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Abstract
Efficient simulation is essential for enhancing
proactive preparedness for sudden-onset disas-
ters such as earthquakes. Recent advancements
in large language models (LLMs) as world
models show promise in simulating complex
scenarios. This study examines multiple LLMs
to proactively estimate perceived earthquake
impacts. Leveraging multimodal datasets in-
cluding geospatial, socioeconomic, building,
and street-level imagery data, our framework
generates Modified Mercalli Intensity (MMI)
predictions at zip code and county scales. Eval-
uations on the 2014 Napa and 2019 Ridgecrest
earthquakes using USGS “Did You Feel It?
(DYFI)” reports demonstrate significant align-
ment, as evidenced by a high correlation of
0.88 and a low RMSE of 0.77 as compared
to real reports at the zip code level. Tech-
niques such as retrieval-augmented generation
(RAG) and in-context learning (ICL) can im-
prove simulation performance, while visual in-
puts notably enhance accuracy compared to
structured numerical data alone. These find-
ings show the promise of LLMs in simulating
disaster impacts that can help strengthen pre-
event planning. Data Access: https://doi.
org/10.5281/zenodo.17148713; Code Ac-
cess: https://github.com/Lingyao1219/
llm-disaster-simulation.

1 Introduction

Natural disasters often disrupt infrastructure, caus-
ing significant human and economic losses (Jones
et al., 2022). Efficient impact assessment is critical
for emergency response and evaluating community
resilience (Ma et al., 2024). However, most existing
methods are designed for post-event assessment,
including expert inspections, ground sensors, and
remote sensing (Li et al., 2021; Kucharczyk and
Hugenholtz, 2021; Sarkar et al., 2023). While ef-
fective for characterizing observed damage, these

*Equal contribution as first authors.
†Corresponding authors.

approaches are reactive by nature and offer limited
utility in pre-event planning, especially for sudden-
onset events like earthquakes, where early aware-
ness is crucial (Li et al., 2023). Traditional methods
for pre-event simulation like scenario-based plan-
ning are useful (Ma et al., 2024; Deierlein et al.,
2020), but they need extensive domain expertise
for region-specific models and often lack empirical
validation by addressing human-centered factors.

Advances in large language models (LLMs) have
shown promise in contextual simulation and com-
plex reasoning across various domains (Li et al.,
2024a; Wang et al., 2024b; Li et al., 2025b,a).
Beyond text-based reasoning, recent multimodal
LLMs have also demonstrated strong visual rea-
soning capabilities, allowing them to interpret and
reason about physical environments (Xiang et al.,
2023; Li et al., 2025c). These abilities have led
researchers to increasingly view LLMs as potential
world models—systems capable of learning to sim-
ulate and predict real-world scenarios (Wong et al.,
2023; Hao et al., 2023). Through training on large-
scale datasets that encode spatial, temporal, and
causal relationships, LLMs have shown potential
in learning representations of how the world works.
For example, current research has demonstrated
their ability to understand environment status (Hao
et al., 2023), plan household activities (Xiang et al.,
2023), and predict time-series events (Lee et al.,
2025).

In disaster management, while LLMs are not
yet widely applied as “world models,” researchers
have explored their utility in tasks such as damage
detection from satellite imagery (Zhang and Wang,
2024) or social media (Wang et al., 2024a), and
emergency identification (Otal et al., 2024). How-
ever, key research gaps still remain. ❶ First, exist-
ing studies mainly use LLMs to analyze available
textual or visual data for post-event assessment, not
to simulate pre-event situations. ❷ Second, while
LLMs have well-demonstrated reasoning abilities,
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effective disaster assessment requires integrating
domain-specific knowledge and data fusion so that
these models can accurately reason about poten-
tial disaster scenarios. To address these limitations,
this study poses the fundamental question in the
context of sudden-onset disasters: Can LLMs sim-
ulate how humans perceive seismic risks before
an event occurs?

To answer this, we develop an LLM-based frame-
work to simulate how humans perceive seismic
risks, as illustrated in Figure 1. By integrating rich
pre-event contextual information, the LLMs are
tasked with “reasoning” the likely severity of dam-
age across spatial scales. Importantly, our study
moves beyond theoretical simulations, grounding
model evaluations in real-world events by testing
on two actual earthquakes and comparing outputs
against authoritative USGS reports. Our simulation
demonstrates strong alignment with real reports
at the zip code level, highlighting the potential of
leveraging LLMs to improve pre-event planning.
Our key contributions include:

• Benchmark the performance of LLM-as-
world-model reasoning. We establish a dataset
that merges multimodal data resources, and pro-
pose paired RMSE and rank-correlation metrics
to estimate performance. This is among the early
open resources for evaluating how well LLMs
reason about disaster scenarios.

• A multimodal LLM-based framework for pre-
event simulation. We introduce a framework
that leverages LLMs as virtual sensors by in-
putting multimodal features and outputting the
risk estimates. By combining structured nu-
merical data with vision-language prompts, the
pipeline moves LLMs from post-event assess-
ment to pre-event simulation.

• Comprehensive cross-model evaluation and
reasoning analysis. We benchmark nine open-
and closed-source LLMs across multiple prompt-
ing strategies (vanilla, ICL, and RAG). Our ab-
lation studies provide a baseline and actionable
insights to guide future improvements in LLM
reasoning for real-world disaster applications.

2 Related Work

2.1 Seismic Hazard Simulation
Researchers have employed empirical, physics-
based, and data-driven methods for simulating seis-

mic disasters. Traditional approaches characterize
earthquakes, such as the moment magnitude Mw

(Moschetti et al., 2024), and then utilize empiri-
cal ground-motion prediction equations (GMPEs)
(Moschetti et al., 2024; Iervolino, 2023) or physics-
based simulations (Deierlein et al., 2020) to es-
timate site-specific shaking. While these simula-
tions can capture complex local effects and rupture
dynamics, they demand extensive data and com-
putational resources. Recent data-driven methods
have used machine learning to learn damage pat-
terns from historical events, simulations, and re-
mote sensing data (Cardellicchio et al., 2023; Yu
et al., 2020)). These AI-driven techniques offer
advantages in scalability and flexible feature inte-
gration but are dependent on high-quality labeled
data, may struggle with generalization, and often
present challenges in interpretability.

A major gap across these models, whether
physics-based or data-driven, is the limited inte-
gration of human-perceived shaking into predictive
frameworks. The USGS has developed the “Did
You Feel It” (DYFI) system (Atkinson and Wald,
2007), a crowdsourced platform where individuals
report the shaking intensity they experience after
an earthquake. These reports are aggregated and
converted into Modified Mercalli Intensity (MMI)
(U.S. Geological Survey, 1989), which provide a
human-centric, ground-truth reference for how seis-
mic shaking is felt. While DYFI has been widely
used to validate models or interpolate intensities
after earthquakes, simulating human-centric per-
ceived risks for pre-event could be important for
developing predictive frameworks that anticipate
not only physical shaking but also tangible impacts
on communities.

