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Abstract

It has been demonstrated that incorporating ex-
ternal information as textual modality can ef-
fectively improve time series forecasting accu-
racy. However, current multi-modal models
ignore the dynamic and different relations be-
tween time series patterns and textual features,
which leads to poor performance in temporal-
textual feature fusion. In this paper, we propose
a lightweight and model-agnostic temporal-
textual fusion framework named Cross-MoE.
It replaces Cross Attention with Cross-Ranker
to reduce computational complexity, and en-
hances modality-aware correlation memoriza-
tion with Mixture-of-Experts (MoE) networks
to tolerate the distributional shifts in time se-
ries. The experimental results demonstrate a
8.78% average reduction in Mean Squared Er-
ror (MSE) compared to the SOTA multi-modal
time series framework. Notably, our method re-
quires only 75% of computational overhead and
12.5% of activated parameters compared with
Cross Attention mechanism. Our codes are
available at https://github.com/Kilosigh/
Cross-MoE.git

1 Introduction

Time series forecasting (TSF) plays a crucial role
across various fields, such as financial market anal-
ysis (Sezer et al., 2020), energy demand manage-
ment (Deb et al., 2017) and healthcare monitor-
ing(Kaushik et al., 2020). By analyzing historical
data and identifying underlying patterns, TSF can
help reveal potential trends, cyclical changes and
anomalies, thereby effectively supporting strategic
planning and resource allocation.

However, in many real-world scenarios, such
as stock markets, agriculture and energy consump-
tion, external factors like policy changes (Lencucha
et al., 2020; Hirschman and Berman, 2014), expert
opinions (Leal et al., 2007; Kamali et al., 2017) can
significantly influence the future behaviors of time
series. Correspondingly, their distributions often

exhibit temporal variations, which is a phenomenon
known as Temporal Distribution Shift (TDS) (Fan
et al., 2023). Such non-stationarity is often intro-
duced by external factors. Hence, it is not enough
to only analyze numerical time series data alone be-
cause its patterns inherently lack explicit indicators
of the external influences.

Figure 1: An example of the temporal distribution shift
correlated with textual information.

Figure 1 shows the TDS phenomenon in En-
ergy prices. The three temporal intervals of sig-
nificant pattern shifts are annotated with their cor-
responding textual descriptions that are provided
by Reuters U.S reports and ScienceDirect. Conse-
quently, there is a growing recognition (Liu et al.,
2024b; Zhang et al., 2024b; Kim et al., 2024) that
integrating textual information with numerical time
series data can enhance the forecasting ability.

Unfortunately, existing temporal-textual fusion
approaches are oversimplified. GPT4MTS(Tao
et al., 2024) concatenate textual features gener-
ated by large language models (LLMs) with time
series features to improve TSF accuracy. Time-
MMD (Liu et al., 2024b) uses weighted summa-
tion of modal-specific forecasting results to achieve
modality fusion. These strategies fail to system-
atically evaluate the inter-modal correlations and
contribution weights between textual and temporal
information. Moreover, the text embeddings em-
ployed in these methods are typically generated by
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Large Language Models (LLMs), which primarily
capture semantic information rather than temporal
context critical for TSF. To address such modality
misalignment, recent work (Xu et al., 2024) pro-
poses leveraging Cross Attention mechanisms to
filter irrelevant textual content. Their model em-
ploys time series patch-wise features as queries,
with textual features serving as keys and values,
thereby simultaneously filtering out irrelevant in-
formation in texts and achieving modality fusion.
It introduces substantial computation overhead that
limits its practical deployment.

In this paper, we propose a model-agnostic
temporal-textual fusion framework, which consists
of MoE networks and a Cross-Ranker. The MoE
is used to learn the correspondence between texts
tokens and time series patterns, while the Cross-
Ranker is responsible for filtering out irrelevant
information from the text and synchronizing the
text with forecast lengths. Our main contributions
can be summarized as follows:

1. We propose Cross-MoE, a model-agnostic
temporal-textual fusion framework that decou-
ples temporal models into an encoder and a
decoder/projection head. The framework in-
tegrates textual features with encoder-derived
temporal features while preserving dimen-
sional consistency, then feeds the fused rep-
resentations into the decoder/projection head
to generate final predictions without requiring
structural modifications to the original tempo-
ral model architecture.

2. Our framework employs MoE networks to dy-
namically select and project features of tem-
poral interval with distinct patterns alongside
their corresponding textual tokens. A Cross-
Ranker subsequently filters these projected
representations based on similarity, enabling
targeted fusion of aligned features while filter-
ing out irrelevant information from the textual
modality.

