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Abstract

Large language models (LLMs) offer a power-
ful opportunity to simulate the results of so-
cial science experiments. In this work, we
demonstrate that finetuning LLMs directly on
individual-level responses from past experi-
ments meaningfully improves the accuracy of
such simulations across diverse social science
domains. We construct SOCSCI210 via an
automatic pipeline, a dataset comprising 2.9
million responses from 400,491 participants
in 210 open-source social science experiments.
Through finetuning, we achieve multiple levels
of generalization. In completely unseen studies,
our strongest model, SOCRATES-QWEN-14B,
produces predictions that are 26% more aligned
with distributions of human responses to di-
verse outcome questions under varying condi-
tions relative to its base model (Qwen2.5-14B),
outperforming GPT-4o by 13%. By finetuning
on a subset of conditions in a study, general-
ization to new unseen conditions is particularly
robust, improving by 71%. Since SOCSCI210
contains rich demographic information, we re-
duce demographic parity difference, a measure
of bias, by 10.6% through finetuning. Because
social sciences routinely generate rich, topic-
specific datasets, our findings indicate that fine-
tuning on such data could enable more accurate
simulations for experimental hypothesis screen-
ing. We release our data, models and finetuning
code at stanfordhci.github.io/socrates.

1 Introduction

Large language models have shown impressive po-
tential to simulate human behavior (Park et al.,
2024; Hewitt et al., 2024; Kim and Lee, 2023).
For social science experiments, simulations enable
researchers to screen and iterate on hypotheses be-
fore committing to costly studies (Rothschild et al.,
2024; Hewitt et al., 2024; Wang et al., 2025b). Ac-
cordingly, LLM-based simulation methods have
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Figure 1: We release SOCSCI210, a large-scale
dataset built from open-source social science experi-
ments. Through finetuning, we create behavioral predic-
tion models SOCRATES-LLAMA-8B and SOCRATES-
QWEN-14B, which predict responses that are 12.1%
and 13.2% respectively more aligned with human re-
sponse distributions to outcomes under diverse experi-
mental conditions, relative to GPT-4o.

been explored across various social science disci-
plines (Argyle et al., 2023; Horton, 2023; Brand
et al., 2023).

Previous work simulating human responses has
used direct prompting such as with demographic
personas (Hewitt et al., 2024), human conversa-
tions (Cho et al., 2024), and detailed life narratives
(Park et al., 2024; Moon et al., 2024). Still, LLMs
routinely distort opinion distributions (Bisbee et al.,
2024; Gao et al., 2024), overestimate effect sizes in
experimental manipulations by 2 to 10 times (Park
et al., 2024; Hewitt et al., 2024), and incorrectly
predict significant effect directions 10 - 32% of
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the time (Hewitt et al., 2024; Bisbee et al., 2024).
LLMs further introduce biases that flatten variation
across demographic groups (Wang et al., 2025a).
These error cases currently limit the viability of
effective LLM-simulations for social science exper-
iments.

Recent work has begun exploring the viability of
finetuning language models for improved human
response prediction (Suh et al., 2025; Chu et al.,
2023; Lu et al., 2025; Binz et al., 2024) and has
demonstrated generalization on their specific tasks
(e.g., cognitive science, public opinion).

In this work, we broaden the domain and scope
of prior fine-tuning work in pursuit of a general
purpose, domain-agnostic human behavior predic-
tion model. To enable this, we first construct SOC-
SCI210, a standardized, large-scale dataset com-
prising 2.9 million individual responses from over
400,000 participants across 210 social science stud-
ies. All studies were drawn from NSF’s Time-
sharing Experiments for the Social Sciences—peer-
reviewed, high-powered experiments spanning mul-
tiple disciplines (e.g., economics, political science,
behavioral psychology) and conducted on nation-
ally representative samples with rich demographic
reporting ("TESS", 2025). We design an LLM
agent to convert each study’s data into a consis-
tent text-based representation describing respon-
dent demographic profiles, the experimental ques-
tions, and the recorded responses.

Using this dataset, we provide a comprehen-
sive comparison of finetuning methods (super-
vised fine-tuning, augmenting with reasoning
traces, contrastive preference optimization) against
various prompting baselines (reasoning and in-
context learning) on both proprietary GPT-4o and
open-source LLaMa3-8B (Grattafiori et al., 2024),
Qwen2.5-14B (Yang et al., 2024a) LLMs. Through
our evaluations, we highlight that supervised fine-
tuning greatly improves distributional alignment
between predicted responses and human responses,
while contrastive preference optimization leads
to the best prediction accuracy for individual re-
sponses. Notably, relative to their base models,
fine-tuning improves alignment with human re-
sponse distributions in unseen studies by 30% for
LLaMa3-8B and 26% for Qwen2.5-14B. We further
demonstrate robust generalization to unseen par-
ticipants, conditions and outcomes. Finally, we
highlight finetuning improve demographic bias in
predictions by 10+%.

Our main contributions are:

1. We release SOCSCI210, a standardized,
large-scale dataset comprising 2.9 million individ-
ual responses from over 400,000 participants (5×
the number participants of prior work’s datasets)
with rich demographic reporting across 210 social-
science studies spanning multiple disciplines.

2. We present SOCRATES-LLAMA-8B and
SOCRATES-QWEN-14B finetuned on SOCSCI210,
which, relative to GPT-4o, generate predictions that
align 12.1% and 13.2% better to human response
distributions, reflecting 26+% performances gains
relative to their base models.

3. Motivated by practical use cases of social sci-
entists with in-domain data, we demonstrate robust
generalization at various levels. Finetuning on as
little as 10% of an experiment’s data reduces pre-
diction error by 13% on unseen participants, and
training on subsets of experimental conditions or
outcomes boosts generalization to unseen condi-
tions by 71% and unseen outcomes by 49%.

2 Related Work

Datasets for Human Response Finetuning. Re-
cent works have assembled large-scale public-
opinion datasets and used them to finetune LLMs.
For instance, Santurkar et al. (2023) train on opin-
ion distributions from 60 U.S. demographic groups
over 500 contentious questions. Likewise, Suh et al.
(2025) compile 3,362 survey questions with the re-
sponses distributions from 70,000 demographics,
demonstrating a great breadth of topic diversity.