2.2 LLM as World Models
Recent advance in LLMs such as GPT-4 (Achiam
et al., 2023) and deepseek-R1 (Guo et al., 2025)
has motivated researchers to leverage LLMs to
solve complex tasks, such as reasoning (Li et al.,
2025d; Yu et al., 2025) and domain-specific ex-
ploration (Yang et al., 2024; Zhang et al., 2024).
In the context of disaster, researchers have lever-
aged LLMs to process multimodal information for
vulnerability evaluation (Martelo et al., 2024), im-
pact assessment (Taghian Dinani et al., 2023; Akin-
boyewa et al., 2024), information coordination (Yu
and Wang, 2024), and recovery planning (White
and Liptak, 2025).

Beyond conventional dialogue and analytical
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I live in Santa Barbara. My location
information is listed below.
- State: CA
- City: Santa Barbara
- Coordinates: 34.414, -119.701
- Distance from epicenter: 243.5 km

## Geospatial features
- VS30: 346 m/s 

## Building description
- Building : 61 buildings

## Socioecnomics and demographics
- Population density: 10677 km2

- M. house income: $79803/year

I live in Ridgecrest. My location
information is listed below.
- State: CA
- City: Ridgecrest
- Coordinates: 35.594, -117.695
- Distance from epicenter: 21.36 km

## Geospatial features
- VS30: 340 m/s 

## Building description
- Building: 37 buildings

## Socioecnomics and demographics
- Population density: 1453 km2

- M. household income: $71953/year

I live in Las Vegas. My location
information is listed below.
- State: NV
- City: Las Vegas
- Coordinates: 36.104, -115.169
- Distance from epicenter: 221.91 km

## Geospatial features
- VS30: 323 m/s 

## Building description
- Building: 6 buildings

## Socioecnomics and demographics
- Population density: 278.4 km2

- M. household income: $97917/year

Everybody can feel the earthquake, but the
shaking here is very mild. I observe some
slight swinging of suspended objects. Thus, 
I would rate an MMI intensity of II.

I can feel significant shaking indoors. I also
observe objects moving, dishes rattling, 
and slight structural impacts on my house.
I would rate an MMI intensity of VII.

I can feel slight 
movements indoors, but I
don’t see any notable 
damage in my
surroundings. Therefore, 
I’d like to rate an MMI
intensity of III.

Figure 1: An illustration of LLM-simulated human-centric sensors.

tasks (Yang et al., 2025), LLMs are being used as
world models (Hao et al., 2023; Zhao et al., 2023;
Gu et al., 2024) for complex simulation. While def-
initions of world models vary, their central concept
involves leveraging forward reasoning to predict
future states and dynamics in real-world scenar-
ios. For example, they can produce large-scale
simulations—an LLM-driven city simulation plat-
form, OpenCity, runs tens of thousands of agents to
emulate daily urban activities, successfully repro-
ducing emergent patterns like mobility flows and
residential segregation (Yan et al., 2024). In disas-
ter scenarios, LLM-based world models have been
explored in flooding forecasting (Wang et al., 2025)
and evacuation planning (Hostetter et al., 2024).

Building on these advances, we propose lever-
aging LLMs as simulation tools to estimate how
humans might perceive and report seismic risks
before an event occurs. Our work addresses two
critical gaps: first, the limited pre-event simulation
of seismic risk; and second, the underexplored ap-
plication of LLMs as world models for deriving
human-centric insights.

3 Data and Methods

3.1 Framework Design

To simulate disaster impacts before events, we pro-
pose a novel framework that treats LLM as syn-
thetic observers. This framework conceptualizes
LLMs as “virtual sensors” capable of “perceiving”
multimodal inputs and “reasoning” about disaster
risks based on the MMI levels (see appendix A)
that approximate human perception of shaking. As

illustrated in Figure 1, we associate each sampled
spatial location with a bundle of features, includ-
ing seismic distance, site conditions, local building
characteristics, and socioeconomic factors. In ad-
dition, Google Street View provides a first-person
view of the built environment. Collectively, this
feature set closely replicates the perceptual input
available to disaster responders during an event.

Formally, let each sample i be associated with a
fused feature representation. We specifically select
the following features that prior research has illus-
trated as critical predictors of seismic risk. (Frige-
rio et al., 2016; Kassem et al., 2020; Riedel et al.,
2015; Mori et al., 2020).

Xi = {Ei, Gi, Li, Bi, Si, Vi}
• Ei: Earthquake parameters (e.g., magnitude, epi-

center distance, depth),
• Gi: Geospatial features (e.g., VS30),
• Li: Location metadata (e.g., state, city, zip code),
• Bi: Building attributes (e.g., number, type,

height, material),
• Si: Socioeconomic indicators (e.g., population

density, income),
• Vi: Street-level view (Google Street image).

The LLM acts as a reasoning function fθ with
parameters θ, generating both a reasoning trace and
an MMI rating:

ŷi, ei = fθ(Xi), ŷi ∈ {I, II, . . . ,XII}
The full pipeline consists of five components, as

shown in Figure 2: (1) spatial sampling, (2) data
fusion, (3) prompt engineering, (4) experiment de-
sign, and (5) result analysis, which we specifically
explain in the following sections.
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<system prompt>
You are a seismic expert specialized in earthquake damage 
assessment

<prompt>
YOUR LOCATION information is listed below. 

<output format>
{{"Reasoning": "<Provide reasoning>"

"MMI": "<Respond MMI level>"}}

1. Data Sampling 2. Data Fusion

<pop. density>
<age>
<income>
<education> Socio-

Economic

<epicenter>
<magnitude>
<depth>

<state>
<city>
<zipcode>
<location>
<distance>

<vs30>
(site condition)

<number>
<types>

Geospatial

Streetview

Building

Earthquake
Parameters

Location

3. Prompt Engineering

4. Experiment Design

5. Result Analysis

Multimodal LLM

USGSDid You Feel It Map

Random Sampling
based on GIS shapefile

Samples

Samples

Samples

𝑀𝑀𝐼𝑖

𝐴𝑣𝑔(෍𝑀𝑀𝐼𝑖)

Geospatial Analysis Statistical Analysis

Did You Feel It

LLM-based
Estimates

Prompt
Techniques

Model
Selection

Ablation
Study

Performance
Evaluation

Figure 2: An illustration of the framework design.

3.2 Data Sampling

In Step 1 (Figure 2), we use a polygon-based GIS
shapefile to define administrative zones (e.g., zip
codes) and apply within-polygon stratified ran-
dom sampling to ensure spatial representativeness
across the study area. Let: Z = {z1, z2, . . . , zM}
represent the set of all zip code polygons. For each
polygon zj , we sample:

Pj = {pj1, pj2, . . . , pjnj} ∼ Uniform(zj)

ensuring that points are uniformly drawn from
within each polygon’s spatial boundary. We then
sample 50 data points per zip code. This stratified
random sampling strategy can help ensure spatial
representativeness and mitigate biases associated
with population density or urban–rural areas.