3. We test various modality fusion approaches
on the nine multi-modal time series Time-
MMD (Liu et al., 2024b) datasets. Our re-
sults show that Cross-MoE lead to an aver-
age reduction of 8.78% in MSE compared to
the SOTA multi-modal time series framework.
Additionally, it achieves better performance
than Cross Attention, which consumes only

75% of the computational cost and 12.5% of
the activated parameters.

2 Related Works

2.1 Time series models

Time series forecasting models have undergone sig-
nificant development over time. Early approaches
like ARIMA (AutoRegressive Integrated Moving
Average)(Box and Pierce, 1970) were designed to
model linear time series by capturing temporal de-
pendencies through autoregressive and moving av-
erage components. As time series data became
more complex, Recurrent Neural Networks (RNNs)
(Cao et al., 2018; Yoon et al., 2018) were intro-
duced to better capture sequential dependencies
and non-linear patterns. Following this, Convolu-
tional Neural Networks (CNNs) (Bai et al., 2018;
Luo and Wang, 2024) offer an effective approach
for their ability to capture local features and pattern
recognition.

More recently, Transformer-based models have
gained widespread use due to their ability to cap-
ture long-range dependencies and their parallelized
training process. Autoformer(Wu et al., 2021) uses
trend and seasonal decomposition along with a sub-
quadratic self-attention mechanism. FEDFormer
(Zhou et al., 2022) integrates a frequency-enhanced
structure, while Pyraformer (Liu et al.) adopts pyra-
midal self-attention to achieve linear complexity
and capture both short and long temporal depen-
dencies.

Since point-wise representations are limited in
capturing local semantic patterns within tempo-
ral variations (Zeng et al., 2023), PatchTST (Nie
et al., 2022) replaces the time points with seg-
mented subseries called patches, and feeds the to-
kens of which to the vanilla self-attention mecha-
nism. Beyond capturing the patch-level temporal
dependencies within one single series, recent ap-
proaches have endeavored to capture interdepen-
dencies among patches from different variables
over time. Crossformer (Zhang and Yan, 2023) in-
troduces a Two-Stage Attention layer to efficiently
capture the cross-time and cross-variate dependen-
cies of each patch. Further expanding the receptive
field, iTransformer (Liu et al., 2024c) utilizes the
global representation of the whole series and ap-
plies attention to these series-wise representations
to capture multivariate correlations. Timesnet(Wu
et al., 2022) captures both intraperiod and interpe-
riod relationships simultaneously in the time series
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data converted into 2D.
Building on these advancements, our work pro-

poses a multimodal framework for Transformer-
based models that integrates textual modality infor-
mation with the TS-Encoder, generating enhanced
prediction results.

2.2 Text-assisted Time series prediction

2.2.1 TS2Text methods
Several studies have explored converting time
series data or its statistical summaries into text
to input into LLMs for prediction tasks. Time-
CMA(Liu et al., 2024a) converts the original data
along with its first-order differences into text and
inputs it into a large model, using a cross-attention
mechanism to perform modality fusion. Time-
LLM(Jin et al., 2024) incorporates statistical in-
formation such as the minimum, maximum, and
mean values of the data, along with relevant back-
ground information about the dataset, to enhance
the model’s understanding. UniMTS(Zhang et al.,
2024a), on the other hand, employs a contrastive
learning approach to align action time series fea-
tures with their corresponding textual descriptions,
selecting the most relevant text based on the simi-
larity between the features. These models typically
do not incorporate information beyond the original
time series data, except for a small amount of aux-
iliary text included in the prompt by the authors.
Nonetheless, they still demonstrate the potential
of leveraging textual information to improve time
series forecasting by enhancing the model’s con-
textual understanding and predictive power.

2.2.2 TS+Text methods
Studies have been explored to incorporate exoge-
nous textual information, such as news articles,
policies, and expert opinions, to assist time se-
ries models in forecasting. Time-MMD(Liu et al.,
2024b) created a dataset for such tasks, where the fi-
nal prediction is obtained by combining the results
of a large model’s prediction based solely on textual
information with the prediction from a time series
model through a weighted sum. GPT4MTS(Jia
et al., 2024) adds the embeddings from both modal-
ities together and inputs them into an LLM to gen-
erate the final prediction. TGTSF(Xu et al., 2024)
calculates the similarity between future news in-
formation and channel descriptions to obtain the
textual modality embeddings, which are then com-
bined with the output from the TS-Encoder through
a cross-attention mechanism to produce the final

prediction. In contrast, our work uses MoE and
similarity calculations to classify, project, and filter
the textual information, enabling efficient and ef-
fective modality fusion in time series forecasting.

