. As
shown in Table 4, the randomly selecting approach
presents the best performance, and selecting with
the lowest probabilities shows a poor performance.
This implies that when selecting sample groups,
it is necessary to follow a true distribution that
guides a correct optimization direction; otherwise,
optimization deviations may occur, leading to poor
performance.

5 Related Work

Despite the success of instruction tuning on
LLMs, which has shown a good zero-shot perfor-
mance (Chung et al., 2024; Mishra et al., 2021;
Sanh et al., 2021), preference optimization has
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Table 2: Overall results on the math tasks in comparison with four base models. We report the accuracy of CoT
Pass@1 greedy sampling. The best performance is in bold and the second-best is underlined.

Base Model Datasets SFT Result
Post Methods

RFT DPO DPObatch RPO Step-DPO EPO

Llama3-8B
GSM8K 50.03 53.27 50.83 49.07 51.85 51.70 53.92
MetaMaths 77.25 76.02 75.37 76.12 79.02 79.78 81.03

Llama2-13B
GSM8K 49.27 47.99 48.47 48.53 50.09 51.83 54.70
MetaMaths 69.82 68.38 67.39 68.46 71.19 70.27 73.11

Qwen2.5-7B
GSM8K 75.59 73.02 73.85 72.93 76.02 76.25 78.23
MetaMaths 82.03 81.32 81.19 80.37 81.85 82.24 84.08

Mistral-7B
GSM8K 41.84 41.74 39.57 38.89 41.48 43.25 45.40
MetaMaths 70.05 70.15 68.01 68.29 71.72 71.29 74.72

Table 3: Overall results on the Commonsense tasks in comparison with 4 base models. We report the accuracy of
CoT Pass@1 greedy sampling. The best performance is in bold and the second-best is underlined.

Base Model Datasets SFT Result
Post Methods

RFT DPO DPObatch RPO Step-DPO EPO

Llama3-8B

ARC-Easy 81.31 81.24 83.52 81.45 82.73 82.92 84.10
ARC-Challenge 52.98 56.56 54.77 55.02 54.88 53.05 55.74
MathQA 52.16 53.75 51.29 50.77 52.75 52.03 55.37
SocialIQA 75.17 71.82 77.39 76.58 77.12 75.47 78.75

Llama2-13B

ARC-Easy 82.28 82.07 82.74 82.93 83.20 83.31 84.35
ARC-Challenge 57.93 62.62 61.60 62.07 63.99 64.72 64.87
MathQA 44.62 47.07 38.22 43.37 45.31 45.93 46.91
SocialIQA 74.14 74.55 78.50 77.58 77.36 77.46 79.86

Qwen2.5-7B

ARC-Easy 91.03 89.30 90.52 90.33 91.86 91.97 92.15
ARC-Challenge 84.55 83.92 85.49 86.14 84.72 86.49 87.28
MathQA 67.67 68.25 66.92 67.64 68.75 68.30 68.96
SocialIQA 77.02 76.84 77.31 76.32 77.95 78.37 78.94

Mistral-7B

ARC-Easy 74.47 72.83 74.83 75.05 78.30 78.33 78.94
ARC-Challenge 60.45 62.71 63.84 60.03 62.97 63.45 64.73
MathQA 52.09 52.36 50.83 51.95 55.70 57.92 58.38
SocialIQA 74.10 74.37 76.30 75.58 76.15 75.33 78.05

Table 4: Effect of sampling distribution on DPO. "High-
est / Lowest Prob" represents the selection of the re-
sponses with the highest / lowest probabilities

Base Model Random Highest Prob Lowest Prob
Llama3-8B 54.05 53.25(-0.80) 51.37(-2.68)
Llama2-13B 54.96 54.61(-0.35) 50.58(-4.38)

demonstrated its remarkable effectiveness in align-
ing LLMs with human values (Bai et al., 2022).
As reinforcement Learning with Human Feedback
(RLHF) (Bai et al., 2022) is a complex and often un-
stable procedure (Pal et al., 2024), DPO (Rafailov
et al., 2024) has been proposed as a more stable
and computationally lightweight algorithm with no
need for extra reward function training.