3.3 Data Fusion

In Step 2 (Figure 2), for each sampled point pji, we
collect and assemble the feature set Xji from open-
source and public datasets including USGS earth-
quake data, OpenStreetMap building data, Amer-
ican Community Survey (ACS) data, and Google
Maps street views.

Earthquake data, site conditions, and location
information. We source earthquake parameters, in-
cluding moment magnitude, epicentral coordinates,
and focal depth, from the USGS ShakeMap prod-
uct (Wald et al., 2006) as E. To account for local

site amplification and deamplification, we incor-
porate the USGS VS30 dataset (McPhillips et al.,
2020) as the geospatial features G, a widely used
proxy for near-surface geological effects.

We also incorporate location information, includ-
ing latitude, longitude, state, county, zip code, and
the distance from the epicenter for each sampled
point. Additionally, we utilize MMI measurements
from the USGS DYFI program as ground-truth la-
bels, represented by yj for each zip code.

Building description. We use OpenStreetMap
(Ramm and Topf, 2010) (OSM) data to extract
building features B, including the total number
of buildings, type distribution, height range, and
average height within a 100-meter radius of each
sampled point. Meanwhile, we summarize the
prevalence of major construction materials (e.g.,
concrete, masonry, timber, steel). These features
can help characterize the distribution, physical at-
tributes, and seismic-design status of buildings
within the sensor’s surroundings.

Socioeconomic and demographic factors. We
collect socioeconomic and demographic factors S
at the Census Block Group (CBG) level from the
American Community Survey (ACS) (USC, 2022).
We spatially join the coordinates of each randomly
selected sample to their corresponding CBG poly-
gon and extract relevant ACS key indicators, includ-
ing population, population density, urbanization
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ratio, 65- and over-age proportion, median house-
hold income, and higher education attainment rate.
These variables imply a quantitative evaluation of
population vulnerability in a disaster event.

Google Maps street imagery. We further incor-
porate Google Street View imagery V to enrich
the environmental context at each sampled loca-
tion. These street-level images capture fine-grained
visual cues of the surrounding built environment—
such as building, vegetation, curb conditions, and
street density—that are difficult to numerically en-
code but essential for human-like visual reasoning.
Using the Google Maps API (Google, 2025), we
query the available image for each point in our sam-
pling grid. This visual context allows the LLM to
“see” the landscape as if it conducts a field visit.

3.4 Prompt Design
To guide the reasoning process of the LLM and
ensure interpretability and consistency, we design
a prompt template that mirrors the workflow of
a seismic domain expert. The prompt follows a
role-based instruction format in which the model is
assigned the role of a seismic specialist responsible
for evaluating earthquake damage using the MMI
scale. The MMI scale provides a human-centric
interpretation that consists of twelve levels describ-
ing the severity of earthquake shaking. The detailed
descriptors of MMI are attached in Appendix A.

The prompt includes six distinct sections corre-
sponding to the multimodal feature set Xi intro-
duced earlier: earthquake parameters Ei, geospa-
tial features Gi, location metadata Li, building de-
scriptions Bi, socioeconomic context Si, and street-
level view Vi. The model’s response is constrained
to a JSON format with two fields: a free-text rea-
soning explanation and the predicted MMI category
(see prompt template in Appendix B). We imple-
ment Chain-of-Thought (CoT) to instruct LLM out-
put a detailed reasoning justifying its assessment
before final MMI estimate.

3.5 Experiment Design
LLM Selection: We select both open- and closed-
source LLMs to conduct the simulation. For open-
source LLMs, we use models from Llama-3.2 and
Qwen-2.5 family with various sizes, as listed in
Table 1.

Prompting Techniques: We incorporate the fol-
lowing prompting techniques in our experiment:

• In-Context Learning (ICL) (Brown et al., 2020;

Dong et al., 2024): This helps LLM adapt to
tasks by incorporating examples directly within
the input prompt. ICL is applied by embedding a
detailed MMI reference guide directly within the
prompt.

• Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020; Tan et al., 2024): It combines infor-
mation retrieval with text generation that allows
LLMs to access external data sources at infer-
ence. We provide LLM with a set of multimodal
features and the reported MMI within the prompt
as the retrieved context to ground their MMI esti-
mates.

Evaluation: The LLM generates a MMI predic-
tion, ŷji = fθ(Xji), for each sampled location i
within a predefined administrative area j (e.g., zip
code, county). These point-level predictions are
then aggregated to compute an average predicted
MMI for each area j. If area j contains nj samples,
its average predicted MMI ŷj is calculated as:

ŷj =
1

nj

nj∑

i=1

ŷji

Similarly, a corresponding ground-truth MMI
value for area j, denoted as yj , is derived from
USGS DYFI reports. To quantify the model’s pre-
dictive accuracy using these aggregated area-level
values, we compute two metrics. First, the Root
Mean Square Error (RMSE) is used:

RMSE =

√√√√ 1

N

N∑

j=1

(ŷj − yj)
2

where N is the total number of administrative ar-
eas being evaluated (indexed by j). Second, we
calculate Pearson’s correlation coefficients r to
assess the strength and direction of the associa-
tion between the LLM-predicted MMI (ŷj) and
the ground-truth MMI (yj). These evaluations are
performed at both zip code and county levels.

4 Experimental Results

We select two cases to demonstrate our proposed
framework: (1) the 2014 Napa earthquake (magni-
tude 6.0) and (2) the 2019 Ridgecrest earthquake
(magnitude 7.1), both of which occurred in Califor-
nia, U.S. (see details in Appendix C). For each case,
we use the USGS DYFI reports as the ground-truth
dataset (U.S. Geological Survey, 2014a, 2019a).
Additionally, for each case, We compile feature
sets for 50 sample points from each of the top 100
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Model Open 2014 Napa 2019 Ridgecrest
Source RMSEZ ↓ CorrZ ↑ RMSEC ↓ CorrC ↑ RMSEZ ↓ CorrZ ↑ RMSEC ↓ CorrC ↑

Closed-Source Models
GPT-4o-2024-08-06 ✗ 2.43 0.77 2.37 0.88 1.97 0.75 1.91 0.77
GPT-4.1-mini ✗ 2.56 0.61 2.48 0.67 0.92 0.64 0.77 0.76
Claude-3.5-haiku ✗ 2.11 0.58 2.05 0.70 1.35 0.59 1.38 0.71

Open-Source Models
Llama-3.2-11B-VI ✓ 3.19 0.44 3.05 0.86 3.22 0.33 3.22 0.27
Llama-3.2-90B-VI ✓ 2.62 0.57 2.55 0.66 2.06 0.62 2.19 0.59
Qwen2.5-VL-3B ✓ 3.63 0.29 3.59 0.15 3.88 0.01 4.08 -0.20
Qwen2.5-VL-7B ✓ 1.79 0.43 1.68 0.70 1.53 0.05 1.59 -0.18
Qwen2.5-VL-32B ✓ 1.59 0.70 1.56 0.79 0.99 0.71 0.96 0.80
Qwen2.5-VL-72B ✓ 2.17 0.46 2.12 0.44 1.39 0.64 1.28 0.86

Table 1: Main experiment results on two earthquake datasets. Best per-column values are highlighted in blue and
bold. Alternating gray rows improve readability.

zip codes with the highest number of responses,
resulting in 5,000 samples per event. Due to limi-
tations in Google image availability for the Napa
case, only 4,920 samples are retrieved. Compar-
isons with DYFI data are first conducted at the zip
code level, where each of the 100 aggregated val-
ues represents the average of 50 simulated samples.
A more fine-grained city-level analysis is provided
in Appendix G.