3 Preliminaries

3.1 Problem Definition

Given a dataset contains time series
and corresponding textual sentences,
D = {Xi

t−L:t, X
i
t:t+H , Si

t}
|D|
i=1

, where the se-
quence Xi

t−L:t ∈ RL×C denotes the input time
series, L is the length of look-back window and C
represents the number of channels (variables). Si

t

is the text corresponding to the Xi
t−L:t ∈ RL×C .

Our objective is to find a function fθ(X
i
t−L:t, S

i
t)

parameterized by θ to minimize the mean square
errors between the ground truths Xi

t:t+H and
forecasting results X̂i

t:t+H , i.e.

argmin
θ

{ 1

|D|

|D|∑

i=1

∥X̂i
t:t+H −Xi

t:t+H∥2F } (1)

4 Method

Our method utilizes the temporal features gen-
erated by the time series (TS) model’s encoder
and the textual features generated by the LLM for
modality fusion. It mainly consists of two mod-
ules: Cross-Ranker and MoE. The Cross-Ranker
module filters out irrelevant information in the text
modality and aligns the token numbers of the text
modality with the time series data. The MoE net-
work is responsible for learning the correspondence
between the patterns in the time series data and the
text tokens, projecting the token features into the
time series feature space. The architecture is shown
in Figure 2, where the modality fusion process is
demonstrated based on point-wise approach. The
subsequent method explanations will also be based
on the Patch-based approach.

4.1 Time series Encoding

Our framework treats the time series model as a
white-box model, decomposing it into two compo-
nents: the Encoder and the Decoder (which could
also be a Projection Head). The Encoder is respon-
sible for extracting features from the given time
series data, while the Head uses these features to
make predictions. We leverage the outputs of En-
coder for fusion of text modality.
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Figure 2: The architecture of Cross-MoE. The Cross-Ranker is used to select important textural features. The TS
MoE and TX MoE are used to memorize the correlation between time series patterns and textual features.

Let X ∈ RL×C denote the input time series,
and the L represents the length of the look-back
window and C denotes the number of channels
(variables). After encoding through a TS model, let
the output representation be denoted as:

Xen = Encode(X), Xen ∈ RL×d (2)

where d is the dimensionality of time series embed-
ding.

Specifically, the encoded representation Xen

generated by patch-based temporal models should
maintain a shape of RC·PNlbw×d, where PNlbw de-
notes the number of patches corresponding to the
look-back window L.

4.2 Mixture of Experts network

As shown in Figure 2, MoE networks introduce
multiple expert models, which allow the system to
dynamically select the most relevant experts based
on the input. Such selective computation helps
expand the model’s capacity to capture and store
information, while only a small subset of experts is
activated for each forward pass, thereby reducing
computational cost.

A single MoE network consists of a set of ex-
perts E = {ei}Mi=1, ei : Rdin → Rdout and a router
network G(·) : Rdin → RM , where din and dout
denotes the embedding dimension of input and out-
put tokens, respectively. Each expert is a simple
MLP layer. The router network is responsible for
distributing the embedding of each time step token
to one or more experts as input. The calculation

process of a MoE network could be defined as :

MoE(x) =
M∑

i=1

Gi(x) · ei(x) (3)

Gi(x) =

{
si, if si ∈ TopKM

j=1(sj , k),

0, otherwise.
(4)

si = Softmax(Wg · x)i (5)

where Wg ∈ RM×d denotes trainable parameters,
M is the number of experts and k represents the
hyperparameter in the TopK selection function, in-
dicating the number of experts to be selected.

4.3 Cross-Ranker
The Cross-Ranker aims to simplify the computa-
tion in Cross Attention. Traditional Cross Attention
computes the correlation score between the query
and key by projecting them once and then perform-
ing a dot product between the output vectors. We
adopt a similar approach for computing the scores.
However, the key difference is that we retain only
this step and select the top-k text tokens with the
highest correlation scores as the output. This not
only significantly reduces the computational and
memory overhead, but achieves performance com-
parable to Cross Attention when combined with
the MoE network.

When the text data is input, it is first processed
by a LLM to obtain the Text Embedding Sen ∈
RN×dllm , where N represents the sentence length
and dllm is the feature dimension of the text tokens.
Subsequently, both temporal and textual features
are processed through MoE networks, which pro-
duces Xen′ ∈ RL×d and Sen′ ∈ RN×d. Such
operation achieves dual objectives:
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(1) Dimensional alignment between heteroge-
neous modalities.