The reasoning ability of LLMs is important
in practice. Let us take mathematical reasoning
as example. To make a stronger math-reasoning
model, previous studies have focused on training
the base model on larger datasets of better qual-

ity (Yuanzhe Pang et al., 2024; Yu et al., 2023).
However, it is well-recognized that creating large-
scale and high-quality training samples is challeng-
ing and expensive.

The use of preference learning to improve the
LLM’s reasoning ability has recently attracted in-
creasing attention, while also facing certain prob-
lems. DPOP (Pal et al., 2024) enhances the su-
pervision of the positive end in DPO by adjusting
the loss function. Iterative RPO (Yuanzhe Pang
et al., 2024) presents a similar loss function in
a self-improving scenario without the SFT phase.
Step-DPO (Lai et al., 2024; Lu et al., 2024) takes
extra effort to create step-wise paired data and uti-
lizes methods that are similar to the vanilla DPO.
However, these methods do not solve the problem
of preference estimation of pair-wise optimization,
thus gaining little improvement.
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(a) (b)

Figure 3: Analysis of hyperparameters. The analysis is conducted on GSM8K for Llama2-13B. The sampling
number for the experiments in (a) is set to 10, and the temperature for the experiments in (b) is set to 0.7. The blue
dashed line represents the performance of DPO utilizing the length-limitation method.

Figure 4: We calculate the number of correct responses
for each query in an N=5 generation for each method on
GSM8K, using Llama2-13B as base LLM. The different
colors reflect different numbers of correct responses.
The length of the bar represents the number of prompts.

6 Conclusions and Future Work

In this paper, we have proposed an Expectation
Preference Optimization (EPO) method that ac-
cepts pairs of response groups for preference learn-
ing. Compared to the existing pairwise preference
optimization approaches, EPO can more reliably es-
timate the preference distribution, especially when
facing complicated reasoning tasks. We further de-
sign a self-improving framework, in which EPO
can be effectively leveraged to improve the rea-
soning ability of LLMs. Experimental results on
various reasoning tasks and datasets demonstrate
the superior performance of our EP over a wide
range of baseline approaches.

For future work, we plan to explore further meth-
ods (e.g., adding weights on responses) to better
estimate the preferences based on EPO.

7 Limitations

Our paper presents a simple and practical method
to improve the capability of LLMs in any reasoning
task. However, the theory of EPO is not confined

to reasoning tasks. Our intuition is to replace a
single sample with an expectation in the Bradley-
Terry model. Thus EPO can also used in alignment
tasks. However, we have not found a proper way to
calculate the expectation in alignment tasks since
in reasoning tasks the answer to a query is binary
(i.e., correct or incorrect) while it is not in align-
ment tasks. Finding a proper method to calculate
the expectation in alignment tasks can be a more
comprehensive demonstration of the superiority of
EPO theory.

8 Discussion of Ethical Considerations

For the permissions of our used artifact, each of our
used models (Llama2-13B, Llama2-7B, Mistral-
7B, Qwen1.5-7B) and the datasets (GSM8K, ARC,
MathQA) are open-sourced and can be found from
Github or Huggingface. Secondly, all the models
can not be used commercially.

We utilize all the models and datasets consis-
tent with their intended use. We do not provide
extra data. Our construction of self-training data us-
ing the LLMs presents the answers to the datasets,
which is the purpose LLMs are designed.

The datasets we used contain no information that
names or uniquely identifies individual people or
offensive content.

We use Generative AI only for writing correc-
tion.
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A Used Prompt

A.1 Prompt for Yi to generate rationales

user: Please answer the following single-choice question by presenting the thinking process and presenting
the answer. 1. The question has an answer. 2. The thinking process part is a coherent paragraph. 3.
Present the answer in the end of the response which is in the format of T̈he answer is A/B/C/D.̈.