Other works have focused on datasets of in-
dividual decision-making across different behav-
ioral contexts. Binz et al. (2024), for example,
introduce Psych-101, which contains over 10 mil-
lion choices from 60,000 participants across 160
cognitive-science experiments. Orlikowski et al.
(2025) collect and finetune on 60,000 individuals
reactions to different texts to explore how sociode-
mographic factors shape perception, and Lu et al.
(2025) finetune on 230,965 logged decisions from
3,526 users to predict web-action generation. Zhu
et al. (2025) explores reinforcement fine-tuning
for reasoning trace generation from a dataset of
13,000 risky human choices produced by Peterson
et al. (2021). Xie et al. (2025) combines multi-
ple types of datasets for fine-tuning, aggregating
data from 17,667 individual surveys and economic
games played by 68,790 individuals. (they also
include titles and abstracts from 2,703 behavioral
science publications). Although rich in behavioral
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Dataset Size Feats. Domain
Source Individuals Total Data Points D I

Psych-101 (Binz et al., 2024) 160 experiments 60,000 10,000,000 ✗ ✓ Psychology
SubPOP (Orlikowski et al., 2025) 3,362 questions — 70,000 ✓ ✗ Public Opinion
E-commerce (Lu et al., 2025) 31,865 sessions 3,526 230,965 ✗ ✓ E-commerce
OpinionQA (Santurkar et al., 2023) ∼1,500 questions — 90,000 ✓ ✗ Public Opinion

Be.FM (Xie et al., 2025)
50 questions 17,667 883,350 ✓ ✓ Big-5 Personality

6 games 68,790 82,057 ✓ ✓ Behavioral Econ.
2,703 abstracts — 2,703 ✗ ✗ Behavioral Science

SOCSCI210 (Ours) 210 experiments 400,491 2,900,000 ✓ ✓ Social Sciences

Table 1: Comparison of our SOCSCI210 to dataset characteristics used in prior finetuning work. Under “Feats
(features)” column, “D” indicates if the dataset includes participant demographics, and “I” refers to if training
samples are done at the individual level (as opposed to the aggregate distribution level). When training occurs at
the aggregate level, we omit the total number of individuals used to construct the dataset as they do not maintain
individual granularity.

Figure 2: t-SNE projected embedding space of ques-
tions in SOCSCI210, compared to SubPop (Suh et al.,
2025) and Psych101 (Binz et al., 2024). SOCSCI210
shows much broader topic diversity across social sci-
ence disciplines.

detail, these datasets do not yet capture the full di-
versity of social science disciplines that simulations
could enable at a granular, individual level.

Our work attempts to bridge these gaps by con-
structing a dataset that expands upon the cover-
age of human behavioral sciences covered in prior
datasets while enabling granular, individual-level
responses in behavioral contexts. Increased scien-
tific topic breadth is a key enabler of engineering a
shared agent model that can enable any simulation
across any social science context.

LLM Finetuning Methods. Finetuning adapts
pretrained LLMs for specific tasks, such as follow-
ing user instructions (Ouyang et al., 2022; Wang
et al., 2022; Zhang et al., 2023) or learning so-
cial skills (Liu et al., 2023; Yang et al., 2024b;
Wu et al., 2024). Apart from supervised fine-
tuning (SFT), reinforcement learning from hu-
man feedback (RLHF) (Christiano et al., 2017;
Ziegler et al., 2019), as well as the simplified
DPO (Rafailov et al., 2024) and SimPO (Meng
et al., 2024), all use paired data of {preferred
response, dispreferred response} for fine-
tuning, which aligns model outputs to annotated
human preferences. More recently, reasoning mod-
els (DeepSeek-AI, 2025; Abdin et al., 2025; Team,
2025b) trained with RL show strong performance
in improving LLM capability by exploring chain-
of-thought (Wei et al., 2022a), especially for solv-
ing complex tasks. The reasoning abilities of larger
teacher models can also be distilled into smaller
models via finetuning on the teacher-generated rea-
soning traces (Zhao et al., 2025; Team, 2025a).

In this work, we provide a comparative evalua-
tion of SFT and DPO—contrasting the scenarios in
which each is most effective (see §4). Prior finetun-
ing studies in this domain have explored direct SFT
(Suh et al., 2025; Binz et al., 2024), SFT augmented
with reasoning (Lu et al., 2025), and reinforcement
fine-tuning with GRPO (Zhu et al., 2025).

3 Task Formulation

3.1 Task Description

We finetune an LLM to predict the responses of
an individual (of some demographic) to a stimulus
in an experiment with multiple treatments. Fig. 3
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Figure 3: Overview of our task formulation, methods, and evaluation. Our dataset contains information on personas,
conditions, outcomes, and predictions. We compare SFT, SFT on reasoning traces, and DPO. Our evaluation
measures performance gains on both predicting individual accuracy and aggregate distributions under conditions.

shows an example prediction. We consider ques-
tions that are ordinal (e.g., “On a scale from 1 to
7, how satisfied are you with your life?”) or binary
(e.g., “Would you buy this? Answer yes or no.”). In
the dataset of experiments we draw from, outcomes
were primarily ordinal or binary; restricting to only
these response types standardized our model evalu-
ations, with minimal data size reduction.

Formally, in our dataset D, a person is repre-
sented as P , a set of unique attributes. In our
dataset, these attributes are demographic charac-
teristics. Each experiment is set up as E =
([c1, ..., cj ], [o1, ..oi]) with j different conditions
and i outcome questions. The goal of the exper-
iment is to see how different conditions impact
participant responses to a given outcome. Stud-
ies may have a between-subject design (i.e., par-
ticipants are randomized into a single condition
and answer multiple outcome questions (between-
subject studies) or they may have an within-subject
design (participants are randomized into multiple
conditions and answer the same outcome). In either
setup, each participant gives k responses, r, each
corresponding to a question representing a (c, o)
pair, which we refer to as the stimuli. Note, the
randomization process occurred when the study of
the original dataset was conducted, so we do not
randomize the participants into the conditions, we
simply tag the participants’ responses with the con-
dition they were in in the original study. For every
individual participant in a study, we have k tuples
of (P, c, o, r). We finetune an LLM, F ′, to learn
F (P, c, o) =⇒ r.