Figure 7 presents the spatial distribution of pre-
dicted MMI at the zip code level for the Napa
and Ridgecrest earthquakes. This visualization
highlights variations in simulated seismic impacts
across geographical areas and among different
LLMs. Based on the best-performing models (low-
est RMSE: GPT-4.1-mini for the 2019 Ridgecrest
earthquake and Qwen-2.5-32B for the 2014 Napa
earthquake), we observe consistent geospatial pat-
terns in both cases. Specifically, the simulations
indicate elevated perceived risk near the epicen-
ter (a red star mark in Figure 7), with diminishing
simulated impact as distance increases. Moreover,
the LLM-based predictions align well with DYFI
reports from these two events: it is important to
note that the Napa earthquake, despite its lower
magnitude, led to more significant impacts.

The following sections are organized below.
First, we evaluate the performance of the selected
LLMs, comparing their accuracy using quantitative
metrics, and examining the influence of model scal-
ing and prompting strategies. Next, we conduct
an input feature analysis to evaluate how different
data modalities can impact predictive performance.
Lastly, the output reasoning analysis explores the
internal decision-making processes of the models,
which identifies linguistic nuances that illustrate
how LLMs interpret the inputs.

4.1 Model Performance

Before the main experiment, we perform a data
leakage test using two close-source models—
Claude-3.5-haiku and GPT-4.1-mini—to show that
our simulation is free of data leakage issues (see
Appendix D). The main experiment results are
shown in Table 1, from which we draw the fol-
lowing findings. In addition, further comparisons
with ShakeMap and traditional machine learning
methods are provided in Appendix H.
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Qwen-2.5-7B Ridgecrest

Figure 3: Demonstration analysis on RAG and ICL.

LLMs deliver promising simulation results. As
shown in Table 1, all of the best correlation scores
across datasets and area levels exceed 0.7, indicat-
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ing a strong alignment between the predicted out-
comes and the ground truth impact labels. These
high correlation values suggest that LLMs hold sig-
nificant potential for effectively simulating human-
perceived risks in disaster scenarios.

Closed-source LLMs generally outperform
open-source models. Table 1 shows a clear trend
that closed-source LLMs consistently outperform
open-source counterparts, achieving the best results
in 6 out of 8 cases. This suggests that commercial
closed-source models possess stronger geospatial
reasoning capabilities and align more closely with
human judgment in disaster sensing tasks (Li et al.,
2024b). Among the open-source models, Qwen-
2.5-32B obtains the top results with lowest RMSE
for the Napa case.

RMSE and correlation can be inconsistent. An-
other noteworthy observation from Table 1 is
that the two evaluation metrics—correlation and
RMSE—do not always align. For instance, Llama-
3.2-11B shows a high correlation but a poor RMSE
at the county level for the Napa case. This dis-
crepancy arises because correlation captures the
model’s ability to predict relative ordering of seis-
mic impacts, whereas RMSE reflects the absolute
prediction errors. Thus, even when models effec-
tively estimate the relevant severity (lower RMSE),
they may not correctly distinguish between higher-
or lower-impact areas (lower correlation). This
suggests the model can correctly rank the relative
severity of events but struggles to accurately predict
the absolute MMI values.

We then evaluate the influence of incorporating
demonstration methods with RAG and ICL on the
simulation, as shown in Figure 3. These demonstra-
tion techniques can enhance the capacity of LLMs
to generalize from provided information. In partic-
ular, the enhanced models consistently show higher
performance, illustrated by decreasing RMSEZ .
It is also well-noted that even limited demonstra-
tions can greatly improve model predictions.

4.2 Input Feature Analysis

In this section, we examine how input features be-
yond earthquake and location information affect
LLMs’ simulation performance. We conduct ex-
periments using Claude-3.5-haiku and Qwen-2.5-
7B, with the results presented in Figure 4. In-
terestingly, we find that only street view infor-
mation contributes to improved simulation perfor-
mance. In contrast, removing any of the other

three features alone—geospatial, building, or so-
cioeconomic data—can decrease the zip code-level
RMSE.

0.5 0.0 0.5 1.0
Drop in Zip Code-level RMSE

W/o streetview

W/o socioeconomic

W/o building

W/o geospatial

Combined Effect of Each Information Type

Claude-3.5 Napa
Claude-3.5 Ridgcrest

Qwen-2.5-7B Napa
Qwen-2.5-7B Ridgcrest

Figure 4: Input information feature analysis results.

We attribute this performance degradation to sev-
eral potential factors: (1) limitations of LLMs in
processing numerical information as they could
complicate LLM’s reasoning process (Yin et al.,
2024; Bodensohn et al., 2025); (2) the lack
of domain-specific knowledge required to inter-
pret geospatial, building, and community-related
data (Gao et al., 2024); (3) the inherent limitations
of the self-attention mechanism in capturing spatial
adjacency and performing geometric reasoning (Re-
queima et al., 2024).

4.3 Output Reasoning Analysis

To complement our quantitative evaluations, we
examine how GPT-4.1-mini and Qwen-2.5-32B
(given their lowest RMSE in Table 1) reason when
predicting MMI values. Figure 5 illustrates how
they model the relationship between epicentral dis-
tance, VS30 values, and MMI predictions. We
summarize our findings as below:

LLMs capture seismic attenuation but underuti-
lize local site conditions. As shown in Figure 5,
both models display a clear negative correlation be-
tween epicentral distance and predicted MMI, most
notably in Qwen2.5-32B’s Napa earthquake predic-
tions, which indicates that LLMs have internalized
the concept of seismic attenuation. However, the re-
lationship between VS30 values (a proxy for local
ground conditions) and MMI is weak across both
models. High MMI values occur almost exclusively
near the epicenter, suggesting limited sensitivity to
local site effects.
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Figure 5: Output reasoning analysis in terms of (A) distance (where the x-axis is the predicted MMI, and y-axis is
the distance from the epicenter (km)) and (B) VS30 (where the x-axis is the predicted MMI, and the y-axis the local
site condition represented by VS30 (m/s)).
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Figure 6: Output reasoning analysis in terms of different input features with (A) Qwen-2.5-32B for the Napa case,
and (B) GPT-4.1-mini for the Ridgecrest case. The x-axis is the log(TF-IDF), while the y-axis is the predicted MMI.