(2) Joint projection into a unified latent space that
preserves cross-modal semantic relationships.

Sen′
= MoE(Sen), Xen′

= MoE(Xen) (6)

Such an operation ensures that the subsequent
similarity calculation accurately reflects the infor-
mational relevance between the time series and text
data. A similarity matrix A ∈ RN×L is calculated,
which could be described as:

A = Sen′ × (Xen′
)
T

(7)

The next step is to rank the tokens based on sim-
ilarity, thereby filtering out the useless information
from the text to obtain Sfu ∈ RL×d:

Sfu = {wi · Sen′
i , wi ∈ TopK(w,L)} (8)

wi =
eui

∑
j e

uj
, ui =

∑

j

Aij (9)

where Aij denotes the similarity between the i-th
text token and j-th time series patch and A is the
result of Eq. 7.

4.4 Forecasting Generation

The decoder of the decoupled time series model
is used as the forecasting generation component,
which takes the summation of the filtered text fea-
tures Sfu and the encoder output Xen′

as the input.
The forecasting results Xout ∈ RH×C are gener-
ated by the decoder.

Xout = Decoder(Sfu +Xen′
) (10)

where H denotes the prediction length.

4.5 Total loss

The final loss of the model consists of two compo-
nents: the mean squared error (MSE) between the
predicted results and the ground truth labels, and an
auxiliary loss introduced by the MoE network. The
latter loss serves to regularize the Router, which en-
courages more balanced token allocation decisions
and ensures a more even distribution of load across
the experts. The detailed computation process is as

follows:

Ltotal = Lmse + λ · Laux (11)

Lmse =
1

C ·H
C∑

i=1

H∑

j=1

(Xout
ij −X lable

ij )2 (12)

Laux =
1

N

M∑

i=1

N∑

j=1

Gi(S
en
j ) (13)

The Eq.12 calculates the MSE, while Eq.13 rep-
resents the auxiliary loss. In Eq.13, the computa-
tion of Gi(·) is given by Eq.4, which represents
the weight of the i-th expert, and Sen

j denotes the
feature of the j-th text token. In Eq.11, λ is the
hyperparameter weight coefficient that balances the
importance of the two loss components.

5 Experiments

5.1 Experimental Setup
In this section, we introduce the experimental setup,
including the dataset, hardware platform, and hy-
perparameter configurations.

Dataset: Our experiments use the Time-MMD
dataset, which covers time series data and corre-
sponding text from nine domains: Agriculture, Cli-
mate, Economy, Energy, Entertainment, Environ-
ment, Public Health, Security, Social Good and
Traffic. The dataset spans three distinct frequen-
cies: daily, weekly, and monthly. The numerical
data is sourced from reliable government agencies,
and the data across different domains exhibits var-
ious patterns, such as periodicity and trends. The
text data comes from government reports and web
searches. The entire dataset is split into training,
validation, and test sets in a 7:1:2 ratio.

Hardware Platform: All experiments are con-
ducted on a server with the following specifications:
CPU: Intel(R) Xeon(R) Gold 6348, GPU: NVIDIA
A8000 80GB, System: Ubuntu 22.04.3 LTS.

Hyperparameter Settings: We use a batch size
of 64, the Adam optimizer, a learning rate of 5e-
4. We employ a cosine schedule to dynamically
adjust the learning rate, where the learning rate
at the current epoch is calculated as 1 + cos(π ∗
current epochs

total epochs ). The early stopping tolerance is set to
5 epochs, and the dropout rate is set to 0.2. For all
tasks, the number of experts M ∈ {4, 8, 16, 32}.

5.2 Main Results
We use the Time-MMD framework as the baseline
and employ PatchTST(Nie et al., 2022), iTrans-
former(Liu et al., 2024c), TimeXer(Wang et al.,
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Table 1: Comparison of performance between different models in our framework and the Time-MMD framework.
Lower MSE/MAE values indicate better predictive ability. The best result across frameworks is captioned bold.