3.2 Evaluation
We evaluate the performance of our finetuned
model F ′ at two levels.

Individual Response Accuracy. Given the ordinal
property of all predictions (§3.1), we compute a
normalized accuracy between predicted and actual
responses as

Acc. = 1− 1

N

∑

(P,c,o)

∣∣F ′(P, c, o)− r
∣∣

rmax − rmin

where rmax, rmin represent the maximum and min-
imum value of r under a specific condition and
outcome in the ground truth responses (i.e., the
bounds of the response scale). This value is com-
puted for each study, and then averaged across all
studies to get a final individual response accuracy
score.

Distribution Alignment Under Conditions.
While predicting individual responses is impor-
tant, accuracy is upper-bounded by the non-
deterministic nature of F (P, c, o) (i.e., the same
demographic may have different responses to the
same stimuli, so F (P, c, o) is a distribution). The
primary goal of social-science experiments is to
compute an end statistic that represents how re-
sponses to outcome questions vary across stimulus
conditions. The exact statistical analyses in these
contexts (e.g., t-tests, ANOVA, regressions) depend
on the type of experiment being conducted (Mar-
avelakis, 2019), but all statistics depend on the un-
derlying distribution of the responses to outcome
questions under each condition. Because of this,
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distributional alignment for this context is more
important than measuring just accuracy (we pro-
vide further examples and justification of this in
appx.B). Thus, we also measure whether the dis-
tribution of responses to each outcome under each
experimental condition aligns with corresponding
human responses.

Specifically, for each (condition, outcome) pair
(c, o) ∈ E, we compare the distribution of pre-
dicted responses across all participants assigned
to c against the empirical distribution of actual re-
sponses. Similar to Suh et al. (2025), we compute
distributional alignment using the Wasserstein dis-
tance, which estimates both the shape and mean of
distributions. For consistency, we first standardize
all distributions to be between [0, 1] by subtracting
rmin and dividing by rmax − rmin. We average the
Wasserstein distance across all condition outcomes
pairs in a study to get an aggregate score for the
study. We then average each study’s score across
all studies to get the final score. A lower Wasser-
stein distance indicates better alignment between
predicted and empirical response distributions.

3.3 Dataset Construction

Data Source. We collect studies from NSF’s
Time-sharing Experiments for the Social Science
(TESS) project ("TESS", 2025), a repository of
peer-reviewed experiments across various social
disciplines (e.g., psychology, political science, and
economics). TESS studies are nationally represen-
tative and high powered (studies in SOCSCI210
have mean 1907 and median 1954.5 participants).

Reconstruction. We employ a data-construction
agent – powered by OpenAI’s o4-mini-high – to
automatically parse the source data into {persona,
stimuli, response} formats from each study,
where the stimuli is tagged by its respective con-
dition and outcome question. We detail the recon-
struction workflow in Appx.A. In total, our agent
successfully reconstructs 210 studies.

Final Dataset Statistics. SOCSCI210 comprises
2.9 million individual responses spanning 1197
outcomes and 1194 conditions (yielding collec-
tively 5,998 unique stimuli) from 400,491 partic-
ipants. Our SOCSCI210 includes responses from
five times as many individuals as prior finetun-
ing work. Tab. 1 offers an explicit comparison with
prior datasets used for human behavior finetuning.
Apart from being large in scale, SOCSCI210 is
also diverse across disciplines. Fig. 2 shows the

embedding space of our stimuli with other large-
scale fine-tuning datasets (Binz et al., 2024; Suh
et al., 2025), illustrating this broad topic diversity.

4 Finetuning Methods

To finetune LLMs for simulating responses, we ex-
periment with supervised finetuning (SFT), SFT on
oracle reasoning traces, and contrastive preference
tuning via DPO (Rafailov et al., 2024).

Supervised Finetuning (SFT). Given our dataset
D, an individual persona P , experiment condition
c, and outcome question o, we form a prompt q that
asks the model to predict the individual’s response
(see Appx.D for the template). Let F ′ denote the
model being finetuned. The SFT objective mini-
mizes the negative log-likelihood (cross-entropy)
of the ground-truth response r:

LSFT
(
F ′) = −E(q,r)∼D

[
logF ′(r | q)

]
(1)

Augmentation with Oracle Reasoning Traces.
Prior work has used explanatory reasoning for pre-
dicting human behavior (Park et al., 2024) and im-
proving fine-tuning performance (Lu et al., 2025),
so we also augment SFT with oracle reasoning.
Specifically, given the LLM prompt and the corre-
sponding human response, we query GPT-4o-mini
to generate reasoning traces explaining the human
decision from a social scientist’s perspective (see
Appx.D). These oracle-generated reasoning traces
are incorporated into the target output, enriching
the response r with explicit rationales1.

Contrastive Finetuning via Preference Opti-
mization. To enhance the model’s ability to differ-
entiate responses based on variations in conditions
c, demographics P , or outcome questions o, we
construct paired data by varying these components
and contrasting the corresponding responses.

For demographic contrastive pairs (see §5.5), we
take a focal persona ppos and randomly sample a
contrasting persona pneg from the dataset D un-
der the same condition c and outcome question o,
while ensuring their responses differ (rneg). Each
pair specifies that (ppos, c, o, rpos) is preferred over
(ppos, c, o, rneg). Following Rafailov et al. (2024),
the DPO objective is

1While we use GPT-4o for our main evaluation, we opted
to generate the oracle reasoning traces with GPT-4o-mini due
to practical cost constraints. Since these traces are produced
oracle-style, we believe any difference in reasoning quality
between the models is minimal.
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LDPO
(
F ′;F

)
=

− E(q,rpos,rneg)∼D
[
log σ

(
β log

F ′(rpos | q)
F (rpos | q)

− β log
F ′(rneg | q)
F (rneg | q)

)]
, (2)

where q concatenates ppos, c, and o into a single
prompt (see Appx.D); F ′ is the finetuned model,
F the fixed reference model, σ is the sigmoid func-
tion, and β scales the preference impact.

5 Experiments

5.1 Training Configurations
We train LLaMA3-8B-Instruct (Grattafiori et al.,
2024) and Qwen2.5-14B-Instruct (Yang et al.,
2024a) as representative base LLMs of different
sizes. Appx.C has complete training details.