LLMs use distinct lexical cues for MMI reason-
ing across multimodal inputs. Figure 6 presents a
taxonomy of language used by both models across
three perspectives: buildings, socioeconomic con-
text, and street-level imagery. Unigram analysis
reveals that GPT-4.1-mini and Qwen2.5-32B em-
ploy different vocabularies and reasoning styles.
For the building assessment, GPT-4.1-mini adopts
a descriptive and hedged reasoning style. At low
MMI levels, it uses terms like “enhance,” “robust,”
and “improve,” while shifting to “suffer” and “de-
tached” at higher levels. Qwen2.5-32B relies on
more technical terms, such as “compliance” and
“stringent” at low levels, and “crack” and “suscepti-
bility” at higher ones.

Socioeconomic reasoning diverges in focus and
tone. GPT-4.1-mini links lower MMI levels to
terms like “urbanized” and “welleducated,” and
higher levels to “industrial” and “heavy,” occasion-
ally incorporating cautious language such as “pos-
sibly” or “suggest.” Qwen2.5-32B emphasizes sys-
temic vulnerability, shifting from “limited” and
“stable” to “cascade” and “amplification” as pre-
dicted MMI increases.

Visual reasoning contrasts environmental vs.
structural emphasis. GPT-4.1-mini references
broader environmental cues, from “forest” and
“agricultural” at lower levels to “catastrophic” at
higher ones. In contrast, Qwen2.5-32B focuses on
structural compliance, mentioning “firm,” “code,”
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and “reinforced” in a progression of seismic risk.

5 Discussion

Based on our experimental result analysis, we con-
clude the following insights and opportunities for
future study:

• LLMs can effectively simulate human-centric
seismic risks, showing strong alignment with
real-world USGS DYFI reports. This can help de-
velop pre-event impact assessment. One promis-
ing direction is to explore broader application in
LLM-based simulations for disaster responses.

• Simulation performance depends on model type,
size, and input information: closed-source and
larger models generally perform better; tech-
niques like RAG and ICL help; street-level im-
agery boosts accuracy, while structured data may
hinder it due to modality alignment limitations.
Future works can explore more effective prompt-
ing strategies and reasoning structures to further
improve the simulation performance.

• LLMs show diverse reasoning styles and strong
practical value, as model-specific rhetorical pat-
terns reflect architectural and data differences.
These differences suggest the potential impact of
training data and model architecture on LLMs’
reasoning styles. It would be meaningful to fur-
ther explore the reasoning mechanisms of LLMs
when used as world models.

Our study has significant practical implications.
Leveraging LLMs and open-source data to simu-
late seismic risk enables authorities to proactively
assess potential disaster impacts. Integrating our
framework into early-warning systems can also
help identify vulnerable communities and enhance
disaster response.

6 Conclusions

Our study demonstrates the potential of using
LLMs to simulate seismic risk before an earthquake
occurs. The alignment between model predictions
and real-world reports highlights the importance of
multimodal inputs and advanced LLM techniques
like RAG and ICL in simulation settings. Moreover,
our findings reveal that simulation performance can
vary across LLMs and input features. These results
make a meaningful contribution to advancing data-
driven, human-centric simulation with LLMs for
real-world scenarios.

7 Limitations

Several limitations warrant further consideration.
First, our experiments focus only on two earth-
quake cases, including the 2014 Napa and 2019
Ridgecrest events, which may not fully represent
global variations in seismic hazards, urban densi-
ties, and construction practices. Therefore, gener-
alizability requires additional validation. In par-
ticular, applying this framework to other regions
may be limited by data-sharing restrictions and the
reliance on USGS DYFI reports, requiring alter-
native human-perception datasets for international
validation. Practical consideration for deployment
can be found in Appendix I.

Second, despite employing stratified random
sampling within zip codes, potential biases remain
due to gaps in data availability, such as incomplete
Google Street View coverage or inconsistencies in
socioeconomic and building datasets. This may
lead to underrepresentation of certain neighbor-
hoods or misalignment with high-risk zones.

Third, although our framework integrates diverse
heterogeneous data, we do not conduct detailed
feature selection or examine individual parameters
(e.g., housing age, infrastructure proximity). Con-
sequently, interpreting model behavior at a granular
level requires further investigation.

8 Ethics

Responsible data use. Our research relies ex-
clusively on publicly available and anonymized
datasets, including geospatial, demographic, and
imagery data from USGS, OpenStreetMap, and
Google Street View. All analyses are conducted
at aggregated administrative levels (zip code and
county), minimizing risks to individual privacy.

Deployment guidance. It is important to recognize
that LLM-based simulations cannot fully capture
the complexity and diversity of individual experi-
ences in real disaster scenarios. Therefore, model
predictions should be viewed as supportive tools
rather than replacements for expert judgment, and
used responsibly with validated empirical assess-
ments in practical decision-making contexts.
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MMI Level Description

I Not felt except by a very few under especially favorable conditions.
II Felt only by a few persons at rest, especially on upper floors of buildings. Delicately suspended objects

may swing.
III Felt quite noticeably by persons indoors, especially on upper floors of buildings. Many people do not

recognize it as an earthquake. Standing motor cars may rock slightly. Vibration similar to the passing of
a truck. Duration estimated.

IV Felt indoors by many, outdoors by few during the day. At night, some awakened. Dishes, windows,
doors disturbed; walls make cracking sound. Sensation like heavy truck striking building. Standing
motor cars rocked noticeably.

V Felt by nearly everyone; many awakened. Some dishes, windows broken. Unstable objects overturned.
Pendulum clocks may stop.

VI Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen plaster. Damage
slight.

VII Damage negligible in buildings of good design and construction; slight to moderate in well-built ordinary
structures; considerable damage in poorly built or badly designed structures; some chimneys broken.

VIII Damage slight in specially designed structures; considerable damage in ordinary substantial buildings
with partial collapse. Damage great in poorly built structures. Fall of chimneys, factory stacks, columns,
monuments, walls. Heavy furniture overturned.

IX Damage considerable in specially designed structures; well-designed frame structures thrown out of
plumb. Damage great in substantial buildings, with partial collapse. Buildings shifted off foundations.

X Some well-built wooden structures destroyed; most masonry and frame structures destroyed with
foundations. Rail bent.

XI Few, if any (masonry) structures remain standing. Bridges destroyed. Rails bent greatly.
XII Damage total. Lines of sight and level are distorted. Objects thrown into the air.

Table 2: Description of the Modified Mercalli Intensity (MMI) scale (U.S. Geological Survey, 1989).