Model TimeXer TimesNet PatchTST iTransformer Reformer TimeLLM

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Dataset Arch

Algriculture

Uni-modal 0.13310 0.27107 0.17338 0.32076 0.11563 0.24940 0.09791 0.21336 0.44290 0.50787 0.12370 0.26270
Time-MMD 0.12870 0.26662 0.13944 0.28002 0.12133 0.25616 0.11427 0.23747 0.48802 0.53759 0.13118 0.26809
Cross-MoE 0.12737 0.25810 0.13576 0.27913 0.11360 0.23478 0.10357 0.22532 0.34049 0.42494 0.12527 0.24746

Promotion 1.03% 3.20% 2.64% 0.32% 6.37% 8.34% 9.36% 5.11% 30.23% 20.96% 4.51% 7.70%

Climate

Uni-modal 1.08026 0.84405 1.13415 0.85276 1.23194 0.89498 1.18115 0.86385 0.87022 0.74561 1.28141 0.90856
Time-MMD 1.11742 0.85800 1.12172 0.84773 1.12132 0.85788 1.11115 0.84622 1.02540 0.81231 1.12802 0.85383
Cross-MoE 1.04499 0.82197 1.04377 0.81655 1.09610 0.84267 1.09627 0.84284 1.01226 0.80639 1.08025 0.83615

Promotion 6.48% 4.20% 6.95% 3.68% 2.25% 1.77% 1.34% 0.40% 1.28% 0.73% 4.24% 2.07%

Economy

Uni-modal 0.01594 0.10125 0.02522 0.13068 0.01641 0.10315 0.01424 0.09419 0.81540 0.81655 0.02371 0.12503
Time-MMD 0.01734 0.10572 0.03011 0.14087 0.01794 0.10605 0.01448 0.09642 0.68601 0.75139 0.02649 0.13010
Cross-MoE 0.01412 0.09548 0.02509 0.12002 0.01076 0.08312 0.01174 0.08779 0.45721 0.59648 0.01787 0.10731

Promotion 18.54% 9.69% 16.66% 14.80% 40.00% 21.62% 18.93% 8.96% 33.35% 20.62% 32.55% 17.52%

Energy

Uni-modal 0.25273 0.36735 0.29702 0.40554 0.25881 0.36541 0.25106 0.36742 0.45252 0.51908 0.28469 0.39427
Time-MMD 0.26773 0.39060 0.27607 0.39346 0.26020 0.37174 0.25345 0.36637 0.46969 0.52344 0.27533 0.39275
Cross-MoE 0.24465 0.36307 0.20400 0.32982 0.25052 0.36160 0.25911 0.37289 0.25000 0.49612 0.26945 0.38370

Promotion 8.62% 7.05% 26.10% 16.17% 3.72% 2.73% -2.23% -1.78% 46.77% 5.22% 2.13% 2.30%

Environment

Uni-modal 0.43829 0.49083 0.43619 0.48801 0.56649 0.54104 0.44467 0.49504 0.49224 0.53914 0.58454 0.54959
Time-MMD 0.43405 0.48539 0.47720 0.51254 0.51570 0.51247 0.43136 0.48586 0.47019 0.53120 0.54487 0.53171
Cross-MoE 0.42302 0.48209 0.48635 0.50834 0.50997 0.50959 0.42617 0.48266 0.43362 0.50086 0.46383 0.50127

Promotion 2.54% 0.68% -1.92% 0.82% 1.11% 0.56% 1.20% 0.66% 7.78% 5.71% 14.87% 5.72%

Public_Health

Uni-modal 2.18251 0.96282 1.78257 0.88540 1.96002 0.91906 2.20737 0.92223 1.58171 0.88266 2.02351 0.98018
Time-MMD 2.06260 0.93598 1.77603 0.91859 1.66797 0.84250 1.97107 0.86188 1.52698 0.85382 1.78536 0.92827
Cross-MoE 1.76146 0.89517 1.48646 0.82041 1.62930 0.83684 1.75704 0.85785 1.44565 0.83371 1.79700 0.91563

Promotion 14.60% 4.36% 16.30% 10.69% 2.32% 0.67% 10.86% 0.47% 5.33% 2.36% -0.65% 1.36%

Security

Uni-modal 86.12715 5.21692 108.37794 5.07056 93.81701 5.61057 97.79772 5.76584 79.60748 4.77460 111.46080 5.18332
Time-MMD 85.87784 5.10847 83.67643 4.99882 82.45282 4.96077 83.05544 4.93340 85.73862 5.32512 114.07553 5.41010
Cross-MoE 79.66166 4.63439 79.57533 4.76940 80.60530 4.85269 82.22611 4.76342 82.92518 5.06522 108.79348 5.01120

Promotion 7.24% 9.28% 4.90% 4.59% 2.24% 2.18% 1.00% 3.45% 3.28% 4.88% 4.63% 7.37%