5.2 Baselines

Bounds on Metrics. When computing the Wasser-
stein distance, we treat the responses in our dataset
as the ground-truth distribution of human responses.
Because individual responses naturally vary, this
empirical sample may not perfectly capture the true
distribution of outcomes under each condition. Our
source experiments were highly powered to esti-
mate a treatment effect of a certain size, not to ro-
bustly estimate the full distribution. To estimate an
empirical upper bound on performance given this
variance, we perform bootstrapping: we generate
100 resampled datasets (with replacement) from the
original responses. For each bootstrapped dataset,
we compute the Wasserstein distance between that
resample and the full original sample, then aver-
age these distances across all 100 iterations. If our
models Wasserstein distance meets or exceeds this,
our error is no larger than the variability inherent
in our data. We label this the “Empirical Best”.

To establish a lower bound, we compare the stan-
dardized distribution of our predicted responses to
a uniform distribution across [0, 1]. We use this
uniform baseline “Uniform Guess” to calculate a
corresponding lower bound on both Wasserstein
distance and accuracy.

Comparing Metrics. Because the Wasserstein dis-
tance has a narrow range (e.g., 0.2 for a uniform
guess, 0.1 for the empirical best), we report re-
sults as relative change versus a baseline (either
the base model with one-shot prompting or GPT-4o

with one-shot prompting). For each method, we
compute |amethod−abase|

|abase| ×100%, assigning the sign
so that positive values indicate improvement and
negative values indicate regression. Here, amethod

is the metric (e.g., Wasserstein distance) for the
method under evaluation, and abase is the metric
for the baseline.

Prompting Baselines. In our task formulation,
we already incorporate all available demographic
information from participants, which has proven
an effective prompting mechanism in prior work
(Hewitt et al., 2024). Prior work has also shown
that reasoning over intermediate decisions (Wei
et al., 2022b) or using in-context-prompting (Dong
et al., 2022) improves LLM prediction accuracy.
Accordingly, we evaluate three baselines: (1) di-
rect prediction prompting; (2) prompting to gen-
erate explicit reasoning traces before prediction;
and (3) in-context prompting with few-shot exam-
ples. We select few-shot examples by finding the
closest prompt stimuli neighbor via cosine sim-
ilarity of embeddings, then choosing examples
from five random participants. We use OpenAI’s
text-embedding-3-large model to embed stim-
uli. Prompt templates are provided in Appx.D and
Appx.E.

5.3 Generalization Across Unseen Studies

First, we consider the case when there is no in-
domain studies data are available to finetune on.
Specifically, we assess the study-wise generaliza-
tion of our finetuning methods by evaluating on
studies that are completely out of domain (i.e.,, not
seen during training).

Setup. From the 210 studies in SOCSCI210, we
split 170 studies as our train-studies and 40 studies
as test-studies. We train over 100% of the training
studies data, and evaluate on the 40 test studies. We
compare the performance of our three finetuning
objectives (SFT, SFT+Reasoning, and Contrastive
DPO (§4)) across two open-source models, to three
prompting baselines on GPT-4o.

Results. Tab. 2 details the results on our evaluation
metrics (§3.2). We find that finetuning meaning-
fully generalizes to unseen studies and improves
the distributional alignment metric. Relative to
the GPT-4o baseline, after SFT, LLaMA3-8B out-
performs GPT-4o by 12.1%, and Qwen2.5-14B
outperforms GPT4o by 13.2%, reflecting relative
gains of 30.1% and 26.3% from fine-tuning. In
open-source models, prompting through reasoning
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Model Variant Accuracy ↑ Distribution ↓
Score %∆ vs Base vs GPT-4o Score %∆ vs Base vs GPT-4o

Proprietary Models
GPT-4o Base 72.9 – – 0.174 – –

+ Few-shot (5) 73.2 0.4% 0.4% 0.161 7.5% 7.5%
+ Reasoning 73.1 0.3% 0.3% 0.169 2.9% 2.9%

Open-Source Models
LLaMA3-8B Base 70.3 – -3.6% 0.219 – -25.9%

+ Few-shot (5) 68.9 -2.0% -5.5% 0.212 3.2% -21.8%
+ Reasoning 69.8 -0.7% -4.3% 0.174 20.6% –
+ SFT 69.1 -1.7% -5.2% 0.153 30.1% 12.1%
+ SFT w/ Reasoning 67.5 -4.0% -7.4% 0.165 24.7% 5.2%
+ DPO 72.6 3.3% -0.4% 0.185 15.5% -6.3%

Qwen2.5-14B Base 72.9 – – 0.205 – -17.8%
+ Few-shot (5) 71.9 -1.4% -1.4% 0.196 4.4% -12.6%
+ Reasoning 72.7 -0.3% -0.3% 0.166 19.0% 4.6%
+ SFT 69.5 -4.7% -4.7% 0.151 26.3% 13.2%
+ SFT w/ Reasoning 67.6 -7.3% -7.3% 0.164 20.0% 5.7%
+ DPO 74.0 1.4% 1.4% 0.181 11.7% -4.0%

Bounds
Uniform Guess 61.2 – -16.1% 0.203 – -16.7%
Empirical Best – – – 0.125 – 28.2%

Table 2: Comparison of model variants on accuracy and distribution distance metrics across unseen studies (§5.3).
In each scenario, best scores are in boldface, second-best underlined. Percent changes are relative.

achieves significant gains, though our fine-tuned
model still outperforms this baseline on distribution
alignment. The best distributional alignment score
(0.151) is achieved by fine-tuning Qwen2.5-14B;
given an empirical best bound of 0.125 on this met-
ric, our model closely approximate actual human
response distributions.

Interestingly, although distributional alignment
improves for unseen studies, response-level accu-
racy does not necessarily increase. This suggests
that individual predictions may become less precise
as we better approximate the distribution of how re-
sponses should look (for example, if user responses
under condition follow a distribution N(0, 1), then
a model that more accurately captures that distri-
bution can incur higher error than one that always
predicts the mean). We include an in-depth discus-
sion analyzing this in appx.B.