1 SYSTEM_PROMPT = """
2 You are a seismic expert specialized

in earthquake damage assessment
and disaster response. You
analyze earthquake data , local
conditions , and building
characteristics to provide damage
assessments using the Modified

Mercalli Intensity (MMI) scale.
3 """

1 EARTHQUAKE_PROMPT = """
2 The earthquake happened date is

2025 -06 -01.
3

4 Here is the EARTHQUAKE information.
5 - Epicenter: {eq_place}
6 - Coordinates: {eq_lat}, {eq_lng}
7 - Magnitude: {eq_magnitude} mw
8 - Depth: {eq_depth} km
9

10 YOUR LOCATION information is listed
below.

11 - State: {state}
12 - City: {city}
13 - Zip code: {zip code}
14 - Coordinates: {lat}, {lng}
15 - Distance from epicenter: {distance}

km
16

17 ## Geospatial features in YOUR
LOCATION

18 - VS30 at your location: {vs30} m/s
19 (VS30 represents the time -averaged

shear -wave velocity (VS) to a
depth of 30 meters , which is a
key index to account for seismic
site conditions)

20

21 ## Building Description in YOUR
LOCATION (within a 100-meter
radius)

22 - Building description: {building}
23

24 ## Community Socioecnomics and
Demographics in YOUR LOCATION (at
Cencus Block Group level)

25 - Population density: {
population_density} people per
square km

26 - Urban population percentage: {
urban_population_pct }%

27 - Over 65 percentage: {over_65_rate }%
28 - Median household income: ${

median_household_income }/year
29 - Education (bachelor 's or higher): {

education }%
30

31 ## Visual Context in YOUR LOCATION
32 The image provided shows your

surrounding environment and
infrastructure.

33

34 Based on the information provided ,
ASSESS the potential earthquake
damage level using the Modified
Mercalli Intensity (MMI) scale.

35 1. Identify the damage level.
36 2. Explain your reasoning by

addressing the following factors
and considering the visual
context.

37 - Distance to the epicenter and
earthquake magnitude

38 - Geospatial features
39 - Infrastructure quality and

building characteristics
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40 - Population density and
socioeconomic vulnerabilities

41 - Visual image of surroundings
42

43 The following is an abbreviated
description of the 12 levels of
Modified Mercalli intensity. {MMI
Scale}

44

45 Output the result in JSON format:
46 {{
47 "Reasoning ": "<Provide reasoning

>"
48 "MMI": "<Respond MMI level >",
49 }}
50 """

C Earthquake Scenarios

2014 Napa Earthquake (U.S. Geological Survey,
2014b). On August 24, 2014, a magnitude 6.0
earthquake struck near Napa, California, causing
significant structural damage despite its moderate
magnitude. Approximately 613 buildings were
tagged for various degrees of structural integrity
concerns, including fractures, road cracks, and
damage to wine storage facilities. The earthquake
resulted in one death and nearly 200 injuries.

2019 Ridgecrest Earthquake (U.S. Geological
Survey, 2019b). The Ridgecrest earthquake oc-
curred on July 6, 2019, with a magnitude of 7.1, sig-
nificantly larger than the Napa event but with fewer
human casualties. The quake damaged around 50
homes, caused gas leaks and road cracks, and trig-
gered fires in residential properties. Significant
infrastructural damage occurred at the Naval Air
Station, and widespread power outages were re-
ported.

D Data Leakage Test

To further assess the potential for data leakage in
the LLMs used in our experiments, we conduct
a leakage test on Claude-3.5-haiku and GPT-4.1-
mini, the two best-performing models in our main
study. Specifically, we remove city and state names
from the prompt—two elements most likely to
serve as shortcuts for the models to associate with
MMI levels and potentially memorize. As shown in
Table 3, the removal of location information does
not significantly affect the models’ simulation per-
formance. It is fair to rule out the possibility of
data leakage in our main results.

E Spatial Distribution of Predicted MMI
by LLMs

Figure 7 shows the spatial distribution of predicted
MMI for the 2014 Napa earthquake and the 2019
Ridgecrest earthquake at zip code level from differ-
ent LLMs.

F Scaling Law Analysis

To investigate the impact of LLM scaling laws on
simulation performance, we conduct a scaling anal-
ysis using the Llama-3.2 and Qwen-2.5 model fam-
ilies. As shown in Table 4, we observe that per-
formance in simulation generally improves with
model size, excepting Qwen-2.5-72B. This indi-
cates that the simulation performance tend to be
strengthened with a larger size of LLMs.

G Fine-grained City-level Analysis

The following tables present a comparative anal-
ysis of MMI predictions from LLMs for the two
investigated seismic events. The predictions from
each model are juxtaposed with the actual average
MMI values recorded for cities to evaluate their
performance and accuracy. This city-level compar-
ison provides a more fine-grained analysis of each
model’s predictive performance across different
locations and intensities.

Based on the results, we have listed some key
observations. First, LLMs show variation in their
MMI predictions at the city level, with most mod-
els consistently overestimating damage compared
to actual MMI values, especially for the 2014 Napa
earthquake. GPT-4.1-mini shows the largest pre-
diction errors, consistently overestimating MMI
values by 2-3 levels (e.g., predicting 6.43 vs actual
3.80 for San Francisco). The Qwen models show
intermediate performance, with Qwen2.5-VL-32B
being more conservative than its 72B counterpart.
The case varies significantly between earthquake
events, with all models performing better on the
2021 Ridgecrest earthquake compared to the 2014
Napa earthquake. For Ridgecrest, model predic-
tions show better alignment with actual MMI val-
ues, particularly at the epicenter, where models
predicted 6.6-7.7 versus the actual 7.0.

Most LLMs show consistency in their relative
city rankings within each earthquake event, with
most models generally maintaining similar order-
ing of cities as compared to the ground truth. This
suggests that while the models struggle with pre-
cise MMI calibration, they can capture relation-
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Model Earthquake prompt w/o location

RMSEZ ↓ CorrZ ↑ RMSEC ↓ CorrC ↑ RMSEZ ↓ CorrZ ↑ RMSEC ↓ CorrC ↑
claude-3-5-haiku 2.11 0.58 2.05 0.70 2.35 0.38 2.26 0.62
gpt-4.1-mini 2.56 0.61 2.48 0.67 2.67 0.62 2.58 0.73

Table 3: Experiment results on data leakage test.

Model Family Model Size Napa RMSE Ridgecrest RMSE

Llama-3.2 11B 3.19 3.22
90B 2.62 2.06

Qwen-2.5

3B 3.63 3.88
7B 1.79 1.53
32B 1.59 0.99
72B 2.17 1.39

Table 4: Scaling law analysis: Zip code-level RMSE across model sizes (in billions of parameters).