SocialGood

Uni-modal 1.06997 0.44779 1.11839 0.53028 1.20396 0.45166 1.28119 0.47893 0.98422 0.52514 1.24355 0.59567
Time-MMD 1.09304 0.50062 1.16969 0.51189 1.14853 0.44240 1.18187 0.41490 1.02886 0.59481 1.21705 0.61340
Cross-MoE 1.03877 0.41481 1.05332 0.47823 1.08589 0.40513 1.21241 0.41680 0.96424 0.50388 1.05756 0.54234

Promotion 4.96% 17.14% 9.95% 6.58% 5.45% 8.43% -2.58% -0.46% 6.28% 15.29% 13.10% 11.59%

Traffic

Uni-modal 0.18489 0.19625 0.24509 0.32775 0.18713 0.20294 0.20429 0.20864 0.29084 0.44693 0.23636 0.32482
Time-MMD 0.20315 0.22273 0.23354 0.26295 0.19286 0.20720 0.19543 0.20209 0.25720 0.39620 0.21626 0.30752
Cross-MoE 0.18767 0.19644 0.22620 0.26165 0.18105 0.18660 0.20804 0.21788 0.25375 0.39697 0.20410 0.29270

Promotion 7.62% 11.80% 3.15% 0.50% 6.12% 9.94% -6.45% -7.81% 1.34% -0.19% 5.63% 4.82%

Average Promotion 7.96% 7.49% 9.41% 6.46% 7.73% 6.25% 3.49% 1.00% 15.07% 8.40% 9.00% 6.72%

2024), Timesnet(Wu et al., 2022), Reformer(Kitaev
et al.) and TimeLLM(Jin et al., 2024) as the time
series models within our framework. We select
the best-performing MoE network with a specific
number of experts as our final result. In the predic-
tion tasks, our method achieves an average 7.27%
reduction in MSE compared to the Time-MMD
framework, outperforming Time-MMD on most
datasets. The evaluation metrics used are MSE and
MAE. The specific results are shown in Table 1.

The specific calculation formula of the "Promo-
tion" value is:

Promotion = (
MSETime-MMD −MSECross-MoE

MSETime-MMD
)

5.2.1 Cross-Dataset Performance Comparison
Experimental results demonstrate that the Cross-
MoE framework exhibits significant advantages
across most datasets. Specifically:

High Improvement Areas: The framework
shows the most notable performance gains on the
Economy and Energy datasets, with average MSE
improvements of 21.10% and 9.73%. These two
datasets generally exhibit softer fluctuations, but
with occasional sharp increases or decreases. Cross-
MoE effectively aligns the information in text with
these sharp changes, which leads to such significant
improvements.

Stable Performance Areas: The Algriculture,
Public Health, Security and Social good datasets
achieve improvements of 8.31%, 5.72%, 4.59%,
and 7.98%, respectively. On these datasets, the
performance of Cross-MoE is relatively stable, and
these datasets do not show strong common charac-
teristics; the ratio of high to low-frequency compo-
nents is fairly balanced.

Challenging Areas: On the Climate, Environ-
ment and Traffic datasets, the improvement was rel-
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Figure 3: The network architecture of various Fusion methods.

Figure 4: The normalized performance of the three fusion methods across all 9 datasets, where ’w’ and ’w/o’ denote
’with’ and ’without’, respectively. The longer radius indicates better performance differences resulting from the
introduction of MoE.

atively modest (an average of 3%). These datasets
contain rich high-frequency components in the time
series, with values fluctuating sharply over time.
This may indirectly suggest that Cross-MoE’s abil-
ity to extract short-term, high-frequency temporal
information from the text is insufficient.

5.3 Ablation Study

All ablation experiments were conducted using
TimeXer as the TS model. Results are shown in
Figure 4.

As shown in Figure 3, three distinct modality
fusion methods were evaluated. In this section,
extensive ablation experiments were conducted
to demonstrate the performance improvements
brought by Cross-MoE (Cross-Ranker combined
with MoE), with comparisons to traditional Cross
Attention and Time-MMD (Avg Pooling without
MoE).

First, Avg Pooling averages the features of dif-
ferent tokens along the temporal dimension and
replicates them C times to match the output shape
of the temporal model. In this fusion method, MoE

intervenes before the pooling operation. The sec-
ond fusion method, Cross-Ranker, is our proposed
approach. It calculates the similarity between the
temporal model encoder output and the text embed-
dings, then ranks and selects the top C · L tokens
based on the scores. MoE intervenes before the
temporal features enter the Cross-Ranker. Lastly,
Cross Attention, a popular modality fusion tech-
nique, uses the output of the temporal model en-
coder as the queries and the text features as the keys
and values. The output shapes of all three fusion
methods match exactly with the encoder output of
the temporal model, allowing them to seamlessly
integrate into the original model.