For predicting individual accuracy metric, con-
trastive DPO outperforms all other methods achiev-
ing 73.9% accuracy. This is potentially due to our
demographic-focused contrastive pair construction
(§4) that enables models to learn detailed distinc-
tion in simulating individual decisions, leading to
more precise predictions of each individual.

5.4 Generalization to Unseen Conditions and
Outcomes

Researchers often have topic-specific dataset they
can leverage for finetuning. For example, a politi-

cal polarization researcher may have existing data
on how an intervention shifts feelings toward the
opposing party and want to run studies to predict
either (a) how this intervention influences a dif-
ferent outcome, such as respondents’ confidence
in government or (b) how a new intervention will
affect that same outcome. Thus, in this section,
we examine: How does finetuning help generaliza-
tion to unseen conditions/outcomes within the same
study?

Setup. We subset SOCSCI210 to all studies that
contain at least 4 conditions / outcomes. We split
the dataset into two splits: one for testing condi-
tion generalization, and one for testing outcome
generalization. For the condition split, we ran-
domly selected 75% of the conditions across stud-
ies, and take all questions under those conditions
for train, and hold out the other 25% for test. For
outcome splits, we repeat the same process but sam-
pling on outcomes. For each, we finetune on the
train set, then run our evaluation on the test set.
LLaMA3-8B-Instruct is used as an example base
model.

Results. As shown in Tab. 3, when predicting held-
out conditions, our finetuned model with reasoning
improves by 71% in estimating response distri-
butions relative to the base model. Notably the
distributional alignment after finetuning surpass
that of the “Empirical Best” threshold, suggest-
ing that the alignment with predictions in response
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Model Variant Accuracy↑ Distribution↓
Score vs Base Score vs Base

Condition Split
LLaMA3-8B Base 71.0 – 0.219 –

+ SFT 74.2 4.5% 0.077 64.8%
+ SFT w/ R. 71.9 1.3% 0.063 71.2%
+ DPO 71.2 0.3% 0.208 5.0%

Uniform Guess 62.1 – 0.180 –
Empirical Best – – 0.090 –

Outcome Split
LLaMA3-8B Base 71.7 – 0.224 –

+ SFT 71.7 0.0% 0.125 44.2%
+ SFT w/ R. 69.9 -2.5% 0.114 49.0%
+ DPO 72.6 1.3% 0.225 -0.5%

Uniform Guess 63.3 – 0.165 –
Empirical Best – – 0.086 –

Table 3: Performance metrics of LLaMA3-8B under dif-
ferent training configurations, evaluated on 75% train
/ 25% held-out splits for both Outcome and Condition
scenarios (§5.4). In each scenario, best scores are in
boldface, second-best underlined. Percent changes are
relative.

to predictions is as close as another sample would
be. SFT also increases the accuracy on individual
predictions from 71.0% to 74.2%.

Across outcomes, finetuning with reasoning also
improves distribution distance, leading to 49% rel-
ative improvement compared to LLaMA3-8B base.
Generalization across unseen conditions tends to
be greater than across unseen outcomes. This may
be because LLMs grasp the underlying effects of
how condition manipulations influence responses,
but are more prone to misestimate the initial dis-
tribution of outcome questions. Thus, by holding
the outcome constant and varying only the stimuli,
the model can more effectively learn the resulting
effects. This has especially practical value since
studies often test many different condition stimuli
on the same outcome (e.g., Strand et al. (2024) tests
25 interventions to reduce partisan animosity).

5.5 Generalization to Unseen Participants

Researchers often run pilot experiments on a small
set of participants before committing to fully pow-
ered studies. Specific to such use case, we consider
finetuning directly on a subset of participants and
testing generalization to unseen participants in the
same study. We examine how little data from a pi-
lot study is needed to accurately predict outcomes
for the remaining high-powered sample.

Setup. We reuse the same study-level train-test
split from §5.3: 170 studies for training and 40 for

testing. For the 170 training studies, we randomly
divide the participants once into: participant-train
(50% of all individuals for training); participant-
eval (the remaining 50% for evaluation of unseen
participants but seen studies). From the participant-
train pool we draw progressively larger pilot sub-
sets corresponding to 1, 5, 10, 20, 30, 40, 50% of
all participants (i.e., the 50% split all of participant-
train). For each split size we finetune the model
and report performance on (i) the participant-eval
splits of the 170 training studies (unseen individ-
uals but seen studies) and (ii) the 40 completely
held-out studies (unseen individuals and unseen
studies).

This design reveals how much participant data a
pilot must collect to obtain reliable generalization
across both new participants and new studies.

Results. Fig. 4 shows the results on both the par-
ticipants remained in the observed studies and all
the participants in the observed studies.

In seen studies (the 50% held-out evaluation set),
contrastive DPO tuning outperforms simple SFT
for learning individual responses: with just 10% of
the data, accuracy rises from 71% to 75% (a 13%
relative error reduction). However, SFT estimates
the distribution more effectively. When augmented
by reasoning traces, SFT+Reasoning brings even
further alignment on the distribution. Across all
studies, the learning curves in Fig. 4 indicate that
saturation of learning is consistently achieved at
around 10% of participant data.

In unseen studies (the completely held-out 40
studies), a similar pattern holds. Contrastive DPO
tuning also shows superior performance on the indi-
vidual response accuracy, surpassing GPT4o with
only 10% of data. SFT yields better distribution
alignment, whereas reasoning trace augmentation
provides little benefit in this setting.

5.6 Demographic Bias and Parity

A principal strength of our dataset is that it cap-
tures rich demographic attributes of all participants
and how they may affect responses. In this section,
we analyze the response distributions for the full-
data SFT of LLaMA3-8B, described in §5.3. We fur-
ther break down our distributional alignment metric
(i.e., the Wasserstein distance between model re-
sponses under each unique condition and outcome)
by demographic category: we subset the responses
to each demographic subgroup and compute the
average Wasserstein distance. Using this, we also
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Figure 4: Learning curves on how % of training sam-
ples generalizes to held-out participants in seen studies
and all participants in unseen studies, across varying
participant size across studies (§5.5).

compute demographic parity difference, a measure
of bias (Jiang et al., 2022) defined as the absolute
gap between the highest- and lowest-performing
demographic subgroups.