City Count
claude-3.5

-haiku
gpt-4.1
-mini gpt-4o

llama-3.2
-90b

qwen2.5
-vl-32b

qwen2.5
-vl-72b

Actual
average MMI

San Francisco 750 5.12 6.43 6.00 6.27 5.16 5.79 3.80
Berkeley 360 5.39 6.44 5.81 6.63 5.45 5.71 3.86
Oakland 350 5.26 6.57 5.90 6.58 5.27 5.53 3.57
Santa Rosa 300 5.18 6.52 6.04 6.56 5.29 5.71 4.00
San Mateo 200 4.50 6.02 6.00 6.11 4.22 5.61 3.75
Mountain View 150 4.62 5.65 5.96 5.61 4.09 4.98 3.00
Walnut Creek 100 5.28 6.25 6.04 6.40 5.33 5.84 4.00
San Rafael 100 5.39 6.49 5.92 6.80 5.83 5.59 3.00
Palo Alto 100 4.78 5.66 5.89 5.91 4.12 5.32 3.00
Redwood City 100 4.71 5.76 5.72 5.80 4.07 5.05 3.50
San Jose 100 5.41 5.32 6.00 5.96 4.08 4.98 3.00
Fremont 100 4.57 6.05 6.00 5.92 3.97 5.65 3.00
Fairfield 100 5.70 6.63 6.63 6.83 6.11 5.36 4.50
Vallejo 100 5.67 6.86 7.00 6.96 6.86 5.26 6.00
Vacaville 100 5.37 6.49 6.12 6.64 5.46 5.73 4.00
Sunnyvale 100 4.88 5.55 5.93 5.78 3.99 5.11 2.50
Davis 100 5.13 6.12 5.96 6.09 4.34 5.83 3.00
Concord 100 5.54 6.36 5.99 6.57 5.05 5.82 4.00
Petaluma 76 5.17 6.53 6.14 6.61 5.46 5.36 4.53
Napa 73 5.73 6.78 6.84 6.83 6.67 5.66 7.56

Table 5: City-level MMI predictions vs. actual MMI for the 2014 Napa Earthquake.

ships about earthquake impact distribution, making
them potentially valuable for comparative damage
assessment and emergency response prioritization.

H Comparison with Traditional Methods

ShakeMap is a highly effective method that quan-
tifies physical parameters like ground shaking in-
tensity and infrastructure vulnerability (Wald et al.,
2006). We provide quantitative comparison against
the USGS ShakeMap product and standard ma-
chine learning models to ground our performance
evaluation.

H.1 Comparison with USGS ShakeMap

Table 7 compares our pre-event LLM simulations
against the post-event ShakeMap results, both
evaluated against ground-truth “Did You Feel It?”
(DYFI) reports.

The post-event ShakeMap product aligns more
closely with DYFI reports, as reflected in its lower
RMSE and higher correlation. This advantage
stems from ShakeMap’s reactive nature: it is gen-
erated minutes after an earthquake using real-time
ground-motion recordings from seismic stations,
interpolated across a regional grid. By contrast, our
LLM-based method operates in a pre-event simula-
tion and emphasizes the human-centered dimension
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GPT-4o GPT-4.1-mini Claude-3.5-haiku

Llama-3.2-90B Qwen2.5-32B Qwen2.5-72B

GPT-4o GPT-4.1-mini Claude-3.5-haiku

Llama-3.2-90B Qwen2.5-32B Qwen2.5-72B

A.

B.

Figure 7: Spatial distribution of predicted MMI at zip code level: (A) The 2014 Napa earthquake, and (B) the 2019
Ridgecrest earthquake based on GPT4o, GPT-4.1-mini, Claude-3.5-haiku, Llama-3.2-90B, Qwen-2.5-32B, and
Qwen-2.5-72B. The red star sign shows the epicenter of the earthquake. These maps compare outputs from different
LLMs, showing consistent geospatial patterns with high-intensity predictions concentrated near epicenters

of how individuals perceive seismic impacts.

H.2 Comparison with Machine Learning
Baselines

We further benchmark our approach against stan-
dard machine learning models trained for the same
pre-event simulation task. Using the 2014 Napa
earthquake data for training and the 2019 Ridge-
crest event for testing, we train five models on
the same multimodal data provided to our LLM
pipeline.

Our evaluation reveals two advantages of using

LLMs for this task. First, the best-performing LLM
achieves a zip code-level Pearson correlation of
0.75 with DYFI reports (Table 7). In contrast, the
strongest traditional ML model reaches a correla-
tion of only 0.62 (Table 8). This demonstrates the
LLM’s superior ability to synthesize complex, mul-
timodal inputs for pre-event simulation. Second,
unlike traditional models that output a single nu-
meric value, the LLM generates chain-of-thought
explanations for its MMI predictions. These nar-
ratives reference factors such as distance from the
epicenter, local site conditions, building materials,
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City Count
claude-3.5

-haiku
gpt-4.1
-mini gpt-4o

llama-3.2
-90b

qwen2.5
-vl-32b

qwen2.5
-vl-72b

Actual
average MMI

Los Angeles 500 4.80 5.49 5.61 6.00 4.58 5.43 4.00
Las Vegas 300 4.25 4.36 4.93 5.96 4.62 5.09 4.00
Bakersfield 250 4.93 5.47 5.96 6.02 5.33 5.15 4.00
San Diego 200 4.26 3.87 4.11 5.87 3.58 3.78 3.00
Lancaster 150 4.73 5.49 6.22 6.11 5.00 5.28 4.67
Huntington Beach 100 4.57 4.36 5.62 6.03 3.96 4.56 4.00
Redondo Beach 100 4.46 4.77 5.95 5.98 4.06 4.81 4.00
Simi Valley 100 4.68 4.70 5.50 6.01 4.31 5.51 4.00
Henderson 100 3.90 4.32 4.82 5.85 4.25 4.69 3.50
Mission Viejo 100 3.96 4.31 5.88 5.82 4.05 4.50 4.00
Anaheim 100 4.17 4.42 5.88 5.99 4.21 5.11 4.00
Ventura 100 3.96 3.99 5.29 5.78 3.90 4.77 4.00
Palmdale 100 5.03 5.61 6.10 5.95 4.80 5.41 4.50
Paso Robles 50 4.54 3.76 5.00 5.67 3.16 3.80 3.00
Pasadena 50 5.08 5.60 5.62 6.00 4.76 5.58 4.00
Porterville 50 4.90 5.28 6.16 6.10 4.52 5.24 4.00
Rancho Cucamonga 50 4.84 4.62 4.70 6.04 4.06 5.28 4.00
Rancho Santa Margarita 50 4.12 4.36 5.16 5.84 3.59 4.56 4.00
Redlands 50 4.48 4.70 5.30 5.98 4.48 5.12 4.00
Palm Springs 50 4.48 4.18 5.54 5.92 4.10 5.28 4.00
Aliso Viejo 50 4.22 4.12 5.78 5.92 4.02 4.34 4.00
San Clemente 50 3.92 4.04 5.02 5.88 4.10 4.08 4.00
Ridgecrest 50 6.64 7.24 7.66 7.30 7.50 6.74 7.00

Table 6: City-level MMI predictions vs. actual MMI for the 2019 Ridgecrest Earthquake.

Model 2014 Napa 2019 Ridgecrest

RMSEZ ↓ CorrZ ↑ RMSEZ ↓ CorrZ ↑
GPT-4o 2.43 0.77 1.97 0.75
GPT-4.1-mini 2.56 0.61 0.92 0.64
Claude-3.5-haiku 2.11 0.58 1.35 0.59
Llama-3.2-90B 2.62 0.57 2.06 0.62
Qwen-2.5-32B 1.59 0.70 0.79 0.71
Qwen-2.5-72B 2.17 0.46 0.44 0.64

ShakeMap (Post-event) 1.08 0.81 0.72 0.79

Table 7: Performance comparison of LLM simulations vs. post-event ShakeMap.