Question:
[present question here]
Choice:
[present choice here]
assistant:

A.2 Prompt for base models to generate CoT answer for GSM8K

Below is an instruction that describes a task.
"Write a response that appropriately completes the request.
Instruction:
[present query here]
Response:

A.3 Prompt for base models to generate CoT answer for Commonsense choosing task

Below is an instruction that describes a task.
Write a response that appropriately completes the request.
Instruction:
Pick the most correct option to answer the following question.
[present question here]
A.[present choice here]
B.[present choice here]
C.[present choice here]
D.[present choice here]
Response:

A.4 Prompt for analysis the False Positive Samples

You are an accurate answer evaluator. Your task is to determine whether a candidate answer is genuinely
correct based on the question I provide and the reference answer. Key notes:

1. The reference answer is always correct, and the candidate answer to be evaluated will always have
the correct final result.

2. You must evaluate whether the reasoning process of the candidate answer is correct.
3. The candidate answer does not need to match the reference answer verbatim—it only needs to be

logically self-consistent.
4. If the candidate answer contains calculation errors, formula mistakes, or flawed logic (even if the

final result matches the reference answer), it must be judged as incorrect.
5. Format your response strictly as:
{"conclusion": "correct/incorrect"}
Question
[present question here]
Reference Answer
[present reference answer here]
Candidate Answer
[present answer here]
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B Proof for optimal solution to EPO

B.1 Proof for optimal solution to EPO

We construct our proof following the previous works(Peters and Schaal, 2007; Rafailov et al., 2024).
From Eq. 2, our optimizing target is:

max
π

Ex∼D,y∼π[r(x, y)]− βDKL [π(y | x)∥πref(y | x)] (11)

Notably, we can derive as:

max
π

Ex∼D,y∼π[r(x, y)]− βDKL [π(y | x)∥πref(y | x)]

= max
π

Ex∼DEy∼π(y|x)

[
r(x, y)− β log

π(y | x)
πref(y | x)

]

= min
π

Ex∼DEy∼π(y|x)

[
log

π(y | x)
πref(y | x) −

1

β
r(x, y)

]

= min
π

Ex∼DEy∼π(y|x)


log π(y | x)

1
Z(x)πref(y | x) exp

(
1
β r(x, y)

) − logZ(x)




(12)

where we define as :

Z(x) =
∑

y

πref (y | x) exp
(
1

β
r(x, y)

)
(13)

Notably, Z(x) is a function of only x and πref . We can additionally define:

π∗(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
(14)

As is a probability distribution which holds
∑

y π
∗(y | x) = 1. Using the Z(x), we can re-organize the

Eq. 11 as:

min
π

Ex∼D

[
Ey∼π(y|x)

[
log

π(y | x)
π∗(y | x)

]
− logZ(x)

]
=

min
π

Ex∼D [DKL (π(y | x)∥π∗(y | x))− logZ(x)]
(15)

Since Z(x)does not depend on π, the optimal solution is achieved by the policy that minimizes the first
term. The KL divergence is minimized in the situation where two distributions are equal. Thus we have
the optimal solution:

π(y | x) = π∗(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
(16)

B.1.1 Deriving the EPO Objective Under the Bradley-Terry Model
To derive the EPO objective under the Bradley-Terry preference model, we have the origin Bradley-Terry
Model:

p∗ (Gw ≻ Gl | x) =
1

1 + exp (Eyi∼Gl
[r (x, yi)]− Eyi∼Gw [r (x, yi)])

(17)

In Eq. 6, we have:

r(x, y) = β log
π̂(y | x)

πref (y | x) + β logZ(x) (18)
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Substituting Eq. 18 into Eq. 17, we can get:

p∗ (Gw ≻ Gl | x) =
1

1 + exp (Eyi∼Gl
[r (x, yi)]− Eyi∼Gw [r (x, yi)])

=
1

1 + exp
(
Eyi∼Gl

[
β log π̂(yi|x)

πref (yi|x) + β logZ(x)
]
− Eyi∼Gw

[
β log π̂(yi|x)

πref (yi|x) + β logZ(x)
])

=
1

1 + exp
(
Eyi∼Gl

[
β log π̂(yi|x)

πref (yi|x)

]
− Eyi∼Gw

[
β log π̂(yi|x)

πref (yi|x)

])

= σ

(
Eyi∼Gl

[
β log

π̂(yi | x)
πref (yi | x)

]
− Eyi∼Gw

[
β log

π̂(yi | x)
πref (yi | x)

])

(19)

Which leads to Eq. 7.