After finetuning – which improves overall distri-
bution alignment – we observe an average relative
improvement of 28.5% in distributional alignment
across demographic categories (a full breakdown
of improvement across every demographic sub-
group is available in Appx.F). More notably, across
all demographic categories, parity is reduced by
10.5%—a meaningful decrease in model bias, as
shown in Fig. 5.

6 Conclusion

In this paper, we finetune LLMs to create a general
use behavioral model that can accurately predict
how individuals respond in social science experi-
ments. We introduce SOCSCI210, a standardized,
large-scale dataset comprising 2.9 million individ-
ual responses from more than 400,000 participants
across 210 social science experiments. Through
fine-tuning Qwen2.5-14B, we create SOCRATES-
QWEN-14B, which relative to GPT-4o, produces
predictions that are 13% more distributionally
aligned with real human responses. Given the
strong generalization we observe, we recommend
that researchers begin finetuning on their existing
datasets to yield more accurate and useful simula-
tions. To support this, we will open-source both our

Figure 5: Parity reduction in predicting distribu-
tions across demographic categories after finetuning
LLaMA-8B) (§5.6)

dataset (SOCSCI210), models (SOCRATES) and
finetuning code. These provide a foundation in
creating a unified behavioral prediction engine that
can power simulations across every discipline.

Limitations

Our participant sweeps in §5.5 show that perfor-
mance tends to quick plateau with more partici-
pants’ data. This is likely because we use relatively
small parameter models. Given the size of our
dataset, we anticipate that scaling to larger models
(such as Llama-70B or Llama-405B) could further
improve performance.

We rely on GPT-4o-mini to generate our oracle
reasoning traces, and show that SFT on this traces
does not always help improve performance for our
task. Future work might investigate distilling those
traces from more powerful reasoning models (e.g.,
OpenAI’s o3), which could create more performant
models. Our models are trained exclusively on
SOCSCI210. Although our dataset is diverse, it
contains only representative samples of the U.S.
population for closed-form questions. We do not
evaluate the generalization of our training to non-
U.S. populations or to open-form questions. Fu-
ture work should focus on integrating datasets from
prior research into our training paradigm, construct-
ing new datasets, and exploring training on open-
ended responses, which may further enhance per-
formance and generalization.
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Ethics Statement

We publicly release all data and our fine-tuned mod-
els. All materials were collected and processed
in accordance with the respective data, check-
point, and API usage policies. The dataset used
in this study is drawn from publicly available,
peer-reviewed social science experiments from the
NSF’s TESS repository, all of which comply with
established ethical and privacy standards. Our
dataset includes stimuli that may be considered
contentious, and our fine-tuned models may gener-
ate incorrect or unsafe content. While fine-tuning
has led to meaningful improvements in model ac-
curacy, it may also lead users to become overconfi-
dent in the results. We strongly advise all users to
verify outputs carefully before deploying this work
in real-world applications.
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A Data Reconstruction Agent

In this section, we overview the workflow of our
data construction agent. We intentionally avoided
manual intervention to preserve a fully automated
reconstruction pipeline. As shown in Fig. 6, we
first download and standardize the publicly avail-
able data files form TESS 2, (e.g., converting data
files to standard .csvs, and all pdfs/docx to text).
Then we feed our data reconstruction agent with
each research paper’s full context (including de-
scription, data files, codebook, and stimuli). The
agent then: 1) Identifies all experimental condi-
tions; 2) Identifies the outcome questions; 3) Writes
and executes parsing code to merge and clean the
repository’s CSV files, reconstructing each partic-
ipant’s record, and combining the experimental
condition and outcome question into a stimuli that
maps to each participant response. This step goes
through a generate-and-test cycle, which iterates
until the code can reconstruct the dataset.

At the time of scraping, we pulled 443 publicly
available project on the TESS OSF account. OSF
projects often have a nested structure—where sub-
projects can inflate this count. After deduplicating
these, we identified only 321 unique studies, of
which our agent successfully reconstructed 210.

2Data available via Open Science Framework repository
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Figure 6: The workflow of our data construction agent
for curating SOCSCI210. The agent generates a script
based on all study context and iteratively regenerates it
for successful parsing of the data files from the source.

The following conditions were present in our ac-
tual reconstruction script: (1) must be able to find
a description of the stimuli present for each condi-
tion (2) must reconstruct original/binary questions
(3) outcome questions correspond to a condition-
specific stimuli. If these aren’t satisfied the script
will skip the study. A bulk of the failure cases were
also just the inability of the LLM agent (powered
by o4-mini-high) to accurately generate code that
could parse the data into natural language, given
the long context of the input data. A “success-
ful” scrapes means the agent explicitly verifies two
things during the code test-and-verify cycle: (a)
The parsing code successfully compiles and exe-
cutes without rasing errors (b) The parsing code
generates non-empty outputs when operated row
by row on the dataset.

B Discussion of Metric Evaluation:
Accuracy vs. Distributional Alignment

As we discuss in the main text, for our considered
experiments, we value accurately modeling the
Wasserstein distribution under experimental condi-
tions above achieving high individual-level accu-
racy. In this appendix, we flesh out the intuition be-
hind this. In treatment effect experiments, verifying
the hypothesis involves simply a t-test comparing
group means, relying solely on distribution-level at-
tributes (mean and standard deviation) of responses
to each condition. Individual responses, since they
are parameterized purely based on the stimuli and
demographic information, are inherently stochas-
tic.
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Formally, the limitation of measuring individual
response accuracy is that each response r is pa-
rameterized only by a (P, c, o) tuple, where P con-
sists of demographic keys. However, for a given
demographic P responding to a question o after
seeing stimulus c, we cannot confidently assert that
the output should always be r. Instead, our train-
ing data merely shows the example r, drawn from
the distribution F (P, c, o), where F is the under-
lying model of human responses. An ideal eval-
uation of a predictive model F ′ would therefore
compare the distribution F ′(P, c, o) to F (P, c, o).
However, we do not have enough data for each
unique demographic to recover such an exact dis-
tribution F (P, c, o). Instead, we compare F (·, c, o)
to F ′(·, c, o). Furthermore, even if a model were
predicting the exact distribution F (P, c, o), such
an approach often performs poorly when reduced
to single-example accuracy measurements.