5.3.1 Performance Analysis

The introduction of MoE significantly improves
performance across all fusion methods. On aver-
age, MSE reduction rates increased by over 50%,
validating MoE’s effectiveness in enhancing mul-
timodal interactions. On the other hand, regard-
less of whether MoE is included, Cross-Ranker
consistently outperforms Cross Attention on all
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Table 2: Breakdown and derivation of the computational overhead introduced by different fusion strategies.

(a) Cross-Attention (Full)

Component FLOPs Formula Calculation Process Subtotal (GFLOPs)
Q Projection B × L× d2 32× 24× 5122 0.201
K Projection B ×N × d2 32× 512× 512× 512 4.295
V Projection B ×N × d2 32× 512× 512× 512 4.295
QK, AV Matrix B ×N × L× d 2× 32× 512× 24× 512 0.402
FFN Layer 8×B × L× d2 8× 32× 24× 5122 1.611
Theoretical Total 10.805

(b) Cross-MoE (Ours)

Component FLOPs Formula Calculation Process Subtotal (GFLOPs)
TX-MoE B ×N × dllm × (Mtx + d) 32× 512× 768× (8 + 512) 6.543
TS-MoE B × L× d× (Mts + d) 32× 24× 512× (8 + 512) 0.204
Cross-Ranker B ×N × L× d+B ×N 32× 512× 24× 512 + 32× 512 0.201
Theoretical Total 6.948

(c) Avg Pooling (Time-MMD)

Component FLOPs Formula Calculation Process Subtotal (GFLOPs)
Feature Projection B ×N × dllm × dllm/8 32× 512× 768× 768/8 1.208
Horizon Projection B ×N ×H × dllm/8 32× 512× 12× 768/8 0.019
Theoretical Total 1.227

datasets, with an average performance advantage
(e.g., 6.39% vs 5.46% for w MoE and 3.44% vs
2.83% for w/o MoE).

Specifically, the intervention of MoE has had
contrasting effects on the Avg Pooling method
across different datasets. On the Economy and
Traffic datasets, the inclusion of MoE resulted
in an increase in MSE by an average of 7.38%
and 9.30%, respectively. However, for the other
methods, MoE generally led to performance im-
provements. Compared to the case without MoE,
Avg Pooling showed a 14.4% improvement on the
Public Health dataset, Cross-Ranker improved by
12.8% on the Security dataset, and Cross Attention
improved by 11.3% on the Economy dataset.
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Figure 5: The overhead comparison of three fusion
methods.

Additionally, the effectiveness of the three meth-
ods varies depending on the dataset. Cross-MoE

and Cross Attention showed more significant im-
provements on the Economy and Public Health
datasets. Notably, the Traffic dataset only saw sub-
stantial performance gains (a 7% improvement)
when using Cross-MoE. In summary, Cross-Ranker
and Cross Attention exhibit statistically compara-
ble performance in most scenarios.

5.3.2 Overhead Analysis
We computed and summarized the additional over-
head introduced by different fusion strategies under
the conditions specified in Table 3. The theoretical
calculation results are presented in Table 2.

Table 3: Model Parameters and Definitions

Symbol Value Definition
dllm 768 LLM feature dimension
d 512 Temporal feature dimension
N 512 Text sequence length
L 24 Lookback window length
Mts 8 TS-MoE experts
Mtx 8 TX-MoE experts
B 32 Batch size
H 12 Forecast horizon

As shown in Figure 5, compared to Cross Atten-
tion, Cross-MoE consumes 75% the computation
and 12.5% of the memory usage.

The theoretical analysis aligns substantially with
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the data presented in Figure 5, though minor dis-
crepancies persist. These may stem from potential
inaccuracies in the profiling tool or undisclosed
optimizations within the operators. We ultimately
elected to report the profiled results as the primary
representation.

5.3.3 Hyperparameter Analysis
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Figure 6: The MSE value across various expert numbers

We recorded the MSE values for three mod-
els with different numbers of experts (i.e. M =
{4, 8, 16, 32} ). As shown in Figure 6, the perfor-
mance changes with varying numbers of experts
are minimal. But the general trend is that as the
number of experts increases, the MSE gradually
decreases.