C Implementation Details

C.1 Baselines
In this section, we present the details of the baselines we used compared to EPO. Notably, we are using
different training methods in the self-training scenario. Thus all of our baselines start from the SFT model:

SFT presents the πSFT which is the LLM fine-tuned on typical rationales for specific tasks. It is used
as the initialization of each self-training method below and our EPO.

Beyond the SFT model, we utilize several self-training methods that do not introduce additional
supervising information as our EPO does. The below methods are all beyond SFT model and the inference
responses D̂ sampled from SFT model and the certain dataset:

(SFT +) RFT presents the model fine-tuned on the correct generated responses based on πSFT , referring
to the RFT method. Notably, we get a subset of D̂ using the correction of responses as the filtering signal,
denoted as D̂RFT . RFT are fine-tuned on D ∪ D̂RFT (Yuan et al., 2023). This method stands for the
performance of fine-tuning in the self-improving scenario.

(SFT +) DPO presents the fine-tuned model using typical DPO on the pair-wise preference samples
which are randomly chosen once for each prompt. Notably, we sample one correct response and one
incorrect response for each prompt in D ∪ D̂(Yuan et al., 2023) randomly. Then we apply DPO to this
dataset. It has the same optimizing steps as our EPO.

(SFT +) DPObatch presents the model using DPO training on pairs selected as many as possible to the
prompt (while ensuring the single utilization of each response) in Gl and Gw for each prompt. Notably,
for each prompt in D ∪ D̂, we sample min(Numright, Numwrong) preference pairs as Numright and
Numwrong represent the number of correct and incorrect responses. It shows the performance of using
batched DPO compared to EPO.

(SFT +) RPO represents the model using the RPO algorithm (combining DPO loss with an NLL loss
on the preferred response) on the pair-wise preference samples same as SFT + DPO. Notably, the RPO
objective is represented as:

LRPO = − log σ

(
β log

Mθ (c
w
i , y

w
i | xi)

Mt (cwi , y
w
i | xi)

− β log
Mθ

(
cli, y

l
i | xi

)

Mt

(
cli, y

l
i | xi

)
)

− α
logMθ (c

w
i , y

w
i | xi)

|cwi |+ |ywi |

(SFT +) Step-DPO represents the model using the Step-DPO algorithm(Lai et al., 2024) on the step-
level pair-wise preference samples. We construct the step-level samples for each wrong responses using
in (SFT +) DPO.

C.2 Search range of Baselines
Notably, we are referring the papers (Rafailov et al., 2024; Yuanzhe Pang et al., 2024; Meng et al., 2024)
to set the search ranges. The length limitation of EPO is tuned from 5 to 100.
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Table 5: Hyperparameter search range.

Methods Search Range

DPO β ∈ [0.05, 0.1, 0.5, 1.0]
lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]

DPObatch
β ∈ [0.05, 0.1, 0.5, 1.0]

lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]

RPO
β ∈ [0.05, 0.1, 0.5, 1.0]

lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]
α ∈ [0.25, 0.5, 1, 2]

EPO
β ∈ [0.05, 0.1, 0.5, 1.0]

lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]
γ ∈ [0.1, 0.2, 0.5, 1.0]

D The Time Cost of EPO

Figure 5: Analysis of training cost of EPO and baseline (i.e. DPO) under different N along with their performance.

The training cost involves time costs and memory costs. For the former, taking the sample of 20
responses per prompt, EPO requires the LLM to process an input that is 10 times larger than other methods
(20 to 2). Benefiting from CUDA’s parallel strategy for tensors, the extra time cost we need to bear is
smaller than the linear estimation. For the latter, the extra GPU memory cost by a larger input tensor is
much smaller than that is required for LLM training.

We present the relevance of training costs and the performance of our EPO. As it is shown in Fig 5,
EPO’s training time is about 2-3 times of the other methods (while N is less than 30), while requiring a
small amount of extra GPU memory.
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