As a simple example of this, consider our train-
ing data might contain ten 42-year-old males re-
sponding to the same stimulus: five individuals
answer "0," two answer "1," and three answer "2."
A perfect model representing this scenario would
predict responses "0," "1," and "2" with probabili-
ties of 50%, 20%, and 30%, respectively. Yet, such
predictions yield low accuracy scores when applied
on our training data. Conversely, consistently pre-
dicting the midpoint ("1") improves accuracy but
poorly represents the true distribution.

Our intuition is that GPT-4o achieves higher
accuracy because its responses often cluster nar-
rowly around mid-scale values (e.g., in our evalua-
tion set the standardized GPT-4o predictions have
σ = 0.154, while our SOCRATES-LLAMA-8B
predictions have σ = 0.195 and human responses
σ = 0.192 where σ is sample standard deviation).

To further illustrate the limitations of accuracy,
we also compare two predictors: a) always predict-
ing the question response scale mean vs. b) ran-
domly sampling responses from the ground truth
distribution of responses in the experimental condi-
tion. Across our 40 evaluation studies, the accuracy
of method (a) outperforms method (b) for 30% of
cases, despite (a) being meaningless and (b) repre-
senting a model predicting perfectly.

C Implementation Details

Finetuning Configurations. In all finetuning
experiments, we finetune models for 1 epoch
with a global batch size of 256 on 8 NVIDIA-

A100X80G GPUs. The learning rate (LR) is set
to 1e−05 for SFT and 1e−06 for DPO. We adopt
cosine LR scheduler with a warm-up ratio of 0.05
and weight decay of 0.1. Training times varied
between experiments, but took roughly between
4 and 24 hours. During inference with all open-
source models, we uniformly set temperature=0.6,
top_p=0.9, max_length=4096.

Prompting Configurations. When prompting
OpenAI’s proprietary models (e.g. GPT-4o for sim-
ulation, GPT-4o-mini for reasoning trace genera-
tion, o4-mini-high for dataset consutrction), we
use default API parameters (e.g., temperature=1,
top_p=1). All metrics reported reflect results from
a single experiment run (except when noted other-
wise).
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D Prompt Templates For Prediction

Prompt for Direct Prediction

[SYSTEM]: You are simulating a survey
respondent. Answer exactly as instructed,
following the specified response format
without additional commentary.

[USER] You are a survey respondent
with the following demographic profile:
{Demographic Info.}

Read the question below and answer
exactly as this person would. Follow the
response instructions precisely.
{Stimuli}

Example User Message of Direct Prediction

[USER] You are a survey respondent with
the following demographic profile:
- Age: 29
- Gender: Female
- Education: Vocational/tech school/some
college/associates
- Employment: Employed as paid employee
- Marital Status: Never married
- Housing Ownership: Occupied without
payment of cash rent
- Household Size: 6
- Ideology: Somewhat Liberal
- Phone Service: Cellphone only

Read the question below and answer
exactly as this person would. Follow the
response instructions precisely.

You read ’Emily recently graduated
from high school and will attend college in
the fall. Her mother and father, both factory
workers, are very proud of her. Emily is
excited to be attending her first-choice
college, a highly-ranked private university.
The university provides funding to cover
the costs that families cannot pay, so Emily
will graduate with no debt.’ and then were
asked: ’How unlikely or likely would you
be to recommend history?’ Only return an
integer from 1 to 6, nothing else.

Modified System Message For Reasoning-
Based Prompting

[SYSTEM]:
You are simulating a survey respondent.
You are to answer exactly as instructed, but
also include your reasoning (5 sentences or
less) before you output your answer.Please
follow the exact output format below.
### Output format
<trace>
. . . your step-by-step reasoning here. . .
</trace>
PREDICTION: <verbatim answer> (con-
clude with predicted answer, use exactly the
option label/number with no extra commen-
tary)

Modified System Message for Few-Shot
Prompting

[SYSTEM]:
You are simulating a survey respondent.
Answer exactly as instructed, following
the specified response format without
additional commentary.

As you answer, consider how the fol-
lowing similar question was answered by
other participants:

Question: {Sampled Similar Stimuli}

Person 1 Profile:
{Person 1 Demographic Info.}
Answer: {Person 1 Answer}

Person 2 Profile:
{Person 2 Demographic Info.}
Answer: {Person 2 Answer}

......
{...More Persona Examples...}
......

Person 5 Profile:
{Person 5 Demographic Info.}
Answer: {Person 5 Answer}
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E Reasoning Trace Generation Prompts

We use GPT-4o-mini in order to generate "oracle"
reasoning traces from our finetuning data. The
model generates what an ideal reasoning trace
should look like given a prompt, response pair.

Prompt for Oracle Reasoning Traces

[SYSTEM]:You are an expert behav-
ioral scientist asked to write a plausible,
forward-looking reasoning trace that *pre-
dicts* which answer a survey respondent
will give. Draw on knowledge of behavioral
and social science theory to explain how
and why this person responded the way
they did.

**Key constraints for the reasoning
trace**
1. **Prospective viewpoint.** Write as if
you do *not* know the final choice yet.
Describe the mental steps a typical person
with the given persona might take when
first seeing the stimuli.
2. **No answer leakage inside the trace.**
The true answer is supplied only for
your private verification. Do **not**
quote, paraphrase, or rely on it within the
narrative.
3. Be concise but specific in your reasoning
and avoid repetition. Keep the reasoning
trace 5 sentences or less."

### Output format
<trace> . . . your step-by-step reasoning
here (written as if before ’knowing’ the
answer). . . </trace>
PREDICTION: <verbatim answer> (con-
clude with predicted answer, use exactly
the option label/number with no extra
commentary)

[USER]
**Persona**: {Demographic Info.}
**Stimuli**: {Stimuli}
<!– TRUE ANSWER (use only to verify
your prediction; do NOT reference inside
<trace>): {Ground-Truth Response} –>

Write the reasoning trace and final
prediction now, following the format above.

Example Prompt and Response with Rea-
soning Trace

Prompt: You are a survey respondent
with the following demographic profile:
{Demographic Info.}

Read the question below and answer
exactly as this person would. Follow the
response instructions precisely.