5.4 Visualization of MoE Router distribution

Figure 7: The distribution of experts output by Router
in MoE.

We collected four distinct types of temporal in-
tervals from both the Energy and Environment
datasets, along with their corresponding Router
output distributions. The results reveal that the
Router in MoE effectively discriminate intervals

with different patterns. As demonstrated in Figure
7, in the Energy dataset, samples S3 and S4 ex-
hibit identical temporal patterns, while S1 and S2
demonstrate distinct pattern characteristics. While
in the Environment dataset, the four samples ex-
hibit less distinct pattern variations compared to
those in the Energy dataset, resulting in a more
balanced routing distribution.

6 Conclusion

A model-agnostic temporal-textual fusion frame-
work is proposed in this paper. It aligns textual
information with shifted temporal distributions
through MoE networks, while employing a Cross-
Ranker to filter irrelevant textual content. Com-
pared with the current state-of-the-art, Cross-MoE
achieves an 8.5% relative performance improve-
ment while requiring only 75% of the computa-
tional overhead of conventional Cross Attention
approaches to attain comparable predictive accu-
racy.

Limitations

The textual information incorporated in the current
Time-MMD dataset consists of policies or news
articles related to temporal data. Compared to di-
rect descriptive annotations of temporal data, such
textual descriptions lack explicit interpretability.
Specifically, it remains unclear which key elements
within the text contribute to specific impacts on the
temporal data—whether they affect trends, periodic
patterns, or noise components.

Additionally, in real-world scenarios, the sam-
pling frequencies of temporal and textual data often
mismatch. To address this, Time-MMD aligns tex-
tual content with temporal timestamps using a fixed
time window, where each timestamp corresponds
to all textual data within a predefined window pre-
ceding it. However, this alignment approach is
relatively simplistic and risks introducing substan-
tial irrelevant information and noise. Consequently,
this may divert researchers’ focus from exploring
effective text-temporal fusion strategies to the ne-
cessity of filtering out redundant information.

Furthermore, the effectiveness of the MoE in
large-scale temporal forecasting tasks remains un-
verified. The Cross-MoE framework has been vali-
dated exclusively on the small-scale Time-MMD
dataset. Its scalability and validity in handling sig-
nificantly larger text-temporal datasets require fur-
ther investigation.
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A Appendix

A.1 Word Frequency Statistics
As shown in Table 4 tallied the top 10 words most
frequently selected by Cross-Ranker across 9 dif-
ferent datasets where TimeXer serves as the TS
model.

A.2 Visualization of forecasting results
We adopt TimeXer as the temporal model in our
framework and conduct experiments on the Energy,
Environment and Public Health datasets with a pre-
diction horizon H = 48 . As shown in Figure 8,
the left side of the dashed line in the figure repre-
sents historical observations within the look-back
window, while the right side displays predictions
annotated with distinct colors corresponding to dif-
ferent fusion strategies. We observe that Cross-
MoE achieves more accurate predictions compared
to both Cross Attention and Avg Pooling. This
improvement stems from its dual capability to fil-
ter irrelevant textual information while effectively
aligning temporal patterns with text-based contex-
tual cues.

In the Energy dataset characterized by frequent
abrupt drops and surges, the model successfully
leverages critical event indicators from text when
such information is available. Conversely, the Envi-
ronment dataset exhibits rich high-frequency com-
ponents with relatively stable patterns, where all
three fusion methods demonstrate limited effec-
tiveness in extracting actionable insights from text.
The Public Health dataset shares similarities with
Energy in requiring textual guidance for trend in-
terpretation, though it differs in exhibiting less peri-
odic information that necessitates stronger reliance
on external textual cues for forecasting.

A.3 Detailed Statistics of different fusion
methods

Fig 9 demonstrates the detailed forecasting MSE
results of Figure 4.
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Table 4: The rankings of the top 10 most frequently occurring words across different datasets.

Dataset Name 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Agriculture prompt 2016 according agricultural predictions start per source follows ##w
Climate ed based 48 near across conditions ##dent
Economy trade predictions source future restrictions org japan states gov reduce
Energy source predictions oil prices gov crude natural price 2021 rising
Environment air quality source new york gov epa environmental state water
Public Health based information predictions influenza ##bi source ni infection various states
Security follows help ##a federal source state key 5 ##li earthquakes
Social Good nie p gov 6 unemployed information 12 source unable ##ls
Traffic source volume gov united tr com high data vehicle michigan

Figure 8: Visualization of the forecasting results.
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Figure 9: Detailed performance of different fusion methods.
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