Table 8: Performance of pre-event machine learning baselines on the 2019 Ridgecrest earthquake.

Model RMSEZ ↓ RMSEC ↓ CorrZ ↑ CorrC ↑
Logistic Regression (Lasso) 1.93 1.76 0.55 0.30
Logistic Regression (Ridge) 1.93 1.76 0.55 0.30
Multilayer Perceptron (MLP) 1.74 1.57 0.62 0.50
Random Forest 0.99 0.81 0.12 0.17
Support-Vector Machine (SVM) 1.83 1.71 0.50 0.29
XGBoost 1.52 1.49 0.57 0.32

and social vulnerability indicators, offering emer-
gency planners a clearer understanding of why a
location is judged to be at high risk.

I Practical Consideration for Deployment

In this section, we discuss the practical considera-
tions of our framework, including computational
performance and data dependencies. For real-time
latency, our full inference requires approximately

156 seconds to process 50 samples for a single zip
code profile using the gpt-4.1-mini model. The
associated costs and performance details are sum-
marized in Table 9.

The availability of regional data is a key fac-
tor for the successful application of the simulation.
Our approach depends on a rich set of open geospa-
tial data, building inventories, socioeconomic fac-
tors, and street-level imagery, which allows the
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Metric Value

Model gpt-4.1-mini-2025-04-14
Event 2019 Ridgecrest
Samples per zip code 50 samples
Averaged cost per zip code $0.02 USD (50 samples)
Averaged time per zip code 156 seconds (50 samples)

Table 9: Inference metrics using the gpt-4.1-mini model.

LLM to “see” what residents see. Gaps in data
sources, such as incomplete Google Street View
coverage or inconsistent census data, can introduce
bias, as noted in our limitations. Furthermore, ap-
plying this framework to other regions, particularly
less-developed countries, may be challenging if
such multimodal datasets are restricted by data
sharing policies. The validation process also re-
lies on the USGS DYFI program, which provides
public response data at ZIP code resolution, pri-
marily for U.S. earthquakes. When the model is
applied internationally, the scarcity or unavailabil-
ity of DYFI reports would necessitate the use of
alternative, openly accessible human-perception
datasets for validation.

J Samples of LLM Output

Sample output by LLMs are presented in Table 10,
including their predicted MMI and specific reason-
ing.
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Samples of LLM Reasoning Outputs with Different MMI Predictions

GPT-4.1-mini | 2019 Ridgecrest | Predicted MMI: III
The earthquake has a high magnitude of 7.1 Mw, which is capable of causing significant damage near the epicenter.
However, the location in question, San Diego, CA, is approximately 339 km away from the epicenter in Ridgecrest,
CA. At this distance, seismic waves would have attenuated considerably, reducing the intensity of shaking experi-
enced. The VS30 value of 417 m/s indicates a site with relatively soft soil conditions, which can amplify shaking
somewhat, but given the large distance, this effect is limited. The building stock consists mostly of general buildings
and schools, likely built to modern California seismic codes, which enhances resilience. The population density is
moderate, with a well-educated and relatively affluent community, reducing socioeconomic vulnerabilities. The
visual context shows a well-maintained urban street with no visible signs of damage or distress, supporting the
assessment of low shaking impact. Considering all these factors, the expected Modified Mercalli Intensity (MMI)
level in San Diego would be around III, where shaking is noticeable indoors but causes no damage.
GPT-4.1-mini | 2019 Ridgecrest | Predicted MMI: IV
The earthquake has a high magnitude of 7.1 Mw, which is capable of causing significant damage near the epicenter.
However, the location in Ventura, CA is approximately 221 km away from the epicenter in Ridgecrest, CA, which
greatly reduces the intensity of shaking experienced. The VS30 value of 391 m/s indicates a site with relatively soft
soil conditions, which can amplify shaking somewhat, but the distance still plays a dominant role in reducing impact.
The building information is not available, but the visual context shows modern infrastructure such as a highway
bridge and vehicles, suggesting reasonably good construction standards typical of California. The population density
is low (65 people/km2) with a moderate urban population percentage (25.43 %), and socioeconomic indicators such
as median income and education level are moderate, implying some resilience but also potential vulnerabilities in
older or poorly maintained structures. Given the distance, moderate site conditions, and infrastructure, the expected
shaking intensity would be moderate with little to no structural damage. This corresponds to an MMI level around
IV to V, where shaking is felt by many but damage is minimal or limited to minor non-structural effects.
GPT-4.1-mini | 2019 Ridgecrest | Predicted MMI: V
The earthquake had a high magnitude of 7.1 Mw, which is capable of causing severe damage near the epicenter.
However, the location in question, Apple Valley, CA, is approximately 152.25 km away from the epicenter, which
significantly reduces the intensity of shaking experienced. The VS30 value of 607 m/s indicates relatively firm
ground conditions, which typically reduce amplification of seismic waves. The visual context shows a rural, sparsely
populated area with no visible dense infrastructure or tall buildings, suggesting limited exposure to structural
damage. The population density is low (18.73 people per square km), and the urban population is only about 32.65
%, further reducing potential damage and casualties. Socioeconomic factors such as median income and education
level are moderate, but given the lack of detailed building information and the rural setting, the risk of significant
structural damage is low. Considering these factors, the shaking would likely be felt by many but cause only slight
damage, consistent with MMI level VI.
Qwen-2.5-32B | 2014 Napa | Predicted MMI: VI
The location is 19.27 km from the epicenter of a 6.0 Mw earthquake, indicating strong shaking. The VS30 value of
344 m/s suggests stiff soil, reducing amplification but not eliminating damage due to proximity. The presence of
general buildings and houses, along with a rural setting and a high percentage of older residents, points to moderate
to strong damage. The visual context shows a well-maintained residential area, which may indicate better-quality
buildings, but this is not definitive.
Qwen-2.5-32B | 2014 Napa | Predicted MMI: VII
The earthquake has a magnitude of 6.0 Mw, and the location is 14.59 km from the epicenter, indicating strong
shaking. The VS30 value of 354 m/s suggests moderate amplification. The area consists of general buildings, and
the visual context shows industrial/commercial structures that appear relatively robust. High population density
(9,318.61 people per sq km) increases risk, but affluence and education suggest better infrastructure. Considering
these factors, the damage is expected to be noticeable but not severe.
Qwen-2.5-32B | 2014 Napa | Predicted MMI: VIII
The earthquake has a magnitude of 6.0 Mw and occurred 10.24 km from the epicenter. The firm ground conditions
(VS30 = 508 m/s) reduce shaking intensity. The area is sparsely populated (23.04 people per sq km), with low
urbanization (2.97 %) and high affluence ($93,750 median income). The visual context shows a rural landscape
with minimal infrastructure, indicating low vulnerability to structural damage. Based on these factors, the expected
damage level is moderate.

Table 10: Samples of LLM outputs with predicted MMI reasoning for selected earthquake scenarios.
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