You viewed an image and description of
the Hyundai Kona Electric, a 100% electric
version of the Hyundai Kona that costs
about $40,000, has a 250 mile range and
can accelerate from zero to 60 mph in
about 6.4 seconds and then were asked:
"What is your first reaction to the product?"
Only return an integer from 1 to 5, where
1 means Very negative and 5 means Very
positive, nothing else.

Reasoning: Upon seeing the Hyundai Kona
Electric, the individual may first consider
their personal values and preferences, which
lean strongly towards traditional vehicles
and fossil fuels, aligning with their very con-
servative ideology. The relatively high price
point of $40,000 is likely to evoke concerns
about affordability, especially given their
household income bracket. Furthermore,
the electric vehicle’s technological aspects
and environmental emphasis may clash with
their skepticism towards climate change nar-
ratives and push towards eco-friendly solu-
tions. Additionally, a family of four may
prioritize practicality and utility over inno-
vation, leading them to view a fully electric
vehicle as less suitable for their needs. Over-
all, these factors suggest a negative response
to the product.
Response: 1

F Demographic Subset Results

See Tab. 4 for a breakdown of distribution distance
under each demographic category of our dataset.
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Attribute Category LLaMA-8B Finetuned (%) Improvement

age 65-100 0.2353 0.1679 28.63
age 35-50 0.2284 0.1571 31.23
age 50-65 0.2340 0.1599 31.66
age 25-35 0.2190 0.1484 32.23
age 0-25 0.2196 0.1510 31.24
gender Female 0.1910 0.1342 29.72
gender Male 0.1814 0.1165 35.80
education Post grad study/professional degree 0.2381 0.1838 22.84
education Vocational/tech school/some college/associates 0.2358 0.1612 31.64
education Bachelor’s degree 0.2339 0.1745 25.39
education High school graduate or equivalent 0.2356 0.1527 35.18
education Some high school (no diploma) 0.2602 0.1676 35.58
education Less than high school 0.2578 0.1861 27.79
employment Self-employed 0.1984 0.1506 24.12
employment Employed as paid employee 0.1876 0.1380 26.46
employment Disabled 0.2070 0.1565 24.38
employment Retired 0.2006 0.1450 27.73
employment Looking for work 0.1925 0.1437 25.37
employment Not working for other reasons 0.1950 0.1424 26.97
employment Temporarily laid off 0.2122 0.1740 18.01
marital status Divorced 0.2412 0.1769 26.68
marital status Married 0.2342 0.1652 29.45
marital status Never married 0.2227 0.1528 31.40
marital status Living with partner 0.2244 0.1581 29.52
marital status Widowed 0.2441 0.1882 22.92
marital status Separated 0.2507 0.2047 18.33
housing ownership Owned or being bought by you/someone in your household 0.1909 0.1343 29.64
housing ownership Rented for cash 0.1860 0.1300 30.09
housing ownership Occupied without payment of cash rent 0.2116 0.1670 21.05
housing type A one-family house detached from any other house 0.1906 0.1329 30.25
housing type A one-family house attached to one or more houses 0.1847 0.1354 26.70
housing type A mobile home or trailer 0.2092 0.1564 25.26
housing type Boat, RV, van, etc 0.2151 0.1795 16.57
housing type A building with 2 or more apartments 0.1695 0.0824 51.37
metro status Metro Area 0.1876 0.1299 30.73
metro status Non-Metro Area 0.1963 0.1451 26.10
income 50-74K 0.2282 0.1560 31.65
income 40-49K 0.2340 0.1645 29.70
income 20-29K 0.2349 0.1482 36.89
income 200K+ 0.2016 0.1648 18.25
income 125-149K 0.2373 0.1708 28.03
income 75-99K 0.2328 0.1671 28.22
income 30-39K 0.2341 0.1584 32.31
income 100-124K 0.2393 0.1761 26.43
income 150-175K+ 0.2536 0.1962 22.66
income 175-200K+ 0.2484 0.1936 22.05
income 15-19K 0.1677 0.0563 66.45
income 10-14K 0.2158 0.0892 58.66
income 5-9K 0.1914 0.0857 55.25
income <5K 0.1306 0.0395 69.78
internet access Internet Household 0.1888 0.1316 30.28
internet access Non-internet household 0.1932 0.1386 28.29
household size 0-3 0.2310 0.1574 31.86
household size 3-6 0.2266 0.1536 32.21
household size 6-9 0.2311 0.1644 28.83
household size 9-20 0.2851 0.2190 23.18
phone service Cellphone only 0.1863 0.1312 29.59
phone service Have a landline, but mostly use cellphone 0.1977 0.1377 30.36
phone service Have cellphone, but mostly use landline 0.1965 0.1447 26.37
phone service Landline telephone only 0.2130 0.1607 24.55
phone service No telephone service 0.2232 0.1889 15.40
party id Moderate Democrat 0.1784 0.1400 21.54
party id Don’t Lean/Independent/None 0.1822 0.1391 23.64
party id Strong Democrat 0.1776 0.1554 12.48
party id Lean Republican 0.1914 0.1456 23.89
party id Lean Democrat 0.1705 0.1557 8.66
party id Strong Republican 0.1855 0.1505 18.83
party id Moderate Republican 0.1858 0.1466 21.10
ideology Somewhat Liberal 0.1804 0.1514 16.06
ideology Moderate 0.1878 0.1414 24.73
ideology Liberal 0.1877 0.1357 27.68
ideology Somewhat Conservative 0.2063 0.1568 23.98
ideology Conservative 0.2093 0.1591 24.00
ideology Extremely Liberal 0.2002 0.1494 25.36
ideology Declined to Answer 0.2379 0.1592 33.08
ideology Extremely Conservative 0.2342 0.1949 16.80
ideology Very Conservative 0.1888 0.1649 12.66
ideology Very Liberal 0.1809 0.1613 10.82
ethnicity Hispanic 0.2642 0.1792 32.17
ethnicity White 0.2679 0.1808 32.52
ethnicity 2+ Race 0.2849 0.2044 28.24
ethnicity Other 0.2652 0.1895 28.54
ethnicity Black 0.2749 0.1850 32.70

Table 4: Prediction improvement in Wasserstein distance under each demographic category.
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